JP2005281127A - Production process for carbonized product and carbonized product obtained by the process - Google Patents

Production process for carbonized product and carbonized product obtained by the process Download PDF

Info

Publication number
JP2005281127A
JP2005281127A JP2005043425A JP2005043425A JP2005281127A JP 2005281127 A JP2005281127 A JP 2005281127A JP 2005043425 A JP2005043425 A JP 2005043425A JP 2005043425 A JP2005043425 A JP 2005043425A JP 2005281127 A JP2005281127 A JP 2005281127A
Authority
JP
Japan
Prior art keywords
carbonized
carbonized product
temperature
heat treatment
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005043425A
Other languages
Japanese (ja)
Other versions
JP4892838B2 (en
Inventor
Takasuke Shigematsu
隆助 重松
Koichi Sugano
公一 菅野
Takahiro Kojima
隆宏 小島
Takashi Kojima
孝 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005043425A priority Critical patent/JP4892838B2/en
Publication of JP2005281127A publication Critical patent/JP2005281127A/en
Application granted granted Critical
Publication of JP4892838B2 publication Critical patent/JP4892838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production process for a useful carbonized product by a simple apparatus and steps. <P>SOLUTION: The production process for the carbonized product is characterized by comprising the following steps (a) to (b): (a) a step in which a plurality of metal-made or ceramic-made granular matters are charged into a heat treating apparatus which is maintained at a temperature of ≥400 to ≤700°C and allowed to flow therein and in which a carbonized product precursor is fed into the above apparatus and subjected to heat treatment, whereby the carbonized product is adhered on the surface of the above granular matters and (b) the step in which the carbonized product adhered on the surface of the granular matters is heated at a higher temperature than the heat treating temperature in the step (a) and ≤900°C, whereby the carbonized product is separated from the granular matters. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電気二重層キャパシタ電極材料やリチウム二次電池負極材料等の蓄電材料として用いられる炭素材料の原料や、半導体、原子力、核融合、宇宙航空等のハイテク分野で用いられる黒鉛材料の原料に適用可能な炭素化物の製造方法、該製造方法によって得られる炭素化物、該炭素化物を賦活処理して得られる電気二重層キャパシタ電極用活性炭、および該炭素化物を黒鉛化処理して得られるリチウム二次電池負極用炭素材料に関する。   The present invention is used as a raw material for carbon materials used as power storage materials such as electric double layer capacitor electrode materials and negative electrodes for lithium secondary batteries, and as a raw material for graphite materials used in high-tech fields such as semiconductors, nuclear power, nuclear fusion, and aerospace. Applicable carbonized product production method, carbonized product obtained by the production method, activated carbon for electric double layer capacitor electrode obtained by activating the carbonized product, and lithium metal obtained by graphitizing the carbonized product The present invention relates to a carbon material for a secondary battery negative electrode.

従来、重質油、コールタール、石油ピッチから粒状や粉末状の炭素化物を製造する場合、ブロック状や小塊状の初期熱処理品を製造し、炭素化後に成形や粉砕を行なっていた。例えばピッチ類を原料とした場合、原料をマッフル炉や雰囲気炉を用いて熱処理を行ない不溶不融の初期熱処理品を製造し、それを炭素化後に、成形や粉砕、分級する方法が一般的であった。しかし、このような方法では、工程が煩雑で生産性が低いことが難点であり、工業化が困難であった。   Conventionally, when producing a granular or powdery carbonized product from heavy oil, coal tar, or petroleum pitch, an initial heat-treated product in the form of a block or a small block has been produced, and molding and pulverization have been performed after carbonization. For example, when pitches are used as raw materials, heat treatment is generally performed using a muffle furnace or an atmospheric furnace to produce an insoluble and infusible initial heat-treated product, which is carbonized and then molded, pulverized, and classified. there were. However, in such a method, the steps are complicated and the productivity is low, and industrialization is difficult.

また、ナフタレン、メチルナフタレン等の縮合多環炭化水素を超強酸触媒の弗化水素および三弗化硼素存在下で重合させて得られる合成系ピッチは、そのまま炭素化した場合、原料に対して数十倍の体積に溶融発泡するという特性があった。そのためそのまま炭素化する方法では、容積効率が著しく低いため工業化が困難という欠点があった。   In addition, the synthetic pitch obtained by polymerizing condensed polycyclic hydrocarbons such as naphthalene and methylnaphthalene in the presence of hydrogen fluoride and boron trifluoride in the super strong acid catalyst is several There was a characteristic of melting and foaming to 10 times the volume. For this reason, the method of carbonization as it is has a drawback that it is difficult to industrialize because the volumetric efficiency is extremely low.

炭素化工程での溶融発泡を抑制するために、反応器内に予め粒状または粉末状の炭素化済みの製品を仕込み、撹拌羽根や二軸回転機による撹拌下に原料ピッチ等を供給して熱処理する方法が開示されている(例えば、特許文献1参照)。しかし、これらの方法では、比重が軽い炭素化物を媒体に用いるため塊ができやすく、内容物を十分に流動させるためには、複雑な撹拌機構が必要であり、高価な装置になるという欠点があった。
特開平7−286181号公報
In order to suppress melt foaming in the carbonization process, a granular or powdered carbonized product is charged in the reactor in advance, and heat treatment is performed by supplying raw material pitch and the like while stirring with a stirring blade or a twin-screw rotating machine. Is disclosed (for example, see Patent Document 1). However, in these methods, a carbonized material having a low specific gravity is used as a medium, so that lumps are easily formed, and in order to sufficiently flow the contents, a complicated stirring mechanism is required, which leads to an expensive apparatus. there were.
JP 7-286181 A

本発明の目的は、従来技術における上記のような課題を解決し、簡便な装置と工程により安価で有用な炭素化物の製造方法を提供することにある。 An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a cheap and useful method for producing a carbonized product with a simple apparatus and process.

本発明者らは、上記課題を解決するために鋭意検討を行なった結果、一定温度に保たれた熱処理装置内に、金属やセラミックス製の複数個の粒状物を該装置内に流動させておき、該熱処理装置内に炭素化物前駆体を供給することにより、粒状物表面に炭素化物が付着すること、該熱処理温度以上の高温でさらに処理することにより付着した炭素化物が粒状物から容易に剥離すること、剥離した炭素化物を賦活処理して得られる活性炭が電気二重層キャパシタ用電極材料として有用であること、剥離した炭素化物を900℃を超える温度で熱処理して得られる炭素材料がリチウム二次電池用負極材料として有用であることを見出し本発明に到達した。すなわち、本発明は以下のとおりである。
(1)つぎの工程(a)および(b)を含むことを特徴とする炭素化物の製造方法。
(a)400℃以上700℃以下の温度に保たれた熱処理装置内に、金属製またはセラミックス製の複数個の粒状物を仕込んで流動させておき、該装置内に炭素化物前駆体を供給して熱処理することにより該粒状物表面に炭素化物を付着させる工程、
(b)粒状物表面に付着した炭素化物を、工程(a)での熱処理温度より高温で、かつ900℃以下の温度に加熱することにより炭素化物を粒状物から分離する工程。
(2)炭素化物前駆体が縮合多環炭化水素を原料として弗化水素および三弗化硼素の存在下で重合により得られたものである上記(1)記載の炭素化物の製造方法。
(3)工程(a)において用いられる熱処理装置がロータリーキルンである上記(1)または(2)記載の炭素化物の製造方法。
(4)炭素化物前駆体を熱処理する際のロータリーキルンの周速が0.1〜10m/minの範囲である上記(3)記載の炭素化物の製造方法。
(5)熱処理装置の内容積に対する粒状物の仕込み量が、1〜50vol%の範囲である上記(1)〜(4)のいずれかに記載の炭素化物の製造方法。
(6)粒状物の真比重が2g/cc以上である上記(1)〜(5)のいずれかに記載の炭素化物の製造方法。
(7)粒状物の材質がステンレススチール、アルミナ、またはジルコニアである上記(1)〜(6)のいずれかに記載の炭素化物の製造方法。
(8)上記(1)〜(7)のいずれかに記載の方法によって得られる炭素化物。
(9)上記(8)記載の炭素化物1重量部に対してアルカリ金属水酸化物1〜4重量部を添加し、400〜900℃の温度範囲で賦活処理することによって得られる電気二重層キャパシタ電極用活性炭。
(10)上記(8)記載の炭素化物を900℃を超える温度で熱処理して得られるリチウム二次電池負極用炭素材料。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have made a plurality of particles of metal or ceramics flow in the heat treatment apparatus maintained at a constant temperature. By supplying a carbonized precursor to the heat treatment apparatus, the carbonized material adheres to the surface of the granular material, and the carbonized material attached by further processing at a temperature higher than the heat treatment temperature easily peels from the granular material. Activated carbon obtained by activating the peeled carbonized material is useful as an electrode material for an electric double layer capacitor, and a carbon material obtained by heat treating the peeled carbonized material at a temperature exceeding 900 ° C. The present invention has been found to be useful as a negative electrode material for secondary batteries. That is, the present invention is as follows.
(1) A method for producing a carbonized product comprising the following steps (a) and (b).
(A) In a heat treatment apparatus maintained at a temperature of 400 ° C. or higher and 700 ° C. or lower, a plurality of particles made of metal or ceramics are charged and flown, and a carbonized precursor is supplied into the apparatus. A step of attaching a carbonized product to the surface of the granular material by heat treatment
(B) A step of separating the carbonized material from the granular material by heating the carbonized material adhering to the surface of the granular material to a temperature higher than the heat treatment temperature in the step (a) and a temperature of 900 ° C. or less.
(2) The method for producing a carbonized product according to the above (1), wherein the carbonized precursor is obtained by polymerization in the presence of hydrogen fluoride and boron trifluoride using a condensed polycyclic hydrocarbon as a raw material.
(3) The method for producing a carbonized product according to the above (1) or (2), wherein the heat treatment apparatus used in the step (a) is a rotary kiln.
(4) The method for producing a carbonized product according to the above (3), wherein the peripheral speed of the rotary kiln when heat treating the carbonized precursor is in the range of 0.1 to 10 m / min.
(5) The method for producing a carbonized product according to any one of (1) to (4), wherein the charged amount of the granular material with respect to the internal volume of the heat treatment apparatus is in the range of 1 to 50 vol%.
(6) The method for producing a carbonized product according to any one of the above (1) to (5), wherein the true specific gravity of the granular material is 2 g / cc or more.
(7) The method for producing a carbonized product according to any one of (1) to (6), wherein the granular material is stainless steel, alumina, or zirconia.
(8) A carbonized product obtained by the method according to any one of (1) to (7) above.
(9) An electric double layer capacitor obtained by adding 1 to 4 parts by weight of an alkali metal hydroxide to 1 part by weight of the carbonized product described in (8) above and subjecting it to activation treatment in a temperature range of 400 to 900 ° C. Activated carbon for electrodes.
(10) A carbon material for a negative electrode of a lithium secondary battery obtained by heat-treating the carbonized material according to (8) above at a temperature exceeding 900 ° C.

本発明を実施することにより、簡便な装置と工程により安価で有用な炭素化物を製造することができ、その工業的意義はきわめて大きい。   By carrying out the present invention, an inexpensive and useful carbonized product can be produced with a simple apparatus and process, and its industrial significance is extremely great.

本発明において用いられる炭素化物前駆体(以下、原料炭素と称する)は、特に制限されるものではなく、例えば、石油ピッチ、コールタールピッチ、PVC(塩素化ポリビニル)、合成ピッチ等が用いられる。そのうち、特許第2931593号公報、特許第2621253号公報、または特許第2526585号公報に示されるように、ナフタレン、メチルナフタレン、アントラセン、フェナントレン、アセナフテン、アセナフチレン、ピレン等の縮合多環炭化水素を超強酸触媒の弗化水素および三弗化硼素存在下で重合させて得られる合成系ピッチは、他のピッチ類と異なり、化学純度が高く、性状制御が可能で、結晶性が高いことから最も好適に用いられる。   The carbonized precursor (hereinafter referred to as raw material carbon) used in the present invention is not particularly limited, and for example, petroleum pitch, coal tar pitch, PVC (chlorinated polyvinyl), synthetic pitch and the like are used. Among them, condensed polycyclic hydrocarbons such as naphthalene, methylnaphthalene, anthracene, phenanthrene, acenaphthene, acenaphthylene, and pyrene are used as super strong acids as shown in Japanese Patent No. 2931593, Japanese Patent No. 2621253, or Japanese Patent No. 2526585. Unlike other pitches, synthetic pitches obtained by polymerizing in the presence of hydrogen fluoride and boron trifluoride as the catalyst are most suitable because of their high chemical purity, controllable properties, and high crystallinity. Used.

本発明において用いられる熱処理装置は、少なくとも400℃の高温に耐えうるもので、装置内部に仕込んだ粒状物を流動させる機構を有するものであれば特に限定されるものではない。縦型でも横型でも良く、粒状物を流動させるための機構として撹拌羽根やスパイラル等を伴うものでも問題ないが、構造がシンプルで工業化が容易なロータリーキルン型の熱処理装置が特に好適に用いられる。反応器や撹拌羽根などの材質は、熱処理に必要な温度や、発生する無機ガスや原料炭素の腐食性に耐えうるものであれば特に限定されないが、一般的な材料としてはステンレススチール等が挙げられる。   The heat treatment apparatus used in the present invention is not particularly limited as long as it can withstand a high temperature of at least 400 ° C. and has a mechanism for flowing the granular material charged in the apparatus. Either a vertical type or a horizontal type may be used, and there is no problem even if a stirring blade, a spiral, or the like is used as a mechanism for causing the granular material to flow. The material such as the reactor and the stirring blade is not particularly limited as long as it can withstand the temperature required for heat treatment and the corrosiveness of the generated inorganic gas and raw material carbon, but typical materials include stainless steel and the like. It is done.

本発明で使用される粒状物は、熱媒体および移動媒体として用いられるもので、材質は限定されないが、品質や入手のしやすさやの点から、金属製またはセラミック製のものから選ばれる。その中でも比較的安価で硬度や靭性に優れるステンレススチールやアルミナ、ジルコニアなどが好適である。また、該粒状物の真比重は2g/cc以上であることが好ましい。真比重が2g/cc以上であると炭素化物の塊ができにくく、流動性を保持することが容易となる。   The granular material used in the present invention is used as a heat medium and a moving medium, and the material is not limited, but is selected from those made of metal or ceramic from the viewpoint of quality and availability. Of these, stainless steel, alumina, zirconia, and the like that are relatively inexpensive and excellent in hardness and toughness are suitable. The true specific gravity of the granular material is preferably 2 g / cc or more. When the true specific gravity is 2 g / cc or more, it is difficult to form a lump of carbonized material, and it becomes easy to maintain fluidity.

粒状物の形状は、鋭利に尖った部分のないものであれば特に制限はなく、表面に凹凸をもつものでもよいが、球体や楕円球が好適に用いられる。最も好ましくは、通常工業的に製造されるボールミルやベアリング用途等に使用される球状の物体である。鋭利な形状の粒状物を用いるとエッジ部分で反応器や粒状物の表面に傷をつけたり、その傷が原因で不純物が混入したりするため好ましくない。   The shape of the granular material is not particularly limited as long as it does not have a sharp pointed portion, and may have irregularities on the surface, but a sphere or an elliptical sphere is preferably used. Most preferably, it is a spherical object usually used for industrially produced ball mills or bearings. Use of sharply shaped granular materials is not preferable because the edges and the surface of the reactor and granular materials are scratched or impurities are mixed due to the scratches.

粒状物の大きさは、装置の大きさや運転条件、粒状物の材質等により最適なサイズがあるため特に制限はないが、ハンドリング性の点から、例えば球形の場合は、直径1mm〜100mmの範囲のものが用いられる。好ましくは直径10mm〜50mmのものが選ばれる。また一度に用いる粒状物の種類に制限はなく、単一の種類でもよく、一度に2種類以上を併せて用いても良い。   The size of the granular material is not particularly limited because there is an optimum size depending on the size of the apparatus, the operating conditions, the material of the granular material, etc., but in the case of a spherical shape, for example, in the range of 1 mm to 100 mm in diameter. Is used. Those having a diameter of 10 mm to 50 mm are preferably selected. Moreover, there is no restriction | limiting in the kind of granular material used at once, A single kind may be sufficient and it may use 2 or more types together at once.

本発明の方法は、一定範囲の温度に保たれた熱処理装置中に、金属製またはセラミックス製の複数個の粒状物を仕込んで流動させておき、該装置内に原料炭素を供給することにより炭素化物を該粒状物の表面に付着させる工程(工程(a))と、炭素化物が付着した該粒状物を、工程(a)の熱処理温度より高温で、かつ900℃以下の温度に加熱することにより、炭素化物を該粒状物から分離する工程(工程(b))を含む。一台の熱処理装置を用いて、工程(a)に続いて工程(b)を行なってもよく、複数の熱処理装置を用いて、工程(a)の後、内容物を別の熱処理装置に移送した後、工程(b)を行なっても良い。   In the method of the present invention, a plurality of granular materials made of metal or ceramics are charged and flowed into a heat treatment apparatus maintained at a temperature within a certain range, and carbon is supplied by supplying raw carbon into the apparatus. A step of attaching a chemical compound to the surface of the granular material (step (a)), and heating the granular material to which the carbonized material is adhered to a temperature higher than the heat treatment temperature of step (a) and not higher than 900 ° C. The process (process (b)) which isolate | separates a carbonized material from this granular material by this is included. The step (b) may be performed following the step (a) using one heat treatment apparatus, and the contents are transferred to another heat treatment apparatus after the step (a) using a plurality of heat treatment apparatuses. After that, step (b) may be performed.

工程(a)では、熱処理装置内に仕込む粒状物の量は、熱処理装置の形式や、粒状物の種類等によって異なるが、熱処理装置の内容積に対して1〜50vol%、好ましくは3〜30vol%、より好ましくは5〜15vol%の範囲である。多すぎる場合には、原料炭素の仕込み量が減少するため生産効率が低下する。一方、少なすぎる場合には、炭素化物が熱処理装置の内壁面(伝面)へ強固に付着し、工程(b)を処しても剥がれなくなるため好ましくない。   In the step (a), the amount of the granular material charged into the heat treatment apparatus varies depending on the type of the heat treatment apparatus, the type of the granular material, etc., but is 1 to 50 vol%, preferably 3 to 30 vol with respect to the internal volume of the heat treatment apparatus. %, More preferably in the range of 5 to 15 vol%. When the amount is too large, the amount of raw material carbon is reduced, so that the production efficiency is lowered. On the other hand, when the amount is too small, the carbonized material adheres firmly to the inner wall surface (transmission surface) of the heat treatment apparatus and is not preferable because it does not peel off even if the step (b) is performed.

工程(a)で熱処理を行なう場合には、熱処理装置内部に仕込んだ粒状物を、攪拌装置により、またはロータリーキルンのように装置本体の回転により流動させる。攪拌羽根の攪拌速度やキルンの回転速度は、装置の大きさ、原料炭素の性状、粒状物の種類、原料炭素の供給速度等に応じて決められるため、特に制限されるものではない。工程(a)の熱処理装置としてロータリーキルンを用いた場合、キルン本体の周速は、通常0.1〜10m/minの範囲で行なうが、好ましくは0.5〜8m/min、より好ましくは1〜5m/minの範囲である。周速が早すぎる場合には、炭素化物が壁面に固着しやすく、周速が遅すぎる場合には、伝熱効率が低下するため、生産速度が低下する。   In the case of performing the heat treatment in the step (a), the granular material charged in the heat treatment apparatus is caused to flow by the stirring apparatus or by rotating the apparatus main body like a rotary kiln. The stirring speed of the stirring blade and the rotation speed of the kiln are not particularly limited because they are determined according to the size of the apparatus, the properties of the raw material carbon, the type of the granular material, the supply speed of the raw material carbon, and the like. When a rotary kiln is used as the heat treatment apparatus in step (a), the peripheral speed of the kiln main body is usually in the range of 0.1 to 10 m / min, preferably 0.5 to 8 m / min, more preferably 1 to 1. The range is 5 m / min. When the peripheral speed is too fast, the carbonized material is likely to adhere to the wall surface, and when the peripheral speed is too slow, the heat transfer efficiency is lowered and the production speed is lowered.

工程(a)における熱処理温度は、原料炭素の性状や供給速度によるが、通常400〜700℃の範囲で行なわれ、例えば縮合多環炭化水素を超強酸触媒の弗化水素および三弗化硼素存在下で重合させて得られる合成系ピッチでは500〜600℃の範囲で熱処理される。熱処理温度が低すぎれば、炭素化物が熱処理装置の伝面に多量に付着するため好ましくない。一方、熱処理温度が高すぎれば不均質な炭素化物となるため好ましくない。また工程(a)における原料炭素の供給は、熱処理装置内の温度が一定であれば、連続的でも断続的でもよい。   The heat treatment temperature in the step (a) depends on the properties and feed rate of the raw material carbon, but is usually performed in the range of 400 to 700 ° C., for example, the presence of hydrogen fluoride and boron trifluoride in the superacid catalyst for the condensed polycyclic hydrocarbon. In the synthetic pitch obtained by polymerization under the heat treatment, heat treatment is performed in the range of 500 to 600 ° C. If the heat treatment temperature is too low, a large amount of carbonized material adheres to the transmission surface of the heat treatment apparatus, which is not preferable. On the other hand, if the heat treatment temperature is too high, a heterogeneous carbonized product is not preferable. Moreover, the supply of the raw material carbon in the step (a) may be continuous or intermittent as long as the temperature in the heat treatment apparatus is constant.

工程(b)では、工程(a)が終了後、炭素化物が付着した粒状物を、工程(a)の熱処理温度よりも高温に加熱することで、炭素化物を粒状物から剥離させる。この工程で炭素化物を剥離するために必要な温度は、原料炭素の種類によるが、通常は500℃以上900℃以下の温度で行なわれる。剥離した炭素化物と粒状物は、例えば振動篩装置のような装置を用いて分離し、粒状物は回収し再使用する。   In the step (b), after the step (a) is completed, the carbonized material is peeled from the granular material by heating the granular material to which the carbonized material is attached to a temperature higher than the heat treatment temperature of the step (a). The temperature necessary for peeling off the carbonized product in this step depends on the type of raw carbon, but is usually 500 ° C. or higher and 900 ° C. or lower. The exfoliated carbonized material and the granular material are separated by using a device such as a vibration sieve device, and the granular material is recovered and reused.

粒状物から分離した炭素化物は、その後必要であれば、さらに高温での焼成処理、賦活処理、粉砕処理、分級処理、または成型などを経て所望の炭素材料となる。該炭素材料は、電気二重層キャパシタ用電極材料やリチウム二次電池負極材料などの蓄電材料や、半導体、原子力、核融合、宇宙航空等のハイテク分野での炭素成型品や黒鉛成型品の原料として用いられる。   If necessary, the carbonized material separated from the granular material is converted into a desired carbon material through a firing process at a higher temperature, an activation process, a pulverization process, a classification process, or a molding. The carbon material is used as a raw material for power storage materials such as electrode materials for electric double layer capacitors and negative electrode materials for lithium secondary batteries, and high-tech fields such as semiconductors, nuclear power, nuclear fusion, and aerospace. Used.

本発明により得られる炭素化物を電気二重層キャパシタ用電極材料として用いる場合は、工程(b)で粒状物から分離して得られた炭素化物を、必要であれば更に高温処理を行ない原料として用いる。まず該炭素化物を平均粒径15μm程度に粉砕し、賦活剤と混合する。賦活剤には塩化亜鉛や、アルカリ金属化合物が使用されるが、アルカリ金属化合物の中でも水酸化カリウムや水酸化ナトリウムのようなアルカリ金属水酸化物が好ましく、その中でも特に水酸化カリウムが好ましい。水酸化カリウムを用いる場合は、炭素化物粉末1重量部に対して1〜4重量部の水酸化カリウムを均一に混合し、不活性ガス気流下、400〜900℃まで昇温加熱し、1〜20時間保持する。反応終了後、放冷し、水やアルコールで洗浄処理した後、乾燥することにより、電気二重層キャパシタ電極用の活性炭が得られる。   When the carbonized material obtained by the present invention is used as an electrode material for an electric double layer capacitor, the carbonized material obtained by separation from the granular material in the step (b) is used as a raw material after further high-temperature treatment if necessary. . First, the carbonized product is pulverized to an average particle size of about 15 μm and mixed with an activator. As the activator, zinc chloride or an alkali metal compound is used. Among the alkali metal compounds, alkali metal hydroxides such as potassium hydroxide and sodium hydroxide are preferable, and potassium hydroxide is particularly preferable. When potassium hydroxide is used, 1 to 4 parts by weight of potassium hydroxide is uniformly mixed with 1 part by weight of the carbonized powder, and heated to 400 to 900 ° C. under an inert gas stream. Hold for 20 hours. After completion of the reaction, the mixture is allowed to cool, washed with water or alcohol, and dried to obtain activated carbon for an electric double layer capacitor electrode.

本発明により得られる炭素化物をリチウム二次電池負極用炭素材料として用いる場合は、工程(b)で粒状物から分離して得られた炭素化物を粉砕し、900℃を超える温度で、目的に応じて2000℃以下の所定の温度で熱処理することによって高純度で高黒鉛化性の炭素粉末が得られる。さらに2000℃以上の温度で熱処理することによって高純度かつ高黒鉛化度の、リチウム二次電池負極用黒鉛粉末が製造される。
以下、実施例により本発明を具体的に説明するが、当然これに限定されるものではない。
When the carbonized material obtained by the present invention is used as a carbon material for a negative electrode of a lithium secondary battery, the carbonized material obtained by separating from the granular material in the step (b) is pulverized and used at a temperature exceeding 900 ° C. Accordingly, a high purity and highly graphitizable carbon powder can be obtained by heat treatment at a predetermined temperature of 2000 ° C. or lower. Further, by performing heat treatment at a temperature of 2000 ° C. or higher, a graphite powder for a lithium secondary battery negative electrode having a high purity and a high graphitization degree is produced.
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

製造例(原料ピッチの製造)
加熱装置、攪拌装置、抜き出し口、窒素導入ラインを具備したハステロイ製43Lのオートクレーブに、ナフタレン15kg、弗化水素750g、三弗化硼素635gを仕込んだ。270℃まで1時間で昇温した後、同温度で攪拌下4時間加熱した。続いて上部の抜き出し口を徐々に開放して常圧にした後、350℃の加熱窒素を導入して触媒を完全に除去することにより、軟化点230℃の原料ピッチを得た。
Production example (Manufacture of raw material pitch)
A 43 L autoclave made of Hastelloy equipped with a heating device, a stirring device, an outlet, and a nitrogen introduction line was charged with 15 kg of naphthalene, 750 g of hydrogen fluoride, and 635 g of boron trifluoride. After heating up to 270 degreeC in 1 hour, it heated at the same temperature for 4 hours, stirring. Subsequently, the upper outlet was gradually opened to normal pressure, and heated nitrogen at 350 ° C. was introduced to completely remove the catalyst, thereby obtaining a raw material pitch having a softening point of 230 ° C.

実施例1
灯油バーナー加熱装置、原料供給装置、窒素流通装置、排ガスラインを具備したレトルト内容積10L(直径:20cm)のロータリーキルンに、直径3/4inchのステンレススチール製のボール(真比重:7.9g/cc)を5kg仕込んだ(6.4vol%)。窒素流通下、キルンを6rpm(周速:3.8m/min)で回転しながら、内部温度を550℃一定に保ち、製造例で得た原料ピッチを1kg/hで連続的に供給する操作を3時間行なった。放冷後、内容物を取出したところ、炭素化物はボールに均一に付着していた。さらに、ボールに付着した該炭素化物を管状炉中、窒素雰囲気下5℃/minで700℃まで昇温し、この温度で2時間保持した。放冷後、ボールから分離した炭素化物は2.4kgであった。
Example 1
A rotary kiln with a retort internal volume of 10 L (diameter: 20 cm) equipped with a kerosene burner heating device, a raw material supply device, a nitrogen circulation device, and an exhaust gas line, a stainless steel ball with a diameter of 3/4 inch (true specific gravity: 7.9 g / cc) ) Was charged in an amount of 5 kg (6.4 vol%). An operation of continuously feeding the raw material pitch obtained in the production example at 1 kg / h while keeping the internal temperature constant at 550 ° C. while rotating the kiln at 6 rpm (circumferential speed: 3.8 m / min) under nitrogen flow. 3 hours. After cooling, the contents were taken out, and the carbonized product was uniformly attached to the balls. Further, the carbonized material adhering to the ball was heated to 700 ° C. in a tubular furnace at 5 ° C./min in a nitrogen atmosphere, and kept at this temperature for 2 hours. After standing to cool, the carbonized product separated from the balls was 2.4 kg.

電気二重層キャパシタ用電極材料としての評価を行なうため、つぎのような処理を行なった。上記炭素化物を衝撃式粉砕器により平均粒径15μmに粉砕し、得られた炭素粉末1重量部に対して2重量部の水酸化カリウムを均一に混合し、窒素雰囲気下5℃/minで700℃まで昇温し、この温度で3時間保持して賦活処理を行なった。室温まで冷却したのち2−プロパノール中に投入し、濾液が中性になるまで濾過、水洗を繰り返した。   In order to evaluate as an electrode material for an electric double layer capacitor, the following treatment was performed. The carbonized product was pulverized to an average particle size of 15 μm by an impact pulverizer, 2 parts by weight of potassium hydroxide was uniformly mixed with 1 part by weight of the obtained carbon powder, and 700 ° C. at 5 ° C./min in a nitrogen atmosphere. The temperature was raised to 0 ° C., and the activation treatment was carried out at this temperature for 3 hours. After cooling to room temperature, it was poured into 2-propanol, and filtration and washing with water were repeated until the filtrate became neutral.

得られた活性炭を活性炭:導電性フィラー(ケッチェンブラック):結着剤(テフロン(登録商標))の重量比90:5:5で混合し電極を作製した。電極評価はガラス製2極式セルを用い、一対の電極の間にグラスファイバー製セパレータを挟みセルに収容した。電解液はテトラエチルアンモニウムテトラフルオロボレート((CNBF)を1モル/リットル溶解したプロピレンカーボネートを用いた。 The obtained activated carbon was mixed at a weight ratio of 90: 5: 5 of activated carbon: conductive filler (Ketjen black): binder (Teflon (registered trademark)) to prepare an electrode. For the electrode evaluation, a glass bipolar cell was used, and a glass fiber separator was sandwiched between a pair of electrodes and accommodated in the cell. As the electrolytic solution, propylene carbonate in which 1 mol / liter of tetraethylammonium tetrafluoroborate ((C 2 H 5 ) 4 NBF 4 ) was dissolved was used.

アルゴン雰囲気中、室温下、100mA/gの定電流で電圧2.7Vまで充電し、さらに2.7Vで2時間充電を行なった後、100mA/gの定電流で0Vまで放電し、放電された電気量から静電容量を算出した。静電容量は正負極両極中の炭素重量(活性炭)を基準とし、下式に従って算出した。また、体積当たりの静電容量Cv(F/cc)は重量当たりの静電容量Cw(F/g)に電極の密度を乗ずることにより算出した。
静電容量Cw(F/g)=放電電気量(AH/g)×3600/2.7
その結果、重量当り静電容量37.0F/g、体積当り静電容量34.0F/cc、電極密度0.92g/ccであった。
Charged to a voltage of 2.7 V at a constant current of 100 mA / g in an argon atmosphere at room temperature, and further charged at 2.7 V for 2 hours, then discharged to 0 V at a constant current of 100 mA / g and discharged. The capacitance was calculated from the amount of electricity. The capacitance was calculated according to the following formula based on the carbon weight (activated carbon) in both the positive and negative electrodes. The capacitance Cv (F / cc) per volume was calculated by multiplying the capacitance Cw (F / g) per weight by the electrode density.
Capacitance Cw (F / g) = Discharge electric quantity (AH / g) × 3600 / 2.7
As a result, the capacitance per weight was 37.0 F / g, the capacitance per volume was 34.0 F / cc, and the electrode density was 0.92 g / cc.

実施例2
キルンの回転数を2rpm(周速:1.3m/min)とした以外は、実施例1と同じ条件で原料ピッチの炭素化を行なった。
電気二重層キャパシタ用電極材料としての評価を行なうため、実施例1と同様に、粉砕処理および賦活処理を行なった。得られた活性炭を用いて、静電容量を測定した。その結果、重量当り静電容量37.5F/g、体積当り静電容量36.0F/cc、電極密度0.95g/ccであった。
Example 2
The raw material pitch was carbonized under the same conditions as in Example 1 except that the rotation speed of the kiln was 2 rpm (peripheral speed: 1.3 m / min).
In order to evaluate as an electrode material for an electric double layer capacitor, a pulverization process and an activation process were performed in the same manner as in Example 1. Capacitance was measured using the obtained activated carbon. As a result, the capacitance per weight was 37.5 F / g, the capacitance per volume was 36.0 F / cc, and the electrode density was 0.95 g / cc.

実施例3
キルンの回転数を12rpm(周速7.5m/min)とした以外は、実施例1と同じ条件で原料ピッチを炭素化した。
電気二重層キャパシタ用電極材料としての評価を行なうため、実施例1と同様に、粉砕処理および賦活処理を行なった。得られた活性炭を用いて、静電容量を測定した。その結果、重量当り静電容量36.0F/g、体積当り静電容量29.2F/cc、電極密度0.81g/ccであった。
Example 3
The raw material pitch was carbonized under the same conditions as in Example 1 except that the rotation speed of the kiln was 12 rpm (circumferential speed 7.5 m / min).
In order to evaluate as an electrode material for an electric double layer capacitor, a pulverization process and an activation process were performed in the same manner as in Example 1. Capacitance was measured using the obtained activated carbon. As a result, the capacitance per weight was 36.0 F / g, the capacitance per volume was 29.2 F / cc, and the electrode density was 0.81 g / cc.

実施例4
電熱ヒーター、原料供給装置、窒素流通装置、排ガスライン、製品排出口を具備したレトルト内容積150L(直径:60cm)のSUS310製ロータリーキルンに、直径25mmのジルコニア製ボール(真比重:6.0g/cc)を60kg仕込んだ(6.7vol%)。窒素流通下、キルンを2rpm(周速3.8m/min)で回転させながら、内部温度を550℃一定に保ち、製造例で得た原料ピッチを20kg/hで連続的に供給する操作を1.5時間行なった。次にそのまま700℃まで昇温し、この温度で1時間保持した。放冷後、内容物を排出し、ボールから分離した炭素化物は25.2kgであった。
電気二重層キャパシタ用電極材料としての評価を行なうため、得られた炭化物を、実施例1と同様に、粉砕後、賦活処理を行なった。得られた活性炭を用いて、静電容量を測定した。その結果、重量当り静電容量39.3F/g、体積当り静電容量38.1F/cc、電極密度0.97g/ccであった。
Example 4
A SUS310 rotary kiln with a retort internal volume of 150 L (diameter: 60 cm) equipped with an electric heater, raw material supply device, nitrogen flow device, exhaust gas line, product discharge port, zirconia ball with a diameter of 25 mm (true specific gravity: 6.0 g / cc) ) Was charged 60 kg (6.7 vol%). An operation in which the internal temperature is kept constant at 550 ° C. and the raw material pitch obtained in the production example is continuously supplied at 20 kg / h while rotating the kiln at 2 rpm (circumferential speed 3.8 m / min) under nitrogen flow. For 5 hours. Next, the temperature was raised to 700 ° C. and kept at this temperature for 1 hour. After cooling, the contents were discharged and the carbonized product separated from the ball was 25.2 kg.
In order to evaluate as an electrode material for an electric double layer capacitor, the obtained carbide was subjected to activation treatment after pulverization in the same manner as in Example 1. Capacitance was measured using the obtained activated carbon. As a result, the capacitance per weight was 39.3 F / g, the capacitance per volume was 38.1 F / cc, and the electrode density was 0.97 g / cc.

実施例5
電気ヒーター、撹拌機、窒素流通装置、排ガスラインを具備した内容積5Lのステンレススチール製反応釜に、直径15mmのアルミナ製のボール(真比重:3.9g/cc)を3kg仕込んだ(17vol%)。窒素雰囲気下、回転数30rpmで撹拌し、内部温度を550℃一定に保ちながら原料ピッチを120g/hrで連続的に供給する操作を3時間行なった。放冷後、取出したところ、炭素化物はボールに均一に付着していた。更に、該炭素化物を管状炉中、窒素雰囲気下5℃/minで700℃まで昇温し、この温度で2時間保持した。放冷後、ボールから分離した炭素化物は300gであった。
電気二重層キャパシタ用電極材料としての評価を行なうため、ボールから分離した炭素化物を実施例1と同様に処理した。得られた活性炭を用いて、静電容量を測定した。その結果、重量当り静電容量39.4F/g、体積当り静電容量36.6F/cc、電極密度0.93g/ccであった。
Example 5
3 kg of alumina balls (true specific gravity: 3.9 g / cc) having a diameter of 15 mm were charged in a 5 L stainless steel reaction kettle equipped with an electric heater, stirrer, nitrogen flow device and exhaust gas line (17 vol%). ). Stirring was performed at a rotation speed of 30 rpm in a nitrogen atmosphere, and an operation of continuously supplying the raw material pitch at 120 g / hr while keeping the internal temperature constant at 550 ° C. was performed for 3 hours. When it was taken out after cooling, the carbonized product was uniformly attached to the ball. Further, the carbonized product was heated to 700 ° C. in a tubular furnace at 5 ° C./min in a nitrogen atmosphere and held at this temperature for 2 hours. After standing to cool, the carbonized product separated from the balls was 300 g.
In order to evaluate as an electrode material for an electric double layer capacitor, the carbonized material separated from the ball was treated in the same manner as in Example 1. Capacitance was measured using the obtained activated carbon. As a result, the capacitance per weight was 39.4 F / g, the capacitance per volume was 36.6 F / cc, and the electrode density was 0.93 g / cc.

実施例6
リチウム二次電池負極材料としての評価を行なうため、実施例1で得た炭素化物の粉末をアルゴン中3000℃で1時間黒鉛化した。得られた黒鉛粉末(平均粒子径:15μm)90重量部に、ポリフッ化ビニリデン粉末(バインダー)10重量部を加え、ジメチルホルムアミドを溶媒として配合・混合した後、銅箔上に塗布し、乾燥後1cm角に切り出して、評価用試験片とした。次いで、LiPFをエチレンカーボネート/ジエチルカーボネートの配合比が、1/1の2種類の混合物に溶解した溶液(濃度:1.0mol/L)を電解液とし、厚さ50μmのポリプロピレン製微孔膜をセパレーターとするハーフセルを作製した。なお、対極として直径16mm、厚さ0.5mmのリチウム金属を使用した。また、参照極として対極と同様にリチウム金属の小片を使用した。
電流密度0.2mA/cm2で参照極に対する評価用試験片の電極電位が1mVになるまで定電流充電を行なった。次いで、電流密度0.2mA/cm2で参照極に対する評価用試験片の電極電位が1.5Vまで定電流放電を行なったところ、充電容量が367mAh/g、放電容量が340mAh/gであり、充放電効率は92.0%であった。
Example 6
In order to evaluate as a negative electrode material for a lithium secondary battery, the carbonized powder obtained in Example 1 was graphitized in argon at 3000 ° C. for 1 hour. 10 parts by weight of polyvinylidene fluoride powder (binder) is added to 90 parts by weight of the obtained graphite powder (average particle size: 15 μm), and after blending and mixing dimethylformamide as a solvent, it is applied onto a copper foil and dried. A test piece for evaluation was cut out into 1 cm square. Next, a solution (concentration: 1.0 mol / L) in which LiPF 6 was dissolved in two kinds of mixtures having a blending ratio of ethylene carbonate / diethyl carbonate of 1/1 was used as an electrolytic solution, and a polypropylene microporous film having a thickness of 50 μm. A half cell was prepared using as a separator. Note that lithium metal having a diameter of 16 mm and a thickness of 0.5 mm was used as a counter electrode. In addition, a small piece of lithium metal was used as a reference electrode in the same manner as the counter electrode.
Constant current charging was performed until the electrode potential of the test piece for evaluation with respect to the reference electrode reached 1 mV at a current density of 0.2 mA / cm 2 . Subsequently, constant current discharge was performed until the electrode potential of the test piece for evaluation with respect to the reference electrode was 1.5 V at a current density of 0.2 mA / cm 2. The charge capacity was 367 mAh / g, and the discharge capacity was 340 mAh / g. The charge / discharge efficiency was 92.0%.

比較例1
実施例1で用いたロータリーキルンに、製造例で得た原料ピッチ1kgを仕込み、6rpm(周速:3.8m/min)で回転させながら550℃まで1時間かけて昇温後、同温度で3時間維持した。放冷後取り出したところ、内容物の一部は、レトルトからあふれており、かつ全体が均一の炭素化物が得られていなかった。
Comparative Example 1
The rotary kiln used in Example 1 was charged with 1 kg of the raw material pitch obtained in the production example, heated up to 550 ° C. over 1 hour while rotating at 6 rpm (peripheral speed: 3.8 m / min), then 3 at the same temperature. Maintained for hours. When it was taken out after being allowed to cool, a part of the contents overflowed from the retort, and a uniform carbonized product was not obtained as a whole.

比較例2
ステンレススチール製のボール5kgのかわりに、実施例1で得られた熱処理済みの炭素化物の粉末5kg(真比重:1.5g/cc)を仕込んだ以外は、実施例1と同様な熱処理操作を行なった。放冷後取り出したところ、炭素化物はキルンの内壁に固着しており、取り出すことができなかった。
Comparative Example 2
The same heat treatment operation as in Example 1 was carried out except that 5 kg (true specific gravity: 1.5 g / cc) of carbonized powder after heat treatment obtained in Example 1 was charged in place of 5 kg of stainless steel balls. I did it. When it was taken out after being allowed to cool, the carbonized product adhered to the inner wall of the kiln and could not be taken out.

Claims (10)

つぎの工程(a)および(b)を含むことを特徴とする炭素化物の製造方法。
(a)400℃以上700℃以下の温度に保たれた熱処理装置内に、金属製またはセラミックス製の複数個の粒状物を仕込んで流動させておき、該装置内に炭素化物前駆体を供給して熱処理することにより該粒状物表面に炭素化物を付着させる工程、
(b)粒状物表面に付着した炭素化物を、工程(a)での熱処理温度より高温で、かつ900℃以下の温度に加熱することにより炭素化物を粒状物から分離する工程。
A method for producing a carbonized product comprising the following steps (a) and (b):
(A) In a heat treatment apparatus maintained at a temperature of 400 ° C. or higher and 700 ° C. or lower, a plurality of particles made of metal or ceramics are charged and flown, and a carbonized precursor is supplied into the apparatus. A step of attaching a carbonized product to the surface of the granular material by heat treatment
(B) A step of separating the carbonized material from the granular material by heating the carbonized material adhering to the surface of the granular material to a temperature higher than the heat treatment temperature in the step (a) and a temperature of 900 ° C. or less.
炭素化物前駆体が縮合多環炭化水素を原料として弗化水素および三弗化硼素の存在下で重合により得られたものである請求項1記載の炭素化物の製造方法。   2. The method for producing a carbonized product according to claim 1, wherein the carbonized precursor is obtained by polymerization in the presence of hydrogen fluoride and boron trifluoride using a condensed polycyclic hydrocarbon as a raw material. 工程(a)において用いられる熱処理装置がロータリーキルンである請求項1または2記載の炭素化物の製造方法。   The method for producing a carbonized product according to claim 1 or 2, wherein the heat treatment apparatus used in step (a) is a rotary kiln. 炭素化物前駆体を熱処理する際のロータリーキルンの周速が0.1〜10m/minの範囲である請求項3記載の炭素化物の製造方法。   The method for producing a carbonized product according to claim 3, wherein the peripheral speed of the rotary kiln when the carbonized precursor is heat-treated is in the range of 0.1 to 10 m / min. 熱処理装置の内容積に対する粒状物の仕込み量が、1〜50vol%の範囲である請求項1〜4のいずれかに記載の炭素化物の製造方法。   The method for producing a carbonized product according to any one of claims 1 to 4, wherein a charged amount of the granular material with respect to an internal volume of the heat treatment apparatus is in a range of 1 to 50 vol%. 粒状物の真比重が2g/cc以上である請求項1〜5のいずれかに記載の炭素化物の製造方法。   The true specific gravity of a granular material is 2 g / cc or more, The manufacturing method of the carbonized material in any one of Claims 1-5. 粒状物の材質がステンレススチール、アルミナ、またはジルコニアである請求項1〜6のいずれかに記載の炭素化物の製造方法。   The method for producing a carbonized product according to any one of claims 1 to 6, wherein the granular material is stainless steel, alumina, or zirconia. 請求項1〜7のいずれかに記載の方法によって得られる炭素化物。   Carbonized material obtained by the method according to any one of claims 1 to 7. 請求項8記載の炭素化物1重量部に対してアルカリ金属水酸化物1〜4重量部を添加し、400〜900℃の温度範囲で賦活処理することによって得られる電気二重層キャパシタ電極用活性炭。   An activated carbon for an electric double layer capacitor electrode obtained by adding 1 to 4 parts by weight of an alkali metal hydroxide to 1 part by weight of the carbonized product according to claim 8 and performing an activation treatment in a temperature range of 400 to 900 ° C. 請求項8記載の炭素化物を900℃を超える温度で熱処理して得られるリチウム二次電池負極用炭素材料。   The carbon material for lithium secondary battery negative electrodes obtained by heat-processing the carbonized material of Claim 8 at the temperature over 900 degreeC.
JP2005043425A 2004-03-01 2005-02-21 Carbonized product production method and carbonized product obtained by the method Expired - Fee Related JP4892838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043425A JP4892838B2 (en) 2004-03-01 2005-02-21 Carbonized product production method and carbonized product obtained by the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004056018 2004-03-01
JP2004056018 2004-03-01
JP2005043425A JP4892838B2 (en) 2004-03-01 2005-02-21 Carbonized product production method and carbonized product obtained by the method

Publications (2)

Publication Number Publication Date
JP2005281127A true JP2005281127A (en) 2005-10-13
JP4892838B2 JP4892838B2 (en) 2012-03-07

Family

ID=35179910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043425A Expired - Fee Related JP4892838B2 (en) 2004-03-01 2005-02-21 Carbonized product production method and carbonized product obtained by the method

Country Status (1)

Country Link
JP (1) JP4892838B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204283A (en) * 2006-01-31 2007-08-16 Sumitomo Bakelite Co Ltd Carbon material and method for manufacturing the same
JP2010067793A (en) * 2008-09-11 2010-03-25 Japan Pionics Co Ltd Electrode sheet, and electrical double layer capacitor and lithium ion capacitor using electrode sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187988A (en) * 1991-12-17 1994-07-08 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
JPH0737577A (en) * 1993-07-26 1995-02-07 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
JPH0864207A (en) * 1994-08-23 1996-03-08 Kureha Chem Ind Co Ltd Carbon material for secondary battery electrode and manufacture thereof
JPH0992284A (en) * 1995-09-26 1997-04-04 Kureha Chem Ind Co Ltd Graphite material for secondary battery electrode, its manufacture, and secondary battery
JPH09275042A (en) * 1996-02-09 1997-10-21 Honda Motor Co Ltd Activated charcoal for organic solvent-based electric double layer capacitor
JPH10199767A (en) * 1997-01-07 1998-07-31 Kansai Coke & Chem Co Ltd Manufacture of carbon material for electric double layer capacitor
JP2002093667A (en) * 2000-09-13 2002-03-29 Mitsubishi Gas Chem Co Inc Carbon material for electric double-layer capacitor electrode
JP2002104817A (en) * 2000-07-25 2002-04-10 Kuraray Co Ltd Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JP2002308614A (en) * 2001-04-11 2002-10-23 Adchemco Corp Powdery activated carbon, production method therefor and electric double layer capacitor using the activated carbon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187988A (en) * 1991-12-17 1994-07-08 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
JPH0737577A (en) * 1993-07-26 1995-02-07 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
JPH0864207A (en) * 1994-08-23 1996-03-08 Kureha Chem Ind Co Ltd Carbon material for secondary battery electrode and manufacture thereof
JPH0992284A (en) * 1995-09-26 1997-04-04 Kureha Chem Ind Co Ltd Graphite material for secondary battery electrode, its manufacture, and secondary battery
JPH09275042A (en) * 1996-02-09 1997-10-21 Honda Motor Co Ltd Activated charcoal for organic solvent-based electric double layer capacitor
JPH10199767A (en) * 1997-01-07 1998-07-31 Kansai Coke & Chem Co Ltd Manufacture of carbon material for electric double layer capacitor
JP2002104817A (en) * 2000-07-25 2002-04-10 Kuraray Co Ltd Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JP2002093667A (en) * 2000-09-13 2002-03-29 Mitsubishi Gas Chem Co Inc Carbon material for electric double-layer capacitor electrode
JP2002308614A (en) * 2001-04-11 2002-10-23 Adchemco Corp Powdery activated carbon, production method therefor and electric double layer capacitor using the activated carbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204283A (en) * 2006-01-31 2007-08-16 Sumitomo Bakelite Co Ltd Carbon material and method for manufacturing the same
JP2010067793A (en) * 2008-09-11 2010-03-25 Japan Pionics Co Ltd Electrode sheet, and electrical double layer capacitor and lithium ion capacitor using electrode sheet

Also Published As

Publication number Publication date
JP4892838B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
CN107993853B (en) A kind of negative electrode material that soft or hard carbon is compound, preparation method and the capacitor comprising the negative electrode material
US8920680B2 (en) Methods of preparing carbonaceous material
Abdollahifar et al. Graphite recycling from end‐of‐life lithium‐ion batteries: processes and applications
JP2002083595A (en) Coke, artificial graphite, method of manufacturing carbon material for negative electrode of nonaqueous solvent secondary battery, and pitch composition
CN110474030B (en) Preparation method of carbon composite silicon-based negative electrode material of lithium ion battery
CN111072009B (en) Hard carbon material and preparation method and application thereof
CN112299849A (en) Method for preparing battery carbon rod by using regenerated graphite
US8236275B2 (en) Process for producing carbon material and alkali activation apparatus
JP2002093667A (en) Carbon material for electric double-layer capacitor electrode
KR101151987B1 (en) Production process for carbonized product and carbonized product obtained by the same process
JP4892838B2 (en) Carbonized product production method and carbonized product obtained by the method
CN113830768B (en) Lithium ion battery cathode material and preparation method thereof
JP2002100359A (en) Graphite material for negative electrode of lithium secondary battery, and its manufacturing method
CN112320802B (en) Recycling method of silicon-carbon anode material
JP2003212529A (en) Method of manufacturing highly graphitized carbon powder and highly graphitized graphite powder, and method of manufacturing electrical double layer capacitor and lithium ion secondary battery negative pole material
JP2008308360A (en) Manufacturing method of carbon material for electric double layer capacitor electrode
JP5573404B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
JP2000149946A (en) Carbon material for nonaqueous solvent secondary battery negative electrode and its manufacture
JP2004182507A (en) Carbon porous body for capacitor electrode and its manufacturing method
CN114455565A (en) Battery cathode material and preparation method thereof
JP2004182503A (en) Manufacturing method of carbon material for electric double-layer capacitor electrode
JP2004182504A (en) Active carbon for capacitor electrode and its manufacturing method
CN116143112A (en) Coating modification method of battery cathode material
CN114927685A (en) Catalytic graphitization coal-based negative electrode material and preparation method thereof
JP2000090928A (en) Manufacture of highly graphitized carbon powder for lithium secondary battery negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees