JP2005281116A - Method for producing activated carbon using microwave - Google Patents

Method for producing activated carbon using microwave Download PDF

Info

Publication number
JP2005281116A
JP2005281116A JP2004101956A JP2004101956A JP2005281116A JP 2005281116 A JP2005281116 A JP 2005281116A JP 2004101956 A JP2004101956 A JP 2004101956A JP 2004101956 A JP2004101956 A JP 2004101956A JP 2005281116 A JP2005281116 A JP 2005281116A
Authority
JP
Japan
Prior art keywords
activated carbon
wood
raw material
microwave irradiation
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004101956A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Sakawa
光弘 坂輪
Tomoaki Kubo
友聡 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi University of Technology
Original Assignee
Kochi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi University of Technology filed Critical Kochi University of Technology
Priority to JP2004101956A priority Critical patent/JP2005281116A/en
Publication of JP2005281116A publication Critical patent/JP2005281116A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing activated carbon having practically sufficient properties by a preliminary treatment of a wet woody waste material using microwaves and a one-step heat treatment. <P>SOLUTION: After the moisture content of the woody material such as wood, bamboo, and bark is controlled, the woody material is exposed to microwave radiation for a required time. Then the microwave radiation is stopped and the woody material is carbonized by an external heating in a nonoxidizing atmosphere. The moisture content of the woody material is controlled to 50-500 wt.% vs. that of the woody material in dry condition and the microwave radiation time is 3-10 minutes after the moisture begins boiling. Before the microwave radiation, the woody material is boiled in a large volume of water under normal or reduced pressure to make water penetrate into the inside of the woody material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、木質系原料からの活性炭の製造方法に関し、とくに木屑、竹屑、樹皮等の木質系廃棄物原料から、賦活工程を設けることなく、比較的簡単な工程で吸着性能の良好な活性炭を製造する方法に関する。   The present invention relates to a method for producing activated carbon from a wood-based material, and in particular, activated carbon having good adsorption performance in a relatively simple process without providing an activation process from a wood-based waste material such as wood waste, bamboo waste, and bark. It relates to a method of manufacturing.

活性炭を製造するには、やし殻等の植物系原料や褐炭等の鉱物系原料を炭化し、その後賦活工程で気孔を増加させることが必要である。賦活の方法はガス賦活法と薬品賦活法に大別されるが、我が国ではガス賦活法が主流になっている。これは、炭化後の原料を所定の温度に加熱して、水蒸気、酸素、炭酸ガス等の酸化性ガスと炭素とを反応させて、外部に導通する気孔量や比表面積の増大を図るものである。   In order to produce activated carbon, it is necessary to carbonize plant-based raw materials such as coconut shells and mineral-based raw materials such as lignite, and then increase pores in the activation step. The activation method is roughly classified into a gas activation method and a chemical activation method. In Japan, the gas activation method is mainly used. This is because the raw material after carbonization is heated to a predetermined temperature, and an oxidizing gas such as water vapor, oxygen, carbon dioxide gas and carbon are reacted to increase the amount of pores and the specific surface area that conduct to the outside. is there.

酸素による賦活は、局部的に過熱して均一な反応の制御が難しいため、反応ガスとして水蒸気や炭酸ガスが主に用いられるが、これらは800〜900℃以上の高温にならないと炭素と反応しない。また、炭化工程と賦活工程では反応条件が大幅に異なるため、通常は別々の反応容器で処理される。そのため、従来の活性炭の製造方法では、エネルギーコストや設備コストが大きくなり、活性炭の製造コストの低減が難しいという問題がある。   Since activation by oxygen is locally overheated and it is difficult to control a uniform reaction, water vapor or carbon dioxide is mainly used as a reaction gas, but these do not react with carbon unless the temperature is higher than 800 to 900 ° C. . Further, since the reaction conditions are significantly different between the carbonization step and the activation step, they are usually processed in separate reaction vessels. Therefore, in the conventional activated carbon manufacturing method, there is a problem that energy cost and equipment cost increase, and it is difficult to reduce the manufacturing cost of activated carbon.

一方、活性炭の製造とくに賦活工程においては、反応サイトに多量の熱を供給する必要があり、通常は直接加熱又は間接加熱により外部から加熱される。しかし、外部加熱では、伝熱促進の要請から、回転炉を用いたり炭材を攪拌したりする必要があるため、誘導加熱やマイクロ波加熱により、活性炭を内部から発熱させようとする試みもいくつか提案されている。例えば、使用済活性炭の加熱再生において、マイクロ波加熱を利用する方法が種々提案されている(下記特許文献1,2など)。   On the other hand, in the production of activated carbon, particularly in the activation step, it is necessary to supply a large amount of heat to the reaction site, and it is usually heated from the outside by direct heating or indirect heating. However, with external heating, it is necessary to use a rotary furnace or to stir the carbonaceous material because of the demand for heat transfer enhancement, so there are several attempts to heat activated carbon from the inside by induction heating or microwave heating. Or has been proposed. For example, various methods using microwave heating have been proposed for heating and regeneration of used activated carbon (Patent Documents 1 and 2 below).

また、下記特許文献3には「成形した有機性廃棄物からなる活性炭原料を加熱炉内に配置し、賦活ガスを供給する状態において、活性炭原料にマイクロ波もしくは高周波を与え、これを内部加熱して、炭化と賦活を行なう活性炭製造方法」が開示されている。さらに下記特許文献4には「カーボンブラックをスクリューコンベヤ上で予熱しながらマイクロウエーブ室に送入し、ここでマイクロ波によって200℃以上に加熱昇温させた後、流動式水蒸気賦活炉に投入して700〜900℃の高温下で水蒸気賦活する活性炭の製造方法」が開示されている。   Further, Patent Document 3 below describes that “in a state where an activated carbon raw material made of molded organic waste is placed in a heating furnace and activated gas is supplied, a microwave or a high frequency is applied to the activated carbon raw material, and this is internally heated. Thus, an activated carbon production method that performs carbonization and activation ”is disclosed. Further, in Patent Document 4 below, “carbon black is fed into a microwave chamber while preheating on a screw conveyor, heated to 200 ° C. or higher by microwaves, and then charged into a fluidized steam activation furnace. In other words, a method for producing activated carbon that activates water vapor at a high temperature of 700 to 900 ° C. is disclosed.

特開昭50−152994号公報Japanese Patent Laid-Open No. 50-152994 特開2001−89120号公報JP 2001-89120 A 特開2000−34114号公報JP 2000-34114 A 特開2002−308613号公報JP 2002-308613 A

木材資源の有効利用という観点から、木屑、竹屑、樹皮等の木質系廃棄物原料のリサイクルが課題になっている。本発明者らは、かかる廃棄物原料を有価物に再生する技術について種々の検討を行なっており、その一環として木質系原料からの活性炭の製造に着眼した。活性炭には種々の用途があり、要求される吸着性能等にも大きな幅がある。木質系廃棄物を原料とする活性炭の場合には、ある程度の吸着性能を有するものを如何に安価に製造するかが課題になると思われる。   From the viewpoint of effective use of wood resources, recycling of woody waste materials such as wood waste, bamboo waste and bark has become an issue. The present inventors have conducted various studies on the technology for recycling such waste raw materials into valuable materials, and as part of this, focused on the production of activated carbon from wood-based raw materials. Activated carbon has various uses, and there is a wide range of required adsorption performance. In the case of activated carbon using woody waste as a raw material, it seems to be a problem how to manufacture a product having a certain level of adsorption performance at a low cost.

このように活性炭を安価に製造するためには、まず第一に賦活工程を省略することが有力な手段と考えられる。しかし、そのためには、炭化終了時に活性炭として必要な吸着性能が確保されていなければならない。
また、木屑、竹屑等の廃棄物原料は野積み状態で保管されていることが多く、大抵の場合多量の水分を含んでいる。かかる湿潤状態の原料を一旦脱水・乾燥してから、炭化や賦活等の処理を行なったのでは、工程が長くなりかつ作業性も悪いため、安価に処理することが難しくなる。したがって、湿潤状態の原料をそのまま処理し、なるべく処理容器の移し変えを行なわず、かつ1回の加熱工程で、目標とする製品が得られるような方法が望ましい。
Thus, in order to produce activated carbon at a low cost, first of all, it is considered to be an effective means to omit the activation step. However, for that purpose, the adsorption performance required as activated carbon must be ensured at the end of carbonization.
In addition, waste materials such as wood chips and bamboo scraps are often stored in a piled state, and in most cases contain a large amount of moisture. If such wet raw materials are once dehydrated and dried and then subjected to treatments such as carbonization and activation, the process becomes long and the workability is poor, so that it is difficult to process at low cost. Therefore, it is desirable that the raw material in a wet state is processed as it is, the processing container is not changed as much as possible, and the target product is obtained in one heating step.

本発明者らは、湿潤状態の木質原料にマイクロ波を照射することによって、水分等が含有する水酸基等を共鳴させ、瞬時に高温にし得ることに着目した。これによって、木質組織内に染み込んだ水分、結晶水や反応生成物が急速にガス化するために、組織内の気孔量を大幅に増大させうると考えられる。したがって、賦活工程を設けなくとも、実用上必要な気孔量や比表面積を確保できる可能性がある。
そこで本発明は、マイクロ波による内部加熱を利用して、湿潤状態の木質廃棄物原料を予備処理し、炭化を主目的とする一段の加熱処理で、実用上十分な性能を有する活性炭を製造し得る手段を提供することを課題としている。
The inventors of the present invention have focused on the fact that by irradiating a wet woody material with microwaves, the hydroxyl groups contained in moisture and the like can resonate, and the temperature can be instantaneously increased. As a result, it is considered that the amount of pores in the tissue can be greatly increased because moisture, crystallization water and reaction products soaked into the woody tissue are rapidly gasified. Therefore, there is a possibility that a practically necessary pore volume and specific surface area can be secured without providing an activation step.
Therefore, the present invention uses an internal heating by microwaves to pre-treat wet wood waste raw material, and to produce activated carbon having practically sufficient performance by one-stage heat treatment mainly for carbonization. It is an object to provide a means to obtain.

本発明者らは、含水した木質原料からの活性炭の製造について種々の検討を行い、含水状態の原料に、所定時間マイクロ波を照射した後、炭化することにより、マイク波照射無しに炭化したものより、炭化後の製品の比表面積を大幅に増大させ得るを見出した。これにより、炭化後の賦活工程を省略しても、実用上十分な性能の活性炭が得られることを知見した。   The inventors of the present invention conducted various studies on the production of activated carbon from water-containing wood raw material, and carbonized the raw water-containing raw material without irradiating it with a microwave by irradiating it with microwaves for a predetermined time. It was found that the specific surface area of the product after carbonization can be greatly increased. Thereby, even if the activation process after carbonization was omitted, it was found that practically sufficient activated carbon could be obtained.

この知見に基づく本発明の活性炭の製造方法は、
木材、竹材、樹皮のうちの1種以上を主体とする木質原料からの活性炭の製造方法であって、必要に応じて粒度調整された該木質原料の含有水分量を調節する工程と、次いでこの含水量を調節した木質原料に所定時間マイクロ波を照射する工程と、次いでマイクロ波の照射を停止して非酸化性雰囲気下での外部加熱により該木質原料を炭化する工程とを具備することを特徴とするものである。
The method for producing activated carbon of the present invention based on this finding is as follows:
A method for producing activated carbon from a wood raw material mainly comprising at least one of wood, bamboo, and bark, the step of adjusting the water content of the wood raw material adjusted in particle size as necessary, and this A step of irradiating a wood raw material having a controlled water content with microwaves for a predetermined time, and then a step of carbonizing the wooden raw material by external heating in a non-oxidizing atmosphere after stopping the microwave irradiation. It is a feature.

本発明は、含水した木質原料にマイクロ波を照射し、これにより水酸基等を振動させて急速加熱し、木質組織内部からの水蒸気発生を促進させて内部気孔量の増大を図るものである。マイクロ波の照射が単なる加熱手段ではなく、主に内部気孔量増大の手段として用いられる点が、従来のマイクロ波を利用した活性炭の製造又は賦活方法と本質的に相違する。
実際に後記実施例に示すように、マイクロ波の照射の有無により、炭化後の活性炭の比表面積が大幅に相違する。このようにマイクロ波の照射により比表面積が増大するメカニズムは十分明らかではないが、やはり木質組織内部での急速なガス発生により、組織がルーズになり、ガスの離脱後も気孔が残存することによるのではないかと推測される。
The present invention is intended to increase the amount of internal pores by irradiating a water-containing wood raw material with microwaves, thereby oscillating a hydroxyl group and the like and rapidly heating it to promote the generation of water vapor from the inside of the wood tissue. The point that microwave irradiation is not merely a heating means but mainly used as a means for increasing the amount of internal pores is essentially different from a conventional method for producing or activating activated carbon using microwaves.
Actually, as shown in the examples described later, the specific surface area of the activated carbon after carbonization varies greatly depending on the presence or absence of microwave irradiation. The mechanism by which the specific surface area is increased by microwave irradiation is not clear enough, but the rapid gas generation inside the woody tissue makes the tissue loose and the pores remain after the gas is released. It is guessed that.

本発明の活性炭の製造方法においては、このような気孔生成を効率良く行なうために、マイクロ波照射時の木質原料の含水量を適正な範囲に調節しておくことが重要で、マイクロ波照射に先立つ含水量調節工程において、含水原料中の水分量を、乾燥状態の木質原料の重量に対する比で50〜500%の範囲内としておくことが好ましい。   In the method for producing activated carbon of the present invention, in order to efficiently generate such pores, it is important to adjust the water content of the woody raw material during microwave irradiation to an appropriate range. In the preceding water content adjustment step, the water content in the water-containing raw material is preferably set in the range of 50 to 500% in terms of the ratio to the weight of the dry woody raw material.

本発明においては、炭化工程ではマイクロ波の照射を停止し、非酸化性雰囲気下での外部加熱により炭化を行なう。マイクロ波の照射はエネルギーコストが大きく、炭化工程でマイクロ波照射しても、比表面積増大の効果がほとんどないためである。なお、本発明において、非酸化性雰囲気とは酸化性ガスを含まない雰囲気(真空雰囲気を含む)又は燃焼排ガスとしてH2O,CO2等を含んでいても、温度が低いために、これらの酸化性成分と炭素との反応が実質的に起こらない雰囲気をいう。 In the present invention, in the carbonization step, microwave irradiation is stopped, and carbonization is performed by external heating in a non-oxidizing atmosphere. This is because microwave irradiation has a high energy cost, and even if microwave irradiation is performed in the carbonization step, there is almost no effect of increasing the specific surface area. In the present invention, the non-oxidizing atmosphere is an atmosphere containing no oxidizing gas (including a vacuum atmosphere) or a combustion exhaust gas containing H 2 O, CO 2, etc. An atmosphere in which the reaction between the oxidizing component and carbon does not occur substantially.

また、本発明においては、マイクロ波照射工程において、マイクロ波の照射を開始して、含有水分が沸騰を開始した後3〜10分間継続して照射を行なうことが好ましい。なお、沸騰開始時点の判定は、必ずしも目視によらず何らかの計測手段を利用してもよい。あるいは、経験的に(含水量との関係において)沸騰開始までの時間を把握しておき、この時間に3〜10分加えた間継続してマイクロ波の照射を行なうようにしてもよい。   In the present invention, in the microwave irradiation step, it is preferable to continuously perform irradiation for 3 to 10 minutes after the microwave irradiation is started and the contained water starts to boil. Note that the determination of the boiling start time is not necessarily performed visually, and some measuring means may be used. Alternatively, the time until the start of boiling may be grasped empirically (in relation to the water content), and microwave irradiation may be performed continuously for 3 to 10 minutes.

本発明においては、水分量調節工程において(又はこれに先立って)、前記木質原料を常圧又は減圧下で多量の水中で煮沸して該原料内部に水分を浸透させた後、含有水分量の調節を行なうようにしてもよい。木屑等の木質原料が乾燥状態である場合、その組織内部に水分を十分浸透させることが容易でない場合が多い。かかる場合は、予め木質原料を常圧又は減圧下で多量の水分中で煮沸しておくことが好ましい。これにより、原料内部に水分がよく浸透して、マイクロ波照射による比表面積増大の効果をより大きくすることができる。なお、煮沸時は水の量が多い方が作業が容易なので、煮沸後に含水量を前記の範囲に調節すればよい。   In the present invention, in the water content adjustment step (or prior to this), the wood raw material is boiled in a large amount of water under normal pressure or reduced pressure to infiltrate the water into the raw material, Adjustments may be made. When woody materials such as wood chips are in a dry state, it is often not easy to sufficiently penetrate moisture into the tissue. In such a case, it is preferable to boil the woody material in advance in a large amount of water under normal pressure or reduced pressure. Thereby, moisture permeates well into the raw material, and the effect of increasing the specific surface area by microwave irradiation can be further increased. In addition, since the operation | work is easier when there is much quantity of water at the time of boiling, what is necessary is just to adjust a water content to the said range after boiling.

さらに、本発明においては、マイクロ波の照射を、絶対圧で400〜710Torr(標準大気圧−(50〜390)Torr)の減圧状態の大気雰囲気下又は同じ減圧状態の不活性ガス雰囲気下で行なってもよい。これにより、マイクロ波照射時の内部気孔の生成量、生成速度がさらに大きくなって、炭化後の活性炭の比表面積をさらに大きくすることができる。   Furthermore, in the present invention, microwave irradiation is performed in an atmospheric atmosphere in a reduced pressure state of 400 to 710 Torr (standard atmospheric pressure− (50 to 390) Torr) in absolute pressure or an inert gas atmosphere in the same reduced pressure state. May be. Thereby, the production | generation amount and production | generation speed | rate of an internal pore at the time of microwave irradiation become larger, and the specific surface area of the activated carbon after carbonization can be enlarged further.

本発明は、木質原料をマイクロ波で予備処理した後炭化することにより、賦活処理を行なうことなく、実用上十分な吸着性能を有する活性炭の製造を可能にしたものである。また、本発明においては、湿潤状態の木質原料の乾燥を行なうことなく含水状態のまま処理することができる。これらにより、活性炭の製造工程が簡単になり、そのエネルギーコストも低減されるため、安価に活性炭を製造することが可能となった。そのため、木屑、竹屑、樹皮等の木質廃棄物から、安価に有価物を製造することができ、木質資源の再利用という観点からも本発明の意義は大きい。   The present invention makes it possible to produce activated carbon having practically sufficient adsorption performance without performing activation treatment by carbonizing a wood raw material after pretreatment with a microwave. Moreover, in this invention, it can process in a water-containing state, without drying the wooden raw material of a wet state. As a result, the manufacturing process of the activated carbon is simplified and the energy cost is reduced, so that the activated carbon can be manufactured at a low cost. Therefore, valuable materials can be produced at low cost from woody wastes such as wood waste, bamboo waste, and bark, and the present invention is also significant from the viewpoint of recycling wood resources.

本発明の活性炭の製造方法は、木質原料の含有水分量を調節するステップ(水分量調節工程)と、次いでこの含水原料に所定時間マイクロ波を照射するステップ(マイクロ波照射工程)と、次いでマイクロ波の照射を停止して非酸化性雰囲気下での外部加熱により該木質原料を炭化するステップ(炭化工程)とからなっている。また、必要に応じて、水分量調節工程の前に、サイズの過大な原料を切断・破砕したり、粉状原料の整粒・造粒等を行なう粒度調整工程を設けてもよい。以下、これらの各工程の好ましい実施態様について説明する。   The activated carbon production method of the present invention includes a step of adjusting the moisture content of the wood raw material (moisture content adjusting step), a step of irradiating the water-containing raw material with microwaves for a predetermined time (microwave irradiation step), and then a micro step. It comprises a step (carbonization step) in which the irradiation of the wave is stopped and the wood raw material is carbonized by external heating in a non-oxidizing atmosphere. Moreover, you may provide the particle size adjustment process which cut | disconnects and crushes an excessively large raw material, or size-regulates and granulates a powdery raw material before a moisture content adjustment process as needed. Hereinafter, preferred embodiments of each of these steps will be described.

活性炭の原料には、木材、竹材、樹皮のうちの1種又は2種以上を主体とするものを用いる。一般には、木材や竹材の製材工程から発生する切断屑、カンナ屑、鋸屑、剥離樹皮等を主原料とすればよい。ただし、かかる木質廃棄物に限定する必要は無く、製材前の原木材や原竹材、あるいは製材後の木材や竹材を原料として用いても差し支えない。なお、「木質材を主体とする原料」と規定した理由は、上記の木質材がある比率以上、例えば70%程度以上含まれていればよいとの趣旨である。残余の原料は有機物であればよいが、一般には植物繊維質原料であることが好ましく、とくに籾殻、藁屑、故紙等の植物繊維質廃棄物を一部混入して、原料としてもよい。   As the raw material for the activated carbon, one mainly composed of one or more of wood, bamboo, and bark is used. In general, cutting scraps, canna scraps, saw scraps, peeled bark, etc. generated from the lumbering process of wood or bamboo may be used as the main raw material. However, it is not necessary to limit to such wooden waste, and raw wood or raw bamboo before lumbering, or wood or bamboo after lumbering may be used as raw materials. The reason for defining “a raw material mainly composed of a wood material” is that the above wood material should be contained in a certain ratio or more, for example, about 70% or more. The remaining raw material may be any organic material, but in general, it is preferably a vegetable fiber raw material. Particularly, a part of plant fiber waste such as rice husk, rice scum, and waste paper may be mixed and used as the raw material.

木質原料のサイズに格別の限定は必要としないが、サイズが大きすぎると反応容器内に充填しにくかったり、マイクロ波照射の効果にむらが生じたりするので、数センチ程度以下のサイズであることが好ましい。木材や竹材の切断屑、カンナ屑、鋸屑等であれば、ほとんどそのまま原料として用いることができる。また、製品活性炭の目標サイズを考慮して、予め原料サイズを調節しておいてもよいが、一般には炭化後に製品活性炭の粒度調整を行なえばよい。   There is no special limitation on the size of the wood raw material, but if the size is too large, it will be difficult to fill the reaction container or the effect of microwave irradiation will be uneven. Is preferred. If it is cutting waste of wood or bamboo, canna waste, saw dust, etc., it can be used almost as it is. In addition, the raw material size may be adjusted in advance in consideration of the target size of the product activated carbon, but in general, the particle size of the product activated carbon may be adjusted after carbonization.

水分量調整工程においては、含水原料中の水分量Wを、乾燥状態の木質原料の重量Mに対する比W/M(以下、含水率という)で、50〜500%の範囲内の所定の目標値に調節する。本発明者らの知見によれば、マイクロ波照射時の含水率が50%未満では、木質組織内部に気孔を生成させる効果、すなわち製品活性炭の比表面積を増大させる効果が不十分なためである。一方、含水率が500%を超えても、内部気孔生成効果はそれ以上増大せず、逆にマイクロ波のエネルギーが過剰水分の蒸発に消費されて好ましくないためである。   In the water content adjustment step, the water content W in the water-containing raw material is a predetermined target value within a range of 50 to 500% in terms of a ratio W / M (hereinafter referred to as water content) to the weight M of the dry woody raw material. Adjust to. According to the knowledge of the present inventors, when the moisture content at the time of microwave irradiation is less than 50%, the effect of generating pores inside the wood tissue, that is, the effect of increasing the specific surface area of the product activated carbon is insufficient. . On the other hand, even if the moisture content exceeds 500%, the internal pore generation effect does not increase any more, and conversely, the microwave energy is consumed for the evaporation of excess moisture, which is not preferable.

なお、この含水率の調整は、さほど厳密に目標値に一致させる必要は無く、±20%程度の範囲内に入ればよい。粉砕後の原料の含水率を何らかの方法(例えば乾燥重量の測定、スラリー状原料の比重測定等)で測定又は推定し、必要に応じて加水したり、乾燥原料を追加したり、脱水したりすればよい。脱水は篩や濾紙で簡単に行なうことができる。   It should be noted that the adjustment of the moisture content does not have to be exactly the same as the target value, and may be within a range of about ± 20%. Measure or estimate the moisture content of the crushed raw material by some method (for example, dry weight measurement, specific gravity measurement of slurry raw material, etc.), add water as needed, add dry raw material, dehydrate That's fine. Dehydration can be easily performed with a sieve or filter paper.

また、本発明においては、マイクロ波照射時に木質組織内部に十分な量の水分が浸透していることが、マイクロ波照射の効果を発揮する上できわめて重要である。一般に乾燥状態の木質材、とくに鋸屑に含水させることは容易でない場合が多い。乾燥状態の鋸屑等は撥水性が強く、長時間水中に浸漬しておいても、あまり木質組織内に水が浸透していないことが観察されている。   Further, in the present invention, it is extremely important for a sufficient amount of moisture to penetrate into the wood tissue during microwave irradiation in order to exert the effect of microwave irradiation. In general, it is often not easy to hydrate dry wood, especially sawdust. It has been observed that dried sawdust and the like have strong water repellency, and even when immersed in water for a long time, water does not penetrate so much into the wood tissue.

したがって、原料木質材を予め煮沸して、木質組織内部に水を十分浸透させておくことが好ましい。煮沸時間は、原料の種類等にもよるが、通常は2〜10分程度であればよい。通常は大量の水中で煮沸処理する方が作業が容易なので、煮沸処理後に木質原料の含水率を調節すればよい。なお、マイクロ波の照射下で水を沸騰させて、この煮沸処理を行なってもよいことは云うまでもない。さらに、この煮沸処理は、常圧下で行なってもよいが、これを減圧下で行なえば、木質組織内部からのガスの離脱が容易になり、組織内部への水分の浸透をより確実にすることができる。減圧の程度は、さほど厳密に限定する必要はないが、例えば絶対圧で400〜710Torr程度であればよい。   Therefore, it is preferable to boil the raw wood material in advance so that water is sufficiently permeated into the wood tissue. The boiling time is usually about 2 to 10 minutes, although it depends on the type of raw material. Usually, it is easier to perform the boiling process in a large amount of water, so the water content of the wooden material may be adjusted after the boiling process. Needless to say, the boiling treatment may be performed by boiling water under microwave irradiation. Furthermore, this boiling treatment may be performed under normal pressure, but if this is performed under reduced pressure, gas will be easily released from the inside of the wood tissue, and water penetration into the inside of the tissue will be made more reliable. Can do. The degree of pressure reduction need not be strictly limited, but may be, for example, about 400 to 710 Torr in absolute pressure.

マイクロ波照射工程では、マイクロ波の照射を開始して、含有水分が沸騰し始めた後3〜10分間継続して照射を行なうことが好ましい。木質組織内部で水を蒸発させて、内部気孔を生成させる効果は、水が沸騰を開始する温度になった後の照射時間に依存する。本発明者らの知見によれば、沸騰開始後の照射時間が3分未満では、製品比表面積増大の効果が十分でない。一方、この時間を10分以上にしても、それ以上比表面積増大の効果が増すことはなく、マイクロ波のエネルギーが過大になって好ましくないためである。   In the microwave irradiation step, it is preferable that the irradiation is continuously performed for 3 to 10 minutes after the microwave irradiation is started and the contained water starts to boil. The effect of evaporating water inside the woody tissue and generating internal pores depends on the irradiation time after the water reaches a temperature at which it begins to boil. According to the knowledge of the present inventors, if the irradiation time after the start of boiling is less than 3 minutes, the effect of increasing the product specific surface area is not sufficient. On the other hand, even if this time is 10 minutes or more, the effect of increasing the specific surface area is not increased any more, and the microwave energy becomes excessive, which is not preferable.

本発明において、マイクロ波照射の処理を行なう装置の方式、構造等をとくに限定する必要はなく、例えばバッチ式の処理容器内で、所定時間マイクロ波の照射を行なってもよく、ベルトコンベア等で搬送中に、所定のゾーンでマイクロ波照射を行なって、連続的に処理してもよい。マイクロ波の発生装置やこれを処理室に導く導波管の構造等もとくに限定を要しない。マイクロ波の周波数としては、電子レンジで常用されている2.45GHzのマイクロ波を好適に用いることができる。   In the present invention, it is not necessary to particularly limit the method, structure, etc. of the apparatus for performing the microwave irradiation. For example, microwave irradiation may be performed for a predetermined time in a batch type processing container. During conveyance, microwave irradiation may be performed in a predetermined zone to continuously process. The microwave generator and the structure of the waveguide for guiding it to the processing chamber are not particularly limited. As the frequency of the microwave, a 2.45 GHz microwave that is commonly used in a microwave oven can be suitably used.

炭化工程は、マイクロ波照射後の木質原料を非酸化性雰囲気下で加熱して、乾溜と炭化を行なう工程である。この際マイクロ波の照射は停止し、外部より木質原料を加熱する。本発明においては、この炭化を主目的とする一回の加熱過程のみで、賦活処理を行なったと同様な吸着性能の活性炭を製造し得ることが特徴である。   The carbonization step is a step in which the wood raw material after microwave irradiation is heated in a non-oxidizing atmosphere to perform dry distillation and carbonization. At this time, the microwave irradiation is stopped, and the wood raw material is heated from the outside. The present invention is characterized in that activated carbon having the same adsorption performance as that obtained by the activation treatment can be produced by only one heating process mainly for the carbonization.

炭化工程における温度パターンはとくに限定を要しないが、所定の昇温速度で昇温する昇温過程と、所定の温度範囲内に所定時間保持する温度保持過程を設ける場合が多い。加熱の最高温度は500〜800℃程度で十分炭化可能であり、賦活工程を設ける場合よりも低い加熱温度で活性炭を製造することができる。この工程で用いる反応容器の形式はとくに限定を要しないが、通常は加熱パターンの制御の容易なバッチ式の反応器を用いる。反応器内の温度を一様にするため、回転容器や攪拌羽根を用いてもよい。なお、マイクロ波照射用の容器と同一の容器で炭化を行なってもよく、別容器に移し替えて炭化を行なってもよい。   The temperature pattern in the carbonization step is not particularly limited, but there are many cases where a temperature raising process for raising the temperature at a predetermined temperature raising rate and a temperature holding process for holding for a predetermined time within a predetermined temperature range are provided. The maximum heating temperature is about 500 to 800 ° C., and carbonization is sufficient. Activated carbon can be produced at a lower heating temperature than when an activation step is provided. The type of the reaction vessel used in this step is not particularly limited, but usually a batch type reactor in which the heating pattern is easily controlled is used. In order to make the temperature in the reactor uniform, a rotating container or a stirring blade may be used. Carbonization may be performed in the same container as that for microwave irradiation, or may be transferred to another container for carbonization.

炭化工程での加熱方式は、外熱式でも内熱式でもよい。内熱式加熱は一般には燃焼排ガスを流通させて行なう。この炭化工程の比較的高温の温度域で、過剰空気を含む燃焼排ガスを流通させると、非酸化雰囲気という条件が維持できなくなるので、過剰空気を含まない燃焼排ガスを流通させる必要がある。なお、燃焼排ガスのH2O,CO2は、本発明での炭化工程の温度範囲(800℃以下)ではほとんどCと反応しないので、流通ガス中に含まれていても差し支えない。 The heating method in the carbonization process may be an external heating type or an internal heating type. Internal heating type heating is generally performed by circulating combustion exhaust gas. If combustion exhaust gas containing excess air is circulated in a relatively high temperature range of the carbonization step, the condition of a non-oxidizing atmosphere cannot be maintained, so it is necessary to distribute combustion exhaust gas not containing excess air. Note that H 2 O and CO 2 of the combustion exhaust gas hardly react with C in the temperature range (800 ° C. or less) of the carbonization process in the present invention, and therefore may be contained in the circulating gas.

なお、炭化工程においては、雰囲気中のH2O,CO2は木質原料の炭素とほとんど反応しないと考えられる。しかし、原料中の酸素が炭素や水素と反応して、H2O,CO2が生成する可能性は十分ある。すなわち、木質原料の主成分であるセルロースは、化学式(C6105nで表され、原子比でCの5/6のOを含有する。このセルロースは、かなりの高温域まで完全には分解されず、炭化過程の後期に未分解のOがH2O又はCOとなって外気中に逸出し、その際に外部に通ずる細孔が多量に形成されて、賦活と同様の効果を与えている可能性も考えられる。 In the carbonization step, it is considered that H 2 O, CO 2 in the atmosphere hardly reacts with carbon of the wood raw material. However, there is a sufficient possibility that oxygen in the raw material reacts with carbon and hydrogen to produce H 2 O, CO 2 . That is, cellulose, which is the main component of the woody material, is represented by the chemical formula (C 6 H 10 O 5 ) n and contains 5/6 O of C by atomic ratio. This cellulose is not completely decomposed to a considerably high temperature range, and undecomposed O escapes into the outside air as H 2 O or CO in the latter stage of the carbonization process, and at that time, there are a large number of pores leading to the outside. The possibility that the same effect as activation is given is also considered.

いずれにしても、上記の方法で製造された活性炭は、後記実施例に示すように、BET法により測定される比表面積が500m2/g以上である。したがって、この活性炭は、脱臭、脱色、調湿等の用途に好適である。 In any case, the activated carbon produced by the above method has a specific surface area measured by the BET method of 500 m 2 / g or more, as shown in the Examples below. Therefore, this activated carbon is suitable for uses such as deodorization, decolorization, and humidity control.

活性炭の原料として木屑(おが屑)、竹屑、樹皮チップの3種を単独で炭化し、炭化の前処理としてのマイクロ波照射の有る場合(実施例)と無い場合(比較例)で、炭化後の製品の比表面積とミクロ組織を調査した。上記の各原料いずれも、サイズが1mm以下の粉末状のものを準備し、実施例、比較例ともに各10gづつを供試材とした。
実施例(マイクロ波照射有り)では、この原料を100〜200CCの常圧のの水中で煮沸した。煮沸時間は、いずれも10分とした。マイクロ波照射は、含水率を約250%に調節して、通常の家庭用電子レンジ内で10分間(水の沸騰開始後約7〜8分間)2.45GHzのマイクロ波を照射した。
Three types of charcoal (sawdust), bamboo scrap, and bark chips are carbonized independently as raw materials for activated carbon, with and without microwave irradiation as a pretreatment for carbonization (Example) and after (Carbide) The specific surface area and microstructure of the products were investigated. Each of the above raw materials was prepared as a powder having a size of 1 mm or less, and 10 g each of the examples and comparative examples were used as test materials.
In the examples (with microwave irradiation), the raw material was boiled in water at normal pressure of 100 to 200 CC. The boiling time was 10 minutes in all cases. In the microwave irradiation, the moisture content was adjusted to about 250%, and a microwave of 2.45 GHz was irradiated for 10 minutes (about 7 to 8 minutes after the start of boiling of water) in a normal household microwave oven.

炭化工程は、環状電気炉内の石英管に、供試材を充填した坩堝を入れ、窒素を流通しつつ、加熱した。加熱パターンは800℃まで約80分で昇温し、この温度に60分間保定した。
一方、比較例は上記の煮沸工程とマイクロ波照射工程を設けず、供試材を直接炭化した。比較例における炭化工程の条件は、実施例と同じである。このようにして炭化した実施例と比較例の供試材について、比表面積の測定とミクロ組織の調査を行なった。比表面積の測定はBET法により行い、ミクロ組織は走査型電子顕微鏡写真を比較した。
In the carbonization step, a crucible filled with a test material was placed in a quartz tube in an annular electric furnace, and heated while circulating nitrogen. The heating pattern was heated to 800 ° C. in about 80 minutes and held at this temperature for 60 minutes.
On the other hand, the comparative example directly carbonized the test material without providing the above boiling step and microwave irradiation step. The conditions for the carbonization step in the comparative example are the same as in the examples. With respect to the test materials carbonized in Examples and Comparative Examples, the specific surface area was measured and the microstructure was examined. The specific surface area was measured by the BET method, and the microstructure was compared with scanning electron micrographs.

比表面積の測定結果を表1に示す。表に見られるように、比較例では比表面積の値がほぼ300m2/g以下であるのに対して、実施例ではいずれも500m2/g以上になっている。比表面積の増加倍率は、木屑で8.6倍、竹屑で6.3倍、樹皮で2.3倍になっており、マイクロ波照射により、炭化後の比表面積が顕著に増加することが確かめられた。 Table 1 shows the measurement results of the specific surface area. As can be seen from the table, the specific surface area value is approximately 300 m 2 / g or less in the comparative example, whereas all values are 500 m 2 / g or more in the examples. The increase ratio of specific surface area is 8.6 times for wood waste, 6.3 times for bamboo waste, and 2.3 times for bark. Microwave irradiation can significantly increase the specific surface area after carbonization. It was confirmed.

また、図1に竹屑での炭化後のミクロ組織の比較を、図2樹皮での炭化後のミクロ組織の比較を示す。図1,2ともに、(a)が比較例(マイクロ波照射せず炭化)、(b)が実施例(マイクロ波照射後炭化)の供試材の写真である。なお、図1の(a)と(b)は同倍率であるが、図2では(b)は(a)の2倍の倍率になっている。これらのミクロ組織写真に見られるように、マイクロ波照射により明らかに大きな気孔が増加している。また、写真では十分明らかではないが、詳細に観察すると小さい気孔量も大幅に増加していることが知れる。なお、図示していないが、木屑の場合にも、マイクロ波照射により、大きな気孔や小さな気孔が上記と同様に増加することが確かめられている。   FIG. 1 shows a comparison of microstructures after carbonization with bamboo waste, and FIG. 2 shows a comparison of microstructures after carbonization with bark. 1 and 2, (a) is a photograph of a test material of a comparative example (carbonization without microwave irradiation) and (b) is an example (carbonization after microwave irradiation). Note that (a) and (b) in FIG. 1 have the same magnification, but in FIG. 2, (b) has a magnification twice that of (a). As can be seen in these micrographs, the large pores are clearly increased by the microwave irradiation. Moreover, although it is not clear enough in the photograph, it can be seen that the amount of small pores is greatly increased when observed in detail. Although not shown, it has been confirmed that even in the case of wood chips, large pores and small pores are increased in the same manner as described above by microwave irradiation.

本実施例の竹屑を原料とする活性炭のミクロ組織の例を示す写真で、図1(a)はマイクロ波照射が無い場合、図1(b)はマイクロ波照射した場合を示す。FIG. 1A is a photograph showing an example of a microstructure of activated carbon made from bamboo scraps of this example, and FIG. 1A shows the case where there is no microwave irradiation, and FIG. 本実施例の樹皮を原料とする活性炭のミクロ組織の例を示す写真で、図2(a)はマイクロ波照射が無い場合、図2(b)はマイクロ波照射した場合を示す。FIG. 2A is a photograph showing an example of the microstructure of activated carbon made from the bark of this example, and FIG. 2B shows the case where microwave irradiation is not performed, and FIG. 2B shows the case where microwave irradiation is performed.

Claims (5)

木材、竹材、樹皮のうちの1種以上を主体とする木質原料からの活性炭の製造方法であって、必要に応じて粒度調整された該木質原料の含有水分量を調節する工程と、次いでこの木質原料に所定時間マイクロ波を照射する工程と、次いでマイクロ波の照射を停止して非酸化性雰囲気下での外部加熱により該木質原料を炭化する工程とを具備することを特徴とする活性炭の製造方法。   A method for producing activated carbon from a wood raw material mainly comprising at least one of wood, bamboo, and bark, the step of adjusting the water content of the wood raw material adjusted in particle size as necessary, and this A step of irradiating a wood raw material with microwaves for a predetermined time, and then a step of stopping the microwave irradiation and carbonizing the wooden raw material by external heating in a non-oxidizing atmosphere. Production method. 前記の水分量調節工程において、前記木質原料の含水量を、乾燥状態の該原料に対する重量比で50〜500%とすることを特徴とする請求項1記載の活性炭の製造方法。   2. The method for producing activated carbon according to claim 1, wherein, in the moisture content adjusting step, the moisture content of the wood material is 50 to 500% in a weight ratio with respect to the material in a dry state. 前記のマイクロ波照射工程において、マイクロ波の照射を開始して、水分が沸騰し始めた後3〜10分間継続して照射を行なうことを特徴とする請求項1又は2記載の活性炭の製造方法。   3. The method for producing activated carbon according to claim 1, wherein in the microwave irradiation step, irradiation with microwaves is started and irradiation is continued for 3 to 10 minutes after moisture starts to boil. . 前記の水分量調節工程において、前記木質原料を常圧又は減圧下で煮沸して該原料内部に水分を浸透させた後、含水量の調節を行なうことを特徴とする請求項1乃至3のいずれかに記載の活性炭の製造方法。   4. The water content is adjusted in the moisture content adjusting step, wherein the wood material is boiled under normal pressure or reduced pressure to allow moisture to penetrate into the material, and then the moisture content is adjusted. A method for producing the activated carbon according to claim 1. 前記のマイクロ波照射工程を、絶対圧で400〜710Torrの減圧状態の大気雰囲気下又は不活性ガス雰囲気下で行なうことを特徴とする請求項1乃至3のいずれかに記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 3, wherein the microwave irradiation step is performed in an air atmosphere or an inert gas atmosphere in a reduced pressure state of 400 to 710 Torr in absolute pressure.
JP2004101956A 2004-03-31 2004-03-31 Method for producing activated carbon using microwave Pending JP2005281116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101956A JP2005281116A (en) 2004-03-31 2004-03-31 Method for producing activated carbon using microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101956A JP2005281116A (en) 2004-03-31 2004-03-31 Method for producing activated carbon using microwave

Publications (1)

Publication Number Publication Date
JP2005281116A true JP2005281116A (en) 2005-10-13

Family

ID=35179899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101956A Pending JP2005281116A (en) 2004-03-31 2004-03-31 Method for producing activated carbon using microwave

Country Status (1)

Country Link
JP (1) JP2005281116A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441504C (en) * 2006-12-25 2008-12-10 天津城市建设学院 Preparing process of active sludge carbon for desulfurizing fume
JP2011016693A (en) * 2009-07-10 2011-01-27 Univ Of Miyazaki Method for producing composite activated carbon based on biomass waste and methane gas storage material using the same
JP2011178641A (en) * 2010-03-03 2011-09-15 Tokyo Metropolitan Industrial Technology Research Institute Activated carbon and process of producing the same
CN102942174A (en) * 2012-11-23 2013-02-27 浙江建中竹业科技有限公司 Manufacture method for electric conduction dust-free health care carbon granule
CN104058400A (en) * 2014-06-09 2014-09-24 青岛东方循环能源有限公司 Method for preparing activated carbon with microwave radiation
CN104828821A (en) * 2013-07-25 2015-08-12 程俊校 Activated carbon and preparation process thereof
US9688934B2 (en) 2007-11-23 2017-06-27 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower
CN111484012A (en) * 2020-05-26 2020-08-04 王占军 Method for producing decolored active carbon by using phosphoric acid method
CN113231050A (en) * 2021-04-20 2021-08-10 南京三乐微波技术发展有限公司 Method and device for regenerating waste activated carbon through microwave activation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441504C (en) * 2006-12-25 2008-12-10 天津城市建设学院 Preparing process of active sludge carbon for desulfurizing fume
US9688934B2 (en) 2007-11-23 2017-06-27 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower
US10119087B2 (en) 2007-11-23 2018-11-06 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower
JP2011016693A (en) * 2009-07-10 2011-01-27 Univ Of Miyazaki Method for producing composite activated carbon based on biomass waste and methane gas storage material using the same
JP2011178641A (en) * 2010-03-03 2011-09-15 Tokyo Metropolitan Industrial Technology Research Institute Activated carbon and process of producing the same
CN102942174A (en) * 2012-11-23 2013-02-27 浙江建中竹业科技有限公司 Manufacture method for electric conduction dust-free health care carbon granule
CN102942174B (en) * 2012-11-23 2014-07-23 浙江建中竹业科技有限公司 Manufacture method for electric conduction dust-free health care carbon granule
CN104828821A (en) * 2013-07-25 2015-08-12 程俊校 Activated carbon and preparation process thereof
CN104058400A (en) * 2014-06-09 2014-09-24 青岛东方循环能源有限公司 Method for preparing activated carbon with microwave radiation
CN111484012A (en) * 2020-05-26 2020-08-04 王占军 Method for producing decolored active carbon by using phosphoric acid method
CN113231050A (en) * 2021-04-20 2021-08-10 南京三乐微波技术发展有限公司 Method and device for regenerating waste activated carbon through microwave activation

Similar Documents

Publication Publication Date Title
US6576212B2 (en) Process for the production of carbonized material
Huang et al. Influence of morphological and chemical features of biochar on hydrogen peroxide activation: implications on sulfamethazine degradation
Shamsuddin et al. Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation
US20110179701A1 (en) Torrefaction of ligno-cellulosic biomasses and mixtures
RU2741550C2 (en) Method of producing low-ash activated charcoal
Markovska et al. A study on the thermal destruction of rice husk in air and nitrogen atmosphere
JP2005281116A (en) Method for producing activated carbon using microwave
MX2012010137A (en) Pyrolysis of biomass.
JP2003047409A5 (en)
JP2003047409A (en) Raw material processing method, feed production method, fertilizer production method and raw material processing apparatus
CN108557820A (en) A kind of preparation method of COD high removal rates activated carbon from bamboo
EP3847129A1 (en) A porous formable material and a method for producing it
WO2016073393A1 (en) Microwave heating for gypsum manufacturing processes
Yek et al. Microwave pyrolysis using self-generated pyrolysis gas as activating agent: an innovative single-step approach to convert waste palm shell into activated carbon
JP2009179485A (en) Activated carbon, method for producing the same, and production apparatus
Sermyagina et al. Effect of hydrothermal carbonization and torrefaction on spent coffee grounds
EA031295B1 (en) Process for converting a biomass into at least one biochar
WO2016035669A1 (en) Method for purifying plant-derived carbon precursor
JP2016531184A (en) Biochar by microwave using processed (BENEFICITED) raw material
JP2018154721A (en) Method for producing solid fuel
KR102243490B1 (en) Manufacturing method of activated coffee carbon product
CN113880090A (en) Biological activated carbon for sewage degradation and preparation method thereof
KR20140070272A (en) Method for producing active charcoal and device for manufacturing thereof
JP7021044B2 (en) Manufacturing method of carbon molded product
Eletskii et al. Modern approaches to the production of carbon materials from vegetable biomass