JP2005277343A - Thermoelectric conversion element and manufacturing method therefor - Google Patents

Thermoelectric conversion element and manufacturing method therefor Download PDF

Info

Publication number
JP2005277343A
JP2005277343A JP2004092301A JP2004092301A JP2005277343A JP 2005277343 A JP2005277343 A JP 2005277343A JP 2004092301 A JP2004092301 A JP 2004092301A JP 2004092301 A JP2004092301 A JP 2004092301A JP 2005277343 A JP2005277343 A JP 2005277343A
Authority
JP
Japan
Prior art keywords
thermoelectric material
type thermoelectric
thermoelectric
conversion element
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004092301A
Other languages
Japanese (ja)
Other versions
JP4133894B2 (en
Inventor
Akio Yamaguchi
晃生 山口
Mitsuyoshi Sakai
三佳 酒井
Keizo Kobayashi
慶三 小林
Akihiro Matsumoto
章宏 松本
Koyo Ozaki
公洋 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Kitagawa Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Kitagawa Industries Co Ltd
Priority to JP2004092301A priority Critical patent/JP4133894B2/en
Publication of JP2005277343A publication Critical patent/JP2005277343A/en
Application granted granted Critical
Publication of JP4133894B2 publication Critical patent/JP4133894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element constituted by using an Fe<SB>2</SB>VAl series thermoelectric material formed into a thin film shape, and having sufficiently high thermoelectric capability, and to provide a manufacturing method for that. <P>SOLUTION: The thermoelectric conversion element 1 has a structure in which a thin film shaped n-type thermoelectric member 11 with a thickness of 5μm and a thin film shaped p-type thermoelectric member 12 with a thickness of 5μm are formed on the surface of a substrate 10. The n-type thermoelectric member 11 is formed of Fe<SB>50</SB>V<SB>25</SB>Al<SB>23.5</SB>Si<SB>1.5</SB>, and the p-type thermoelectric member 12 of Fe<SB>49.3</SB>V<SB>24.7</SB>Al<SB>26</SB>, and both are formed onto the surface of the substrate 10, heated up to 500°C or more and 1,000°C or less, by using sputtering, one of the physical vapor disposition techniques. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱電変換素子およびその製造方法に関する。   The present invention relates to a thermoelectric conversion element and a manufacturing method thereof.

熱電変換素子は、ゼーベック効果による熱電発電やペルチェ効果による熱電冷却(電子冷却)を行うために利用される素子であり、一般に、複数のp型熱電材料と複数のn型熱電材料とを交互に直列に接続した構造になっている。   A thermoelectric conversion element is an element used to perform thermoelectric power generation by the Seebeck effect and thermoelectric cooling (electronic cooling) by the Peltier effect, and in general, alternately a plurality of p-type thermoelectric materials and a plurality of n-type thermoelectric materials. The structure is connected in series.

この種の熱電変換素子を製造する際には、従来、p型熱電材料やn型熱電材料と同一組成の原料組成物を加熱して熔解または焼結したものから、機械的加工(切削加工)によってブロック状の成形体を切り出し、それらを基板上に配列して直列に接続していた。   In manufacturing this type of thermoelectric conversion element, conventionally, a raw material composition having the same composition as that of a p-type thermoelectric material or an n-type thermoelectric material is heated, melted or sintered, and then mechanically processed (cutting). Then, the block-shaped molded bodies were cut out, arranged on the substrate, and connected in series.

しかし、熱電材料には機械的強度の低いものが多いため、微細な精密加工は難しく、小型化薄型化を図ることは困難であった。また、成形体の切り出し加工では、歩留まりが低くなるという問題もあった。   However, since many thermoelectric materials have low mechanical strength, fine precision processing is difficult, and it has been difficult to reduce the size and thickness. Moreover, in the cutting process of the molded body, there is a problem that the yield is lowered.

こうした問題に対し、本件発明者らは、スパッタリング等の物理的蒸着技術によって熱電材料の薄膜を形成することにより、熱電変換部材を製造する技術を既に提案している(下記特許文献1参照。)。   In response to such problems, the present inventors have already proposed a technique for manufacturing a thermoelectric conversion member by forming a thin film of a thermoelectric material by a physical vapor deposition technique such as sputtering (see Patent Document 1 below). .

このような製法によれば、薄膜状の熱電材料を形成することができるので、微細で複雑なパターンを持った熱電材料の薄膜も形成可能となり、極めて小さくて薄い熱電変換素子を得ることができるので、ブロック状の成形体から製造した熱電変換素子では実装が困難だったような狭いスペースにも、熱電変換素子を配置することができた。
特開2003−133660号公報
According to such a manufacturing method, since a thin film-like thermoelectric material can be formed, a thin film of a thermoelectric material having a fine and complicated pattern can be formed, and an extremely small and thin thermoelectric conversion element can be obtained. Therefore, the thermoelectric conversion element could be arranged in a narrow space that was difficult to mount with the thermoelectric conversion element manufactured from the block-shaped molded body.
JP 2003-133660 A

ところで、近年、熱電材料の一つとして、Fe2VAl系熱電材料が注目されているが、このFe2VAl系熱電材料も、強度が低く加工性が悪いため、微細加工が難しい材料である。 By the way, in recent years, an Fe 2 VAl thermoelectric material has attracted attention as one of thermoelectric materials, but this Fe 2 VAl thermoelectric material is also a material that is difficult to finely process because of its low strength and poor workability.

そこで、本件発明者らは、上記特許文献1に記載の技術によってFe2VAl系熱電材料を薄膜状に形成することで、Fe2VAl系熱電材料を利用した熱電変換素子の小型化・薄型化が達成できるのではないかと考えた。 Accordingly, the present inventors have made the Fe 2 VAl thermoelectric material into a thin film by the technique described in Patent Document 1, thereby reducing the size and thickness of the thermoelectric conversion element using the Fe 2 VAl thermoelectric material. I thought that could be achieved.

しかしながら、実際にFe2VAl系熱電材料をスパッタリングして基板上に薄膜を形成し、熱電変換素子を構成して、その熱電変換素子に温度差を与えてみたところ、僅かな電圧しか発生せず、熱電発電素子として実用化できるようなものを得ることはできなかった。 However, when a Fe 2 VAl thermoelectric material was actually sputtered to form a thin film on the substrate, a thermoelectric conversion element was constructed, and a temperature difference was given to the thermoelectric conversion element, only a small voltage was generated. It was not possible to obtain a thermoelectric power generation device that could be put into practical use.

こうした問題に対し、本件発明者らは、さらに検討を重ね、その結果、特定の条件下で薄膜化されたFe2VAl系熱電材料であれば、熱電発電素子としての利用ができる程度まで熱電性能が高くなることを見いだした。 In order to solve such problems, the present inventors have further studied, and as a result, if the Fe 2 VAl-based thermoelectric material thinned under a specific condition, the thermoelectric performance to the extent that it can be used as a thermoelectric power generation element. Found that would be higher.

本発明は、上記知見に基づいて完成されたものであり、その目的は、薄膜状に形成されたFe2VAl系熱電材料を利用して構成された熱電変換素子であって、その熱電性能が十分に高い熱電変換素子と、その製造方法を提供することにある。 The present invention has been completed on the basis of the above knowledge, and its purpose is a thermoelectric conversion element configured using a Fe 2 VAl thermoelectric material formed in a thin film, and its thermoelectric performance is It is to provide a sufficiently high thermoelectric conversion element and a method for manufacturing the same.

以下、本発明において採用した特徴的構成について説明する。
本発明の熱電変換素子は、
p型熱電材料とn型熱電材料とを直列に接続した構造を有する熱電変換素子であって、
前記p型熱電材料および前記n型熱電材料のうち、少なくとも一方がFe2VAl系熱電材料であり、該Fe2VAl系熱電材料が、500℃以上且つ1000℃以下に加熱された基材の表面に物理的蒸着技術により薄膜状に形成されている
ことを特徴とする。
The characteristic configuration employed in the present invention will be described below.
The thermoelectric conversion element of the present invention is
A thermoelectric conversion element having a structure in which a p-type thermoelectric material and an n-type thermoelectric material are connected in series,
At least one of the p-type thermoelectric material and the n-type thermoelectric material is an Fe 2 VAl-based thermoelectric material, and the surface of the substrate heated to 500 ° C. or more and 1000 ° C. or less of the Fe 2 VAl-based thermoelectric material It is characterized by being formed into a thin film by physical vapor deposition technology.

この熱電変換素子において、Fe2VAl系熱電材料は、物理的蒸着技術により薄膜状に形成されたものであり、十分な熱電性能が得られるのであれば、その厚さが限定されるものではないが、厚さ0.1〜100μmの薄膜状に形成されていると、十分に満足な熱電性能が得られるとともに、十分に省スペースな素子を構成できるので望ましい。厚さが0.1μmを下回ると十分に満足な熱電性能を発現させることが難しくなる一方、厚さが100μm以上あっても大幅な熱電性能の改善は期待できないので無駄である。 In this thermoelectric conversion element, the Fe 2 VAl-based thermoelectric material is formed into a thin film by physical vapor deposition technology, and its thickness is not limited as long as sufficient thermoelectric performance can be obtained. However, it is desirable that the film is formed in the form of a thin film having a thickness of 0.1 to 100 μm because sufficiently satisfactory thermoelectric performance can be obtained and a sufficiently space-saving element can be configured. If the thickness is less than 0.1 μm, it will be difficult to achieve sufficiently satisfactory thermoelectric performance. On the other hand, even if the thickness is 100 μm or more, it cannot be expected that significant improvement in thermoelectric performance can be expected.

また、Fe2VAl系熱電材料は、その構成元素の組成比を制御するか少量の第4元素を添加することにより、p型熱電材料とすることもn型熱電材料とすることもできる。より具体的には、例えば、Fe2VAl系熱電材料をp型熱電材料としたい場合は、その組成比を制御して一部のFeサイトやVサイトをAlで置換したり、第4元素として少量のTi、Ni、Mo等を加えることにより、これら第4元素で一部のVサイトを置換するとよい。また、Fe2VAl系熱電材料をn型熱電材料としたい場合は、第4元素として少量のSi、Ni、Ge、希土類(例えばY)等を加えることにより、これら第4元素で一部のAlサイトを置換するとよい。 Further, the Fe 2 VAl-based thermoelectric material can be a p-type thermoelectric material or an n-type thermoelectric material by controlling the composition ratio of its constituent elements or adding a small amount of a fourth element. More specifically, for example, when the Fe 2 VAl thermoelectric material is to be a p-type thermoelectric material, the composition ratio is controlled to replace some Fe sites or V sites with Al, or as the fourth element. By adding a small amount of Ti, Ni, Mo or the like, it is preferable to replace some V sites with these fourth elements. If the Fe 2 VAl-based thermoelectric material is to be an n-type thermoelectric material, a small amount of Si, Ni, Ge, rare earth (eg, Y), etc. is added as the fourth element, so that a part of Al is added to the fourth element. Replace the site.

また、基材は、500℃以上且つ1000℃以下に加熱されても形状が維持でき、変質等も招かないのであれば、その材料については特に限定されないが、例えば、セラミック材料等を利用すると好適である。セラミック材料としては、例えば、ジルコニア系、アルミナ系、シリカ系、炭化ケイ素系、窒化ケイ素系、窒化アルミ系、ムライト系、ステアタイト系、コージライト系、サファイア系、チタニア系、またはフォルステライト系などのセラミック材料を用いることができる。   Further, the material of the base material is not particularly limited as long as the shape can be maintained even when heated to 500 ° C. or more and 1000 ° C. or less, and the alteration is not caused. However, for example, it is preferable to use a ceramic material or the like. It is. Examples of ceramic materials include zirconia, alumina, silica, silicon carbide, silicon nitride, aluminum nitride, mullite, steatite, cordierite, sapphire, titania, and forsterite. The ceramic material can be used.

さらに、本発明において利用可能な物理的蒸着技術としては、スパッタリング、イオンビームスパッタ、イオンプレーティング、真空蒸着、レーザー蒸着、電子線エピタキシャル成長法(MBE)などを挙げることができる。   Furthermore, examples of the physical vapor deposition technique that can be used in the present invention include sputtering, ion beam sputtering, ion plating, vacuum vapor deposition, laser vapor deposition, and electron beam epitaxial growth (MBE).

そして、本発明においては、上記のようなFe2VAl系熱電材料が、500℃以上且つ1000℃以下に加熱された基材の表面に物理的蒸着技術により薄膜状に形成されていることが重要である。すなわち、Fe2VAl系熱電材料が、基材の表面に物理的蒸着技術により薄膜状に形成されたものであっても、その薄膜形成時に基材が500℃未満までしか加熱されていない場合、あるいは、1000℃超過まで加熱されている場合、本発明で採用したFe2VAl系熱電材料の薄膜とは異なる薄膜となり、実用上十分に満足な熱電性能を得ることは困難になる傾向がある。この事実は、本件発明者らが熱電変換素子の試作を繰り返す中で見いだしたものである。 In the present invention, it is important that the Fe 2 VAl thermoelectric material as described above is formed into a thin film by a physical vapor deposition technique on the surface of a substrate heated to 500 ° C. or more and 1000 ° C. or less. It is. That is, even if the Fe 2 VAl-based thermoelectric material is a thin film formed by physical vapor deposition technology on the surface of the base material, when the base material is only heated to less than 500 ° C. when the thin film is formed, Alternatively, when it is heated to over 1000 ° C., it becomes a thin film different from the thin film of the Fe 2 VAl-based thermoelectric material employed in the present invention, and it tends to be difficult to obtain practically satisfactory thermoelectric performance. This fact was discovered by the inventors during repeated trial manufacture of thermoelectric conversion elements.

500℃以上且つ1000℃以下に加熱された基材の表面に物理的蒸着技術により薄膜状に形成されたFe2VAl系熱電材料の熱電性能が高い理由は、種々の要因が重なっている可能性があり、それらの要因すべてを特定することは困難であるが、例えば、500℃以上とすることで、Fe2VAl系熱電材料に含まれる構成元素の規則性、結晶性、あるいは緻密性が上記温度条件下では最適化される、1000℃以下とすることで基材側から受ける悪影響を抑制できる、といった要因があるのではないかと推察される。 The reason why the Fe 2 VAl thermoelectric material formed in a thin film on the surface of the substrate heated to 500 ° C. or more and 1000 ° C. or less by physical vapor deposition technology is high may be due to various factors overlapping. However, it is difficult to specify all of these factors. For example, by setting the temperature to 500 ° C. or higher, the regularity, crystallinity, or denseness of the constituent elements contained in the Fe 2 VAl-based thermoelectric material is as described above. It is presumed that there are factors that are optimized under temperature conditions and that adverse effects from the substrate side can be suppressed by setting the temperature to 1000 ° C. or lower.

そして、その結果、物理的蒸着技術により形成されたFe2VAl系熱電材料の薄膜であっても、500℃以上且つ1000℃以下に加熱された基材の表面に形成された薄膜と、500℃未満までしか加熱されていない基材の表面に形成された薄膜や1000℃超過まで加熱された基材の表面に形成された薄膜とでは、薄膜内における構成元素の規則性、結晶性、緻密性などの微視的構造が異なった薄膜となり、熱電性能に差が現れるのではないかと推察される。 As a result, even a thin film of Fe 2 VAl thermoelectric material formed by physical vapor deposition technology, a thin film formed on the surface of the substrate heated to 500 ° C. or more and 1000 ° C. or less, and 500 ° C. In the thin film formed on the surface of the base material that has been heated to less than or less than 1000 ° C., the regularity, crystallinity, and compactness of the constituent elements in the thin film It is speculated that there will be a difference in thermoelectric performance due to thin films with different microscopic structures.

さらに、上記以外の要因も存在するかもしれないが、いずれにしても、500℃以上且つ1000℃以下に加熱された基材の表面に物理的蒸着技術により薄膜状に形成されたFe2VAl系熱電材料であれば、実用上十分に満足な熱電性能を得ることができる。 In addition, although there may be factors other than the above, in any case, the Fe 2 VAl system formed into a thin film by a physical vapor deposition technique on the surface of the substrate heated to 500 ° C. or more and 1000 ° C. or less. If it is a thermoelectric material, practically sufficiently satisfactory thermoelectric performance can be obtained.

したがって、本発明によれば、p型熱電材料およびn型熱電材料のうち、少なくとも一方がFe2VAl系熱電材料で、このFe2VAl系熱電材料が基材の表面に物理的蒸着技術により薄膜状に形成されている構造になっている熱電変換素子の熱電性能を十分に高くすることができ、Fe2VAl系熱電材料を利用した小型・薄型構造の熱電変換素子の実用化を図ることができる。また、従来品と同等の大きさを持つ熱電変換素子を構成すればよい場合であれば、より多くのFe2VAl系熱電材料薄膜を集積できることになるので、その分、高出力化を図ることもできる。 Therefore, according to the present invention, at least one of the p-type thermoelectric material and the n-type thermoelectric material is an Fe 2 VAl-based thermoelectric material, and this Fe 2 VAl-based thermoelectric material is thinned on the surface of the substrate by physical vapor deposition technology. The thermoelectric performance of a thermoelectric conversion element having a structure formed in a shape can be sufficiently increased, and a thermoelectric conversion element having a small and thin structure using an Fe 2 VAl-based thermoelectric material can be put into practical use. it can. In addition, if a thermoelectric conversion element having the same size as that of a conventional product can be configured, more Fe 2 VAl-based thermoelectric material thin films can be integrated, so that higher output can be achieved. You can also.

ちなみに、代表的な熱電材料の一つであるBi−Te系熱電材料を、上記特許文献1に記載の技術で薄膜化した場合、30μm程度の薄膜を用いると良好な熱電性能を得ることができるが、500℃以上且つ1000℃以下に加熱された基材の表面に物理的蒸着技術により薄膜状に形成されたFe2VAl系熱電材料の場合、Bi−Te系熱電材料の1/2以下(例えば5μm程度)の膜厚でも良好な熱電性能を得ることができるので、Bi−Te系熱電材料を薄膜化したもの以上に、小型・薄型構造の熱電変換素子を構成することができる。 Incidentally, when a Bi-Te-based thermoelectric material, which is one of the representative thermoelectric materials, is thinned by the technique described in Patent Document 1, a good thermoelectric performance can be obtained by using a thin film of about 30 μm. However, in the case of an Fe 2 VAl thermoelectric material formed into a thin film by a physical vapor deposition technique on the surface of a substrate heated to 500 ° C. or more and 1000 ° C. or less, it is ½ or less of Bi—Te thermoelectric material ( A good thermoelectric performance can be obtained even with a film thickness of, for example, about 5 μm. Therefore, a thermoelectric conversion element having a smaller and thinner structure can be formed than a thin Bi-Te thermoelectric material.

なお、本発明の熱電変換素子は、さらに次のように構成されていてもよい。
まず、本発明の熱電変換素子は、p型熱電材料およびn型熱電材料の双方がFe2VAl系熱電材料であってもよいし、p型熱電材料およびn型熱電材料のうち、一方がFe2VAl系熱電材料、他方がFe2VAl系熱電材料とは構成元素の異なる異種熱電材料であってもよい。
In addition, the thermoelectric conversion element of this invention may be further comprised as follows.
First, in the thermoelectric conversion element of the present invention, both the p-type thermoelectric material and the n-type thermoelectric material may be Fe 2 VAl-based thermoelectric materials, or one of the p-type thermoelectric material and the n-type thermoelectric material is Fe. 2 VAl-based thermoelectric material, and the other may be a heterogeneous thermoelectric material having different constituent elements from the Fe 2 VAl-based thermoelectric material.

p型熱電材料およびn型熱電材料の双方がFe2VAl系熱電材料である場合は、代表的な熱電材料の一つであるBi−Te系熱電材料とは異なり、有害な成分を含まないものとすることができるので、熱電変換素子を利用可能な用途が拡大し、また、廃棄処分時に環境を汚染する問題等もなくなる。 When both the p-type thermoelectric material and the n-type thermoelectric material are Fe 2 VAl-based thermoelectric materials, they do not contain harmful components, unlike Bi-Te-based thermoelectric materials that are one of the typical thermoelectric materials. Therefore, the use of the thermoelectric conversion element is expanded, and the problem of polluting the environment at the time of disposal is eliminated.

また、一方がFe2VAl系熱電材料、他方が異種熱電材料となる場合は、Fe2VAl系熱電材料よりも熱電性能の高い異種熱電材料を利用することで、熱電変換素子の性能を改善したり、Fe2VAl系熱電材料よりも加工性の高い異種熱電材料を利用することで、熱電変換素子の生産性を改善したりすることが可能となる。このような構成とする場合、この異種熱電材料についても、基材の表面に物理的蒸着技術により薄膜状に形成されていると、熱電変換素子の小型化・薄型化を図る上では望ましい。 In addition, when one is Fe 2 VAl thermoelectric material and the other is heterogeneous thermoelectric material, the performance of the thermoelectric conversion element can be improved by using different thermoelectric material with higher thermoelectric performance than Fe 2 VAl thermoelectric material. In addition, it is possible to improve the productivity of the thermoelectric conversion element by using a dissimilar thermoelectric material having higher workability than the Fe 2 VAl-based thermoelectric material. In the case of such a configuration, it is desirable that the dissimilar thermoelectric material is also formed into a thin film on the surface of the substrate by a physical vapor deposition technique in order to reduce the size and thickness of the thermoelectric conversion element.

異種熱電材料としては、Bi−Te系熱電材料、Mg−Si系熱電材料、Mn−Si系熱電材料、Fe−Si系熱電材料、Si−Ge系熱電材料、Pb−Te系熱電材料、カルコゲナイト系熱電材料、スクッテルダイト系熱電材料、フィルドスクッテルダイト系熱電材料、または炭化ホウ素系熱電材料のいずれかを用いることができる。   Bi-Te based thermoelectric materials, Mg—Si based thermoelectric materials, Mn—Si based thermoelectric materials, Fe—Si based thermoelectric materials, Si—Ge based thermoelectric materials, Pb—Te based thermoelectric materials, chalcogenite based materials Any of a thermoelectric material, a skutterudite thermoelectric material, a filled skutterudite thermoelectric material, or a boron carbide thermoelectric material can be used.

また、本発明の熱電変換素子は、p型熱電材料およびn型熱電材料のうち、一方がFe2VAl系熱電材料、他方が異種熱電材料となる場合、Fe2VAl系熱電材料および異種熱電材料のうち、熔融温度の高い方が基材の表面に先に物理的蒸着技術により薄膜状に形成され、熔融温度の低い方が基材の表面に後から物理的蒸着技術により薄膜状に形成された構造になっているとよい。このようにすると、熔融温度の低い方を基材の表面に物理的蒸着技術により薄膜状に形成する際に、熔融温度の高い方を熔融させない温度条件下で物理的蒸着技術による薄膜形成を行うことにより、先に物理的蒸着技術により薄膜状に形成されている熔融温度の高い薄膜に悪影響を与えることなく、熔融温度の低い薄膜を形成することができる。 Also, the thermoelectric conversion element of the present invention, among the p-type thermoelectric material and the n-type thermoelectric material, one Fe 2 VAl-based thermoelectric material, if the other is different thermoelectric materials, Fe 2 VAl-based thermoelectric material and dissimilar thermoelectric materials Of these, the one with the higher melting temperature is first formed into a thin film by the physical vapor deposition technique on the surface of the substrate, and the one with the lower melting temperature is later formed into a thin film on the surface of the base material by the physical vapor deposition technique. The structure should be good. In this way, when the lower melting temperature is formed on the surface of the base material by a physical vapor deposition technique, the thin film is formed by the physical vapor deposition technique under a temperature condition that does not melt the higher melting temperature. Thus, a thin film having a low melting temperature can be formed without adversely affecting the thin film having a high melting temperature which has been previously formed into a thin film by a physical vapor deposition technique.

なお、本発明においては、Fe2VAl系熱電材料の薄膜を形成する際に、500℃以上且つ1000℃以下に加熱された基材の表面に物理的蒸着技術による薄膜形成を行うことが必須なので、熔融温度が1000℃を上回る異種熱電材料であれば、Fe2VAl系熱電材料よりも先に成膜すればよく、熔融温度が500℃を下回る異種熱電材料であれば、Fe2VAl系熱電材料よりも後から成膜すればよい。熔融温度が500℃〜1000℃の異種熱電材料であれば、どちらを先に成膜しても構わないが、より良好な順序については適宜試作等を行って決定すればよい。 In the present invention, when forming a thin film of Fe 2 VAl thermoelectric material, it is essential to form a thin film by physical vapor deposition on the surface of a substrate heated to 500 ° C. or more and 1000 ° C. or less. In the case of a dissimilar thermoelectric material having a melting temperature exceeding 1000 ° C., the film may be formed before the Fe 2 VAl thermoelectric material, and in the case of a dissimilar thermoelectric material having a melting temperature lower than 500 ° C., the Fe 2 VAl thermoelectric material may be used. The film may be formed later than the material. Any one of the different thermoelectric materials having a melting temperature of 500 ° C. to 1000 ° C. may be formed first, but a better order may be determined by appropriately performing trial manufacture or the like.

また、本発明の熱電変換素子は、p型熱電材料とn型熱電材料が、導電材料を介して直列に接続された構造になっていてもよく、この場合、導電材料が、基材の表面に物理的蒸着技術により薄膜状に形成されているとよい。   The thermoelectric conversion element of the present invention may have a structure in which a p-type thermoelectric material and an n-type thermoelectric material are connected in series via a conductive material. In this case, the conductive material is a surface of a base material. In addition, it may be formed into a thin film by a physical vapor deposition technique.

導電材料としては、例えば、金、銀、銅、アルミニウム等の金属を用いることができる。導電材料の条件としては、電気抵抗率が低い材質のものであればどのようなものでもよい。このような導電材料を用いれば、p型熱電材料とn型熱電材料との接合性が低い場合でも、p型熱電材料およびn型熱電材料それぞれとの接合性が高い導電材料を介在させることで、p型熱電材料とn型熱電材料とをより確実に電気的に接続することができる。   As the conductive material, for example, a metal such as gold, silver, copper, or aluminum can be used. As a condition of the conductive material, any material may be used as long as the material has a low electrical resistivity. By using such a conductive material, even when the bonding property between the p-type thermoelectric material and the n-type thermoelectric material is low, the conductive material having a high bonding property with the p-type thermoelectric material and the n-type thermoelectric material is interposed. The p-type thermoelectric material and the n-type thermoelectric material can be more reliably electrically connected.

なお、熱電材料および導電材料を設ける順序については特に限定されず、p型熱電材料→導電材料→n型熱電材料、またはn型熱電材料→導電材料→p型熱電材料の順序で形成することにより、重ねて物理的蒸着技術により成膜されるp型熱電材料とn型熱電材料との間に導電材料を挟み込んでもよいし、p型熱電材料とn型熱電材料とを重ねず、p型熱電材料とn型熱電材料との間に架け渡すように導電材料を物理的蒸着技術により成膜してもよい。p型熱電材料とn型熱電材料との間に架け渡すように導電材料を物理的蒸着技術により成膜する場合は、p型熱電材料、n型熱電材料、導電材料をどの順序で物理的蒸着技術により成膜しても、導電材料をp型熱電材料とn型熱電材料との間に架け渡すように設けることができる。   The order in which the thermoelectric material and the conductive material are provided is not particularly limited. By forming in the order of p-type thermoelectric material → conductive material → n-type thermoelectric material or n-type thermoelectric material → conductive material → p-type thermoelectric material. In addition, a conductive material may be sandwiched between a p-type thermoelectric material and an n-type thermoelectric material that are stacked by physical vapor deposition technology, or the p-type thermoelectric material is not overlapped with the p-type thermoelectric material and the n-type thermoelectric material. The conductive material may be deposited by physical vapor deposition technology so as to span between the material and the n-type thermoelectric material. When a conductive material is deposited by physical vapor deposition technology so as to span between the p-type thermoelectric material and the n-type thermoelectric material, the physical vapor deposition of the p-type thermoelectric material, the n-type thermoelectric material, and the conductive material in any order. Even if the film is formed by a technique, the conductive material can be provided so as to be bridged between the p-type thermoelectric material and the n-type thermoelectric material.

以上説明した通り、本発明によれば、薄膜状に形成されたFe2VAl系熱電材料を利用して構成され、その熱電性能が十分に高い熱電変換素子を提供することができる。また、そのような熱電変換素子の製造方法を提供することができる。 As described above, according to the present invention, it is possible to provide a thermoelectric conversion element that is configured using an Fe 2 VAl-based thermoelectric material formed in a thin film and has sufficiently high thermoelectric performance. Moreover, the manufacturing method of such a thermoelectric conversion element can be provided.

次に、本発明の実施形態について一例を挙げて説明する。
[実施例1]
まず、実施例1について説明する。
Next, an embodiment of the present invention will be described with an example.
[Example 1]
First, Example 1 will be described.

図1(a)に示すように、実施例1の熱電変換素子1は、基板10の表面上にn型熱電材料部11とp型熱電材料部12とを形成した構造になっている。
基板10は、セラミックス(ジルコニア)製の単層基板で、長さ30mm×幅5mm×厚さ200μmのものである。
As shown in FIG. 1A, the thermoelectric conversion element 1 of Example 1 has a structure in which an n-type thermoelectric material portion 11 and a p-type thermoelectric material portion 12 are formed on the surface of a substrate 10.
The substrate 10 is a ceramic (zirconia) single-layer substrate having a length of 30 mm × width of 5 mm × thickness of 200 μm.

n型熱電材料部11は、n型熱電材料によって形成された厚さ約5μmの薄膜層であり、本実施形態においては、n型熱電材料として、Fe−V−Alに少量のSiを添加してn型熱電材料としたもの(組成比Fe5025Al23.5Si1.5)が使用されている。 The n-type thermoelectric material portion 11 is a thin film layer having a thickness of about 5 μm formed of an n-type thermoelectric material. In this embodiment, a small amount of Si is added to Fe—V—Al as an n-type thermoelectric material. N-type thermoelectric materials (composition ratio Fe 50 V 25 Al 23.5 Si 1.5 ) are used.

p型熱電材料部12は、p型熱電材料によって形成された厚さ約5μmの薄膜層であり、本実施形態においては、p型熱電材料として、Fe−V−AlのAl配合比を増大させてp型熱電材料としたもの(組成比Fe49.324.7Al26)が使用されている。 The p-type thermoelectric material portion 12 is a thin film layer having a thickness of about 5 μm formed of the p-type thermoelectric material. In this embodiment, as the p-type thermoelectric material, the Al compounding ratio of Fe—V—Al is increased. A p-type thermoelectric material (composition ratio Fe 49.3 V 24.7 Al 26 ) is used.

これらn型熱電材料部11およびp型熱電材料部12は、いずれも物理的蒸着技術の一つであるスパッタリングによって形成されており、具体的には、次のような手順で製造されたものである。   The n-type thermoelectric material part 11 and the p-type thermoelectric material part 12 are both formed by sputtering, which is one of physical vapor deposition techniques, and specifically manufactured by the following procedure. is there.

まず、n型熱電材料部11のパターンと同形状の開口部が開けられた第1のマスキング治具を、基板10上に載置して1回めのマスキングを行い、それを周知のスパッタ装置に入れて、1回めのスパッタリングを実施する。   First, a first masking jig having an opening having the same shape as the pattern of the n-type thermoelectric material portion 11 is placed on the substrate 10 to perform the first masking, and this is performed using a known sputtering apparatus. And the first sputtering is performed.

より詳しくは、本実施形態においては、RFスパッタ装置を使用し、ターゲットには上述したFe5025Al23.5Si1.5を用いる。そして、チャンバー内を真空で3.0×10-3Pa以下まで減圧した後、基板温度を600℃まで上昇させるため、基板10の下にあるランプヒーターを入れる。ヒーターを入れた後、真空度が3.0×10-3Pa以下まで減圧されるのを待ち、減圧後、スパッタガスとしてArガスを導入する。そして、出力:300W、Arガス圧:1.0×10-1Paのスパッタ条件で、1回目のスパッタリングを実施する。1回目のスパッタリングを終えたら、第1のマスキング治具を基板10から取り除く。このような加工を行うことにより、基板10の表面上には、図1(b)に示すように、n型熱電材料部11が形成されることになる。 More specifically, in this embodiment, an RF sputtering apparatus is used, and the above-described Fe 50 V 25 Al 23.5 Si 1.5 is used as a target. Then, after the pressure in the chamber is reduced to 3.0 × 10 −3 Pa or less by vacuum, a lamp heater under the substrate 10 is inserted in order to raise the substrate temperature to 600 ° C. After the heater is turned on, it is waited for the degree of vacuum to be reduced to 3.0 × 10 −3 Pa or less, and after reducing the pressure, Ar gas is introduced as a sputtering gas. Then, the first sputtering is performed under the sputtering conditions of output: 300 W and Ar gas pressure: 1.0 × 10 −1 Pa. When the first sputtering is finished, the first masking jig is removed from the substrate 10. By performing such processing, an n-type thermoelectric material portion 11 is formed on the surface of the substrate 10 as shown in FIG.

次に、p型熱電材料部12のパターンと同形状の開口部が開けられた第2のマスキング治具を、基板10上(上記n型熱電材料部11が形成された面上)に載置して2回めのマスキングを行い、それを再びスパッタ装置に入れて、2回めのスパッタリングを実施する。   Next, a second masking jig having an opening having the same shape as the pattern of the p-type thermoelectric material portion 12 is placed on the substrate 10 (on the surface on which the n-type thermoelectric material portion 11 is formed). Then, the second masking is performed, and it is again put in the sputtering apparatus, and the second sputtering is performed.

より詳しくは、本実施形態においては、RFスパッタ装置を使用し、ターゲットには上述したFe49.324.7Al26を用いる。そして、チャンバー内を真空で3.0×10-3Pa以下まで減圧した後、基板温度を600℃まで上昇させるため、基板10の下にあるランプヒーターを入れる。ヒーターを入れた後、真空度が3.0×10-3Pa以下まで減圧されるのを待ち、減圧後、スパッタガスとしてArガスを導入する。そして、出力:300W、Arガス圧:1.0×10-1Paのスパッタ条件で、2回目のスパッタリングを実施する。2回目のスパッタリングを終えたら、第2のマスキング治具を基板10から取り除く。このような加工を行うことにより、基板10の表面上には、図1(a)に示したように、先に形成されていたn型熱電材料部11に加えて、p型熱電材料部12が形成されることになる。 More specifically, in this embodiment, an RF sputtering apparatus is used, and the above-described Fe 49.3 V 24.7 Al 26 is used as a target. Then, after the pressure in the chamber is reduced to 3.0 × 10 −3 Pa or less by vacuum, a lamp heater under the substrate 10 is inserted in order to raise the substrate temperature to 600 ° C. After the heater is turned on, it is waited for the degree of vacuum to be reduced to 3.0 × 10 −3 Pa or less, and after reducing the pressure, Ar gas is introduced as a sputtering gas. Then, the second sputtering is performed under the sputtering conditions of output: 300 W, Ar gas pressure: 1.0 × 10 −1 Pa. When the second sputtering is finished, the second masking jig is removed from the substrate 10. By performing such processing, the p-type thermoelectric material portion 12 is formed on the surface of the substrate 10 in addition to the n-type thermoelectric material portion 11 previously formed as shown in FIG. Will be formed.

第2のマスキング治具の開口部は、上記n型熱電材料部11の端部が露出するような形状に開けられており、当該n型熱電材料部11の露出部分には、2回目のスパッタリングを実施した際、図1(c)に示すように、p型熱電材料部12が重ねて形成される。この重なり部分において、n型熱電材料部11およびp型熱電材料部12は電気的に接続され、8本の略帯状のn型熱電材料部11と8本の略帯状のp型熱電材料部12が、交互に直列に接続された構造になる。   The opening of the second masking jig is opened in such a shape that the end of the n-type thermoelectric material portion 11 is exposed, and the exposed portion of the n-type thermoelectric material portion 11 has a second sputtering. As shown in FIG. 1C, the p-type thermoelectric material portion 12 is formed so as to overlap. In this overlapping portion, the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 are electrically connected, and the eight substantially strip-shaped n-type thermoelectric material portions 11 and the eight approximately strip-shaped p-type thermoelectric material portions 12. However, it becomes the structure connected in series alternately.

なお、n型熱電材料部11とp型熱電材料部12との接続部は、上記の通り、n型熱電材料部11とp型熱電材料部12とが重なって形成されるようにスパッタリングを行うことで、電気的に接続された構造を形成してもよいが、別の導電性物質を介在させてあってもよい。   As described above, the connection between the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 is sputtered so that the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 are overlapped. Thus, an electrically connected structure may be formed, but another conductive material may be interposed.

具体例を挙げれば、例えば、図2(a)に示すように、n型熱電材料部11とp型熱電材料部12を、スパッタリングにより、両者が重ならないように基板10の表面上に形成した後、さらに導電性の高い金属(例えば、金、銀、銅、アルミニウム等)をスパッタリングすることにより、n型熱電材料部11とp型熱電材料部12の双方に接触する導電部13を形成する。このような構造にすれば、導電部13を介してn型熱電材料部11とp型熱電材料部12を電気的に接続することができる。この場合、導電部13をスパッタリングによって形成する工程は増えるが、n型熱電材料部11とp型熱電材料部12とを直接接合したときの密着性が低い場合であっても、n型熱電材料部11およびp型熱電材料部12の双方との密着性が高い導電性物質で導電部13を形成することで、各接合部間の密着性を高くすることができる。   As a specific example, for example, as shown in FIG. 2A, an n-type thermoelectric material portion 11 and a p-type thermoelectric material portion 12 are formed on the surface of the substrate 10 by sputtering so that they do not overlap. Thereafter, a conductive portion 13 that contacts both the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 is formed by sputtering a metal having higher conductivity (for example, gold, silver, copper, aluminum, etc.). . With such a structure, the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 can be electrically connected via the conductive portion 13. In this case, the number of steps for forming the conductive portion 13 by sputtering increases, but the n-type thermoelectric material is used even when the adhesion when the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 are directly bonded is low. By forming the conductive part 13 with a conductive substance having high adhesion to both the part 11 and the p-type thermoelectric material part 12, the adhesion between the joints can be increased.

n型熱電材料部11、p型熱電材料部12、および導電部13を設ける場合の順序については特に限定されず、上述のごとく最後に導電部13を形成する他にも、例えば、図2(b)に示すように、一方の熱電材料部(例えばp型熱電材料部12)を形成した後に、導電部13を形成し、その後で他方の熱電材料部(例えばn型熱電材料部11)を形成してもよい。あるいは、図2(c)に示すように、最初に導電部13を形成しておいて、その後にn型熱電材料部11およびp型熱電材料部12を形成してもよい。   The order in the case of providing the n-type thermoelectric material part 11, the p-type thermoelectric material part 12, and the conductive part 13 is not particularly limited. In addition to forming the conductive part 13 last as described above, for example, FIG. As shown in b), after one thermoelectric material part (for example, p-type thermoelectric material part 12) is formed, conductive part 13 is formed, and then the other thermoelectric material part (for example, n-type thermoelectric material part 11) is formed. It may be formed. Alternatively, as shown in FIG. 2C, the conductive portion 13 may be formed first, and then the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 may be formed.

ただし、n型熱電材料部11、p型熱電材料部12、および導電部13それぞれの形成材料の熔融温度に差異がある場合は、熔融温度の高いものから順にスパッタリングを行い、各スパッタリング工程において熔融温度程度まで基板10を加熱しておくとよい。こうすれば、各スパッタリング工程において結晶化度の高い薄膜を得ることができ、しかも、後のスパッタリング工程における加熱で、前のスパッタリング工程による薄膜を熔融させてしまうのを防止することができる。   However, if there is a difference in the melting temperatures of the forming materials of the n-type thermoelectric material part 11, the p-type thermoelectric material part 12, and the conductive part 13, sputtering is performed in descending order of the melting temperature, and melting is performed in each sputtering step. The substrate 10 is preferably heated to about the temperature. If it carries out like this, a thin film with high crystallinity can be obtained in each sputtering process, and it can prevent melting the thin film by a previous sputtering process by the heating in a later sputtering process.

さらに、図1(c)に示した如く、n型熱電材料部11とp型熱電材料部12とが重なって形成されるようにスパッタリングを行う場合であっても、図2(d)に示すように、n型熱電材料部11とp型熱電材料部12との間に導電部13を介在させることは可能である。この場合も、n型熱電材料部11とp型熱電材料部12とを直接接合したときの密着性が低い場合であっても、n型熱電材料部11およびp型熱電材料部12の双方との密着性が高い導電性物質で導電部13を形成することで、各接合部間の密着性を高くすることができる。   Further, as shown in FIG. 1C, even when sputtering is performed so that the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 are formed to overlap each other, as shown in FIG. Thus, it is possible to interpose the conductive part 13 between the n-type thermoelectric material part 11 and the p-type thermoelectric material part 12. Also in this case, even when the adhesion when the n-type thermoelectric material part 11 and the p-type thermoelectric material part 12 are directly bonded is low, both the n-type thermoelectric material part 11 and the p-type thermoelectric material part 12 By forming the conductive portion 13 with a conductive material having high adhesiveness, it is possible to increase the adhesiveness between the joint portions.

以上のような工程によって、所期の熱電変換素子1を得ることができる。なお、交互に直列に接続されたn型熱電材料部11およびp型熱電材料部12の両端には、他の部分よりも少し面積の広い円形のはんだ付け用ランドが形成され、このランドを利用してリード線をはんだ付けすることができるようになっている。熱電変換素子1の利用目的によっては、このはんだ付け用ランドにリード線をはんだ付けした状態にまで加工したものを、製品として出荷するようにしてもよい。   The desired thermoelectric conversion element 1 can be obtained by the above processes. A circular soldering land having a slightly larger area than other portions is formed at both ends of the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 that are alternately connected in series. Thus, the lead wire can be soldered. Depending on the purpose of use of the thermoelectric conversion element 1, a product obtained by soldering a lead wire to the soldering land may be shipped as a product.

[実施例2]
次に、実施例2について説明する。なお、実施例2の熱電変換素子は、p型熱電材料部を形成するために使用するp型熱電材料と、その加工条件が、上記実施例1と異なるのみで、熱電変換素子の具体的な形状等は、上記実施例1の熱電変換素子と同じなので、図面については実施例1の説明で用いたものをそのまま流用する。
[Example 2]
Next, Example 2 will be described. In addition, the thermoelectric conversion element of Example 2 is a p-type thermoelectric material used for forming the p-type thermoelectric material part, and the processing conditions thereof are different from those of Example 1 above. Since the shape and the like are the same as those of the thermoelectric conversion element of the first embodiment, those used in the description of the first embodiment are used as they are for the drawings.

実施例2の熱電変換素子も、図1(a)に示すように、基板10の表面上にn型熱電材料部11とp型熱電材料部12とを形成した構造になっている。
これらのうち、基板10およびn型熱電材料部11は、実施例1と全く同様に構成されている。
The thermoelectric conversion element of Example 2 also has a structure in which an n-type thermoelectric material portion 11 and a p-type thermoelectric material portion 12 are formed on the surface of a substrate 10 as shown in FIG.
Among these, the substrate 10 and the n-type thermoelectric material portion 11 are configured in exactly the same manner as in the first embodiment.

p型熱電材料部12は、p型熱電材料によって形成された厚さ約30μmの薄膜層であり、本実施形態においては、p型熱電材料として、Bi−TeにSbを添加してp型熱電材料としたもの(組成比(Bi2Te30.25(Sb2Te30.75)が使用されている。 The p-type thermoelectric material portion 12 is a thin film layer having a thickness of about 30 μm formed of a p-type thermoelectric material. In this embodiment, as the p-type thermoelectric material, Sb is added to Bi-Te to form a p-type thermoelectric material. A material (composition ratio (Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 ) 0.75 )) is used.

これらn型熱電材料部11およびp型熱電材料部12は、いずれも物理的蒸着技術の一つであるスパッタリングによって形成されており、具体的には、次のような手順で製造されたものである。   The n-type thermoelectric material part 11 and the p-type thermoelectric material part 12 are both formed by sputtering, which is one of physical vapor deposition techniques, and specifically manufactured by the following procedure. is there.

まず、n型熱電材料部11のパターンと同形状の開口部が開けられた第1のマスキング治具を、基板10上に載置して1回めのマスキングを行い、それを周知のスパッタ装置に入れて、1回めのスパッタリングを実施する。この工程は、上記実施例1と全く同様なので、ここでの詳細な説明は省略する。   First, a first masking jig having an opening having the same shape as the pattern of the n-type thermoelectric material portion 11 is placed on the substrate 10 to perform the first masking, and this is performed using a known sputtering apparatus. And the first sputtering is performed. Since this process is exactly the same as in the first embodiment, detailed description thereof is omitted here.

次に、p型熱電材料部12のパターンと同形状の開口部が開けられた第2のマスキング治具を、基板10上(上記n型熱電材料部11が形成された面上)に載置して2回めのマスキングを行い、それを再びスパッタ装置に入れて、2回めのスパッタリングを実施する。   Next, a second masking jig having an opening having the same shape as the pattern of the p-type thermoelectric material portion 12 is placed on the substrate 10 (on the surface on which the n-type thermoelectric material portion 11 is formed). Then, the second masking is performed, and it is again put in the sputtering apparatus, and the second sputtering is performed.

より詳しくは、本実施形態においては、RFスパッタ装置を使用し、ターゲットには上述した(Bi2Te30.25(Sb2Te30.75を用いる。そして、チャンバー内を真空で3.0×10-3Pa以下まで減圧した後、基板温度を340℃まで上昇させるため、基板10の下にあるランプヒーターを入れる。ヒーターを入れた後、真空度が3.0×10-3Pa以下まで減圧されるのを待ち、減圧後、スパッタガスとしてArガスを導入する。そして、出力:40W、Arガス圧:1.0×10-1Pa、スパッタ時間90分のスパッタ条件で、2回目のスパッタリングを実施する。2回目のスパッタリングを終えたら、第2のマスキング治具を基板10から取り除く。このような加工を行うことにより、基板10の表面上には、図1(a)に示したように、先に形成されていたn型熱電材料部11に加えて、p型熱電材料部12が形成されることになる。 More specifically, in this embodiment, an RF sputtering apparatus is used, and (Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 ) 0.75 described above is used as a target. Then, after reducing the pressure in the chamber to 3.0 × 10 −3 Pa or less by vacuum, a lamp heater under the substrate 10 is put in order to raise the substrate temperature to 340 ° C. After the heater is turned on, it is waited for the degree of vacuum to be reduced to 3.0 × 10 −3 Pa or less, and after reducing the pressure, Ar gas is introduced as a sputtering gas. Then, the second sputtering is performed under the sputtering conditions of output: 40 W, Ar gas pressure: 1.0 × 10 −1 Pa, and sputtering time of 90 minutes. When the second sputtering is finished, the second masking jig is removed from the substrate 10. By performing such processing, the p-type thermoelectric material portion 12 is formed on the surface of the substrate 10 in addition to the n-type thermoelectric material portion 11 previously formed as shown in FIG. Will be formed.

n型熱電材料部11を形成する際には、基板温度を600℃まで上昇させるが、p型熱電材料部12を形成する際には、基板温度を340℃までしか上昇させない。そのため、p型熱電材料部12を形成する工程で、n型熱電材料部11の薄膜を熔融させてしまうことはなく、n型熱電材料部11の形態や物性に悪影響を及ぼすことがない。   When the n-type thermoelectric material portion 11 is formed, the substrate temperature is raised to 600 ° C., but when the p-type thermoelectric material portion 12 is formed, the substrate temperature is raised only to 340 ° C. Therefore, in the step of forming the p-type thermoelectric material portion 12, the thin film of the n-type thermoelectric material portion 11 is not melted, and the form and physical properties of the n-type thermoelectric material portion 11 are not adversely affected.

なお、第1,第2のマスキング治具の開口部の形状により、n型熱電材料部11とp型熱電材料部12との一部が重なるように形成され、その結果、8本の略帯状のn型熱電材料部11と8本の略帯状のp型熱電材料部12が、交互に直列に接続された構造になる点、交互に直列に接続されたn型熱電材料部11およびp型熱電材料部12の両端に、はんだ付け用ランドが形成される点も、上記実施例1と同様である。   Note that the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 are formed so as to overlap each other depending on the shape of the opening of the first and second masking jigs. The n-type thermoelectric material portions 11 and the eight substantially strip-shaped p-type thermoelectric material portions 12 are alternately connected in series, and the n-type thermoelectric material portions 11 and p-type alternately connected in series. The point that solder lands are formed at both ends of the thermoelectric material portion 12 is the same as in the first embodiment.

[比較例]
上記実施例1においては、1,2回めのスパッタリングを実施する際に、基板温度を600℃まで上昇させるため、基板10の下にあるランプヒーターを入れていたが、このヒーターを入れずに室温でスパッタリングを実施し、これ以外の点は、上記実施例1と全く同様の条件で、図1(a)に示したような、基板10の表面上にn型熱電材料部11とp型熱電材料部12とを形成した構造になっている熱電変換素子を作製した。
[Comparative example]
In Example 1 above, the lamp heater under the substrate 10 was put in order to raise the substrate temperature to 600 ° C. when performing the first and second sputtering, but this heater was not put in. Sputtering was performed at room temperature, and the n-type thermoelectric material part 11 and the p-type were formed on the surface of the substrate 10 as shown in FIG. A thermoelectric conversion element having a structure in which the thermoelectric material portion 12 was formed was produced.

[性能試験]
上記実施例1、実施例2、および比較例の各熱電変換素子の熱電性能を試験するため、図3に示すように、上記各熱電変換素子に電圧計を接続した。各熱電変換素子のn型熱電材料部11およびp型熱電材料部12のパターンは、両者の接合部分が交互に図3中に示した高温部と低温部とに含まれるようなパターンになっており、高温部を加熱するとともに、低温部を冷却すると、高温部と低温部との温度差ΔTに応じて電圧が発生するので、この電圧を上記電圧計で測定する。本試験においては、高温部側には100℃に加熱したステンレス製のブロックを当て、低温部側にはアルミニウム製の板を当てることにより、30℃以上の温度差ΔTを与えた状態で電圧の測定を行った。なお、温度の測定には、サーモビジョンを使用した。結果を下記表1に示す。
[performance test]
In order to test the thermoelectric performance of each of the thermoelectric conversion elements of Example 1, Example 2, and Comparative Example, a voltmeter was connected to each of the thermoelectric conversion elements as shown in FIG. The pattern of the n-type thermoelectric material portion 11 and the p-type thermoelectric material portion 12 of each thermoelectric conversion element is a pattern in which the joint portions thereof are alternately included in the high temperature portion and the low temperature portion shown in FIG. When the high temperature part is heated and the low temperature part is cooled, a voltage is generated according to the temperature difference ΔT between the high temperature part and the low temperature part, and this voltage is measured by the voltmeter. In this test, a stainless steel block heated to 100 ° C. was applied to the high temperature portion side, and an aluminum plate was applied to the low temperature portion side, so that a voltage difference of 30 ° C. or higher was given. Measurements were made. Thermovision was used for temperature measurement. The results are shown in Table 1 below.

Figure 2005277343
Figure 2005277343

上記実施例1と比較例との比較から、基板温度を600℃まで上昇させた場合と基板温度を上昇させない場合とでは、同程度の温度差を与えた場合に得られる電圧が格段に上昇することがわかる。なお、この基板温度が500℃を下回る場合は、上記電圧が低下する傾向にあるため、スパッタリング時の基板温度は500℃以上とすることが望ましいと考えられる。また、スパッタリング時の基板温度が1000℃を超過した場合にも、上記電圧が低下する傾向が見受けられた。   From the comparison between Example 1 and the comparative example, the voltage obtained when the substrate temperature is raised to 600 ° C. and when the substrate temperature is not raised greatly increases when the same temperature difference is given. I understand that. In addition, when this substrate temperature is less than 500 degreeC, since the said voltage tends to fall, it is thought that it is desirable that the substrate temperature at the time of sputtering shall be 500 degreeC or more. In addition, when the substrate temperature at the time of sputtering exceeded 1000 ° C., there was a tendency for the voltage to decrease.

また、上記実施例2から、Fe2VAl系熱電材料とFe2VAl系熱電材料とは異なる異種熱電材料(本実施形態ではBi−Te系熱電材料)とを組み合わせて使用しても、熱電変換素子を構成できることがわかる。上記実施例1と実施例2とを比較すると、実施例2の方が、より小さな温度差で大きな電圧を発生させている。これは、p型熱電材料部12において、より性能の高い異種熱電材料を組み合わせたことによる効果であり、種々の熱電材料の中からp型熱電材料としての性能が高いものとn型熱電材料としての性能が高いものを選んで組み合わせることにより、一方がFe2VAl系熱電材料となっている熱電変換素子の熱電性能を改善できるものと期待できる。 Further, even if the Fe 2 VAl-based thermoelectric material and the Fe 2 VAl-based thermoelectric material are used in combination with different thermoelectric materials (Bi-Te-based thermoelectric material in the present embodiment) from Example 2 above, thermoelectric conversion is possible. It can be seen that the element can be configured. Comparing Example 1 and Example 2 described above, Example 2 generates a larger voltage with a smaller temperature difference. This is an effect obtained by combining different types of thermoelectric materials with higher performance in the p-type thermoelectric material portion 12. Among the various thermoelectric materials, high performance as a p-type thermoelectric material and n-type thermoelectric material are used. By selecting and combining materials having high performance, it can be expected that the thermoelectric performance of the thermoelectric conversion element, one of which is an Fe 2 VAl-based thermoelectric material, can be improved.

以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
例えば、上記実施形態では、Fe2VAl系熱電材料について特定の組成比を示したが、この組成比は一例であり、p型またはn型熱電材料としての性能を維持できる範囲内で、適宜組成比を変更しても構わない。また、上記実施形態では、Fe2VAl系熱電材料に第4元素としてSiを添加する例を示したが、これもp型またはn型熱電材料としての性能を維持できる範囲内で、任意の第4元素を添加することができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific one Embodiment, In addition, it can implement with a various form.
For example, in the above-described embodiment, a specific composition ratio is shown for the Fe 2 VAl-based thermoelectric material. However, this composition ratio is an example, and the composition is appropriately selected within a range in which performance as a p-type or n-type thermoelectric material can be maintained. The ratio may be changed. Further, in the above embodiment, an example in which Si is added as the fourth element to the Fe 2 VAl-based thermoelectric material has been described. However, this may be performed as long as the performance as the p-type or n-type thermoelectric material can be maintained. Four elements can be added.

また、上記実施形態では、Fe2VAl系熱電材料と組み合わせる異種熱電材料として、Bi−Te系熱電材料を例示したが、これもFe2VAl系熱電材料と組み合わせることで性能を改善できるような熱電材料であれば、Bi−Te系以外の熱電材料であっても構わない。そのような熱電材料としては、例えば、Mg−Si系熱電材料、Mn−Si系熱電材料、Fe−Si系熱電材料、Si−Ge系熱電材料、Pb−Te系熱電材料、カルコゲナイト系熱電材料、スクッテルダイト系熱電材料、フィルドスクッテルダイト系熱電材料、炭化ホウ素系熱電材料などを挙げることができ、これらのいずれかを用いればよい。 In the above embodiment, the Bi-Te thermoelectric material is exemplified as the dissimilar thermoelectric material combined with the Fe 2 VAl thermoelectric material. However, this thermoelectric material can also improve performance by combining with the Fe 2 VAl thermoelectric material. As long as it is a material, it may be a thermoelectric material other than Bi-Te. As such thermoelectric materials, for example, Mg—Si based thermoelectric materials, Mn—Si based thermoelectric materials, Fe—Si based thermoelectric materials, Si—Ge based thermoelectric materials, Pb—Te based thermoelectric materials, chalcogenite based thermoelectric materials, Examples include skutterudite-based thermoelectric materials, filled skutterudite-based thermoelectric materials, and boron carbide-based thermoelectric materials. Any of these may be used.

さらに、上記実施形態では、薄膜状のn型熱電材料部11およびp型熱電材料部12を形成するために、物理的蒸着技術の一つであるスパッタリングを利用していたが、本発明においては、他の物理的蒸着技術を利用することもできる。他の物理的蒸着技術としては、例えば、イオンビームスパッタ、イオンプレーティング、真空蒸着、レーザー蒸着、電子線エピタキシャル成長法(MBE)などを挙げることができる。これらの中でも、特にイオンプレーティングおよび電子線エピタキシャル成長法(MBE)は、結晶性の高い薄膜を形成可能な物理的蒸着技術なので、熱電性能の高い熱電変換素子を製造するためには好適である。   Furthermore, in the above embodiment, sputtering, which is one of physical vapor deposition techniques, was used to form the thin film n-type thermoelectric material part 11 and p-type thermoelectric material part 12, but in the present invention, Other physical vapor deposition techniques can also be used. Examples of other physical vapor deposition techniques include ion beam sputtering, ion plating, vacuum vapor deposition, laser vapor deposition, and electron beam epitaxial growth (MBE). Among these, ion plating and electron beam epitaxial growth (MBE) are physical vapor deposition techniques that can form a thin film with high crystallinity, and are therefore suitable for producing a thermoelectric conversion element with high thermoelectric performance.

本発明の実施形態として例示した熱電変換素子の構造図。1 is a structural diagram of a thermoelectric conversion element exemplified as an embodiment of the present invention. n型熱電材料部とp型熱電材料部とを導電部を介して電気的に接続した構造を示す断面図。Sectional drawing which shows the structure which electrically connected the n-type thermoelectric material part and the p-type thermoelectric material part through the electroconductive part. 性能試験の方法を説明するための説明図。Explanatory drawing for demonstrating the method of a performance test.

符号の説明Explanation of symbols

10・・・基板、11・・・n型熱電材料部、12・・・p型熱電材料部、13・・・導電部。   DESCRIPTION OF SYMBOLS 10 ... Board | substrate, 11 ... n-type thermoelectric material part, 12 ... p-type thermoelectric material part, 13 ... Conductive part.

Claims (8)

p型熱電材料とn型熱電材料とを直列に接続した構造を有する熱電変換素子であって、
前記p型熱電材料および前記n型熱電材料のうち、少なくとも一方がFe2VAl系熱電材料であり、該Fe2VAl系熱電材料が、500℃以上且つ1000℃以下に加熱された基材の表面に物理的蒸着技術により薄膜状に形成されている
ことを特徴とする熱電変換素子。
A thermoelectric conversion element having a structure in which a p-type thermoelectric material and an n-type thermoelectric material are connected in series,
At least one of the p-type thermoelectric material and the n-type thermoelectric material is an Fe 2 VAl-based thermoelectric material, and the surface of the substrate heated to 500 ° C. or more and 1000 ° C. or less of the Fe 2 VAl-based thermoelectric material A thermoelectric conversion element characterized in that it is formed into a thin film by physical vapor deposition technology.
前記Fe2VAl系熱電材料が、厚さ0.1〜100μmの薄膜状に形成されている
ことを特徴とする請求項1に記載の熱電変換素子。
The thermoelectric conversion element according to claim 1, wherein the Fe 2 VAl-based thermoelectric material is formed in a thin film shape having a thickness of 0.1 to 100 μm.
前記p型熱電材料および前記n型熱電材料の双方がFe2VAl系熱電材料である
ことを特徴とする請求項1または請求項2のいずれかに記載の熱電変換素子。
The thermoelectric conversion element according to claim 1, wherein both the p-type thermoelectric material and the n-type thermoelectric material are Fe 2 VAl-based thermoelectric materials.
前記p型熱電材料および前記n型熱電材料のうち、一方が前記Fe2VAl系熱電材料、他方がFe2VAl系熱電材料とは構成元素の異なる異種熱電材料であり、該異種熱電材料が、前記基材の表面に物理的蒸着技術により薄膜状に形成されている
ことを特徴とする請求項1または請求項2に記載の熱電変換素子。
Of the p-type thermoelectric material and the n-type thermoelectric material, one is the Fe 2 VAl-based thermoelectric material, and the other is a different-type thermoelectric material having different constituent elements from the Fe 2 VAl-based thermoelectric material, The thermoelectric conversion element according to claim 1 or 2, wherein the thermoelectric conversion element is formed on the surface of the base material in a thin film shape by a physical vapor deposition technique.
前記異種熱電材料が、Bi−Te系熱電材料、Mg−Si系熱電材料、Mn−Si系熱電材料、Fe−Si系熱電材料、Si−Ge系熱電材料、Pb−Te系熱電材料、カルコゲナイト系熱電材料、スクッテルダイト系熱電材料、フィルドスクッテルダイト系熱電材料、または炭化ホウ素系熱電材料のいずれかである
ことを特徴とする請求項4に記載の熱電変換素子。
The dissimilar thermoelectric material is a Bi—Te based thermoelectric material, an Mg—Si based thermoelectric material, an Mn—Si based thermoelectric material, an Fe—Si based thermoelectric material, an Si—Ge based thermoelectric material, a Pb—Te based thermoelectric material, or a chalcogenite based material. The thermoelectric conversion element according to claim 4, wherein the thermoelectric conversion element is any one of a thermoelectric material, a skutterudite thermoelectric material, a filled skutterudite thermoelectric material, or a boron carbide thermoelectric material.
前記Fe2VAl系熱電材料および前記異種熱電材料のうち、熔融温度の高い方が前記基材の表面に先に物理的蒸着技術により薄膜状に形成され、熔融温度の低い方が前記基材の表面に後から物理的蒸着技術により薄膜状に形成された構造になっている
ことを特徴とする請求項5に記載の熱電変換素子。
Of the Fe 2 VAl-based thermoelectric material and the dissimilar thermoelectric material, the one with the higher melting temperature is first formed into a thin film by a physical vapor deposition technique on the surface of the substrate, and the one with the lower melting temperature is the one of the substrate. The thermoelectric conversion element according to claim 5, wherein the thermoelectric conversion element has a structure formed on the surface in a thin film by a physical vapor deposition technique later.
前記p型熱電材料と前記n型熱電材料が、導電材料を介して直列に接続された構造になっており、該導電材料が、前記基材の表面に物理的蒸着技術により薄膜状に形成されている
ことを特徴とする請求項1〜請求項6のいずれかに記載の熱電変換素子。
The p-type thermoelectric material and the n-type thermoelectric material are connected in series via a conductive material, and the conductive material is formed into a thin film on the surface of the substrate by physical vapor deposition technology. The thermoelectric conversion element according to any one of claims 1 to 6, wherein:
p型熱電材料とn型熱電材料とを直列に接続した構造を有する熱電変換素子の製造方法であって、
前記p型熱電材料および前記n型熱電材料のうち、少なくとも一方がFe2VAl系熱電材料であり、該Fe2VAl系熱電材料を、500℃以上且つ1000℃以下に加熱された基材の表面に物理的蒸着技術により薄膜状に形成する
ことを特徴とする熱電変換素子の製造方法。
A method of manufacturing a thermoelectric conversion element having a structure in which a p-type thermoelectric material and an n-type thermoelectric material are connected in series,
At least one of the p-type thermoelectric material and the n-type thermoelectric material is an Fe 2 VAl thermoelectric material, and the surface of the substrate heated to 500 ° C. or more and 1000 ° C. or less of the Fe 2 VAl thermoelectric material A method for manufacturing a thermoelectric conversion element, characterized in that the thin film is formed by physical vapor deposition technology.
JP2004092301A 2004-03-26 2004-03-26 Thermoelectric conversion element and manufacturing method thereof Expired - Lifetime JP4133894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092301A JP4133894B2 (en) 2004-03-26 2004-03-26 Thermoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092301A JP4133894B2 (en) 2004-03-26 2004-03-26 Thermoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005277343A true JP2005277343A (en) 2005-10-06
JP4133894B2 JP4133894B2 (en) 2008-08-13

Family

ID=35176631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092301A Expired - Lifetime JP4133894B2 (en) 2004-03-26 2004-03-26 Thermoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4133894B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227756A (en) * 2006-02-24 2007-09-06 Yanmar Co Ltd Thermoelectric material
WO2007108176A1 (en) * 2006-03-17 2007-09-27 National University Corporation Nagoya Institute Of Technology Thermoelectric conversion material
JP2008021982A (en) * 2006-06-15 2008-01-31 Toyota Central Res & Dev Lab Inc Thermoelectric material, and method for manufacturing it
JP2010225610A (en) * 2009-03-19 2010-10-07 Mitsubishi Materials Corp Thermoelectric conversion element, and method of manufacturing the same
JP2013021089A (en) * 2011-07-11 2013-01-31 Hitachi Ltd Thermoelectric conversion element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227756A (en) * 2006-02-24 2007-09-06 Yanmar Co Ltd Thermoelectric material
EP2006925A2 (en) * 2006-02-24 2008-12-24 Yanmar Co., Ltd. Thermoelectric material
EP2006925A4 (en) * 2006-02-24 2010-01-06 Yanmar Co Ltd Thermoelectric material
US7906044B2 (en) 2006-02-24 2011-03-15 Yanmar Co., Ltd Thermoelectric material
WO2007108176A1 (en) * 2006-03-17 2007-09-27 National University Corporation Nagoya Institute Of Technology Thermoelectric conversion material
JP2008021982A (en) * 2006-06-15 2008-01-31 Toyota Central Res & Dev Lab Inc Thermoelectric material, and method for manufacturing it
JP2010225610A (en) * 2009-03-19 2010-10-07 Mitsubishi Materials Corp Thermoelectric conversion element, and method of manufacturing the same
JP2013021089A (en) * 2011-07-11 2013-01-31 Hitachi Ltd Thermoelectric conversion element

Also Published As

Publication number Publication date
JP4133894B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JP4876501B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
JPWO2018021472A1 (en) Junction body, circuit board, and semiconductor device
TWI505522B (en) Method for manufacturing thermoelectric conversion module
JPS62207789A (en) Surface structure for aluminum nitride material and manufacture
KR101476343B1 (en) Component having a metalized ceramic base
RU2433506C2 (en) Method for peltier module fabrication, and also peltier module
JP2010192764A (en) Thermoelectric conversion module, substrate for thermoelectric conversion module, and thermoelectric semiconductor device
KR101432320B1 (en) Bonded structure and method of producing the same
JPH1012935A (en) Electrode bonding structure for thermoelectric conversion element, electrode bonding method therefor theremoelectric conversion module and production thereof
JP2005161318A (en) Electrothermal transmutation module
EP3648186A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
KR20170101782A (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP4133894B2 (en) Thermoelectric conversion element and manufacturing method thereof
KR102487993B1 (en) Thermoelectric module
US6787706B2 (en) Ceramic circuit board
KR20180022611A (en) Thermoelectric element and thermoelectric module including the same
JP2004221109A (en) Thermoelectric element module and manufacturing method therefor
JP2003086663A (en) Holder of article being processed, processing unit and ceramic susceptor for semiconductor manufacturing device
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
JP2004087913A (en) Copper-plated ceramic substrate, its manufacturing method, and thermoelectric module equipped with copper-plated ceramic substrate
JP4386799B2 (en) heatsink
KR102626845B1 (en) Thermoelectric module and method for manufacturing the same
JP7248091B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
KR102363224B1 (en) Thermoelectric material having multi-diffusion barrier layer and thermoelectric device comprising the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term