JP2005277038A - Sunlight power generation system - Google Patents

Sunlight power generation system Download PDF

Info

Publication number
JP2005277038A
JP2005277038A JP2004087183A JP2004087183A JP2005277038A JP 2005277038 A JP2005277038 A JP 2005277038A JP 2004087183 A JP2004087183 A JP 2004087183A JP 2004087183 A JP2004087183 A JP 2004087183A JP 2005277038 A JP2005277038 A JP 2005277038A
Authority
JP
Japan
Prior art keywords
power generation
shaped
sunlight
horizontal shelf
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004087183A
Other languages
Japanese (ja)
Inventor
Akira Nagashima
彬 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004087183A priority Critical patent/JP2005277038A/en
Publication of JP2005277038A publication Critical patent/JP2005277038A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To drastically reduce the power generation cost of a sunlight power generation system by taking simple wind pressure measures and making effective use of a surplus sunlight, to materialize a change of all lands including lands for agriculture, forestry and fisheries, of course, into lands for power generation without impairing its productivity and conveniences and without being restrained by a direction and a shape of the lands, and to use a sunlight power generation as a main stream of acquiring mankind energy. <P>SOLUTION: In the sunlight power generation system, a horizontal shelf is formed almost on the ground above various fields (living and working spaces of mankind and animals in an agricultural land, a park or a water surface); and a bar-shaped, wing-shaped and plate-shaped sunlight power generation element inclined retaining member with a narrow width north and south and with a long size east and west is integrated with a sunlight power generation module to form a sunlight power generator. It is possible to make the wind pressure measures and maintenance of a quantity of light required for a lower field compatible, and to individually set the sunlight power generators to due south without being restrained by an installation direction (generally coincident with a direction of field) of beams of the horizontal shelf. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽光発電体を地球上に数多く合理的に配置するものである。   The present invention rationally arranges a large number of photovoltaic power generation bodies on the earth.

太陽光発電は主に建物の屋上、屋根に設置することによってその普及が計られてきたが数十年にわたる日照を保証される屋根や屋上がマンション建設等の原因で都会では特に少なく、地方では家屋数自体が少ないので自ずと太陽光発電に対する電力業界の期待は大きくならないのが現状である。また強風対策のための強度保持、防火対策、工事に危険が伴い敷設費用がかさむ等の屋根上に置いた時の固有の問題が大きく、単位面積あたりの出力の向上を計る種々の工夫や、種々の屋根形状に対応することや、屋根材そのものに発電機能を持たせることで対応してきたが、設置費用の大幅な下落を達成していない。 Solar power generation has mainly been installed by installing it on the roof and roof of buildings, but roofs and roofs that guarantee sunshine for decades are particularly rare in urban areas due to construction of condominiums, etc. Since the number of houses is small, the electric power industry's expectation for solar power generation does not increase. In addition, there are many problems inherent to placing on the roof, such as strength maintenance for firefighting countermeasures, fire prevention countermeasures, and construction costs that are dangerous and laying costs increase, and various measures to improve output per unit area, Although it has responded by adapting to various roof shapes and providing the power generation function to the roof material itself, it has not achieved a significant drop in installation costs.

一方原子力発電はどうであろうか。一気に爆発させる原子爆弾を徐々にウランを核分裂させることにより熱としてエネルギーを取り出すしくみは開発当初、その効果だけが宣伝され拍手喝采のもとに推進されて今日に至っている。しかしその発電によるマイナス面は計り知れない。数万年単位でも消滅することのないTRU(超ウラン元素)をはじめとする多量の毒物発生と発電や送電、変電設備へのテロ攻撃等に対する極端な脆弱性が顕在化して徐々にその存在意義が疑問視されるに至っている。また出力が大きいが故にその故障の影響は大きく同容量に近い予備の発電設備を備える必用が生じ、経済的な優位性も再考する必用が生じてきている。 On the other hand, what about nuclear power generation? The mechanism of extracting energy as heat by gradually fissioning uranium from atomic bombs that explode at a stretch has been advertised and promoted with applause at the beginning of development. However, the downside of power generation is immeasurable. Extensive vulnerabilities such as TRU (super uranium element) that do not disappear even in units of tens of thousands of years, and extreme vulnerability to terrorist attacks on power generation, power transmission, substation facilities, etc. have emerged and the significance of their existence gradually Has been questioned. Moreover, since the output is large, the effect of the failure is large, and it is necessary to provide a spare power generation facility close to the same capacity, and it is necessary to reconsider the economic advantage.

原子力発電のコストは、発電端の評価でkwhあたり約6円とされる価格も受電端では送電費、変電費、配電費、一般管理費、その他経費等、全てが原価に加わるのでこれらの経費を均等に水力、火力等の種類別発電量で按分し加えると約15円強になる。原子力発電所は都会から遠く大電力を運ぶために変電費、送電費の比重も大きく、又関連する仕事量や借入金が多いために単なる按分するのでなく重さを加えて再按分するならばkwhあたり17円以上になるのは避けられないところとなる。さらに再処理費用や、高レベル核廃棄物の処分設備費用、テロ攻撃からの防護費用を加えるならば20円を優に超え、実に各家庭に対する販売価格さえも上まることにもなる可能性がはなはだ高いのである。さらに設備の信頼性を著しく損なう応力腐食割れは、中性子を利用する装置の宿命的な問題で、その対策のために検査すればするほどさらに熱疲労の回数が増加し、さらに腐食割れが生じやすくなることから解決困難の問題として未だに解決の糸口すら見いだせていない。また高級な材料を使用して対応することはコスト上の競争力をさらに失うことは自明である。 The cost of nuclear power generation is estimated to be about 6 yen per kwh in the evaluation of the power generation end. Since the receiving end also includes all costs such as transmission, substation, distribution, general and administrative expenses, these expenses. If it is equally distributed by the amount of power generation by type such as hydropower and thermal power, it will be slightly over 15 yen. If nuclear power plants are far from the city and carry large amounts of electricity, the ratio of substation and transmission costs is large, and there is a lot of related work and borrowing. It will be inevitable that the price will be 17 yen or more. Furthermore, if reprocessing costs, disposal costs for high-level nuclear waste, and protection costs from terrorist attacks are added, it can easily exceed 20 yen, and even the selling price for each household may actually increase. Hanahada is expensive. Furthermore, stress corrosion cracking, which significantly impairs the reliability of equipment, is a fatal problem of equipment that uses neutrons, and the more times it is examined for countermeasures, the more the number of thermal fatigues increases and the more likely corrosion cracking occurs. Therefore, even the clue of the solution has not yet been found as a difficult problem. It is obvious that using high-grade materials will further reduce cost competitiveness.

高速増殖炉においてはさらに中性子の破壊力が増すこと、また熱応力の集中度が増し実用に供する発電方法としての水準を維持することはまことに困難な事業となることや燃料のプルトニウムを得るために使用済み核燃料の再処理を行わなければならず、一層採算が引き合うシステムにはなり得ない。 To increase the destructive power of neutrons in the fast breeder reactor, and to maintain the standard as a power generation method for practical use due to the increased concentration of thermal stress, and to obtain plutonium fuel Spent nuclear fuel must be reprocessed and it cannot be a more profitable system.

このように欠点だらけの原子力発電が21世紀のエネルギー政策の主体である続けるひとつの大きな理由は太陽光発電を大規模に行うためには巨大面積が必用という、最大の弱点を抱えているからに他ならない。 One major reason why nuclear power generation full of shortcomings continues to be the subject of the energy policy of the 21st century is because it has the greatest weakness that a huge area is necessary for solar power generation on a large scale. There is nothing else.

一方水力発電は太平洋、日本海から太陽エネルギーによって蒸散した水分が日本列島に雨雪として山に降り注ぐことで莫大な位置のエネルギーが蓄積される。明治以降この日本唯一の自前のエネルギーである水力を最重点の電力源として開発されてきた。近年ダムのマイナス面、すなわち流れを遮断すること、上流の養分や土砂が海に達しない、すぐに土砂でダム湖が埋められ投資効果がない等の理由や用水の必要性が低下したこと等でダムはムダなどと極端にその効用に対する評価を失うことになっている。しかし川の流れを遮断することや上流の養分や土砂が海に達しないこと等の自然なメカニズムを破壊するマイナス面は、ダム建設の条件として上流から下流への流れを維持する貫流水路を付加し、ダムに蓄える水資源は濾した清水とする様な工夫で解消できることや、急激な電力負荷の変動に対して大きな対応力を持つことを考慮するならば、広い意味での自然エネルギーとして不動の地位を維持していくことが理にかなった21世紀の考え方となる。 Hydropower, on the other hand, accumulates enormous energy as water evaporated by solar energy from the Pacific Ocean and the Sea of Japan falls into the mountains as rain and snow on the Japanese archipelago. Since the Meiji Era, it has been developed with hydroelectric power, which is Japan's only independent energy, as the most important power source. In recent years, the negative aspects of dams, such as blocking the flow, upstream nutrients and sediments not reaching the sea, dam lakes immediately filled with sediment and lack of investment effect, etc. And the dam is supposed to lose evaluation for its utility, such as waste. However, the negative aspect of disrupting the natural mechanisms such as blocking the river flow and the upstream nutrients and sediments not reaching the sea is the addition of a once-through water channel that maintains the flow from upstream to downstream as a condition for dam construction. However, if we consider that the water resources stored in the dam can be eliminated with a device such as filtered fresh water, and that it has a great ability to respond to sudden fluctuations in power load, it will not move as natural energy in a broad sense. It is a 21st century way of thinking that would make sense to maintain this position.

近年太陽光発電セル自体のコストは抜本的に下がったのであるが、工事費や流通経費等、他の経費がかさみ、また強風や降雹によって破壊しないための強度対策や防火対策にたいしてコストの負荷が大きく他の発電方式の発電単価に比べて競争力が未だに高いとはいえない。
特公平4−76233
In recent years, the cost of solar cells has drastically decreased, but other costs such as construction costs and distribution costs have been added, and the cost burden has been increased for strength measures and fire prevention measures not to be destroyed by strong winds and rainfall. Largely, it is not yet highly competitive compared to the unit price of other power generation methods.
JP 4-76233

例えば特公平4−76233のようにモジュール自体の発電量を増加するために、モーターを付けて太陽の方向を追尾するような方法も提案されたが、機構が複雑になり強風時には駆動のためのロッドやピンに応力が集中することや、それを防ぐ対策にはさらに風速を検知し、パネルの向きを自動制御する考慮が必用とならざるを得なく、さらに夜間の強風時の対応を考えるならばモータ駆動のための給電が必用で、駆動用電池や系統からの買電のための電力計も追加することになりに実用化の障害になって費用対効果を満足しない。また田畑の区割りが南北に方向の合致していない場合が多く、真南に短冊状モジュールの向きを合わせるためには機構上パネル全体を向けなければ対応できないので大規模な発電に向いたものにはなりにくい。
特開2000−246287 特開2002−371947 特開2002−281773
For example, in order to increase the power generation amount of the module itself as in Japanese Patent Publication No. 4-76233, a method of attaching a motor and tracking the direction of the sun has been proposed. In order to prevent stress concentration on rods and pins and to prevent it, it is necessary to consider wind speed detection and automatic panel orientation control. For example, power supply for driving the motor is necessary, and a battery for driving and a power meter for purchasing power from the system are added, which becomes an obstacle to practical use and does not satisfy the cost-effectiveness. In addition, the field division of Tabata often does not match the direction from north to south, and in order to match the direction of the strip module to the south, it is not possible to respond without directing the entire panel on the mechanism, so it is suitable for large-scale power generation It is hard to fall.
JP 2000-246287 A JP 2002-371947 A JP 2002-281773 A

特開2000−246287や特開2002−371947、2002−281773においては水面に浮上するフロート上に太陽光発電体を設置することが提案されているが水面自体を覆うことにより大面積なものを設定すれば漁業権を侵害することや水上のゴミ等による汚染に対する処置に問題が残り普及するに至りにくい。
特公3227524
In JP 2000-246287, JP 2002-371947, and 2002-281773, it is proposed to install a solar power generator on a float that floats on the water surface, but a large area is set by covering the water surface itself. If this is the case, it will be difficult for the fishery rights to be infringed or to deal with pollution caused by water trash etc.
Japanese Patent No. 3227524

特公3227524においては、太陽電池と太陽光を拡散させる拡散レンズを所定の面積比で配列して下部の植物栽培と発電の両立することを指向したが、側面を開放すればフレンネルレンズを含めた光発電屋根に加わる風圧が強大に加わることで、その破壊に耐えるためには駅のプラットホーム屋根を作るような強固な工事が必用になること。また請求項3のように側面を閉じれば風圧に対して家屋に等しい構造が必須となり、わずかな電力や光を得ることに対してとうてい経済的に成り立たつものになり得ないことは明白である。 In Japanese Patent Publication No. 3227524, a solar cell and a diffusion lens for diffusing sunlight were arranged at a predetermined area ratio to aim at achieving both plant cultivation and power generation at the bottom. Because the wind pressure applied to the photovoltaic roof is strong, it will be necessary to have a strong construction to create the platform roof of the station in order to withstand the destruction. It is obvious that if the side is closed as in claim 3, a structure equal to the house is indispensable with respect to the wind pressure, and it cannot be economically viable for obtaining a small amount of power and light. .

本発明は、上述の実情を鑑みてなされたものであって、簡易な風圧対策と剰余の太陽光を有効利用することで太陽光発電のシステムの発電単価を抜本的に下げ、農林水産に供される土地はもとより全ての土地を、その生産性、利便性を損なうことなくその土地の向き、形状に制約されることなく発電用地に変えることを実現し、太陽光発電を人類エネルギー取得の主流にすることを目的にしている。 The present invention has been made in view of the above circumstances, and by effectively using simple wind pressure countermeasures and surplus sunlight, the power generation unit price of the photovoltaic power generation system is drastically reduced and used for agriculture, forestry and fisheries. It is possible to change all land as well as land to be used for power generation without being restricted by the direction and shape of the land without impairing its productivity and convenience. The purpose is to be.

一般的に農業生産物は太陽光を一切遮断しないで生産されるのが通常であるがその生産に必用な受光量の最小値の解明は充分にされていない。春夏の強い陽光は過剰の水分蒸散を招き植物育成に有害なことは花卉栽培等では周知である。しかし減光することが一般農産物や水産物では経済的でなく、過剰な灌漑用水の消費によって克服してきた。この余剰の陽光を利用することを骨格として、各種フィールド(農地、公園、水面等の人間、動物等の生活及び作業空間)の上部に、ほぼ地面に水平の棚を設け、南北に幅が狭く東西に長い棒状または翼状、板状の太陽光発電素子傾斜保持部材2を太陽光発電モジュール1と一体となしてできる太陽光発電体1’を形成して風圧対策と前記下部フィールドに対する必要光量を維持することを両立させ、さらに前記水平棚の梁の設置方向(前記フィールドの方向に概略一致)に制限されることなく前記棒状、翼状板状の太陽光発電体を個々に真南を向ける設定ができることを骨格とし、その構成部品数を少なくかつ軽くして、耐久性のある堅固で安価な太陽光発電体群を形成する。 In general, agricultural products are usually produced without blocking sunlight, but the minimum value of the amount of received light necessary for the production is not fully understood. It is well known in flower cultivation and the like that strong sunlight in spring and summer causes excessive moisture transpiration and is harmful to plant growth. However, dimming is not economical for general agricultural and marine products and has been overcome by excessive consumption of irrigation water. Using this surplus sunlight as a skeleton, horizontal shelves are provided on the top of various fields (living and working spaces for humans and animals such as farmland, parks, and water), and the width is narrow from north to south. A solar power generation body 1 ′ formed by integrating a long photovoltaic bar-shaped or wing-like, or plate-like photovoltaic power generation element tilt holding member 2 with the photovoltaic power generation module 1 in the east and west directions to prevent wind pressure and provide the necessary amount of light for the lower field. Setting to make the rod-like and wing-like solar power generators point southward individually without being restricted by the installation direction of the beams on the horizontal shelf (generally coincident with the field direction). It is possible to reduce the number of components and reduce the number of components, thereby forming a durable, robust and inexpensive solar power generation group.

水田、畑、牧草地、内水面、休耕田等、全ての生産用土地を広く太陽光発電体群で覆うことが出来るので、その需要は極度に拡大し量産効果が最大限出て普及を促進できる。全国水田面積の3割、約100万ヘクタールの水田にこのシステムを実施すると、その発電電力量は年間約3400億kwhに達することが期待できる。この発電電力量は100万kwクラスの原子力発電所51基分が発電する量に匹敵するのである。この発電量を石油資源で行うならば実に7000万トン以上の石油消費を補う純国産エネルギーとなる。日本の農地は全体でおおむね450万ヘクタールもあるので雪の少なく夏期に充分な陽光を期待できる関東以南の地域を重点的に敷設することによって、21世紀の基幹エネルギーとしての位置付けが可能となる。また世界各国においてもその普及は期待できるところである。 All production land such as paddy fields, fields, meadows, inland waters, fallow fields, etc. can be widely covered with solar power generation groups, so that the demand can be expanded extremely and the mass production effect can be maximized to promote the spread. . If this system is implemented in 30% of paddy fields in the country and about 1 million hectares of paddy fields, the amount of generated power can be expected to reach about 340 billion kwh per year. The amount of power generated is comparable to the amount of power generated by 51 nuclear power plants of 1 million kW class. If this amount of power generation is made with petroleum resources, it will be a purely domestic energy that will make up for over 70 million tons of oil consumption. Since Japan's farmland is roughly 4.5 million hectares as a whole, it will be possible to position it as a key energy source for the 21st century by laying down the area south of Kanto where there is little snow and sufficient sunlight can be expected in summer. . In addition, it can be expected to spread throughout the world.

さらにこの棚の副次的効用として害虫や鳥害の防止用ネットを効果的に設置できることになるので防除のための薬剤散布が減少できまた常時走行自動カメラ等で病害、虫害の発生状況をピンポイントで把握出来るので農薬の絶対使用料をさらに少なくした、安心で美味の作物の生産が容易になる。またヘリコプター農薬散布のように農薬による公害発生の危険を回避できる。 Furthermore, as a secondary utility of this shelf, a net for preventing pests and bird damage can be installed effectively, so that the spraying of chemicals for control can be reduced, and the state of occurrence of diseases and pest damage can be pinned with an always-on automatic camera etc. Since it can be grasped by points, it is easier to produce safe and delicious crops with less absolute pesticide usage. Moreover, the danger of pollution caused by pesticides can be avoided like helicopter pesticide spraying.

また太陽光発電装置を購入しようと思っても自己の屋根が太陽光発電には適さない人や、あるいは貸家住まいやマンションで屋根を持たない数千万所帯は全国に数多く存在するので各家庭で購入できる規模、すなわち3から5KWの出力ごとにモジュール群を分けて個々にコンディショナー(系統連携用図示略)を通して系統に送電する基本単位を決め、この基本単位を前記フィールド上に設置された水平棚を利用する権利を賃貸させることで民間の力による太陽光発電装置普及が促進できる。太陽光発電装置の生産量は拡大しkwあたり設置費用が30万円以下になれば年金や郵貯、銀行等の財産を集め管理運用する側の運用先として期待されることにもなり、また農家が自前で発電設備を得て収入源にすることが作柄や農業生産品の売価の影響を緩和する良い投資手段になる得る。 In addition, there are many tens of millions of people in the country who do not have a roof for their own roofs or rented houses or condominiums even if they want to purchase solar power generation devices. The basic unit to be transmitted to the system through a conditioner (not shown for system linkage) is determined by dividing the module group for each output of 3 to 5 KW, and this basic unit is a horizontal shelf installed on the field. By renting the right to use solar power, it is possible to promote the spread of solar power generation equipment by the private sector. If the production volume of solar power generation equipment expands and the installation cost per kw is less than 300,000 yen, it will be expected as an operation destination for the management and operation of assets such as pensions, postal savings, and banks. However, it can be a good investment means to mitigate the effects of selling prices of farm products and agricultural products by obtaining power generation facilities on their own.

農家収入は米で反収10万円と言われている。1反の田の上部に本案の太陽光発電システムの出力を3kw得られるよう敷設すれば、屋根上の発電所10軒分の収入、すなわち年間約65万円売電料金が得られる。水平棚の賃貸料を1軒あたり5000円/年を受け取ることにすれば反収5万円が加わることになり、労せず50%の増収が見込める。さらに前述の防虫ネットや防疫管理が理想的に行うことで減農薬の品質の高い米の生産につながり単位売価を高く出来ることでさらなる増益が期待できる。 Farmer income is said to be 100,000 yen in the US. By laying the power of the proposed solar power generation system at the top of 1 rice field so that 3 kw of power can be obtained, the income for 10 power plants on the roof, that is, about 650,000 yen of electricity sales per year can be obtained. Receiving 5,000 yen per year for the rent for a horizontal shelf will add 50,000 yen to the counter-revenue, which can be expected to increase by 50% without effort. Furthermore, if the above-mentioned insect nets and prevention control are ideally performed, it will lead to the production of rice with high quality of reduced pesticides, and the unit sales price can be increased.

太陽光発電の総合コストを下げるために従来はおもに発電セル(シリコンと電極の発電体そのもの、太陽電池セル)の価格を下げることが重要視され各種の電池材料が検討されてきた。しかし実際には全体の原価構成寄与率を見れば明らかなように、セルを連結しモジュールにする過程において耐候性対策、耐風対策、降雹対策、防火対策のためや、屋根上に取り付ける設置費、また流通経費にも多くのコストが費やされているのが現状である。第一に重要なことは耐風性を簡易に向上することで、従来の様に風圧を受けたときに飛びやすく、また飛んだときにエネルギーをたくさん保持する畳形のパネル形状を、棒状、翼状にして風圧力を分散して設置部材を最低限にする工夫を行い、さらに設置工事自体を屋根上から地面に移し農事作業や日曜大工工事に匹敵する安易な工事として設置者自らが行えるようにすることで高価な工事費は削減できる。 In order to reduce the total cost of photovoltaic power generation, various battery materials have been studied with the emphasis on lowering the price of power generation cells (silicon and electrode power generator itself, solar cells). However, as is apparent from the overall cost component contribution ratio, in the process of connecting cells into modules, it is necessary to install weather protection, wind resistance, drought prevention, fire prevention, installation costs for installation on the roof, In addition, a lot of costs are also spent on distribution expenses. The first important thing is to easily improve the wind resistance, so that the tatami-shaped panel shape that is easy to fly when subjected to wind pressure and retains a lot of energy when flying, like rods and wings. In order to disperse the wind pressure and minimize the installation members, the installation work itself is moved from the roof to the ground so that the installer himself can do it as an easy work comparable to agricultural work or Sunday carpentry work. By doing so, expensive construction costs can be reduced.

比較的日当たりが悪くても耐えられるイチゴ、ネギ類、ソラマメ、エンドウ、ハクサイ、キャベツ、サンショウ、ユリ、ホウレンソウ、サラダ菜、シュンギク、パセリ、ウド、菜類などにおいては当然太陽光発電モジュール間の間隔を狭くして発電電力量をより多く求めることが可能であることは言うまでもなく、前記間隔が圃場条件に合わせて自由になることが適切な機能である。また極端に日照不足が懸念される天候不順の年には太陽光発電モジュールによる日陰が最少になるような調整が出来る機能も高緯度地方には重要になる。 Naturally, the interval between photovoltaic modules is acceptable in strawberry, leek, broad bean, pea, Chinese cabbage, cabbage, salamander, lily, spinach, salad vegetables, sengoku, parsley, udo, vegetables, etc. Needless to say, it is possible to obtain a larger amount of generated electric power by narrowing the width, and it is an appropriate function that the interval becomes free according to the field conditions. In addition, a function that can be adjusted so that the shade by the solar power generation module is minimized in an unseasonable year when the lack of sunshine is extremely concerned is also important in high latitude areas.

また風速60mの風や降雹、落雷、竜巻のような希有の例外に対応することを重視しすぎて、その対策に費用を費やすようなことは避け、ある水準以上は保険で保障していくこともトータル費用を少なくするための必要な考え方である。 In addition, it is important to deal with rare exceptions such as wind at 60m, windfall, lightning, lightning, and tornado, and avoid spending money on countermeasures. Is a necessary idea to reduce the total cost.

本案の最良の形態は図1のような断面形状をもつ棒状の太陽光発電モジュール設置部材2に太陽光モジュール1を貼付またはひも状、テープ状のもので固定し、田畑の上に設置された図2のような水平棚の上部に下の作物に極端な減収を与えない範囲の設置ピッチで取り付けたものである。前記、棒状になっている太陽光モジュール1の南北方向の幅は作物等の葉の茂る幅以下が望ましく稲などの場合は太陽電池セル(最小単位))一列の幅約15cm程が推奨される。このようにして陰の出来る幅が作物の大きさに対して狭ければ太陽の高さも一日の内に定期的な変化を持つことと合わせ、作柄への影響は最小限止めることが出来る。一般的に厳密に真南を向いた一辺を持つ田畑は例外となるので本案を設置した田を真上から見た第3図のように、前記棒形の太陽光発電体1’は南に向け、配列方向は梁の方向に合わせて北へYだけ離し西にXだけずれた配列(雁行状)に並べる。またその固定は弾性ゴムバンドや縄等(図示無し))によって水平棚に摩擦力で固定することが部品製作の共通性や作業性から推奨される。 The best mode of the present plan is that the solar module 1 is affixed to a rod-shaped photovoltaic power generation module installation member 2 having a cross-sectional shape as shown in FIG. It is attached to the upper part of the horizontal shelf as shown in FIG. 2 with an installation pitch in a range that does not cause an extreme decrease in the yield of the lower crop. The width of the rod-shaped solar module 1 in the north-south direction is preferably less than the leafy width of crops or the like. In the case of rice or the like, a width of about 15 cm in a row of solar cells (minimum unit) is recommended. . In this way, if the shadeable width is narrow with respect to the size of the crop, the sun's height will have a regular change within the day, and the influence on the crop can be minimized. In general, Tabata, which has a side that faces strictly south, is an exception. As shown in Fig. 3 when the field where the plan is installed is viewed from directly above, the bar-shaped photovoltaic power generator 1 ' The direction of the array is aligned to the direction of the beam, separated by Y to the north and shifted by X to the west (in a row). In addition, it is recommended to fix it to the horizontal shelf with an elastic rubber band or rope (not shown) by frictional force because of the commonality and workability of parts production.

また前記モジュール1と太陽光発電モジュール設置部材2との締結形態は雨水等がゴミを含み流れ落ちる際に下部にたまらないように、平面を維持することが望ましいので棒状の太陽光発電モジュール設置部材2に発電モジュール1を載せて適宜に透明接着テープや樹脂バンド(図示無し)等を巻いて固定することが望ましい。各モジュールから引き出されるリード線は、棒状に押し出され成形される太陽光発電モジュール設置部材のモジュール設置面にリード線等を引き回す溝部3を持つことが配線の処理に好都合である。断面形状は緯度やその目的によって種々最適な形状が考えられる。図4、5は太陽光発電モジュール設置部材が比較的高緯度地方に適した形であり運搬、梱包上体積が大きくならないようスタック出来る形が選ばれた例となる。 In addition, the fastening mode of the module 1 and the photovoltaic module installation member 2 is preferably a flat solar power module installation member 2 so that it does not accumulate at the lower part when rainwater or the like flows down and flows down. It is desirable to mount the power generation module 1 and to fix it by winding a transparent adhesive tape, a resin band (not shown) or the like as appropriate. It is convenient for wiring processing that the lead wire drawn from each module has a groove portion 3 for drawing the lead wire or the like on the module installation surface of the photovoltaic power generation module installation member that is extruded and formed into a bar shape. Various optimum cross-sectional shapes can be considered depending on the latitude and the purpose. FIGS. 4 and 5 are examples in which the photovoltaic power module installation members are in a shape suitable for relatively high latitude regions and can be stacked so that the volume on transportation and packing does not increase.

さらに太陽光発電モジュール1は従来から寿命を最優先に構造や材質を設定されてきたがセル自体の厚さを極限に薄くして、作成のための使用エネルギー自体が非常に少ない仕様のものはセル本体のEPT(エネルギーペイバックタイム)も1年に満たないほど短期になるので、構造部材とは異なり、長期に使用することを念頭にした頑強な作りよりも短期間で交換して使用を前提にした構造にすることが、性能向上やコストダウンの恩恵をいち早く享受出来ることになる。このような場合シート状のフィルム間に電池セル本体をラミネート加工しただけの太陽電池モジュール1が推奨される仕様となる。 Furthermore, the solar power generation module 1 has been set with the structure and material with the highest priority on the lifetime, but the cell itself is extremely thin so that the energy used for production is very low. Since the EPT (energy payback time) of the cell body is too short to be less than one year, unlike structural members, it is assumed that it will be used in a shorter period of time than a robust construction that is intended for long-term use. By adopting such a structure, it is possible to quickly receive the benefits of performance improvement and cost reduction. In such a case, the solar cell module 1 in which the battery cell body is simply laminated between the sheet-like films is recommended.

一般的な田の大きさの設置例を図6によってすると、1枚の田は短辺が30m長辺が100mである。田の中に支柱を設けないためには30mスパンの梁を合理的に作らねばならない。梁91を10m定尺のパイプ鋼材を切らずに中央に配置し同じ材92,93を合理的に接合部材96及び97、98によって組み立てられるので運送費等が最少で済むと共に溶接も使用しないので変形も無く防錆効果の維持も容易である。この棚部材は部品を購入して水田の所有者が管理維持することが防虫網の設置、あるいは管理用の空間移動キャリアの実用化にもつながるので推奨される。必用に応じて水平棚9は倒伏を防止する補強張り綱(図示なし)を用いればよい。 According to an installation example of a general rice field size, one rice field has a short side of 30 m and a long side of 100 m. In order not to provide support in the rice field, a 30m span beam must be made reasonably. Since the beam 91 is arranged in the center without cutting the pipe steel material of 10 m length and the same materials 92 and 93 are reasonably assembled by the joining members 96, 97 and 98, the transportation cost is minimized and welding is not used. There is no deformation and it is easy to maintain the rust prevention effect. It is recommended that the shelf members be purchased and maintained by the paddy owners because it will lead to the installation of insect screens and the practical use of the space movement carrier for management. If necessary, the horizontal shelf 9 may use a reinforcing tension rope (not shown) that prevents overturning.

図6のように水平棚9の下部には走行キャリアー(図示無し)用のレール99が設置され監視カメラや防除機をスキャンすることによって家にいながら葉の色調を分析することから防除を適切に最小限行うことにより病虫害の発生に対しても合理的に対応できる。
As shown in FIG. 6, rails 99 for traveling carriers (not shown) are installed at the bottom of the horizontal shelf 9, and the control of the leaves is analyzed by scanning the surveillance camera and the control machine to analyze the color tone of the leaves while at home. It is possible to rationally cope with the occurrence of pests by doing the minimum.

図7に示す例は実施例1と異なり水平の棚2に直接棒状の太陽光発電体1’を取り付けるのでなく太陽光発電モジュール1を図8、9のように断面形状を翼状にした太陽光発電モジュール設置部材2に組み付け全体を回動出来るように図10のP1点でベアリングを介して支持し、ばねを支点P2とP3点の間で張ることにより受光面を所定の角度を維持するようにした。上から見た図7によって組み立て状態を説明すると、太陽光発電モジュール設置部材2にパイプ状の軸4を挿入し、両側を固定部材6によって位置決めし前記軸4は軸受け付き支持部材11によって軸受け(図示無し)によって回動自在な状態を作り、前記支持部材11に一体になったアーム5の先端にあるピン(図10のP3)を方向設定ばね7の一端とし、前記固定部材6と一体のピン(図10のP2)を他端として前記ばね7を張って翼形太陽光発電体1’を所定の方向に向け、前記軸受け付き支持部材11は水平棚9にゴムバンド(図示無し))等で締め付けられ水平棚に設置される形になる。 The example shown in FIG. 7 is different from the first embodiment in that the solar power generation module 1 is not directly attached to the horizontal shelf 2 but the solar power generation module 1 is wing-shaped as shown in FIGS. In order to maintain the light receiving surface at a predetermined angle by supporting the power generation module installation member 2 through a bearing at a point P1 in FIG. 10 so that the entire assembly can be rotated, and stretching a spring between the fulcrums P2 and P3. I made it. The assembly state will be described with reference to FIG. 7 viewed from above. The pipe-shaped shaft 4 is inserted into the photovoltaic power generation module installation member 2, both sides are positioned by the fixing member 6, and the shaft 4 is supported by the support member 11 with a bearing ( The pin (P3 in FIG. 10) at the tip of the arm 5 integrated with the support member 11 is used as one end of the direction setting spring 7 so that it can rotate freely. With the pin (P2 in FIG. 10) as the other end, the spring 7 is stretched so that the airfoil photovoltaic power generator 1 ′ is directed in a predetermined direction, and the support member 11 with the bearing is attached to the horizontal shelf 9 with a rubber band (not shown)) It is tightened with etc. and becomes a form installed in a horizontal shelf.

このようにすることにより強い南風が吹けば第11図のように、北風が吹けば第12図のように翼形は流線の方向に約水平になることが出来、翼形の小さなCD値(抗力係数)が有効に働き太陽光発電モジュール傾斜保持部材2や水平棚9の風力による負荷を最低限にすることが出来、全体の設置コストを下げることに貢献できる形となる。またこのばねの支点P2またはP3点を変更すれば日照不足が懸念されるときに下部フィールドに届く光を増加できるので極端な日照不足の年にも対応できる。 In this way, if a strong south wind blows, the airfoil can be approximately horizontal in the direction of the streamline as shown in FIG. 11 if a north wind blows. The value (drag coefficient) works effectively, the load of the photovoltaic power generation module tilt holding member 2 and the horizontal shelf 9 due to the wind force can be minimized, and the overall installation cost can be reduced. Further, if the fulcrum P2 or P3 point of the spring is changed, the light reaching the lower field can be increased when there is a concern about lack of sunshine, so that it is possible to cope with an extremely insufficient day of sunshine.

内水面20等浮かぶ水平棚9に棒状の太陽光発電体1’を載せ、前記水平棚は周囲にフロート10を持ち水面下に補強枠体11と流れ止めのアンカー21によって底22に係留される。このように構成することでこの発電システムの内部水面に自由に船舶が通行できシステムの保守管理や漁業等の作業に支障を来さない。また発電体1’は水面から離れているので各種の汚れや水草や蘚苔類の進入に対する抵抗力が高い。 A bar-shaped photovoltaic power generator 1 ′ is placed on a horizontal shelf 9 that floats such as the inner water surface 20, and the horizontal shelf has a float 10 around it and is anchored to the bottom 22 by a reinforcing frame 11 and a non-flow anchor 21 below the water surface. . By configuring in this way, a ship can freely pass through the internal water surface of the power generation system, and the maintenance of the system and work such as fishing are not hindered. In addition, since the power generator 1 'is away from the water surface, it has high resistance to various dirt, aquatic plants and moss.

20世紀核融合の原理が発見されるに及んで理想のエネルギー源は「クリーンで無限のエネルギー」のキャッチフレーズで広く漫画にまで登場し、誰もが21世紀の初頭には実用されると思っていた。ところがいざそれを地上で実現しようと具体的に検討してみると太陽の内部の反応である水素原子同士の核融合反応は天文学的に遅く地上における発電には使用できないことが判明した。さらに海水の中に多量に存在する重水素による核融合も検討されたが、核融合反応を持続するためのしきい温度は非常に高く、これも実用にそぐわないことで、当面の目標から外されてしまった。今日、人類が世界規模で実験炉の計画を立て誘致合戦しているものは放射性水素(トリチウム)を利用したD−T反応炉なので「地上に太陽」などという表現は実情に全く当てはまらない不当表示である。残念ながらD−T反応は核融合維持温度が低い利点はあっても大量の中性子の照射を炉材に受けることは避けられず、炉自体の内壁を常に交換することを前提にしなければ成り立たない。さらに前記放射性水素トリチウムは水素の同位元素がゆえにあらゆる生命体に壊滅的な損傷を与える危険物質、猛毒物質であるのでその封じ込めが大前提となる。しかし配管上の円形のシール面からさえ長時間には地震や熱疲労、材質の劣化等の原因で漏れを防ぐことの出来ないでいる今日の人類が、核融合計画炉のような三日月形のシール面から漏れを無くすことはまさに「言うは安く行うは難し」であり、希望的な観測だけで推進することの妥当性は今後よく検証していかなければならない。 As the principles of nuclear fusion in the 20th century are discovered, the ideal energy source has appeared widely in comics with the “clean and infinite energy” catch phrase, and everyone thinks that it will be put into practical use at the beginning of the 21st century. It was. However, when we studied concretely to realize it on the ground, it turned out that the fusion reaction between hydrogen atoms, which is a reaction inside the sun, is astronomically slow and cannot be used for power generation on the ground. Furthermore, although fusion with deuterium present in a large amount in seawater was also studied, the threshold temperature for sustaining the fusion reaction was extremely high, and this was also not suitable for practical use. I have. Today, human beings are planning to build experimental reactors on a global scale, and because the DT reactor uses radioactive hydrogen (tritium), the expression “sun on the ground” does not apply to the actual situation. It is. Unfortunately, although the DT reaction has the advantage of a low fusion maintenance temperature, it is inevitable that the reactor material will be irradiated with a large amount of neutrons, and it will not be possible unless the inner wall of the reactor itself is constantly replaced. . Furthermore, the radioactive hydrogen tritium is a dangerous substance and extremely toxic substance that causes devastating damage to all living organisms because of its hydrogen isotope, so its containment is a major premise. However, even today from the circular seal surface on the pipe, human beings who are unable to prevent leakage for a long time due to earthquakes, thermal fatigue, material deterioration, etc. are crescent shaped like the fusion reactor. Eliminating leaks from the sealing surface is exactly “it is difficult to do cheaply”, and it is necessary to verify the validity of the propulsion based only on desired observations.

たとえこの困難さを新しい工夫で克服しても巨大な発電用核融合炉はその巨大さ故にテロ攻撃の対象にされやすく、爆発を含め故障や点検時の影響は計り知れず、さらに別の始動用、保証用の発電設備を準備しなければならないので、軽水炉以上に競争力のある発電設備になることは期待できない。20世紀は巨大な物は正義であったが混沌とする人類社会においてはひとつの破壊工作が致命的にならない工夫が要求される。発電施設の理想の姿を人体に例えれば、動脈瘤や心筋梗塞、脳卒中のように、その器官が損傷を受けたときに死に至るようなものでなく、皮膚の擦り傷のように部分的な被害を被るだけで済むようなエネルギー源を恒常的に指向することが必用なのである。 Even if this difficulty is overcome with a new device, the huge nuclear power fusion reactor is subject to terrorist attacks because of its enormous size, and the effects of breakdowns and inspections including explosions are immeasurable. Therefore, it is not possible to expect a power generation facility that is more competitive than a light water reactor. In the twentieth century, giant things were justice, but in the chaotic human society, a device that does not let one destruction work be fatal is required. If the ideal form of a power generation facility is compared to a human body, it will not be fatal when the organ is damaged, such as an aneurysm, myocardial infarction, or stroke, but it may be partially damaged like a skin abrasion. It is necessary to constantly point to an energy source that only needs to be exposed.

本案は太陽光発電を普及させるために必用な広大な面積を確保することが解決されるばかりでなく、農業生産物や水産物の生産現場での過剰の陽光を防止して干ばつや赤潮の被害を軽減でき、また乾燥地帯においては水分の蒸散を減少させ保水力を改善して緑化を促進できるので21世紀の世界のニーズに応えるものである。現在の世界のエネルギー消費全体をまかなう太陽光発電装置の必用面積は概略1000km四方、すなわちオーストラリアの砂漠地帯の中にそれはすっぽりと収まる大きさであることを共通認識にしていかなければならない。 This plan not only solves the large area necessary for spreading solar power generation, but also prevents drought and red tide damage by preventing excessive sunlight at the production site of agricultural and marine products. In arid areas, it can meet the needs of the world in the 21st century because it can reduce moisture transpiration, improve water retention and promote greening. It must be recognized that the required area of a photovoltaic power generation system that covers the entire energy consumption of the present world is approximately 1000 km square, that is, it is a size that fits perfectly in the desert area of Australia.

主に台風の襲来が多い低緯度地方向けの棒状太陽光発電体の断面図Cross-sectional view of a rod-shaped solar power generator mainly for low-latitude regions where typhoon attacks are common 本案を実施した水田の斜視図(コーナー部の拡大表示)Perspective view of paddy field that implemented this plan (enlarged display of the corner) 本案を実施した水田の平面図で梁の方向と太陽光発電モジュールの向きの違い の説明図Explanatory drawing of difference in beam direction and photovoltaic module direction in plan view of paddy field where this plan was implemented 主に積雪が多い地方向けの棒状太陽光発電モジュールの断面図Cross-sectional view of a bar-shaped photovoltaic power generation module mainly for regions with heavy snowfall 比較的高緯度地方向けの棒状太陽光発電体の断面図の他の例Another example of a cross-sectional view of a rod-shaped photovoltaic generator for relatively high latitudes 水田に設ける水平棚の立面図の代表例(センターラインから左側を拡大表示)Typical example of an elevation view of a horizontal shelf in a paddy field (enlarged display on the left side from the center line) 翼状太陽光発電体群を上空より見た構造説明図Structural illustration of the wing-like photovoltaic power generation group viewed from above 翼状太陽光発電体の断面図の一例An example of a cross-sectional view of a winged photovoltaic power generator 翼状太陽光発電体の断面図の他の実施例Another embodiment of a sectional view of a winged solar power generation body 翼形断面の太陽光発電体を入射方向に向ける機構説明図Explanatory drawing of the mechanism to direct the photovoltaic power generator with an airfoil cross section in the incident direction 図10の太陽光発電体が強い南風を受けたときの説明図Explanatory drawing when the solar power generator of FIG. 図10の太陽光発電体が強い北風を受けたときの説明図Explanatory drawing when the solar power generator of FIG. 10 received a strong north wind 水面上に設置した場合の説明図Illustration when installed on the surface of the water

符号の説明Explanation of symbols

1 太陽光発電モジュール(セル群))
2 太陽光発電モジュールを支持する構造部材で太陽光発電モジュール設置 部材と称するもの
1’ 上記1と2の集合体
3 発電電力を引き出すリード線を通すスペース又はリード線
4 翼体の中に貫通する軸部
5 ばね7を張るための固定側の支点を維持するアーム
6 翼体を両側で支持位置決めする押さえ部材
7 太陽光発電モジュールを基準角に向けるばね
9 水平棚全体
10 フロート
11 水面下の枠体
12 間筒(隙間調節部材))
20 水面
21 アンカー索体
22 底
31 畦
91〜95 水平棚を構成する棒
96〜98 上記棒を連結する継ぎ手
99 水田上をスキャニングするキャリアーが使用するレール
1 Photovoltaic module (cell group))
2 A structural member that supports a photovoltaic power generation module and is referred to as a photovoltaic power generation module installation member 1 'Assembly 1 and 2 above 3 Space through which lead wire for drawing out generated power or lead wire 4 penetrates into wing body Shaft part 5 Arm 6 that maintains a fulcrum on the fixed side for tensioning spring 7 Presser member 7 that supports and positions the wing on both sides Spring 9 that directs photovoltaic module toward reference angle Whole horizontal shelf 10 Float 11 Frame under water surface Body 12 between cylinders (gap adjustment member))
20 Water surface 21 Anchor cable body 22 Bottom 31 畦 91-95 Rods 96-98 constituting a horizontal shelf Joints 99 connecting the rods Rail used by the carrier scanning on the paddy field

Claims (3)

各種フィールド(農地、公園、水面等の人間、動物等の生活及び作業空間)の上部に、ほぼ地面に水平の棚を設け、南北に幅が狭く東西に長い棒状または翼状、板状の太陽光発電モジュール傾斜保持部材2を太陽光発電モジュール1と一体となしてできる、太陽光発電体1’各々を、下部フィールド8に光を供給するための南北の間隔Yを前記フィールド条件に合わせて自在に設定可能にし、かつ前記水平棚の梁方向(前記フィールドの短方向に概略一致)に制限されることなく前記棒状、翼状板状の太陽光発電体1’の受光面をほぼ真南を向けたまま東西方向のずれXを自在に設定ができることを特徴にする太陽光発電システム。 There is a horizontal shelf on the ground at the top of various fields (agricultural land, parks, water and other human and animal life and work spaces), and bar-shaped or wing-shaped, plate-shaped sunlight that is narrow in the north and south and long in the east and west The power generation module tilt holding member 2 can be integrated with the solar power generation module 1, and the solar power generator 1 'can freely adjust the north-south distance Y for supplying light to the lower field 8 according to the field conditions. And the light receiving surface of the bar-shaped, wing-shaped photovoltaic power generator 1 'is directed almost southward without being restricted by the beam direction of the horizontal shelf (generally coincides with the short direction of the field). A solar power generation system characterized by being able to set the east-west deviation X freely. 前記太陽光発電モジュール傾斜保持部材2が強風時の強度を少ない部材で維持できるように、もっぱら風力自体によって風圧を減少できる姿勢になることが可能な前記太陽光発電システム。又は風力によって風圧を減少できる姿勢を取った後、風速が落ちた時点で元の姿勢に自動復帰可能な前記太陽光発電システム。 The said photovoltaic power generation system which can be in the attitude | position which can reduce a wind pressure exclusively with wind power itself so that the said photovoltaic power generation module inclination holding member 2 can maintain the intensity | strength at the time of a strong wind with few members. Or the said solar power generation system which can be automatically returned to the original attitude | position when the wind speed falls after taking the attitude | position which can reduce a wind pressure with a wind force. 水面等に浮かぶ水平棚9に棒状の太陽光発電体1’を陽光の一部が水面に達するように所定の距離を開けて載せ、前記水平棚は周囲にフロート10を持ち前記発電体1’の下部に自由に船舶の進入が可能な水面上太陽光発電システム。 A bar-shaped photovoltaic power generator 1 'is placed on a horizontal shelf 9 floating on the water surface or the like at a predetermined distance so that part of sunlight reaches the water surface. The horizontal shelf has a float 10 around it and the power generator 1' A surface-mounted solar power generation system that allows ships to freely enter the lower part of the water.
JP2004087183A 2004-03-24 2004-03-24 Sunlight power generation system Pending JP2005277038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004087183A JP2005277038A (en) 2004-03-24 2004-03-24 Sunlight power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004087183A JP2005277038A (en) 2004-03-24 2004-03-24 Sunlight power generation system

Publications (1)

Publication Number Publication Date
JP2005277038A true JP2005277038A (en) 2005-10-06

Family

ID=35176383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004087183A Pending JP2005277038A (en) 2004-03-24 2004-03-24 Sunlight power generation system

Country Status (1)

Country Link
JP (1) JP2005277038A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520560A (en) * 2009-03-10 2012-09-06 エッレ エ エンメ ソチエタ ぺル アチオーニ リヴォルーション エナジー メーカー Solar energy collection system
JP2015017489A (en) * 2013-06-12 2015-01-29 三八 小掠 Farm and photovoltaic system
JP7665228B2 (en) 2021-01-15 2025-04-21 アニン インク Multipurpose solar energy systems and methods for their construction.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520560A (en) * 2009-03-10 2012-09-06 エッレ エ エンメ ソチエタ ぺル アチオーニ リヴォルーション エナジー メーカー Solar energy collection system
JP2015017489A (en) * 2013-06-12 2015-01-29 三八 小掠 Farm and photovoltaic system
JP7665228B2 (en) 2021-01-15 2025-04-21 アニン インク Multipurpose solar energy systems and methods for their construction.

Similar Documents

Publication Publication Date Title
Acharya et al. Floating solar photovoltaic (FSPV): a third pillar to solar PV sector
Abid et al. Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries
Chaichan et al. Generating electricity using photovoltaic solar plants in Iraq
JP5683733B2 (en) Farm and photovoltaic system
Sahu et al. Floating photovoltaic power plant: A review
Soltani et al. Predicting effect of floating photovoltaic power plant on water loss through surface evaporation for wastewater pond using artificial intelligence: A case study
Liu et al. The dawn of floating solar—technology, benefits, and challenges
Nagananthini et al. Investigation on floating photovoltaic covering system in rural Indian reservoir to minimize evaporation loss
Galdino et al. Some remarks about the deployment of floating PV systems in Brazil
Elshafei et al. Study of massive floating solar panels over Lake Nasser
Gamarra et al. Floating solar: an emerging opportunity at the energy-water nexus
US20100300095A1 (en) Sea surface cooling system utilizing otec
KR101710713B1 (en) Solar generation system on water
JP2017042025A (en) Solar panel inclination structure
Karatas et al. Experimental investigation of the microclimate effects on floating solar power plant energy efficiency
US20220015306A1 (en) System that provides shade for agricultural environments
Ravichandran et al. GIS-based potential assessment of floating photovoltaic systems in reservoirs of Tamil Nadu in India
Panda et al. Analyzing and evaluating floating PV systems in relation to traditional PV systems
JP2005277038A (en) Sunlight power generation system
JP2011129852A (en) Solar power generating facility
Song et al. Research on eco-friendly solar energy generation in Taoyuan pond
Blengini Floating photovoltaic systems: state of art, feasibility study in Florida and computational fluid dynamic analysis on hurricane resistance
WO1990010378A1 (en) Protective apparatus
CN103456816A (en) Method for applying tubular photovoltaic power generation modules
JP2017042026A (en) Shock absorption structure