WO1990010378A1 - Protective apparatus - Google Patents
Protective apparatus Download PDFInfo
- Publication number
- WO1990010378A1 WO1990010378A1 PCT/JP1990/000283 JP9000283W WO9010378A1 WO 1990010378 A1 WO1990010378 A1 WO 1990010378A1 JP 9000283 W JP9000283 W JP 9000283W WO 9010378 A1 WO9010378 A1 WO 9010378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- power
- base
- control
- earth
- Prior art date
Links
- 230000001681 protective effect Effects 0.000 title claims abstract description 37
- 238000010248 power generation Methods 0.000 claims abstract description 82
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 58
- 238000010792 warming Methods 0.000 claims abstract description 33
- 238000003916 acid precipitation Methods 0.000 claims abstract description 21
- 239000002803 fossil fuel Substances 0.000 claims abstract description 21
- 230000005855 radiation Effects 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 152
- 229910001868 water Inorganic materials 0.000 claims description 78
- 230000000694 effects Effects 0.000 claims description 69
- 238000004519 manufacturing process Methods 0.000 claims description 53
- 238000011161 development Methods 0.000 claims description 49
- 239000012298 atmosphere Substances 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 41
- 239000001301 oxygen Substances 0.000 claims description 38
- 229910052760 oxygen Inorganic materials 0.000 claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 37
- 238000004891 communication Methods 0.000 claims description 36
- 239000005437 stratosphere Substances 0.000 claims description 36
- 230000008859 change Effects 0.000 claims description 24
- 238000001704 evaporation Methods 0.000 claims description 24
- 238000001816 cooling Methods 0.000 claims description 22
- 230000006870 function Effects 0.000 claims description 21
- 238000003860 storage Methods 0.000 claims description 21
- 230000005540 biological transmission Effects 0.000 claims description 20
- 230000008020 evaporation Effects 0.000 claims description 19
- 238000012937 correction Methods 0.000 claims description 18
- 230000033001 locomotion Effects 0.000 claims description 18
- 238000005065 mining Methods 0.000 claims description 18
- YMHOBZXQZVXHBM-UHFFFAOYSA-N 2,5-dimethoxy-4-bromophenethylamine Chemical compound COC1=CC(CCN)=C(OC)C=C1Br YMHOBZXQZVXHBM-UHFFFAOYSA-N 0.000 claims description 16
- 241000545067 Venus Species 0.000 claims description 16
- 238000004458 analytical method Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 230000008018 melting Effects 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 238000004088 simulation Methods 0.000 claims description 13
- 238000009826 distribution Methods 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 10
- 230000036961 partial effect Effects 0.000 claims description 10
- 230000001737 promoting effect Effects 0.000 claims description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- 230000002159 abnormal effect Effects 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 9
- 230000000116 mitigating effect Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 239000005436 troposphere Substances 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 7
- -1 ultraviolet light Chemical compound 0.000 claims description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 6
- 230000006698 induction Effects 0.000 claims description 6
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000007670 refining Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 5
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 5
- 241000607479 Yersinia pestis Species 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 230000001629 suppression Effects 0.000 claims description 4
- 238000012876 topography Methods 0.000 claims description 4
- 239000002826 coolant Substances 0.000 claims description 3
- 238000011068 loading method Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 238000005286 illumination Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 230000008093 supporting effect Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims 3
- 238000013480 data collection Methods 0.000 claims 2
- 230000002265 prevention Effects 0.000 claims 2
- 230000006641 stabilisation Effects 0.000 claims 2
- 238000011105 stabilization Methods 0.000 claims 2
- 230000005856 abnormality Effects 0.000 claims 1
- 230000000712 assembly Effects 0.000 claims 1
- 238000000429 assembly Methods 0.000 claims 1
- 239000000498 cooling water Substances 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 201000010099 disease Diseases 0.000 claims 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims 1
- 238000007667 floating Methods 0.000 claims 1
- 239000013505 freshwater Substances 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 241000894007 species Species 0.000 claims 1
- 238000012731 temporal analysis Methods 0.000 claims 1
- 230000005068 transpiration Effects 0.000 claims 1
- 230000006378 damage Effects 0.000 abstract description 42
- 235000013305 food Nutrition 0.000 abstract description 13
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 52
- 230000018109 developmental process Effects 0.000 description 48
- 241000282414 Homo sapiens Species 0.000 description 31
- 238000005516 engineering process Methods 0.000 description 31
- 229910002092 carbon dioxide Inorganic materials 0.000 description 26
- 239000001569 carbon dioxide Substances 0.000 description 26
- 238000010276 construction Methods 0.000 description 22
- 239000007789 gas Substances 0.000 description 13
- 230000004927 fusion Effects 0.000 description 12
- 241000196324 Embryophyta Species 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 239000013535 sea water Substances 0.000 description 9
- 241000282412 Homo Species 0.000 description 8
- 230000005611 electricity Effects 0.000 description 8
- 238000005755 formation reaction Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000428 dust Substances 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000002689 soil Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000006552 photochemical reaction Methods 0.000 description 5
- 238000013439 planning Methods 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 238000006424 Flood reaction Methods 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000002542 deteriorative effect Effects 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000008635 plant growth Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 2
- 238000012271 agricultural production Methods 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000001364 causal effect Effects 0.000 description 2
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 230000000779 depleting effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 241000114726 Acetes Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 241000580063 Ipomopsis rubra Species 0.000 description 1
- 241000406668 Loxodonta cyclotis Species 0.000 description 1
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 description 1
- 241000475481 Nebula Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000238814 Orthoptera Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000375392 Tana Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000729 antidote Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000007177 brain activity Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 230000002595 cold damage Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 238000000469 dry deposition Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013383 initial experiment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1021—Earth observation satellites
- B64G1/1042—Earth observation satellites specifically adapted for meteorology
Definitions
- the present invention relates to a protection device that partially or artificially controls the sun's irradiating light that has the greatest influence on the natural environment of the earth and that controls the climate to protect the global environment.
- the present invention relates to a defense device that programs and controls optimal conditions for improving the environment.
- Fig. 1 shows the actual state of major changes in the 19th and 20th centuries and the prediction of the case where this trend continues after the 21st century.
- a local sphere with excellent conditions for life is formed by the distance from the sun, the energy irradiated by the sun's rays, the size of the earth, the rotation and magnetic force, the size of the continent and the sea, etc. It was spontaneously created by hundreds of millions of years of plant and other activities, supported by air and water. It is the only irreplaceable planet for living things and is said to be an oasis of the universe. It is made after a delicate balance and over a long period of time, so it is easy to break when the balance collapses. It is also considered to be a sphere. As long as there is no destruction of nature, he is patient and has a tolerable aspect that resembles a silent liver that can withstand a few blows.
- the Earth is one of the great nature that has overwhelming enormousness, swell, and long-time-span activity when viewed from human beings. Therefore, it has an irreversible property that is difficult to recover if it starts to tilt in a certain direction.
- the present invention has been made in light of the above-mentioned circumstances and in view of the serious problems that are of concern in the future. Specifically, each of the following objectives will be achieved.
- a first object of the present invention is climate control in each region on the earth. In particular, by promoting rainfall, it should be used as a solution to various issues such as future shortage of water resources, desertification and deforestation.
- Water is one of civilization's most valuable resources and a fundamental component of all living things.
- the climate on earth is also controlling.
- Most of the earth's water resources are in the ocean (97.4%), and the rest is isolated from us in the form of ice, snow and groundwater.
- the water resources we can actually use are only 0.01% of the total water.
- Water shortages will increase as populations, industries and agriculture increase and develop. Indeed, low water levels in lakes, conflicts in rivers, and depletion of groundwater have become problems around the world.
- the second object of the present invention is to search for technical means and measures for suppressing global warming and solving various future critical issues on a global scale.
- the temperature of the atmosphere is determined by the balance of the solar radiant energy from the sun, the infrared rays from the earth's surface, and the infrared rays from the atmosphere and clouds into space.
- infrared rays that exit the surface of the earth are absorbed by gases such as carbon dioxide, methane, and fluorocarbons in the atmosphere, so the heat released into space warms the atmosphere and acts as a glass for the greenhouse. (Greenhouse effect)
- carbon dioxide has increased its atmospheric concentration by about 25% during the Industrial Revolution due to the sharp increase in the use of fossil fuels.
- Carbon dioxide is emitted every year by 20 billion tons worldwide, and it is recovered. Compressing and liquefying and dumping into the sea is extremely costly and involves only a partial area. It has been proposed to reduce carbon dioxide by 20% by 2000, but it requires a great deal of effort. The global economy will be hit hard even with a 15% reduction target.
- Atmospheric carbon dioxide is expected to reach a level twice that of before 1800 (280 ppm) in the 21st century. Its temperature is 3 ⁇ 1.5 degrees C. Carbon dioxide raises the temperature, but only needs 100 years. And carbon dioxide is steadily increasing every year:
- a weak carbon dioxide absorption capacity increases the concentration of carbon dioxide and increases the tendency of global warming. As global warming expands the range of hot air recirculation just below the equator, tropical rainforests adjacent to desert areas are gradually becoming desertified.
- a third object of the present invention is to restore and protect the ozone layer in the stratosphere, which plays an important role as one of the barriers for protecting life on the earth, from destruction by the freon Technology development. He said that he would search for technical means and measures to avoid the crisis in the future global environment and the entire ecosystem.
- the ozone layer which diffuses thinly in the stratosphere (altitude 16-50 km), absorbs short-wave ultraviolet rays emitted from the sun and prevents them from falling onto the earth. Living organisms on earth are protected by the ozone layer.
- freon is a stable organic chlorine compound widely used in refrigerants, solvents, propellants, blowing agents, fire extinguishers, synthetic resins, etc. Low melting point and easy to volatilize. When released into the atmosphere, they accumulate, and when they reach the stratosphere, they release chlorine ⁇ by ultraviolet rays from the sun. One chlorine reacts with about 10,000 ozone molecules, destroying the ozone layer and forming an ozone hole. In fact, in Antarctica, the amount of ozone is 50
- Short-wave ultraviolet light When the ozone layer is destroyed, short-wavelength UV light falls unabated onto the ground. Short-wave ultraviolet light, when hit against living organisms, damages and destroys DNA genes in cells, generating cancer cells. It damages the human immune system and eyes, alienates plant growth and affects agricultural production. In addition, larvae such as planktons and fish on the sea surface and algae are affected, causing serious damage to the entire marine ecosystem. The world must avoid the worst of losing health, food and the environment.
- humor has the effect of increasing temperature. Even if the concentration of the furon is extremely low, the effect of raising the temperature per molecule is about 10,000 times that of carbon dioxide. Therefore, about half of the temperature rise due to carbon dioxide gas is caused by the temperature rise due to chlorofluorocarbons, which has a significant effect on global warming.
- the fourth object of the present invention is to search for a mitigation measure to which the present invention is applied as a countermeasure against acid rain, which has been seriously affected, such as by expanding forest damage in various parts of the world.
- Acid rain means that sulfur oxides and nitrogen oxides emitted from factories and automobiles are oxidized in the sky to form sulfates and nitrates, which are taken into rainwater and fall. Normal rainfall is around pH 5.6, but rainfall due to these contaminants is around pH 4 ⁇ 3.
- Acid rain acidifies forest soils, elutes heavy metals that inhibit plant growth, and inhibits or kills plant growth.
- lake water is released from pond bottom mud such as harmful heavy metals due to acidification, and catches are drastically reduced. In some areas, about half of the forest is affected by acid rain.
- a fifth object of the present invention is to convert a current energy system mainly composed of fossil fuels to another energy source (such as solar thermal energy). Natural resources that are limited on earth, such as fossil fuels, must be carefully preserved and preserved as a legacy for humankind in the future. At the same time, avoid global warming and global crises.
- nuclear power has limited peran ore, the danger of radioactivity remains, and the fast breeder reactor has problems in handling such as reprocessing.
- the fast breeder reactor has problems in handling such as reprocessing.
- Hydropower is heavily used, but new developments involve enormous capital and environmental costs.
- Geothermal power is limited to specific areas.
- Nuclear fusion and the use of solar irradiation energy are the main pillars of the future influential energy.
- Solar power is expanding the market and supporting the solar cell industry, albeit on a small scale. Although the cost is higher than that of a conventional power generation system, improvements in semiconductor technology and manufacturing technology can be expected to improve efficiency and reduce costs.
- sunlight energy is about 1Z3 due to reflection, absorption, and scattering of atmospheric water vapor molecules, gas molecules, dust, and clouds. Efficiency is good because there is nothing to block in outer space.
- the problem would be manufacturing technology to build a vast solar power space base in the space under development, safety management technology, and investment decisions.
- the sixth object of the present invention is to deal with the problem of the explosive growth trend of the world population, the problem of world food, the problem of improving the living standard in undeveloped areas, the problem of improving the level of education, and countermeasures.
- the present invention seeks to find a solution from the viewpoint of the present invention for a crisis problem that is expected to become more and more serious in the future.
- the supply of electric power will enable developed countries to obtain information through electrical equipment such as televisions, and will enable wide-area, unified education through radio waves.
- electrical equipment can function to improve education and living standards on a wide scale, even in undeveloped areas, to almost the average level.
- the seventh object of the present invention is to minimize storms such as typhoons and hurricanes by artificially controlling the development of power, deteriorating the stage of occurrence, and changing the course, and minimizing damage to human society. It is to limit. Damage to current coastal cities and towns and villages, especially to structures such as marine airports, artificial islands, and long bridges, and marine cities and marine traffic such as maritime traffic that will increasingly need in the future. The goal is to reduce damage to development and ensure safety. a. Typhoons occur in tropical waters and move north as they evolve. Even a typhoon alone produces 20 to 40 typhoons a year, 4 to 5 of which land and become large Cause serious damage.
- Developed typhoon is several orders of magnitude greater in the order of 10 26 ergs. Even today's science and technology can't make it disappear, it's just observation, forecasting, and preparing for the weather. Or leave it to nature to wait for it to pass.
- the control measure in this case is to form a shade of sunlight (cold) by deploying a base system group,
- a propulsion unit that moves and places the above device in outer space above the tropical sea area
- a control unit that places a solar shading part in response to time changes on a cloudless sea surface
- a solar shading part is achieved by a combination of the following elements:
- the eighth object of the present invention is to provide a new paper To be applied and utilized in other areas of earth development and space development.
- the ninth object of the present invention is to clarify the purpose and necessity of development from the beginning of the development, and to have at least the right idea of the development of the present invention.
- FIG. 3 is a perspective view showing an embodiment of the protection device of the present invention.
- F is a power generating body, and the power generating unit F1 and the current collecting unit F8 are configured to be housed in a power generating plate box F7.
- the belt-shaped power generation unit F1 has a power generation extension frame F3 attached to the tip, and under the control of the power generation control unit F5, it is wound by the power generation drive unit F4 and housed in the power generation plate box F7 .
- the power generation unit F1 includes a photovoltaic plate F2 that generates power by receiving sunlight, and a thermoelectric plate F3 that generates power by using solar heat.
- the photovoltaic plate F2 is composed of, for example, an amorphous silicon solar cell.
- Amorphous silicon has various features compared to silicon single crystals, and is suitable for use in solar cells that are extended and installed in outer space. Specifically, all of the following are physical properties suitable for the photovoltaic power generation plate F2.
- Substrate material is inexpensive. (Stainless steel, alloy, resin, etc.)
- B is a transformer, a power storage unit B1 for storing power generated by the power generation unit F1 and collected by the power collection unit F8, and a power distribution unit for transmitting power to each plate and distributing the power for propulsion and control.
- C is a propulsion body, which comprises: an ejection section C1 provided at a necessary portion of each body; and a propulsion control section C2 for adjusting the ejection direction, ejection time, and deployment position of the ejection section C1. .
- a propulsion control section C2 for adjusting the ejection direction, ejection time, and deployment position of the ejection section C1. .
- it is configured to adjust the deployment position, spacing, and attitude of each base system '.
- D is a controller, which receives the weather data from the Earth Terminal Y and the Earth Meteorological Agency Z, the communication unit D1 for transmitting and receiving command radio waves from the Earth Controller X, and receives the weather data and finger radio waves and stores them in advance. And a computer D2 that analyzes the main model for the set target, the experimental data, the corrected model, etc., and outputs comparative data and adjustment items.
- E is a light-shielding body, which is a light-shielding unit E1 that shields sunlight to a specific region on the earth, and a light-shielding control unit that controls and adjusts the position, length, inclination, and the like of the light-shielding unit according to a command from the controller D. And E5.
- the light shielding portion E1 is a thin plate and is wound in a roll shape.
- the material must be one that does not deteriorate with ultraviolet rays, that it can be manufactured with a large area and large size, and that a material with high mechanical strength and corrosion resistance can be obtained.
- Nayo A material that meets such requirements is an amorphous alloy. Amorphous alloys generally have high hardness and tensile strength, are high-strength, tough, and have extremely high corrosion resistance. Also, it is convenient to mass produce amorphous alloys by the quenching method.
- the produced product may be wound on a roll and then extended, or may be configured to extend into outer space at the production speed.
- a thin plate with a thickness of 0.5 to 2.0 mm can be extended to a length of 5 to 20 kra if it is wound around a 3 to 4 m diameter mouth. it can. It is desirable that the base body V ⁇ plate box J7 be configured to be as light as possible, and to shield light over long distances and wide areas.
- the light shielding unit E1 is wound by a light shielding driving unit E4 and is controlled by a light shielding control unit E5. Since the light-shielding portion E1 is a thin plate, a light-shielding extension frame E3 is attached to the end thereof, and the extension and retraction length is adjusted by a control command of the light-shielding control portion E5. (Only necessary adjustments)
- the light shield E may be configured to also have the function of the power generator F.
- an amorphous amorphous film may be provided on a substrate made of an amorphous alloy, and an amorphous semiconductor may be provided thereon.
- Amorphous semiconductors have the features that they can be formed on inexpensive substrates, that they can easily be made larger, and that they can be formed at lower temperatures.
- I is a connecting body, which is made of lightweight wire with high tensile strength, etc., connects multiple base bodies V, and has the function of extending and storing the plate.
- An uneven band 18 is formed on the outer surface of the connector I, which has the effect of leading extension and storage.
- the light shield E may be configured to also have the function of the reflector G. That is, if one surface of the light-shielding portion E1 is formed as a mirror surface, it is possible to irradiate a specific area on the earth with reflected light of the sun. Paper
- the reflector G is configured to be controlled by the reflection control unit G5 according to a command from the controller D or automatically according to the angle or position of sunlight.
- the reflector G may be equipped together with a light shield E7 equipped with a light shield E. Further, it may be provided separately from the light shield E and dedicated to the reflection function.
- the reflector G is set so that the natural light irradiating part adjacent to the sunlight shaded part E e by the light shield E is irradiated with the reflected light.
- the difference between the atmosphere where the natural light and reflected light are positive and the shaded area of the sun is more remarkable, for example, it appears as the temperature difference between the atmosphere in both parts.
- the reflector G needs to be a flat surface without unevenness or distortion.
- both sides should be supported on the connecting body I, for example by narrow grooves, and the whole should be formed as a wide and long flat plate.
- the reflecting portion G1 When the reflecting portion G1 is formed in a rectangle of an appropriate length, its outer peripheral surface is reinforced by a reinforcing frame J2, and both side edges of the reinforcing frame J2 are supported by the connecting body I.
- the tilt angle is supported by the reflection drive unit G4, and the tilt angle is adjusted by the drive unit J4 via the reflection control unit G5. Since the angle of the sun's rays changes from moment to moment, it is necessary to program the computer D2 of the control body D so that the reflected light is directed to the target area.
- the reflection control unit G5 operates according to the command.
- FIG. 4 is a sectional view showing an embodiment of the protection device of the present invention.
- a generator manufacturing machine J F and a reflector manufacturing machine J G are installed side by side in the base body V.
- the power generation unit F1 and the reflection unit G1 are overlapped and attached to each other, and wound around the plate box J7.
- the joint body I may be provided with both side edges so as to be integrated as one body when extended between the ground bodies V.
- the light shielding body manufacturing machine JE and the reflector manufacturing machine JG may be used in combination.
- the reflecting portion G1 may be provided with an additional step of polishing the back surface of the light shielding portion E1 so as to be a mirror surface.
- FIG. 5 is a diagram showing an embodiment of the plate unit JU of the protection device of the present invention.
- a power generation unit F1 such as a photovoltaic power generation plate is provided on the upper surface of the plate box J7.
- a propulsion unit J6 is provided, and contains a control unit J5, a drive unit J4, and a plate J1 wound in a roll.
- the plate part J1 may be individually wound with the light shielding part E1, the power generation part Fl, and the reflection part G1. These may be integrally laminated in advance and wound in a roll shape.
- the extension and winding of the plate J are performed by the rotation of the drive unit J4, and the drive unit J4 is controlled by the control unit J5.
- the control unit J5 can automatically control the terminal D3 connected to the computer D2 of the controller D
- the control is performed by the automatic control of only the control unit J5.
- the driving section J4 is controlled while maintaining the tension of each plate J. In the state after extension, it is controlled automatically while maintaining an appropriate tension and measuring so as not to cause excessive loosening or bending.
- the control unit J5 operates when the thrust and ejection direction of the propulsion unit J6 are adjusted by automatic control and command control.
- the control unit J5 is configured so that the winding, posture, and tension of the plate unit JU are all automatically adjusted as much as possible.
- multiple plate units JU are installed between the paired base bodies V. New paper If possible, make sure that they are aligned in a straight line as much as possible, and that each plate does not become loose or twisted.
- a program configured to operate each propulsion unit J6 and each drive unit J4 while measuring the position, posture, and tension is stored in the control unit J5.
- the power generation unit F1 is composed of a photovoltaic power generation plate F2 that receives solar light to generate solar power, and a thermoelectric generation plate F3 that senses heat in space to generate thermal power. I have.
- a thermoelectric generation plate F3 may be provided on the back surface of the photovoltaic generation plate F2.
- a connecting member 12 is wound in a roll shape in both empty portions of the plate body J.
- the connection member 12 is configured to be controlled by the connection drive unit 14 and the connection control unit I5.
- the rolled state of the plate unit JU is almost the same even if there are differences.
- a derivative H wound in a roll shape on both ends of the connector I is further housed.
- the derivative H is driven by an induction driving unit H4, and the induction driving unit H4 is controlled by an induction control unit H5.
- the connector I and the derivative H may be housed in a connector box 17 or an induction box H7 different from the board box J7. It may be attached to both ends, or the upper and lower ends of the plate box J7.
- the connecting box 17 and the guide box H7 may be attached to the side surface of the base body V.
- FIG. 7 is a plan view showing the construction order of one embodiment of the base system.
- a pair of base bodies V 1 and V 2 are installed facing each other in outer space at a certain distance.
- the distance is within the length of each plate J, that is, the length of the connecting member 12 and the guide string H2. If it is longer than that length, the propulsion unit C is operated and the position and attitude are controlled while communicating with the control unit D wirelessly.
- new paper The derivative H is fired from the plate unit JU.
- the derivative H may be propelled by a unique rocket propellant like a small rocket by injection of the guiding propulsion unit H6.
- the guidance propulsion unit H6 may be provided with a photovoltaic power generation plate F2 to obtain thrust with the power.
- the derivative H is connected to the other base body V, and the pair of base bodies V and V are connected by the guiding string H2.
- the guide string H2 is wound around the other base body V, and both base bodies V and V are deployed by the connecting body I connected to the end of the guide string H2. Since it is difficult for the connecting member 12 to be lightweight, it is considered that the connecting member 12 is surely connected by the pulling force of the guiding string H2 or the rotating power of the extension motor.
- the connecting member 12 In the zero-gravity state, if the connection resistance of the connector I is small, the derivative H may be omitted and the connection may be made directly by the thrust of the ejection part C1.
- the connecting material 12 is soft, the reinforcing frame J2 may be necessary at regular intervals.
- each plate J is extended from the base body V on one side to the base body V on the other side.
- the extension frame J3 of each plate body J advances and retreats at a constant speed by using the connecting members 12 as guides by the rotation of the driving portions J4 at both ends thereof.
- the extension motor is provided with an uneven wheel J8, and the connecting material 12 is formed of an uneven belt 18 of synthetic resin. They are engaged like a new driving section of a bicycle.
- the plate unit J U may be attached to both of the pair of base bodies V, V, and the extension frame J3 may advance from both sides, and the plate body J may be extended and joined in the middle.
- the leading action of the extension frame J3 may be replaced by a plate unit JU. If the uneven wheel J8 is attached to both end surfaces of the plate unit JU, the plate body J in the plate unit JU is extended by itself. The plate J of the plate unit JU of the base body V is also extended and connected in the middle. The space between a pair of base bodies V, V It is connected by two pairs of plate units JU, JU.
- the drive unit J4 of the plate unit J U and the advancement frame J3 are also controlled by the control unit J5, so that the plate body J can be extended or stored at a speed four times as fast without applying excessive tension.
- the derivative H and the connecting body I May be omitted.
- a pair or a plurality of pairs of base bodies V are integrally connected by a plurality of plate units J U to assemble the base system U.
- FIG. 8 is a plan view showing an embodiment of the base system group W of the protection apparatus of the present invention.
- the base system U may be connected horizontally, vertically, or wide.
- a single base system U or base systems U connected in a plurality of types are gathered at one place and arranged at regular intervals to form a base shape group W of a required shape.
- Each base system U is moved and deployed in accordance with the command of the controller D so that a rectangular solar shading area that almost matches the target of the specific area on the earth is formed. Even after being deployed, it moves and deforms based on information from the Earth Control System X and the Earth Terminal Y.
- FIG. 1 a state in which the protection device of the present invention is actually used will be described with reference to the attached drawings.
- FIG. 9 is a side view showing one state of use of the protection device of the present invention.
- Water vapor evaporates from the surface of the water wet area Q when irradiated with natural sunlight.
- the water wet area Q is the ocean, lake, river, land after rainfall, swamp, and the like.
- a cloud is formed in the sky due to the evaporated water vapor, and this cloud moves and causes a rainfall phenomenon.
- the cloud does not flow in the inland arid region R beyond the adjacent water area QR, and the water Steam does not reach. Therefore, there is no rainfall and there is no decrease in temperature due to heat of vaporization, so the temperature rises and the area becomes dry.
- the base group W is arranged in outer space so that the solar shade Ee is projected. If the sky is completely covered, it will be dark even in the daytime and hinder livelihoods, so gaps will be formed. However, it will be adjusted by propulsion unit C so that it will be regularly spaced, and will be deployed so that the required number and area will be required by the control unit D. Since the solar rays are not necessarily irradiated from directly above, the solar cells are installed so that the shaded area E e is formed in a predetermined dry area R.
- the temperature of the atmosphere drops because there is no sunlight irradiation. Therefore, in the cold air P, the air descends from the sky, and the boundary line S of the slope is formed so as to enter below the adjacent warm air 0. Since the water marsh Q and the adjacent water body QR are illuminated with sunlight, the water vapor rises with the atmosphere to form warm air 0 having clouds and to be disposed above the cold air P.
- the boundary S becomes the front S that promotes the rainfall phenomenon.
- the area of the sun-shaded area E e that composes the cold air P required for rainfall is determined by experiments and calculations.
- the model for rainfall caused by experiments and calculations is input and stored in the computer D2.
- the model, the actual weather data, and the new rainfall target are input to the computer D2.
- analysis and analysis are performed under the optimal conditions programmed in advance. This information controls and operates each body at the Space Station as command information of Controller D.
- the rainfall is set for the required amount of time, and the area of the shading body E is controlled so that flooding does not occur in the dry area R. Or, move to the next new dry area RR adjacent to dry area R (or with a certain area interval). Move to S3 ⁇ 4 All instructions are to be issued by Controller D.
- the new dry area after the movement R R is shaded, so the temperature drops and new cold air PP is formed.
- Arid area R after the migration is after rainfall, so it forms a new wet area.
- a lot of water vapor remains in the atmosphere, the ground is wet, and many places store water. When sunlight is radiated there, the water vapor evaporates in the same manner as in the water / humidity area Q, and new warm air 00 with high humidity is formed.
- a new front S S which is a slope
- the new warm air 00 rises along the new front S S, and adiabatically expands and adiabatically cools above the air to solidify and form clouds.
- the arid area R is a harm that can gradually rain down to the inland area. If the number of transfers is repeated, for example, if the amount of rainfall decreases in desert areas, etc., it may be repeated again after a certain period of time.
- the number and area of the base system U require a large number, which is initially economically burdensome.
- the water in the first wet area Q is sucked up only by using the energy of the sun's rays and the evaporating action of the water by changing and moving the sun's irradiation part and the sun's shaded part.
- the water vapor forms clouds, and uses the cloud's buoyancy, wind power, and rainfall phenomena to spray water to dry areas R such as deserts.
- the reflection part G1 of the reflector G is set in the water wet areas Q and QQ so as to promote the evaporating action of water from the water wet areas Q and QQ and effectively form clouds.
- Reflected light may be applied in addition to natural sunlight.
- the figure on the left of FIG. 9 shows one embodiment.
- the direction of the wind should be checked in advance from weather data etc. so that the clouds can move easily.
- the wind blows toward the inland part of the arid region R, preferably on the day of the wind.
- FIG. 10 shows an embodiment of the present invention.
- the figure is a plan view showing an example of application to a specific area in Japan that experienced a long-term lack of water without rainfall in the summer.
- Fig. 11 is a perspective view showing an example applied to the northern part of the African continent, which is known as a vast desert on the earth, and to the Arabian continent.
- Fig. 12 is a plan view showing an example applied to arid regions around the world.
- the present invention has not yet attempted calculations or experiments. This is based on the inference of the inventor. Therefore, it is needless to say that the area of the base system group W (the area of the shaded area E e) and the number of repetitions also need to be corrected. I have to wait. Deserts have very different natural features, such as altitude, topography, and geology, depending on the region. Deserts are often sunny, have large daily temperature ranges, and are characterized by overheating and strong winds on the surface. The precipitation is small and the evaporable amount is remarkably large. During the day, there is almost no vegetation and it is overheated, recording 78 ° C in the Sahara Desert. At night, there is a lot of fine weather, so radiative cooling causes intense dew and sometimes frost.
- the causes of dry desert formation are atmospheric pressure fluctuations on the earth, wind system effects, and distance from the ocean.
- the atmosphere rising near the equator in the tropics due to intense solar energy rains above the adiabatic cooling due to adiabatic expansion above the sky then releases water vapor by releasing water vapor and falls.
- the climate of a certain part of the earth is expressed by characteristic weather phenomena that appear over a long period of time.
- (C) Climatic conditions are particularly important in small climates where the condition of ground cover, such as natural vegetation such as forests and grasslands, is smaller than the medium climate. Therefore, the global climate distribution at each grid point and the coefficient of each ground cover on the climate are input to the computer.
- a typhoon is an eddy of air with a maximum wind speed of 17 m / s or more in tropical cyclones. Although it is a limited area, it causes great damage.
- Fig. 21 shows the main typhoon movement routes that hit Japan, and they were heavily damaged. In the history of meteorological observation alone, it killed more than about 5,000 people. Initially, more than 1,000 people count six.
- Figure 22 shows the distribution of tropical cyclones similar to typhoons. Cyclones, which occur in the Indian Ocean and the Arabian Sea, often killed tens of thousands of people. On average 80 or more worldwide: L00 outbreaks occur in one year, and typhoons account for about 30%.
- Typhoons are huge swirls with strong winds, and the energy of the wind is 7 ,; 3 ⁇ 4 On average, it is estimated to be about 100,000 times that of the Hiroshima Atomic Bomb and about 100 times that of the Great Kanto Earthquake. Since typhoons are natural phenomena, they will repeat in the future, and there is a good possibility that many great damages in the past can occur in the future.
- Typhoons are subject to large pressure drops and wind pressures that cause storm surges.
- Global warming for which measures are being taken, includes the double crisis-expansion factors of rising sea levels due to seawater expansion and ice melting, and expanding the scale of typhoons.
- FIG. 25 is a diagram showing one embodiment.
- clouds generated in low-latitude regions around the equator especially upper clouds of cumulonimbus clouds, cirrus clouds, high clouds, cirrus clouds, and silk cumulus clouds, exceed 10 km and some reach 18 km. It reaches the stratosphere beyond the troposphere.
- the stratosphere has extremely low concentrations of air and water vapor. Therefore, sunlight is intense because there are few things that block sunlight, and UV irradiation is extremely strong.
- the solar irradiating energy immediately below the equator raises the atmosphere in the troposphere, causing atmospheric recirculation.
- the remaining 90% of the troposphere, which is more than 700,000 tons, is convectively riding on the atmospheric return phenomenon.
- the flon entering the stratosphere with the updraft is purple Generates chlorine when irradiated by outside line 05. This one chlorine reacts with about 10,000 ozone molecules one after another, destroying the ozone layer and forming an ozone hole. Only 10% of the total ozone layer was destroyed, and the remaining 90% is still stored in the troposphere even if its use is banned. It is said that it will continue to be destroyed for about a century.
- the ozone layer acts as a barrier to block the short-wavelength ultraviolet light 05 from flowing down to the ground, its evils are as described in the item (3) above.
- water vapor 01 in the dilute stratosphere is also irradiated with ultraviolet rays 05 and is decomposed into oxygen molecules and hydrogen molecules, and a small amount of ozone is generated from the oxygen molecules 02.
- the generated ozone 03 is transported along the transport stream from the equator to the polar surface in the stratosphere.
- the base system group W is provided in outer space, and the reflected light of the sun by the reflector G of the base system group W is applied to the upper end 04 of the cloud that has reached the stratosphere. .
- the direct light of the sun and the added heat are applied, so that the evaporation of water vapor is promoted.
- the evaporated water vapor 01 is decomposed into oxygen molecules and hydrogen molecules by irradiation of ultraviolet rays 05.
- oxygen molecules are further irradiated with ultraviolet rays and decomposed into oxygen atoms, and the oxygen atoms combine with other oxygen molecules 02 to generate ozone 03. Since the temperature of the light column with the direct light and the reflected light added is high, water vapor, oxygen, and ozone rise rapidly, and photosynthesis is promoted. The amount of ozone in the stratosphere increases, and the damaged ozone layer can be repaired. The generated ozone ascends above the equator and is transported by airflow over the poles. The reflected light column may irradiate the upper end of the same cloud. Control of reflector G and base group W New sensitivity Is performed using a computer D2.
- the black powder 06 may be diffused to the upper end 04 of the cloud so as to easily absorb the irradiation heat of sunlight.
- the black powder 06 may be diffused in the stratosphere by the airplane diffuser 07.
- the status and data of the production process of ozone in the stratosphere can be obtained by communicating with the observation object 08 equipped with a measuring instrument.
- Observation body 08 can move in the stratosphere with a propeller, and observes the top end of the cloud 04 and the irradiation state of the reflected light with a TV camera or the like, and communicates that information with Controller D.
- the reflector G is controlled based on the information.
- the ozone hole can be repaired by diffusing oxygen directly into the stratosphere if it is small.
- oxygen liquid oxygen filled in an oxygen tank or the like may be directly ejected from the nozzle of the diffuser 07.
- Oxygen tanks may be spread from the ground by loading on airplanes, but large amounts can be obtained by using oxygen collected by the comet base system MU or star base system LU and the returning space shuttle. it can.
- Nitrogen compounds contained in fossil fuels become nitric oxide and carbon dioxide during combustion.
- nitrogen and oxygen in the air combine to form nitric oxide and nitrogen dioxide. This is oxidized in the air to nitric acid which is very soluble in raindrops.
- the contaminants before generation or the generated sulfuric acid or nitric acid by the above-mentioned generation control measures increase the amount of rainfall due to the promotion of rainfall due to cold and warm air caused by the shaded sunlight, or at a certain short period.
- Acid cleaning measures such as cleaning the plants, soil, lakes and marshes before damage occurs.
- the first step is to investigate areas where fossil fuels are burned in large quantities and areas where acid rain damage is frequent, analyze weather data, and clearly identify the locations where the above effects occur. If necessary, conduct airborne observations with balloons, analyze the data with a computer, and cooperate with the air traffic controller.
- the mitigation system based on the base system is programmed and modified sequentially.
- FIG. 19 is a perspective view showing an embodiment in which the base system and the base system group of the present invention are applied to the moon and terrestrial planets, particularly to Mars and Venus.
- the Earth Base System (group) deployed in outer space around the Earth is a geosynchronous orbit base SW deployed in a geosynchronous orbit, a polar orbit base KW deployed in a polar orbit, near the earth, especially between the earth and the sun.
- Orbital base TW which is deployed on the orbit of the orbit.
- the geostationary orbit base SW launches above the equator (36000 km above the ground) and sets the orbit inclination to 0 °.
- Geosynchronous Orbit Station SW is a revolution cycle and a new Earth 3 ⁇ 4 13 ⁇ 4 The rotation period becomes equal, and the base system is in a stationary position in the same place from the ground.
- This track requires the opening and closing of the light shielding plate or the difference in the rotation speed depending on the rotation position of the track, but can also be used for nighttime illumination.
- the polar orbit base KW when the launched base system is set at an orbit inclination of about 100 °, enters a sun-synchronous subpolar orbit and visits the same point on the ground twice a day at the same time. This orbit can irradiate cold regions with the reflected light of sunlight, and can also shield the polar regions.
- the orbital base TW is a revolving orbit on the sun's side near the point of gravity (Lagrang point) of gravity between the earth and the sun.
- the orbit is almost stationary from the whole earth, and its orbital speed may be equivalent to that of the earth. Since the Earth's rotation is the reverse of the direction of the orbit, if it revolves at about the same cycle as the Earth's, it can form a shade of sunlight in a specific area of the earth. It is possible to form solar shading in a specific area on the earth without making a large difference in the revolving speed.
- the opening and closing of the light shield, posture and tilt angle do not require large fluctuations and are stable. The posture and inclination angle of the power generator hardly need to be changed.
- the tilt angle may be adjusted slightly by the amount of fluctuation that accompanies the rotation of the earth.
- Microphone mouthwave receiving bases may be installed at multiple locations on the earth so that they can be received regardless of night or day.
- a system is set up for each continent and the power transmission unit is adjusted slightly in order to transmit power. May be used.
- FIG. 26 is a plan view showing one embodiment of the manufacturing apparatus
- FIG. 27 is a sectional view thereof.
- PU is a production system, which is composed of a material body P1, a manufactured body P2, an assembly P3, and a plate box P4, which are connected to each other. If only a small part of the whole is to be manufactured for the mock test at an early stage, a new paper embedded in the rocket body on the ground is required. It is also possible to launch the object and remove the side wall, head, etc. in outer space and combine them laterally.
- the material body P1 stores the material box Pla in the inner space and operates as an automatic warehouse for automatically supplying the material to the body P2 in accordance with the production speed and type command. All are programmed in the material calculator program of the control unit Plb, and run by the power unit Pi c.
- the material box Pla is supplied from a supply unit P5 of a rocket that reciprocates between the material bases.
- Producing member P2 is coupled to the side of the body of material P1, and accommodates manufacturing machine P2 a, control unit P2b, a power unit P2 c.
- machine making machine P2 a to automatically manufacture the plate portion J1 e.g. Amorufu ⁇ scan automatic continuous process the step of connecting the shielding portion E1 equipped with a power generating portion F1 of Amorufasu semiconductor on current collector F8 alloy Do with.
- the control of the process is set up in the program of the manufacturing computer and follows the instructions of the expatriates as needed.
- the back surface of the light-shielding plate E2 may be automatically polished and also serve as a reflector G close to a mirror surface.
- the assembly P3 includes an assembling machine P3a that automatically assembles the manufactured plate portion J1 and the like, a control unit P3b that controls the assembling machine P3a, and a power unit P3c that operates under the control of the control unit P3b. And. Program to complete the assembly in connection with the automatic continuous process of the manufacturing body P2, and input it to the assembly computer of the control unit P3b.
- Plate box body P4 is control unit that inputs the plate ⁇ P4 a for accommodating-assembled plate and the like, automatically the operation to program the automatic retract and for Ya plate ⁇ P4 a
- P4b and a power unit P4c that supplies power for operation are housed.
- An example of the basic construction method and procedure is introduced below.
- climate control enhances the Earth's ability as a dwelling place for humans and other living things.
- Mars is not in an environment where living things can exist due to the air's leanness, oxygen and water leanness, and temperature differences between day and night. Water exists as ice on the polar cap, and permafrost also exists underground over several tens of meters thick. Mars is described as evaporating the polar cap as a means of producing the atmosphere. For example, an asteroid hits the polar cap and instantaneously evaporates tens of cubic kilometers of ice.
- Phobos and Deimos are condrite-like objects with an average density twice that of water and low gravity. Probably rich in water and rich in resources. Phobos orbits at an altitude of about 6000 km with a diameter of about 20 to 28 km, and Deimos orbits at an altitude of about 20150 km with a diameter of about 10 to 16 m.
- the escape speed is advantageously about 40 km / h.
- the construction of the base system group in this case may be carried out based on Mars satellites before and after the full-scale development of Mars.
- Phobos is being drawn to Mars, and Deimos is moving away. It is said that prospects for resource collection technology, orbit correction technology, and Martian polar cap evaporation technology can be obtained at the current state of the art. After collecting resources, miniaturized Phobos is used for polar cap collision, and Deimos has a way to guide it to near-earth orbit in the future. Mining ⁇ While refining, metallurgical It can be used for the construction of a base system group, the construction of a large solar collector concave mirror, and the construction of a satellite base.
- a base system cluster for Mars may be constructed on this satellite so that it can be separated.
- Deimos orbits about four-fifths a day in the same direction as Mars, and resembles a geosynchronous satellite.
- a large amount of reflectors will be installed in the base system group, and it will be used for replenishing solar energy to the surface of Mars, melting the polar cap, and supplying sunlight to the night side. Since the phobos is low in altitude, if the base system group is constructed to be separable, it will be equipped with a large number of generators and shaders to supply power to the surface of Mars and to form shaded areas of sunlight. it can.
- the hole after mining is a great temporary base for expatriates.
- the temperature is sufficient with the heat of mining. It is also a perfect space observatory for asteroids, Mars, Jupiter, and all other objects.
- a comet base system can also be manufactured here, which is convenient for observation, exploration, and orbit correction.
- Mars satellites and asteroids mining Sei ⁇ first anti painful for large solar collector, solar (thermal) generators, mining machines, a new m brought fine ⁇ from the earth side It is to be. It is desirable that all of these be configured as fully automatic and semi-automatic as possible. Once set, even if there are no expatriates, it can automatically track the sun, collect heat, generate power, mine, and automatically refine. If you go to the perihelion of Mars by rocket, check or expand and return to the earth, you can do it during normal Mars exploration. It is necessary to first manufacture an automatic machine with excellent accuracy, durability and ability on the earth.
- the aggregated light from the heat-collecting reflector is directly or indirectly applied to the ore of the star, and then supplemented by electric power from a solar (heat) generator to refine it. It is difficult for the heat of the aggregated light of the reflector to be stored to a temperature high enough to melt the ore when exposed to space. Therefore, the aggregated light of the sun irradiated on the ore passes through the light-collecting hole through which only the aggregated light passes, and the surrounding area is covered with a thermal storage film that prevents heat from dissipating to outer space. desirable. Stars do not have high thermal conductivity and extremely large heat capacity. If the irradiation is repeated for half a day at a temperature high enough to melt, the surrounding area will gradually increase in temperature to a considerable depth.
- this conduction heat is used in various ways. At a suitable temperature range, there are a heating room necessary for the life of expatriates, a small space factory, and a greenhouse for growing plants essential for space life. It is possible to provide an insulated space that is protected from meteorites and cosmic rays by simply utilizing the holes after mining.C Next, the equipment that supplies the materials necessary to manufacture the base system population of the present invention An embodiment will be described with reference to FIG.
- FIGS. 28 (a) to (c) are cross-sectional views of an embodiment in which a material supply device is provided on a star L such as the Mars satellite Dimos or an asteroid.
- a material supply device is provided on a star L such as the Mars satellite Dimos or an asteroid.
- the Martian satellite dimos orbits around Mars 4/5 a day, so the direction of sunlight changes by about 360 X 4/5 degrees a day. Since a considerable amount of time and energy is required for mining or refining, here we will explain how to use the coherent reflected heat of sunlight and the power of the generator by sunlight (heat).
- L1 is a mining machine
- L2 is a refining machine, both of which are loaded on a moving table on the rail 3 and can move under the control of the control unit L4.
- L5 is a frame that controls the attitude of the coherent reflector L6 together with the controller L4.
- L7 is a heat storage film that is installed on the surface of the star L and has a light-collecting hole L7a that allows light to pass through. The light-collecting hole L7a may be protruded from a movable base so as to be movable in accordance with the attitude of the reflector L6.
- L8 is a heater provided near the condenser hole L7a. The power of generator F assists the cohesive reflection heat and melts the ore for mining and refining.
- Mining machine L1, refining machine L2, and control unit L4 operate with the power of generator F.
- the ore is easily melted by the condensed light of the sun and the heat of the generated power.
- Hydrogen and oxygen transported from the Earth or purified and electrolyzed by the star may be supplementarily heated.
- a leveling plate may be used for the rail.
- FIG. 29 is a diagram showing one embodiment thereof.
- a large concave mirror aggregates a new ⁇
- the comet nucleus is melted by the reflected light, and that it relies on the recoil that evaporates and gushes with solar heat.
- the area around the comet nucleus erupted from gas and dust, and the amount of sunlight greatly decreased, and it was difficult to install a concave mirror and control it.
- the comet base system MU selects the planet that should be closest to the comet MC and deploys it in its circular orbit in advance.
- the movements of the comet base system MU, the corrector Ml, and the collector M2 are all controlled by the computer.
- the orbit and mass of comet MC are also calculated by computer, and the distance to comet base system MU, launch time and direction of corrector Ml are calculated and controlled. Since the orbit of Comet MC is a quadratic curve, it is necessary to reduce the speed in the traveling direction to correct the orbit around the sun. Therefore, a modified body Ml is launched from the base system MU that rotates on the closest planet or satellite located in the direction of travel. Alternatively, escape from the orbit and follow the comet, approach and pursue the medulla at a certain distance, and launch the modified Ml and the collector M2.
- the modified body Ml reaches the surface of comet MC and melts part of the core wall to eject gas and dust.
- the reaction decelerates and corrects the orbit.
- the position to be reached and the degree of melting are all controlled by a computer.
- the control is programmed, and the orbit correction and resource collection of comets are standardized as a system.
- the protective device of the present invention comprises a power generator, a transformer, a propeller, a controller, and a light shield, and forms a base system group.
- a base group with an array, quantity, and attitude that controls the climate in the specific area and the surrounding area was provided by the solar shading part and the sun shading part without using the light shield. Therefore, only when it is inevitable that the climate, which is the form of nature that could not be achieved by human power, can be partially controlled by adjusting the irradiation energy of sunlight. May be controllable.
- the desert is a vast expanse of plains and sand, so it is easy to level and construct. Rainfall and forests can be secured even in tropical and subtropical areas. In summer, if base groups are appropriately scattered and deployed as needed, summer heat can be used as a substitute for coolers.
- the base system group is equipped with a power generator that generates electricity using the heat of sunlight or outer space, and a transformer that transmits microwaves to the earth, power can be supplied to the future city from space. . Even if nuclear fusion becomes practical, it will take years for it to be deployed elsewhere. If deployed in large numbers, it will promote global warming.
- the base system group is deployed to form solar shading on the sea surface around a typhoon or the like, the power of the typhoon can be suppressed.
- the base system includes a plurality of base bodies, a plurality of light-shielding bodies and power generating bodies, and a plurality of combined bodies, the plurality of base systems are arranged facing each other in outer space.
- the base bodies are connected by a connector to form a frame.
- FB paper with an extension frame and a light-shielding body and power generator that can be extended and stored.
- the framed space is equipped with its light-shielding body and power generator. Therefore, for example, a frame consisting of a ladder-like base body and a joint body can be formed in a belt shape by the command of the controller, and can be restored to a ladder shape.
- the base system is equipped with a plurality of base bodies, a combined body that can be combined and separated by the operation of the control body, and a combined body equipped with a storage unit for the light shield, a control unit, and an extension frame. So that they are formed in a grid.
- the generator, light shield, and reflector are configured to be freely extended and stored. Therefore, the base system is configured as a wide flat plate whose power generation capacity area, solar shading area and reflected light area can be adjusted according to the command of the control body.
- the base system group a plurality of base bodies, ladder base systems, and grid base systems are arranged at a commanded interval and array in a substantially plane. Therefore, the base system group is deployed so that it can form any desired shape of sunlight shading, such as a rectangular (rectangular) shape, a substantially disk shape, a substantially toroidal shape, or a specific shape as a whole.
- a plurality of base systems, ladder base systems, and grid base systems are arranged at commanded intervals and arrays in multiple planes having different arrangement heights. Therefore, if there is a danger of an accident such as a collision or collision during flight, the adjacent base systems can be evacuated by increasing the deployment height by the required amount.
- the connecting members are provided in the form of streaks, and if the light shields, reflectors, and power generators are formed with a width common to the spacing between the streaks, the necessary plates can be installed.
- the extension frame and the propulsion section of the derivative, connected body, and plate body are automatically controlled by each control section, and can be controlled by the command of the control body.
- the base body, the connecting body, and the plate unit are equipped with a joint with a common structure that automatically connects and separates the necessary end faces. Therefore, a number of combinations can be constructed in any form required by the directive of the controller.
- the base system group can quickly and accurately perform the two-way reshuffle / reshuffle at any time during movement and operation.
- a very long-distance continuous plate (base system) is constructed just by passing a plate box in the middle of a small number of base bodies. For example, if a pair of base bodies are arranged facing each other in a long-distance space, and a plurality of plate boxes are arranged between them, a base system is constructed, and if a plurality of base systems are arranged horizontally, the number of base bodies can be reduced. A large number of base-based groups are constructed in a small number.
- the plate unit When the plate unit is formed with a drawer window on both the left and right front surfaces and a substantially rectangular parallelepiped plate box without a partition in the middle, the same kind of plate unit is drawn out and extended from the left and right drawer windows.
- a double extension type Different types of boards can be equipped in the same direction and can be stacked and pulled out from one drawer window to form a heavy extension type.
- New ⁇ ⁇ As described above, the double extension type is configured in a long strip shape, and the double extension type can have two or three types of plate portions as described above. Therefore, although it is a kind of plate box, it has the effect that it can be used for multiple applications as needed, and has the advantage of commonality.
- the plate unit comes into contact with the required two types of plate boxes and temporarily joins them together at the same speed.
- the necessary plate portions are arbitrarily overlapped to provide a heavy extension type plate portion having two or three types of functions.
- Each plate unit can be used for a single application, and it can provide the necessary heavy extension type only by temporary connection, which has the advantage of wide commonality.
- the plate unit can be adjusted by a control unit with a built-in program, which is a means for automatically adjusting the arrangement and posture of the plate box.
- the arrangement, connection, and separation between the base body and the board unit can be controlled automatically or by command from the control unit in the program.
- the ⁇ 3 ⁇ 4 base system is equipped with a base body at the tip of the flight direction, and connects a plurality of plate boxes and plates in a belt shape at the rear, and blows the plate like a comet to fly in orbit. Therefore, if the position and arrangement of the base body at the tip is controlled by the control body and the propulsion body, the rear strip-shaped plate will fly following the base body and the position and arrangement will be controlled. That is, the propulsion unit and the control unit can be omitted or simplified in the middle of the plate body.
- the strip-shaped plate is constructed in a very simple form. In particular, in the case of a light shield, if it is formed of a flexible plate and a wide plate, a function of shielding light over a large area can be exhibited.
- the rocket body was directly substituted for the base body, a plate was provided between the plate boxes on the side of the rocket body, and an electronic computer for controlling the arrangement and arrangement was provided. .
- New paper Therefore, the rocket itself can be used as it is, and a plate or the like can be automatically installed in a space in space.
- the base body can be used immediately as a substitute for the base system in space, eliminating the need to assemble it in outer space, etc., and is particularly efficient for initial experiments.
- the base system includes a material body for automatically operating the material box, a product for automatically manufacturing a product such as a plate portion from the material of the material box, an assembly for automatically assembling the product, and the assembly.
- a fully (semi-) automated manufacturing system that integrates a plate box that automatically stores finished products such as assembled plates and other small blocks.
- Multiple base systems are deployed one after another in space, facing the production system.
- This production system is a fully (semi-) automatic machine with sufficient reliability and durability by repeating trial production, experimentation, correction and inspection on the earth. It can be operated remotely from the base system or from the earth control system, or operated with only a small number of expatriates.
- This production system is utilized not only for the production of the base system group of the present invention but also for the promotion of general space development of the moon, Mars, satellites, asteroids, and the like. Furthermore, it can be applied to the construction of a building with solar cells in various places on the earth. Since it can be manufactured in rural areas, remote areas, and developing countries, it has the effect of comprehensively converting fossil fuels to solar cells.
- the elongated box-shaped material body, the manufactured body, the assembly, and the small block of the plate box body are arranged side by side and connected in the horizontal direction. Each end is joined (arranged) to form a production group.
- the material supply is connected to the side of the material body in a detachable manner.
- Light-shielding body requiring a large area •
- the plate of the power generator is manufactured in a continuous process, efficiently and in a short period of time by a group of manufacturing systems connected in a horizontal direction.
- New paper Each part of the production system and each machine can provide reliable products if they are produced, assembled, and inspected on the ground. After being housed in the rocket body and launched, a part of the side wall can be removed and joined by a flat surface for immediate connection.
- the whole integrated production system can be configured by simple operation or automatically.
- the base system group forms a sufficiently large shade of sunlight in an arid area, the irradiation of sunlight is cut off and energy is not supplied.
- the shaded areas of the sun will form a chill because the night without clouds will be continuous and the intense radiant cooling will be continuous.
- the energy of sunlight is supplied to the water and wet area adjacent to the dry area as before, the temperature of the atmosphere rises during the day, and the water vapor evaporates to form humid warm air.
- cold and warm air are formed adjacent to each other even in an arid region.
- An oblique front is formed at the boundary between the two air masses with different properties. The warm air rises above the cold along a diagonal front.
- Base group has a large area, but uses solar energy New paper It can be performed in a weightless space by controlling the computer. Therefore, the construction of the initial base requires cost, but it has the effect of saving labor and economical maintenance cost compared to the total area of the arid area.
- the operation of the equipment can be made repeatable and permanent, and the use of dry areas can be expected.
- Greening a vast desert can warm the surrounding climate, curb the action of the engine that recirculates the air, and mitigate global warming. There is an effect that can be.
- the control body has a program that calculates the value of the weather element at grid points divided between the latitude and longitude lines of the earth at regular intervals and obtains a forecast map at each time.
- the weather phenomena near the grid points of the earth can be calculated and estimated from various data. That is, 'We can forecast global weather throughout the year.
- climate change when only a part of the sunshade wall is provided, and actually perform climate control. After climate control in a specific area, it is possible to move to another new specific area to control the climate. In other words, a small number of base system groups can partially change the global climate control in order, so that climate control in many regions becomes possible.
- the traffic control system is equipped with a program that automatically obtains time-varying forecast maps of weather elements around the area where peculiar weather is predicted, etc. If shading of sunlight is formed in advance, or in the area that causes it, disasters due to peculiar weather can be suppressed or mitigated beforehand. By incorporating the movement of solar shading throughout the year into the scheduled schedule, climate control in other specific areas New paper At the same time, it is estimated that the damage caused by peculiar weather can be relieved beforehand. Extreme weather has had a significant impact on life around the world. Droughts, heat waves, El Nino, floods, cold waves, monsoon anomalies. Big heat waves are devastating to agriculture, droughts are driving desertification, heavy rains and floods are causing many disasters, cold waves are causing cold damage and victims, and others.
- the data of general circulation, large climate, medium climate, and ocean around the area where abnormal weather occurs are also input.
- the Meteorological Agency, terminals, and the Earth Control Department in each region are all networked and communicated with the communication unit of the control body.
- Pests such as locusts can be outbreaks in tropical and surrounding areas where intense heat continues, causing serious damage to agricultural crops. Communicate information to this area New desire In response, a base system group will be deployed to form a shaded area of sunlight. This area produces extreme cold in conjunction with daily radiant cooling, and can be expected to suppress and eliminate pest proliferation in a few days. Preparation and labor are small, and there is no need to worry about contamination with pesticides and other chemicals.
- the above-mentioned base system group which is normally deployed for climate control in each region, is deployed so as to form a shade of sunlight in polar regions and surrounding ice blocks. It is presumed that the formation of cold air in the warmer polar regions would prevent the melting of ice blocks and stop a significant rise in sea level.
- Base station populations are deployed so that solar shading is formed on the sea surface around the tropics where typhoons frequently occur before the typhoon season occurs. It is possible to suppress seawater temperature rise on the surface of the tropic sea area.
- the condition of the typhoon is that the temperature of the updraft and seawater is 27 ° C or more. If the above conditions are suppressed by blocking the sunlight, the occurrence of the typhoon itself can be reduced.
- Typhoons during development and at their peak require large amounts of energy to be generated and a large number of base systems, and thus a large area of base system groups. It is estimated that it takes several days to attenuate even if the conditions obtained by considerable experiments and calculations are applied. However, the above-mentioned base system constellation requires that the incoming air is warm,
- the above deployment can prevent damage to houses and buildings due to strong winds, damage to crops, damage to agricultural crops, river swelling, pond water, landslides, cliffs, storm surges, etc. due to heavy rain every year and in the future.
- the effect is great for Japan and related countries, even called Ginza-dori, the typhoon.
- Marine airports under construction, maritime cities, marine development in the near future, etc. will not be overly restricted and will be more secure. Every year, tens of thousands of victims of cyclones are saved.
- the seawater temperature and surrounding air can be expected to drop significantly.
- sunlight is cut off, and in places without clouds, cold air is formed by continuous radiant cooling day and night, and several cooling vessels such as tankers are scattered side by side. Since the temperature of the air and seawater flowing into the center of the typhoon drops considerably, the effect of attenuating the typhoon's power is quick.
- the atmospheric return position can be moved in the latitude direction.
- the atmosphere containing a large amount of water vapor rises due to the energy of sunlight, and the water vapor is released above the sky and transferred to higher latitudes after rainfall.
- a dry, re-falling atmosphere is created by spraying the ground and drying the ground one after another, leaving the drying area inappropriately dry to bring precipitation. Therefore, if the position of the dry downdraft, that is, the position of the air return is shifted, the rainfall area and the dry area will move.
- the set time and area are programmed and controlled by a computer. Since the area is limited, there is a limit to the distance that can be shifted, but the effect of partial change can be expected.
- the location of the new wetland is formed close to the arid area by the large base system group. If the dry area is a desert, the surrounding warm air has a high temperature during the daytime, but the shaded area of the sun continues to cool radiantly day and night, causing the cold to form during a few days. is there. That is, sex new paper An oblique front is formed at the boundary between two adjacent atmospheres of different quality. In the surrounding warm air, the rain-filled area of the new water wets the atmosphere filled with water vapor, the daytime temperature rises, and it crosses the front and reaches the sky.
- the base system group is equipped with a control body and a propulsion unit that are deployed at the same period as the Earth in orbits where the gravitational forces of the Earth and the Sun are balanced, and that control the formation of solar shading in specific areas of the Earth. are doing. Therefore, solar shading is formed in a specific area of the earth's hemisphere in the daytime without the need for propulsion fluctuations or attitude fluctuations at large locations of the base system group.
- the sun shaded area can be formed in a specific area only by adjusting the orbital speed slightly by operating the propulsion body.
- the attitude control of the power generation unit and power transmission unit does not require large fluctuations.
- the sun-shaded area is formed all day in both hemispheres of the earth on the sun-irradiated side, the area equivalent to the solar energy is effective against global warming.
- solar shading can be formed with slight control not only near the equator but also in the polar regions and the north and south hemispheres.
- the base system group consists of a program (light-shielding control means) that automatically controls the light-shielding body and the propulsion body according to the time change (change in the position of rotation and revolution), and the power transmission element in accordance with the data of the position change by the rotation and revolution.
- a program light-shielding control means
- New ⁇ acetes that automatically controls A program (power transmission control means) is provided.
- the base system group is equipped with a power generation unit on the upper surface of the light-shielding body and a reflector on the lower surface. Therefore, in a geosynchronous orbit that rotates around the earth, solar (thermal) power generation is performed during the daytime, Can be supplied. In tropical belts, the shaded area of the sun moves in the equatorial direction and can supply cool breeze temporarily.
- the reflecting part on the lower surface is also a semi-mirror surface with good reflectivity that also serves as a power generating part, power can be supplied even at night.
- the base system group is equipped with a control unit that detects the deviation from the geosynchronous orbit and controls the jetting unit and the center-of-gravity adjustment unit for correction, it can continue the operation of orbiting the geosynchronous orbit.
- the base system group changes and adjusts the operating speed of the entire base system group by the propulsion body so that the square solar shading part is projected on a specific area of the earth because the earth is revolving and rotating. Necessary and difficult. Therefore, an electronic computer with a built-in program that adjusts the light shields near both ends of the horizontal base system group and the entire base system and controls the tilt command is installed.
- Tilt operation does not require large energy loss such as inertia, and is mobile. It is a target.
- the base system group irradiates the reflected light of sunlight around the upper edge of the upper cloud formed in the stratosphere from the troposphere, and the evaporation of water vapor from the upper cloud by the total solar energy of the reflected light and the direct light Have been deployed to be promoted.
- the evaporated water vapor is decomposed into oxygen molecules and hydrogen molecules by reflected light and ultraviolet light. Oxygen molecules are broken down into two oxygen atoms, which combine with other oxygen molecules to produce ozone.
- the process and amount of these formations are measured by a measuring sphere suspended in the stratosphere, and the measured data is input to the computer of the control body.
- the computer program is configured so that a base group of the optimal arrangement and quantity (reflected light amount) in which the photochemical reaction from the evaporation of water vapor to the generation of ozone is effectively performed is provided, the program is automatically executed. Is controlled in a controlled manner. If the generation of ozone is facilitated by the new water vapor, the ozone hole partially destroyed by the front gas can be repaired.
- the upper clouds around the upper end of the upper clouds are formed at a height of 3000 to 8000 m in high-latitude regions and 6000 to 18000 m in low-latitude regions.
- the ozone layer in the current stratosphere is formed by photosynthesis by primitive algae billions of years ago, and after releasing a large amount of oxygen, oxygen that has risen to the stratosphere is formed by photochemical reactions caused by ultraviolet rays of the sun. is there.
- the rise of oxygen from the ground cannot be expected or will not be in time for the restoration of the ozone layer.
- Surface water evaporates due to solar energy and is widely scattered carrying water vapor from the troposphere to the stratosphere in the form of meteorological clouds. Therefore, it is considered that there is no better way to utilize it. You. In the end, solar energy transports water vapor over the stratosphere, over 16,000 m. Utilizing the potential energy, solar energy is further added to promote the evaporation and rise of water vapor, and the above photochemical reaction is performed to promote the generation of ozone.
- the ozone layer is repaired by using the solar energy fourfold.
- the ozone layer is repaired by irradiating multiple rays of reflected light from multiple reflectors when the evaporation of water vapor is insufficient due to the direct sunlight from the sun and only one reflected light around the top of the upper cloud. To the upper clouds. The energy of sunlight is multiplied multiple times, and the effect of the promotion can be enhanced.
- the reflected light column receives all solar energy in the stratosphere that overlaps with the direct sunlight, the temperature rises and the amount of UV radiation increases. Therefore, since the movement of the reflected light column air rising becomes large, there is an action of promoting the rise of the evaporated water vapor, and the photochemical reaction from the water vapor to the ozone is promoted several times. Since the reflected light column is reflected light, it does not have the same direction as the direct light, but new paper The arrangement, quantity, and attitude of the reflectors are controlled so that they are perpendicular (ie, directly above) the surface of the ground. This is because the function of increasing water vapor is promoted and is easily diffused into the stratosphere.
- a program is pre-configured so that it can be controlled automatically and input to a computer.
- the base system group is controlled by a computer in conjunction with a telescope that observes the position of the upper cloud and the state of evaporation. It can follow the movement of upper clouds and changes in time.
- Clouds are nearly white and generally not easy to absorb sunlight.
- the black powder diffuses, the solar energy in that area is easily absorbed, the temperature rises, and evaporation is accelerated. If these conditions are measured by an object and controlled by a computer, it can be controlled automatically even if the space is far from the stratosphere.
- the base system group has various weather control possibilities due to the formation of the shaded portion of sunlight, and it is presumed that the base group is applied to alleviate acid rain.
- a front line is formed between the cold and warm air, which has the function of acid washing, which promotes rainfall and flushes before damage occurs to plants, soil, rivers and lakes.
- the fundamental solution is to equip the base system group with a large number of power generators in mass production, and to transmit power to the earth by microphone microphone to convert from fossil fuels to electricity by solar energy.
- New paper placed near the orbit of the arc of the quadratic curve near the sun
- a vent hole is formed in the peripheral wall of the comet nucleus, and the condensed gas and dust inside the nucleus evaporates and is ejected by solar heat.
- the recoil emitted by this volatile substance can modify the orbit of the quadratic curve operated by the comet into a circular orbit.
- the base system operates following a comet in orbit at a certain distance, launches a collector, reaches the surface of the comet nucleus, and collects comet resources.
- the comet nucleus is a block of ice of the same origin as the proto nebula that generated the solar system, of which 86% is hydrogen, oxygen, and also includes methane and ammonia. Therefore, if refined by electrolysis or the like, hydrogen, oxygen, water, and some kinds of organic substances, which are basic resources for promoting space development, can be obtained.
- O Power sources for space activities in outer space near the Earth especially liquid hydrogen and liquid oxygen as rocket fuels, are important energy sources.
- ⁇ ⁇ Ozone holes can be repaired by diffusing oxygen into the stratosphere when the space shuttle returns.
- the corrected object will be launched from the planet closest to the comet's orbit, a satellite or a comet base system pre-deployed in its orbit, so the position of the surface of the comet nucleus to be reached must be set accurately. can do. Correction New paper If the body is equipped with various measuring instruments, it can reliably communicate with the earth via the comet base system. Also, taking into account the speed of the comet, the fuel and speed of the modified body can be saved. The orbit of the comet, the orbit of the closest planet, the launch conditions of the modified body, etc. can all be calculated by a computer. These are all within the technical scope that can be achieved with the current or near future space technology, computer control technology, robot technology, and the like. Once completed and programmed, it is almost applicable to subsequent comets.
- the comet base system can escape from the orbit of planets and satellites and move close to the comet. Therefore, while maintaining a certain distance from the comet nucleus, for example, the equilibrium point of gravity with the sun by automatic control, the operation of the spinal cord will allow observation of comets, launch of additional modified bodies, launch of collectors, management, and collection. Power supply to the body by photovoltaic power can be controlled automatically, or remotely controlled or commanded. Since it can follow the circular orbit around the sun, it is very convenient for comet resource extraction and temporary expatriates. Resource treasures are extremely economical, with the potential to be in the hands of civilization through technological development and solar energy.
- the solar energy generated by the power generator and the reflecting part of the concave mirror condense the solar energy at a high density and produce new paper. You can concentrate on local areas.
- Planetary This aggregation energy, asteroids, ore melt-mining star surface such as a satellite, can be Sei ⁇ and 7 Yoru Q
- the protection device of the present invention is equipped with a light shield, a power generator, and a reflector to control the climate of the earth as described above.
- the protection device may be applied to other planets and satellites in the future. is there. The reasons are: o On other planets, the first stage, energy sources have to rely on solar (thermal) power. However, there are day and night, and dust is stored. Therefore, reflectors and power generators are difficult to use on the surface of the planet, so we have to rely on microwave power transmission from a group of base systems deployed in outer space.
- FIG. 1 shows the world population and its accompanying trends and forecasts.
- Fig. 2 shows a typical global crisis and its causal relationship.
- Fig. 3 shows the protective device of the present invention.
- FIG. 4 is a diagram showing one embodiment of a base body of the above equipment
- FIG. 5 is a cross-sectional view showing one embodiment of the plate unit of the above device
- FIG. 6 is a cross-sectional view showing another embodiment of the plate unit of the above device
- FIG. 7 is a plan view showing another embodiment of the base system of the above device
- FIG. 8 is a plan view showing an embodiment of a base system group of the above equipment.
- FIG. 9 is a cross-sectional view showing one embodiment of a use state of the above device.
- FIG. 10 is a plan view showing an embodiment of a use state of the above device.
- FIG. 11 is a perspective view showing one embodiment of a use state of the above device.
- FIG. 12 is a plan view showing another embodiment of the use state of the above-mentioned apparatus
- FIG. 13 is a plan view showing one embodiment of a base system group of the above-mentioned apparatus
- FIG. 15 is a sectional view showing another embodiment of the base system of the above equipment.
- FIG. 16 is a perspective view showing another embodiment of the base system of the above equipment.
- FIG. 17 is a perspective view showing another embodiment of the base system of the above equipment.
- FIG. 18 is a cross-sectional view of another embodiment of the base system of the above equipment.
- FIG. 19 is a cross-sectional view showing a use state of the above device.
- FIG. 20 is a cross-sectional view showing a use state of the above device
- Fig. 21 shows the path of the past typhoon
- Fig. 22 is a plan view showing the occurrence and course of typhoons around the world
- FIG. 23 is a diagram of an embodiment in which the protective device of the present invention is used for controlling a typhoon
- FIG. 24 is a plan view of another embodiment in which the above device is used for controlling a typhoon
- FIG. 26 is a plan view showing an embodiment of an apparatus for manufacturing the above-described apparatus.
- FIG. 27 is a cross-sectional view showing an embodiment of an apparatus for manufacturing the above-mentioned apparatus.
- FIG. 29 is a cross-sectional view showing one embodiment of the device
- FIG. 29 is a plan view showing one embodiment of the device for manufacturing the same device
- FIG. 30 is a diagram showing past trends and future predictions of the world population. is there.
- Base group ... geostation orbit base
- B2--Distribution unit C2--Propulsion control unit, D2--Computer
- ⁇ j S- ⁇ * «--A-T7 r T ⁇ -L, ⁇ ⁇ -rxf
- the protective device according to the present invention can improve the tendency of deterioration of the global environment, partially create nature and expand the living environment of humans, and can further sustain humans. It has the potential to improve Earth's capabilities and is suitable for further in-depth consideration of many of the critical issues remaining after the 21st century.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
This invention relates to a protective apparatus which is disposed in the space so as to face the earth, projects a solar ray shadow portion to the specific area of the earth, controls the weather and generates nature artificially and locally by solar ray power generation and by a computer and protects the earth environment. The problems of the earth environment such as warming of the earth, destruction of the ozone layer, acid rain, forest degradation, desertification, food problems, and the like have become increasingly severe resulting from the drastic increase in the consumption of the fossil fuel as a result of the drastic increase in the world population in this century. These problems, if left uncorrected, will become more critical and global in and after the 21th century. Therefore, these problems are analyzed and solved by means which controls locally the radiation of the solar rays exerting the greatest influences on the earth environment and effecting the weather control, and the like.
Description
明 Light
防 技 術 分 Defense technology
この発明は、 地球の自然環境に最も大きな影響を及ぼす太陽の照 射光を部分的, 人工的に制御し、 気候制御して地球環境の保護を図 る防護装置に関し、 ネッ トワークされた電子計算機によって環境の 改善用に最適の条件をプログラム化し制御する防御装置に関する。 The present invention relates to a protection device that partially or artificially controls the sun's irradiating light that has the greatest influence on the natural environment of the earth and that controls the climate to protect the global environment. The present invention relates to a defense device that programs and controls optimal conditions for improving the environment.
田 Rice field
背 景 技 術 Background technology
20世紀はあと 10年を残すのみとなり、 私達は 21世紀を迎えること になる。 ここで 20世紀という時代を人類の歴史上より顧みることは、 単に 1つの世紀の区切りの時代ということのみに止まらず極めて重 要な意義を有することになつた。 恐らく この数十年の世界の対応如 何が、 未来に向けて永く生存するべき人類の運命を左右しかねない 程、 重要な意味を持つと予測される事態に至つてきた。 環境問題の悪化の傾向が深刻さを増し、 全地球規模の問題となり つつあるからである。 まず、 20世紀に於ける種々の変化の実態を客観的に把握しておく 必要がある。 第 1図は 19, 20世紀に於ける主な変化の実態と、 21世 紀以後にこの傾向が続く場合の予測を示す図である。 この図から 19 世紀中以後 : 20世紀初以後、 の主な増加を比べると、 世界人口の増 加は 8倍 : 3倍、 1人当り国民総生産の伸びは 50倍 : 21倍、 エネル ギ一消費量は 80倍 : 15倍、 に各々爆発的に伸びた。 特に、 世界のェ 新たな用 ^
業生産は 20世紀に 100倍以上増加した。 The 20th century will only have 10 years left, and we will enter the 21st century. Here, looking back on the 20th century from the perspective of human history has a very important significance, not just in the age of one century. Perhaps the response of the world in recent decades has been predicted to be significant enough to affect the fate of mankind to survive long into the future. This is because the tendency of environmental problems to worsen is increasing and becoming a global problem. First, it is necessary to objectively grasp the actual conditions of various changes in the 20th century. Fig. 1 shows the actual state of major changes in the 19th and 20th centuries and the prediction of the case where this trend continues after the 21st century. From this figure, after the middle of the 19th century: since the beginning of the 20th century, the world population has grown 8 to 3 times, the per capita gross domestic product has increased 50 to 21 times, and energy has increased. One consumption increased explosively to 80 times: 15 times. In particular, new uses in the world ^ Industrial production increased more than 100-fold in the 20th century.
このような著る しい伸びは、 私達, 人間社会を豊かにした。 人間 の行動範囲は飛躍的に広がり、 能力は伸長し、 文明は高度に発達し た。 Such remarkable growth has enriched us and human society. The range of human action has expanded dramatically, abilities have expanded, and civilization has developed to a high degree.
具体的には、 自動車, 二輪車, 船舶, 鉄道車両, 航空機等の交通 運輸関係、 電子機器製品, 家庭電化製品, 情報機器製品, 等を初め とする電機製品関係、 住宅, 工場, 公共建造物等の建設業界関係、 の各々の工業生産は流通ゃサービス等への波及効果も生んで、 驚異 的に増大した。 革命的なまでに産業は発達し、 人間の生活様式は大 きく変化し、 人間の活動力は大き く伸びた。 Specifically, transportation related to automobiles, motorcycles, ships, railway vehicles, aircraft, etc., related to electrical products including electronic equipment products, home appliances, information equipment products, etc., houses, factories, public buildings, etc. In the construction industry, the industrial production of each has increased phenomenally, with a ripple effect on distribution and services. Revolutionary industry has developed, human lifestyles have changed dramatically, and human activity has greatly increased.
しかし、 自然は人間を受け容れる環境の側からみれば、 単純に考 えても (人口増加 X人間の活動力増大 X年代総和) の掛け算以上の 影響を直接受けることになつてしまう。 現代の文明は、 豊かな社会 を求めて成長と開発に努めてきた私達人類の汗の結晶であり、 活動 の軌跡である。 確かに私達は、 前世紀までよりはるかに発達した高 度の文明を持ち、 遺産として残すことができる。 However, from the viewpoint of the environment that accepts humans, nature is directly affected by more than the multiplication of (population increase x human activity increase x total age). Modern civilization is the crystallization of sweat and the trajectory of our activities, which have been striving for growth and development in search of a prosperous society. Certainly, we have a much more advanced civilization than the last century and we can preserve it as a legacy.
しかしそれら著しい活動の副産物として、 地球環境の悪化という 大きな試練を受けることになつている。 中には、 人間の居住パター ンを変える程の、 さらに人類の生存や生態系にも脅威を与える程の、 大きな影響を及ぼすと予測されている。 生命にとつて絶好の条件を 備えた現地球は、 太陽からの距離, 従って太陽光線による照射エネ ルギーや, 地球の大きさ, 自転 · 磁力, 大陸 · 海の大きさ, 等で形 成され、 大気と水に支えられ、 数億年の植物等の活動によって奇跡 的に生み出された。 生物にとってかけがえのない唯一の惑星であり、 宇宙のオアシスと言われている。 微妙なバランスと超長年月のうえ に作り出されたものであるから、 バラ ンスが崩れると壊れ易い 1つ 新た な 用紘
の球体であるともみられる。自然破壊さえ無ければ、忍耐強く,少々 の打撃にも負けない寡黙な肝臓にも似た包容力のある一面を備えた 存在でもある。 However, as a by-product of these remarkable activities, they are faced with the great challenge of deteriorating the global environment. Some are predicted to have significant effects, altering human habitat patterns, and threatening human survival and ecosystems. A local sphere with excellent conditions for life is formed by the distance from the sun, the energy irradiated by the sun's rays, the size of the earth, the rotation and magnetic force, the size of the continent and the sea, etc. It was miraculously created by hundreds of millions of years of plant and other activities, supported by air and water. It is the only irreplaceable planet for living things and is said to be an oasis of the universe. It is made after a delicate balance and over a long period of time, so it is easy to break when the balance collapses. It is also considered to be a sphere. As long as there is no destruction of nature, he is patient and has a tolerable aspect that resembles a silent liver that can withstand a few blows.
地球は人間の存在から視れば圧倒的な巨大さと, うねり と, タイ ムスパンの長い活動と, をもつ大自然の 1 つである。 従って、 ある 方向へ傾斜し始めたら回復困難な非可逆的な性質をもっている。 The Earth is one of the great nature that has overwhelming enormousness, swell, and long-time-span activity when viewed from human beings. Therefore, it has an irreversible property that is difficult to recover if it starts to tilt in a certain direction.
自然には緩衝能力があり、 長期にわたって被害を表面に出さない。 しかし、 ある限界を越えると急に状況が悪化するものがある。 それ が明らかになつたときは、 すでに手遅れだという傾向が強い。 Nature has a buffering capacity and does not show damage for a long time. However, there are things that suddenly get worse when certain limits are exceeded. When it becomes clear, there is a strong tendency to be too late.
地球環境の諸問題は、 今ならまだどうにか取組みが間に合うかも 知れないが、 時期を失せぬ中に根本的対策をとらなければ難しくな るとされている。 The problems of the global environment may still be managed in time, but it is said that they will become difficult unless fundamental measures are taken without losing time.
そこで、 Therefore,
a . 将来の危機的課題とされている各項目について、 その根拠と なる事実を調査する。 現在までのデーターを整理 · 分析し、 将 来の予測, 傾向, 結末を究め把握する。 各項目間で因果関係に あるものは、 それらを整理し, まとめ, 原因を究明する。 a. Investigate the facts of each of the items identified as critical issues in the future. Organize and analyze data up to the present to understand future predictions, trends, and endings. If there is a causal relationship between the items, sort them, summarize them, and investigate the cause.
b . 上記に基づいて応急的な対処の方策を列挙, 検討する。 b. Based on the above, enumerate and consider emergency measures.
それらを実現するうえの長短や利益を推定して応急システム とする。 実施に移せるものは移し、 結果やデータ一を整理する。 c . き然界の構造, 自然現象のしくみの基本を把握し、 人間の活 動の影響と、 人間社会や技術の方向性 · あるべき姿と、 を考察 する。 An emergency system will be established by estimating the advantages and disadvantages of realizing them. Move what can be implemented and organize the results and data. c. Understand the structure of the Kineki world and the basics of natural phenomena, and consider the effects of human activities and the direction and ideals of human society and technology.
根本的な解決策を探究し、 実現するうえの長短や効益を推定 して、 根本システムを漸次固める。 研究や実験ゃシュ ミ レー ショ ンを重ね技術的な可能性を高める。 危機的課題の推移を見 新た な ¾
守りながら、 必要に迫られれば実施 · 判断の資料とする。 Find a fundamental solution, estimate the pros and cons of achieving it, and gradually solidify the underlying system. Through research and experiment simulations, the technical potential is increased. Looking at changes in crisis issues New ¾ If necessary, use it as a reference for making decisions.
本発明は、 上述のような現状及び将来に於いて憂慮される深刻な 諸課題に鑑み、 上述の趣旨に沿って成されたものである。 具体的に は、 下記の各々の目的を達成せんとするものである。 The present invention has been made in light of the above-mentioned circumstances and in view of the serious problems that are of concern in the future. Specifically, each of the following objectives will be achieved.
(1) 本発明の第 1の目的は、 地球上の各地域における気候制御であ る。 特に降雨促進によって、 将来の水資源不足, 砂漠化, 森林破 壌等の諸課題の解決策として活用することである。 (1) A first object of the present invention is climate control in each region on the earth. In particular, by promoting rainfall, it should be used as a solution to various issues such as future shortage of water resources, desertification and deforestation.
a . 地球の気候現象は、 主として太陽光線の放射熱, 該熱による 大気圏の対流現象, 地球の自転, 海流, 山脈, 極地の雪氷, 植 生, 等の要因によって起るものである。 これらは、 いずれも人 間の力では如何にも成し得ない自然の姿そのものである。 昔か ら気候変動は天の力とされ、 人間はこれを予測するに止り、 気 候に従って生活してきた。 a. Global climate phenomena are mainly caused by radiant heat of the sun's rays, convection of the atmosphere caused by the heat, rotation of the earth, ocean currents, mountain ranges, snow and ice in polar regions, vegetation, and other factors. These are all natural forms that cannot be achieved by human power. Since ancient times, climate change has been a heavenly power, and humans have only predicted this and have lived according to the weather.
人類に必要な水量は、 人口が未だ少かった昔では自然の雨量 のみで充分であった。 人口増加が急激になるに従って、 人口水 路ゃダムを造り水道を敷設して日常生活の不便を解消してきた。 In the old days when the population was still small, natural rainfall alone was sufficient for humankind. As the population has grown rapidly, artificial waterways and dams have been constructed and water has been laid to eliminate the inconvenience of everyday life.
ところが最近では、 ダムや水道が完備に近く気候温暖で雨量 の適当な日本に於いてさえ、 特定地域や季節によつては水不足 の現象が起っている。 水不足は節水の限りを尽く してもなお、 給水車を配して危機を脱した実例がある。 また、 水不足による 農作物不良は、 今, 昔とも変ることなく打撃は大きい。 However, recently, even in Japan, where dams and water supply are almost complete and climate is warm and rainfall is appropriate, there is a phenomenon of water shortage depending on specific regions and seasons. In some cases, water shortages have been used to save water, but water tankers have been used to escape the crisis. In addition, poor crops due to lack of water are still hit hard, as before.
熱帯地方では太陽光の照射が強いうえ雨期が短いから、 飢饉 がしばしば起り人間の生存さえ危く している。 熱帯, 亜熱帯地 方の乾燥地域、 例えば地球の陸地の 1/3を占めるといわれる砂 漠, 半砂漠に於いては、 年間を通じて雨量は極めて少ぃ。 太陽 光の照射は生命の生存を寄せつけない程に強烈である。
植物は生育が難しく, 農業は不可能で、 乾燥の地方では食料 不足が起ることが多い。 水不足のうえ食料不足となるから打撃 は大きい。 In the tropics, strong sunlight and short rainy seasons often lead to famines and even endanger human survival. In tropical and subtropical arid areas, such as deserts and semi-deserts that occupy one-third of the earth's land area, rainfall is very low throughout the year. The irradiation of the sun is so intense that it keeps life alive. Plants are difficult to grow, agriculture is not possible, and food shortages often occur in dry regions. The impact is severe because there is a shortage of water and a shortage of food.
b . 水は、 人類にとって最も貴重な資源の 1つであり、 全ての生 物の基本的構成要素である。 地球上の気候も左右している。 地 球上にある水資源の大部分は海洋 (97. 4 % ) にあり、 残りは氷 や雪, 地下水という形で私達から隔離されている。 私達が実際 に使える水資源は、 水総量の 0. 01 %程度でしかない。 人口, ェ 業, 農業の増加や発展に伴い、 水不足は益々進むだろう。 現に、 世界各地には、 湖の水位の低下, 河川に於ける係争, 地下水の 枯渴が問題になつている。 b. Water is one of humanity's most valuable resources and a fundamental component of all living things. The climate on earth is also controlling. Most of the earth's water resources are in the ocean (97.4%), and the rest is isolated from us in the form of ice, snow and groundwater. The water resources we can actually use are only 0.01% of the total water. Water shortages will increase as populations, industries and agriculture increase and develop. Indeed, low water levels in lakes, conflicts in rivers, and depletion of groundwater have become problems around the world.
世界中の多くの国が直面している問題の 1つに、 確保すべき 水供給量と水質の問題がある。 また、 地球の温暖化と気候変化 を引き起す人間活動は、 地球規模の水循環に影響を及ぼすこと になる。 One of the problems facing many countries around the world is the availability and quality of water to secure. Human activities that cause global warming and climate change will also affect the global water cycle.
(2) 本発明の第 2の目的は、 地球の温暖化を抑制し、 将来の地球的 規模の危機的な諸課題を未然に解決する技術的手段, 方策を探索 (2) The second object of the present invention is to search for technical means and measures for suppressing global warming and solving various future critical issues on a global scale.
~3 る と i>る。 ~ 3
a . 大気の温度は、 太陽からの太陽放射エネルギーと、 地球表面 から出ていく赤外線と、 大気や雲から宇宙空間へ出ていく赤外 線と、 の収支のバラ ンスで決まる。 ここで、 地表から出ていく 赤外線は大気中の二酸化炭素, メ タン, フロ ン等のガスに吸収 されるので、 宇宙へ放出される熱が大気を暖め、 温室のガラス の役目をする。 (温室効果) a. The temperature of the atmosphere is determined by the balance of the solar radiant energy from the sun, the infrared rays from the earth's surface, and the infrared rays from the atmosphere and clouds into space. Here, infrared rays that exit the surface of the earth are absorbed by gases such as carbon dioxide, methane, and fluorocarbons in the atmosphere, so the heat released into space warms the atmosphere and acts as a glass for the greenhouse. (Greenhouse effect)
特に、 二酸化炭素は化石燃料の使用急増によつて大気中の濃 度が産業革命時の約 25 %増加し、 21世紀後半には現在の 100 % In particular, carbon dioxide has increased its atmospheric concentration by about 25% during the Industrial Revolution due to the sharp increase in the use of fossil fuels.
^た な
増になると推定されている。 その結果、 平均気温は 1. 5〜4. 5度 C上昇し下記のような影響が予測されている。 ^^ It is estimated that it will increase. As a result, the average temperature rises by 1.5 to 4.5 degrees C, and the following effects are predicted.
O 海水の膨張や小氷河の融解により海水面は 20〜: LOO cm上昇 する。 O Due to seawater expansion and melting of small glaciers, the sea level rises by 20 to LOO cm.
O 臨海都市の一部は水没を避けられず、 護岸工事は大変なも のとなる。 O Some of the seaside cities are inevitably submerged, and revetment work will be difficult.
O 地中水分の蒸発による農地の荒廃, 砂漠化の拡大, 降雨の 変化が起る。 O Degradation of agricultural land, expansion of desertification, and changes in rainfall due to evaporation of underground water.
o 台風等の大型化, 異常気象, 生物の生態系の混乱が発生す る 0 o Large typhoons, extreme weather, and disruption of biological ecosystems occur.
わずか一世紀でこのように全世界に大きな悪影響を与える。 温暖化はその傾向が更に継続し、 長期にわたって徐々に進行す る。 温暖化と環境の変化は、 一担生じると回復困難で比可逆的 である。 20世紀に入って二酸化炭素の放出量は幾何級数的な増 加傾向を示し、 最近になる程、 増加の割合が大きい。 炭素に換 算してこの 200年間に 1850億 ト ン, 25年間に約 1000億 ト ン放出 されている。 海は二酸化炭素を吸収するが、 極めて長い時間を 必要と し、 数十年で数百億 ト ンも吸収するのは無理である。 従って、 化石燃料に頼る限り二酸化炭素は増える。 In just a century, this has a huge negative effect on the whole world. Global warming continues its trend, gradually progressing over the long term. Global warming and environmental changes are irreversible and irreversible if they occur only once. In the twentieth century, carbon dioxide emissions have shown an exponentially increasing trend, with the rate of increase increasing recently. In terms of carbon, 185 billion tons have been released in the last 200 years and about 100 billion tons in 25 years. The sea absorbs carbon dioxide, but it takes a very long time, and it is impossible to absorb tens of billion tons in decades. Therefore, carbon dioxide will increase as long as we rely on fossil fuels.
b . 以上のような危機的状況に直面し、 世界は目下対策に苦慮し ているのが実情である。 b. Faced with the above crisis situation, the world is currently struggling to take measures.
省エネルギー策については、 常に考えておくべき課題である ことは事実である。 日本は既に石油危機時に省エネに努めたが、 この時も年率 0. 5 %伸びた。 これ以上は相当の無理が必要であ る。 他の国は近代化指向の国が多く大変である。 省エネをすれ ば温暖化問題は大丈夫とは言えない、 とされている。 闭紙
石炭のように二酸化炭素の発生が大きいものは、 燃料転換が 検討されているが難しい問題を含む。 多くの国ではエネルギー 資源をほとんど石炭に頼っており、 早急な転換は無理である。 It is true that energy conservation is a matter that must always be considered. Japan already worked to conserve energy during the oil crisis, but it also grew by 0.5% per year. Any more is necessary. Many other countries are difficult to modernize. It is said that if energy conservation is taken, the problem of global warming is not safe. Paper Fuels that emit large amounts of carbon dioxide, such as coal, have a problem that fuel conversion is being considered but is difficult. Many countries rely on coal for most of their energy resources, so a quick turnaround is impossible.
炭酸ガスは世界で 200億ト ン毎年排出されるが、 これを回収 • カロ熱 · 力 [!圧 · 液化して海に捨てる方法は極めてコス ト高にな り、 部分的範囲に止る。 炭酸ガスの削減は、 20 %を 2000年まで にとの議案が出されているが、 大変な努力を必要とする。 15 % 削減目標でも世界経済は大打撃を受る。 Carbon dioxide is emitted every year by 20 billion tons worldwide, and it is recovered. Compressing and liquefying and dumping into the sea is extremely costly and involves only a partial area. It has been proposed to reduce carbon dioxide by 20% by 2000, but it requires a great deal of effort. The global economy will be hit hard even with a 15% reduction target.
植生による対策は、 有力ではあるが、 排出される二酸化炭素 が多過ぎ、 必要面積はオース トラ リ ャ大陸程度となる。 植樹で は追いつかない。 Vegetation countermeasures are promising, but they emit too much carbon dioxide and the required area is about the same as the Australian continent. Tree planting cannot catch up.
以上のことから、 基本的な戦略を問われているが無く苦慮し ている。 上記の対策を各々実施するには膨大なコス トがかかる。 From the above, the basic strategy has not been asked, but we are struggling. Implementing each of the above measures would be enormous.
二酸化炭素以外にも、 メ タン, フ ロ ン, 一酸化窒素など温室 効果を引き起こす物質が大気中に放出されている。 In addition to carbon dioxide, methane, fluorocarbons, nitric oxide and other substances that cause greenhouse effects are released into the atmosphere.
c . いま、過去 1万年間の地球の気温をみると、地球は 「温暖期」 と 「寒冷期」 とをく り返し現在に至っている。 約 6000年前は最 も気温の高い高温の時代で、 現在より 2〜 3度高かった。 寒冷 期は世界各地で氷河が発生し、 平均気温は現在より 1度 C程、 低かった。 これら両期の平均気温の推移をみると、 現在との差 は 1〜 3度 Cである。 このような気温の変化は数百年〜 1000年 かけて起っている。 c. Looking at the Earth's temperature over the past 10,000 years, the Earth has repeatedly reached the warm and cold seasons. About 6,000 years ago, it was the hottest and hottest era, a few degrees higher than today. During the cold season, glaciers occurred around the world, and the average temperature was about 1 degree C lower than it is now. Looking at the transition of the average temperature in both of these periods, the difference from the present is 1-3 ° C. Such changes in temperature have occurred over hundreds to 1000 years.
大気中の二酸化炭素は 21世紀に 1800年以前(280 ppm )の 2倍 のレベルに達するとされているカ^ その温度は 3 ± 1. 5度 C と なる。 二酸化炭素による気温の上昇はわず力、 100年しか必要と していない。 しかも二酸化炭素は毎年確実に増加し続けている: Atmospheric carbon dioxide is expected to reach a level twice that of before 1800 (280 ppm) in the 21st century. Its temperature is 3 ± 1.5 degrees C. Carbon dioxide raises the temperature, but only needs 100 years. And carbon dioxide is steadily increasing every year:
新た な ffi紙
私達は経験したことのない高温の時代に入ろう としている。 21世紀の人間の生活や地球に何が起るかを種々の科学デー ターから推量し、 なるべく根本的な対策を探索することが極め て重要な課題となってきた。 New ffi paper We are entering a high-temperature era that we have never experienced. It has become a very important task to infer from the various scientific data what human life in the 21st century and what will happen to the earth, and to search for fundamental measures as much as possible.
d . さらに、 地球の温暖化の問題を遠い未来について考える。 地 球の誕生以来、 太陽の光度は 46億年間に数十%も増大したとさ れている。 太陽は核融合反応によって水素から変換されたへリ ゥムが多くなるから、 内部はより重くなり高温 · 高圧になる。 従って、 核融合反応の効率が高まり、 より多くのエネルギーを 発生するからである。 光度上昇率を少く とも 1 % 1億年とす る と、 あと 10億年に入射太陽光量は現在の 1.1倍に達する。 海 は蒸発して地球は金星のように海の'ない灼熱の惑星になると、 推測される。 二酸化炭素の増加が続けば、 格段に早い時期に上 記のようになる。 d. Furthermore, think about the issue of global warming in the distant future. Since the birth of the earth, the brightness of the sun has been increased by tens of percent over 4.6 billion years. The sun becomes heavier, converted from hydrogen by the fusion reaction, so the interior becomes heavier and hotter and higher pressure. Therefore, the efficiency of the fusion reaction increases, and more energy is generated. Assuming a rate of luminous intensity increase of at least 1% and 100 million years, the amount of incident solar light will reach 1.1 times the current amount in another 1 billion years. It is speculated that the sea will evaporate and the earth will become a burning planet with no sea like Venus. If carbon dioxide continues to increase, it will be much earlier.
このような超長期の未来を予測するまでもなく、 地球の温度 は自然のままに任せず、 何らかの手段で調整することが必要に なる。 地球の両極には多量の氷が存在し融解して海水位が上昇 する危険がある。 遮光体 ·反射体が有効なら、 遠未来の灼熱の 危機にも, 海水位の上昇にも, 数千年後に予定の周期で訪れる 氷河期の来襲にも救われることになる。 将来、 火星や金星の改 造にはさらに広大な遮光体 · 反射体が必要である。 それは本件 基地系集団より数十倍も広い面積である。 Needless to predict such an ultra-long-term future, the Earth's temperature will need to be adjusted by some means without leaving it as it is. There is a great deal of ice at both poles of the earth that can melt and raise sea levels. If shaders and reflectors are effective, they will be saved from the burning crisis of the distant future, rising sea levels, and the glacial invasion thousands of years later on a scheduled cycle. Future modifications to Mars and Venus will require even wider shades and reflectors. It is several tens of times larger than the base system group.
e . 次に、 陸地の 1/3を占める砂漠 , 半砂漠と、 熱帯雨林が地球 温暖化や保全に与える影響について考察する。 e. Next, consider the deserts and semi-deserts that occupy one-third of the land area, and the effects of tropical forests on global warming and conservation.
砂漠 · 半砂漠は、 雨量が極めて少いから草も木も育たず森林 になりえず、 植物の酸素供給, 炭酸ガス吸収能力を零にしてい
る。 熱帯雨林が、 地球の肺に相当する重要な機能を果たしてい ることとは対象的である。 Deserts · Semi-deserts have very little rainfall, so they cannot grow as trees without growing trees and trees, and have zero oxygen supply and carbon dioxide absorption capacity of plants. You. This is in contrast to the fact that tropical forests perform an important function equivalent to the lungs of the earth.
熱帯に限らず森林が少く、 人口増加が続く ことは開墾や木材 需要や薪集めの程度が大き くなるから森林破壊の影響が大き く なる。 上記の酸素供給, 炭酸ガス吸収能力を益々弱めるこ とに なる。 Not only in the tropics, but also with a small number of forests, and a continually growing population will increase the degree of land reclamation, timber demand and firewood gathering, which will have a greater impact on deforestation. The above-mentioned oxygen supply and carbon dioxide absorption capacity will be further reduced.
炭酸ガスの吸収能力が弱ることは、 炭酸ガスの濃度を高め地 球の温暖化の傾向を強める。 地球の温暖化は、 赤道直下の熱気 流の還流現象の範囲が広まるから、 砂漠地帯に隣接した熱帯雨 林は徐々に砂漠化している。 A weak carbon dioxide absorption capacity increases the concentration of carbon dioxide and increases the tendency of global warming. As global warming expands the range of hot air recirculation just below the equator, tropical rainforests adjacent to desert areas are gradually becoming desertified.
砂漠に植物が育成されなければ、 水蒸気の蒸発量も少いから 気化熱による熱量奪取効果もない。 雲が形成されないから昼間 は、 砂漠の全地帯への太陽光の照射による放射熱が直接大気を 暖める。 大気の温暖化への影響は、 熱帯雨林に於ける炭酸ガス 吸収能力の低下以外の影響があることになる。 If plants are not grown in the desert, there is no heat removal effect due to heat of vaporization because the amount of water vapor evaporation is small. During the daytime, radiant heat from sunlight irradiates the entire desert area directly warms the atmosphere because no clouds are formed. The effects on atmospheric warming will be other than the reduction of carbon dioxide absorption capacity in rainforests.
(3) 本発明の第 3の目的は、 成層圏にあって地球上の生命を保護す るバリヤ一の 1つとして重要な役を担うオゾン層を、 フロ ンによ る破壊から修復し保護する技術の開発である。 将来の地球環境, 全生態系への危機に対し、 回避する技術的手段, 方策を探索する と 'ある。 (3) A third object of the present invention is to restore and protect the ozone layer in the stratosphere, which plays an important role as one of the barriers for protecting life on the earth, from destruction by the freon Technology development. He said that he would search for technical means and measures to avoid the crisis in the future global environment and the entire ecosystem.
a . 成層圏 (高度 16〜50 km ) に薄く拡散して存在するオゾン層は、 太陽から放射される短波長の紫外線を吸収して地球上へ降り注 ぐことを防止する。 地球上の生物はオゾン層によつて保護され ている。 a. The ozone layer, which diffuses thinly in the stratosphere (altitude 16-50 km), absorbs short-wave ultraviolet rays emitted from the sun and prevents them from falling onto the earth. Living organisms on earth are protected by the ozone layer.
他方フロ ンは、 冷媒, 溶剤, 噴射剤, 発泡剤, 消火剤, 合成 樹脂等に広く用いられている安定した有機塩素化合物であるが、 新たな用欲
融点が低く揮発し易い。 一担大気中に放出されると蓄積し、 成 層圏まで達すると太陽からの紫外線によつて塩素 αを放出する。 塩素 1個は約 1万個のオゾン分子と反応してオゾン層が破壊さ れ、 オゾンホールが形成される。 実際南極では、 オゾン量が 50On the other hand, freon is a stable organic chlorine compound widely used in refrigerants, solvents, propellants, blowing agents, fire extinguishers, synthetic resins, etc. Low melting point and easy to volatilize. When released into the atmosphere, they accumulate, and when they reach the stratosphere, they release chlorine α by ultraviolet rays from the sun. One chlorine reacts with about 10,000 ozone molecules, destroying the ozone layer and forming an ozone hole. In fact, in Antarctica, the amount of ozone is 50
%も減少しているのが観測されている。 % Has been observed to decrease.
フ口 ンの生産は 1970年代に急増し、 規制によって歯止めがか かつたが現在全世界で年間 100万 ト ン以上生産されており、 70 万トン以上のフロンガスが大気中に放出されている。 これまで オゾン層を破壊したのは全体の 10 %に過ぎず、 今後使用を全面 禁止しても残り 90 %は大気中に蓄積されている。 今後約一世紀 間に成層圏に達しオゾン層を破壊し続けると予測されている。 The production of chlorofluorocarbons surged in the 1970s, and although regulation was halted, more than one million tons of chlorofluorocarbons are now produced annually worldwide, and more than 700,000 tons of chlorofluorocarbon gas are released into the atmosphere. To date, only 10% of the total ozone layer has been destroyed, and the remaining 90% is stored in the atmosphere even if the use is banned. It is predicted that it will reach the stratosphere over the next century and continue to destroy the ozone layer.
オゾン層が破壊されると、 短波長の紫外線は遮断されること なく地上に降り注ぐ。 短波長の紫外線は、 生体にあたると細胞 中の DNA遺伝子を損傷し破壊して、 ガン細胞を発生させる。 人体の免疫系や眼に障害を与え、 植物の成育を疎外し農産物の 生産に影響を与える。 更に海面のプランク トン, 魚類等の幼虫, 藻類への影響が生じ海の生態系全体に深刻な打撃を与える。 世 界は健康も食料も環境も失う最悪の事態は避けねばならない。 When the ozone layer is destroyed, short-wavelength UV light falls unabated onto the ground. Short-wave ultraviolet light, when hit against living organisms, damages and destroys DNA genes in cells, generating cancer cells. It damages the human immune system and eyes, alienates plant growth and affects agricultural production. In addition, larvae such as planktons and fish on the sea surface and algae are affected, causing serious damage to the entire marine ecosystem. The world must avoid the worst of losing health, food and the environment.
フ口ンはオゾン層を破壊する作用以外に、 気温を上昇する作 用もある。 フロ ンの濃度は極めて低くても、 一分子当りの昇温 効果は、 炭酸ガスの約 1万倍にあたる。 従って、 炭酸ガスによ る昇温の約半分位はフロンによって気温が上昇し、 地球温暖化 には影響が大きい。 In addition to depleting the ozone layer, humor has the effect of increasing temperature. Even if the concentration of the furon is extremely low, the effect of raising the temperature per molecule is about 10,000 times that of carbon dioxide. Therefore, about half of the temperature rise due to carbon dioxide gas is caused by the temperature rise due to chlorofluorocarbons, which has a significant effect on global warming.
b . フロ ンによる上記のような危機に対する応急策として、 国際 的な規制が問題になり、 半減又は全廃等の議案が出されている。 しかし、 現在、 電機機器等に不可欠で、 代替物質開発までは止 新た な 用欲
む得ぬ事情もある。 既に機器に使用済みのフロンの回収も徹底 は難しく、 今後も大気中への放出は続く と思われる。 既に大気 中に蓄積された 90 %のフロンと併わせ今後 1世紀どの程度ォゾ ン層が破壊され, どの程度被害が出るか、 しかも被害が出始め てからでは既に遅い。 b. As an emergency measure against the above-mentioned crisis by Fron, international regulations have become an issue, and proposals such as halving or eliminating abolition have been issued. However, it is now indispensable for electrical equipment, etc. There are unavoidable circumstances. It is difficult to thoroughly collect CFCs already used in equipment, and it is expected that their release into the atmosphere will continue in the future. Along with 90% of chlorofluorocarbon already accumulated in the atmosphere, it is already late how long the ozone layer will be destroyed and how much damage will be caused in the next century, and even if damage begins to occur.
c . 以上のことから、 今後の対策として、 前記応急策の徹底化は 一方で必要であるが、 破壊されたオゾン層の修復ができれば有 力な手段になる。 ここでは、 未だ実験済みでないが、 本件応用 の対策を数種紹介することにした。 専門的に問題なければ将来 の対策になるだろうが、 未知の分野であるから更に検討は当然 必要である。 c. From the above, it is necessary to thoroughly implement the above-mentioned emergency measures as a future measure, but it will be an effective means if the destroyed ozone layer can be repaired. Here, we have not yet experimented, but decided to introduce some countermeasures for this application. If there is no technical problem, it will be a future countermeasure, but it is an unknown field, and further investigation is necessary.
(4) 本発明の第 4の目的は、 いま世界各地で森林被害の地域拡大等 深刻な影響がでている酸性雨に対する対策として、 本発明を応用 した緩和策を探索することである。 (4) The fourth object of the present invention is to search for a mitigation measure to which the present invention is applied as a countermeasure against acid rain, which has been seriously affected, such as by expanding forest damage in various parts of the world.
a . 酸性雨とは、 工場や自動車などから排出される硫黄酸化物や 窒素酸化物が上空で酸化して硫酸塩や硝酸塩などになり、 それ が雨水に取り込まれて降ってく るものをいう。 正常な雨は、 P H 5. 6程度であるがこれらの汚染物質による雨水は P H 4〜 3 前後である。 a. Acid rain means that sulfur oxides and nitrogen oxides emitted from factories and automobiles are oxidized in the sky to form sulfates and nitrates, which are taken into rainwater and fall. Normal rainfall is around pH 5.6, but rainfall due to these contaminants is around pH 4 ~ 3.
酸性雨は森林の土壌を酸性化し、 植物の生育を阻害する重金 属類を溶出させ、 植物の成長を抑制したり枯死させたりする。 また、 湖水は酸性化によって有害な重金属など池底の泥からと けだし、 漁獲量が激減している。 地域によっては、 森林の約半 分は酸性雨の影響がでている。 Acid rain acidifies forest soils, elutes heavy metals that inhibit plant growth, and inhibits or kills plant growth. In addition, lake water is released from pond bottom mud such as harmful heavy metals due to acidification, and catches are drastically reduced. In some areas, about half of the forest is affected by acid rain.
このように酸性雨は、 植物生態系, 河川湖沼生態系, 土壌生 態系に対して、 次第に莫大な影響力を及ぼし、 政治的 · 社会的 新た な 紙
問題になりつつある。 In this way, acid rain has an enormous influence on plant ecosystems, river lake ecosystems, and soil ecosystems gradually, and new political and social papers. It is becoming a problem.
b . 酸性雨の緩和を本体として試みるならば、 まず、 b. If you try to reduce acid rain as a main body,
O 化石燃料の燃焼を次第に減少し、 太陽光 (熱) 発電のエネ ルギ一に転換を図る。 仮に、 基地系集団に量産された発電部 (太陽電池) が装備され、 地球への送電が現実化しても、 相 当の年月を要す。 O Gradually reduce fossil fuel combustion and switch to solar (thermal) power generation. Even if a power generation unit (solar cell) mass-produced in the base system group is equipped and power transmission to the earth is realized, it will take considerable time.
O 化石燃料が多量に燃焼される地域、 酸性雨被害の多発する 地域を調査し、 気象データ一を取り、 太陽光陰影部による降 雨促進を図り、 酸度を薄め、 植物や土壌湖沼に被害が出る前 に雨水の量で洗い流す。 (酸洗浄策) O Investigate areas where a large amount of fossil fuels are burned and areas where acid rain damage is frequent, obtain weather data, promote rainfall by shaded sunlight, reduce acidity, damage to plants and soil lakes Rinse with rainwater before leaving. (Acid cleaning measures)
o 湿性沈着, 乾性沈着, 雲内洗浄, 雲底下洗浄の過程を計測 や模擬解析で分析し、 上記作用が進行する前に太陽光陰影部 を配する。 寒気, 暖気によって雲の移動, 酸化前の大気の移 動, 降雨を促進して拡散し、酸化前に雨水の降下を図る。 (酸 生成抑制策) (酸拡散策) o Analyze the processes of wet deposition, dry deposition, intra-cloud cleaning, and under-cloud cleaning by measurement and simulation analysis, and arrange a shade of sunlight before the above-mentioned action progresses. The cold and warm air promotes the movement of clouds, movement of the atmosphere before oxidation and rainfall, and diffuses them. (Measures against acid generation) (Measures against acid diffusion)
(5) 本発明の第 5の目的は、 化石燃料を主体にした現エネルギー大 系を、 他のエネルギー源 (太陽熱エネルギー等) に転換すること である。 化石燃料等地球上に限りある天然資源は、 将来の人類へ の遺産として大切に保護し残さねばならない。 併せて、 地球温暖 化や地球規模の危機を回避することである。 (5) A fifth object of the present invention is to convert a current energy system mainly composed of fossil fuels to another energy source (such as solar thermal energy). Natural resources that are limited on earth, such as fossil fuels, must be carefully preserved and preserved as a legacy for humankind in the future. At the same time, avoid global warming and global crises.
a . 20世紀において、 世界人口は 3倍, エネルギー消費は 60倍, 世界総生産は 21倍に激増した。 これに呼応し、 天然資源の消費, エネルギーの消費も激増した。 世界人口の増加傾向は続き、 21 世紀中には 100億人になると予測されているから、石油埋蔵量 40 億ト ンは消耗し尽す、 と推定されている。 現在確認されている 埋蔵量が、 例え 2倍になつたとしても石油資源の枯渴は訪れる c たな 5¾
化石燃料は、 膨大な生物, 数億年の年月, による地球独得の 資源で、 活用範囲は広く極めて重要である。 a. In the 20th century, world population tripled, energy consumption increased 60 times, and world gross product increased 21 times. In response, the consumption of natural resources and energy increased sharply. It is estimated that 4 billion tonnes of oil reserves will be exhausted as the world population continues to grow and is projected to reach 10 billion in the 21st century. Reserves currently being confirmed, Do was c枯渴visits of petroleum resources as has decreased to 2 times even 5¾ Fossil fuels are a unique resource of the earth due to a huge number of organisms, hundreds of millions of years, and their use is very important.
この消費傾向では、 22世紀以後の人類は燃料資源のみか, 材 料資源としても, その恩恵を受けることが出来なくなる。 これ は、 将来の人間社会にとって大変な損失である。 With this consumption trend, humankind after the 22nd century will not be able to benefit from fuel resources alone or as material resources. This is a great loss for human society in the future.
化石燃料のエネルギーとしての利用は、 地球温暖化や酸性雨 等地球環境にとって脅威になる。 その認識が深まつているにも 拘わらず、 消費は増大の一途をたどっている。 化石燃料にとつ て代るべき主柱となる他のエネルギー源が、 未だ有力になり得 ぬからである。 The use of fossil fuels as energy poses a threat to the global environment, such as global warming and acid rain. Despite its growing awareness, consumption is growing. Other main energy sources to replace fossil fuels cannot yet be dominant.
エネルギーは、 我々の生活水準を高め豊かにするために重要 な役割を果たしている。 エネルギー供給量の急減は、 現代文明 の否定にならざるを得ない。 Energy plays an important role in raising and enriching our standard of living. A sharp drop in energy supply is a denial of modern civilization.
b . そこで、 化石燃料以外に転換しうるエネルギー源の主柱が育 成され実用化されねばならない力 各々、 数種の問題点を有する。 b. Therefore, the main pillars of energy sources that can be converted besides fossil fuels must be developed and put into practical use. Each of these has several problems.
例えば、 原子力はゥラン鉱石が有限であり、 放射能の危険性 は残り、 高速増殖炉は再処理等取扱いに問題がある。 現在、 原 子炉は日本に約 50基, 世界に約 420基あるが、 外国では撤退の 国も多い。 水力発電は多用されているが新たな開発は膨大な設 備投資と環境コス トを伴う。 地熱発電は特定の地域に限る。 For example, nuclear power has limited peran ore, the danger of radioactivity remains, and the fast breeder reactor has problems in handling such as reprocessing. At present, there are about 50 nuclear reactors in Japan and about 420 in the world, but many foreign countries have withdrawn. Hydropower is heavily used, but new developments involve enormous capital and environmental costs. Geothermal power is limited to specific areas.
c . 捋来の有力なエネルギーの主柱となるべきものには、 核融合 と, 太陽光の照射エネルギーの利用と, がある。 c. Nuclear fusion and the use of solar irradiation energy are the main pillars of the future influential energy.
核融合は、 その燃料となる重水素が海水中に無尽蔵に存在し、 放射性副産物の生成が少ぃ。 開発が成功し実用化されれば、 将 来は明るいものとなる。 しかし、 核融合炉の実証炉と商業炉の 開発には、 数十年の期間と膨大な投資を必要とされ、 国際協力 新た な R 紙
も必要とされる。 In nuclear fusion, deuterium as a fuel is inexhaustibly present in seawater, and the generation of radioactive by-products is small. If development is successful and put into practical use, the future will be bright. However, the development of a fusion reactor demonstration reactor and a commercial reactor requires decades and a huge investment, and international cooperation. Is also required.
太陽光の照射エネルギーは、 無料 , 無尽蔵である。 全地球上 に降り注ぐ 30分間のエネルギー量は、 世界の年間総エネルギー 量に相当する。 Solar energy is free and inexhaustible. The amount of energy that falls on the whole earth for 30 minutes is equivalent to the total annual energy amount in the world.
太陽光発電は市場を拡大させており、 小規模ながら太陽電池 産業を支えている。 従来の発電システムに比べてコス ト高であ るが、 半導体技術や製造技術がさらに進歩すれば、 効率の改善 と, コス トの削減と, が期待できる。 地上では大気中の水蒸気 分子, ガス分子, 塵埃, 雲等による反射 · 吸収 ·散乱によって 太陽光エネルギーは約 1Z3になる。 宇宙空間では遮断するもの がないから効率は良い。 Solar power is expanding the market and supporting the solar cell industry, albeit on a small scale. Although the cost is higher than that of a conventional power generation system, improvements in semiconductor technology and manufacturing technology can be expected to improve efficiency and reduce costs. On the ground, sunlight energy is about 1Z3 due to reflection, absorption, and scattering of atmospheric water vapor molecules, gas molecules, dust, and clouds. Efficiency is good because there is nothing to block in outer space.
問題は開発中の宇宙空間に広大な太陽発電の宇宙基地を建設 する製造技術と、 安全管理技術と、 投資の意志決定であろう。 The problem would be manufacturing technology to build a vast solar power space base in the space under development, safety management technology, and investment decisions.
技術面の検討は後記に依るとして、 ここでは意志決定の分析 を時代の必要性, 環境の方向性, 主柱エネルギーの方向性等の 諸点から考察する。 The technical considerations will be described later, and here the analysis of decision making will be considered from various points such as the needs of the times, the direction of the environment, and the direction of the main pillar energy.
① 核融合の実用化が 21世紀に可能な場合。 ① If nuclear fusion can be commercialized in the 21st century.
X 商業炉の普及, 化石燃料からの転換までの地球温暖化の程 度。 X The extent of global warming from the spread of commercial furnaces to the conversion from fossil fuels.
X 商業炉の普及 (世界で 420基と仮定) 後の排熱気, 排熱水 の程度と地球温暖化等への影響。 X Extent of exhaust heat and exhaust heat after the spread of commercial furnaces (assuming 420 units worldwide) and their impact on global warming.
O 他方、 核融合炉の実用化は、 宇宙開発 ,利用の規模, 能九 可能性を拡大し、 実用化の時期は早まる。 O On the other hand, the practical use of fusion reactors will expand the space development, utilization scale, and possibilities, and the time for practical use will be accelerated.
((上記から推定)) 資源確保,地球環境保護,主柱エネルギー(Να 2 ) 等の必要性 · 方向性から、 地球への太陽光照射エネルギー の一部遮断用の遮光体と、 宇宙空間に於る太陽光 (熱) 発電用 新た な 用絃
の発電体と、 の建設は方向性に合致する。 ((Estimated from the above)) Necessity of securing resources, protecting the global environment, main pillar energy (Να 2), etc. · From the directionality, a light-shielding body for partially blocking solar radiation energy to the earth, New string for solar (heat) power generation The construction of the generator and the construction of the will be in line with the direction.
② 核融合の実用化が 21世紀に不可能な場合。 ② When practical application of nuclear fusion is impossible in the 21st century.
X 化石燃料は他に転換すべき有効なエネルギー源がなければ 消費せざるを得ない。 応急策の効果と、 資源枯渴, 地球温暖 ィ匕, 酸性雨等の程度が問題。 X Fossil fuels have to be consumed without other effective energy sources to convert. The effect of first aid measures and the extent of resource depletion, global warming, acid rain, etc. are problems.
X 主柱エネルギー源として太陽光 (熱) 発電が育成されなけ れば人間社会の現文明の維持, 将来の発展は大き く影響する。 X If solar (heat) power generation is not fostered as the main energy source, the maintenance of the current civilization of human society and future development will be greatly affected.
X 核融合炉の実用化不可能は、 宇宙開発 ·利用の規模, 能九 可能性は縮小し、 実用化の時期は遅くなる。 If it is not possible to commercialize a fusion reactor, the scale of space development and utilization, the potential of the reactor will be reduced, and the time for commercialization will be delayed.
((上記から推定)) 資源確保,地球環境保護,主柱エネルギー(Να 1 ) 等の必要性, 方向性から、 前記遮光体, 発電体の建設は方 向性に合致し、 必要性は一層高まる。 ((Estimated from the above)) Due to the necessity of securing resources, protecting the global environment, main pillar energy (Να 1), etc., and the direction, the construction of the light shields and power generators matches the directionality, and the necessity is further increasing Increase.
(6) 本発明の第 6の目的は、 世界人口の爆発的な増加傾向の問題、 世界の食糧問題、 未開発地域の生活水準向上の問題、 教育水準の 向上の問題と、 対策である。 将来、 益々深刻さが増すと予測され る危機的課題に対して、 本発明からみた解決手段を探索せんとす るものである。 (6) The sixth object of the present invention is to deal with the problem of the explosive growth trend of the world population, the problem of world food, the problem of improving the living standard in undeveloped areas, the problem of improving the level of education, and countermeasures. The present invention seeks to find a solution from the viewpoint of the present invention for a crisis problem that is expected to become more and more serious in the future.
a . 世界人口は、 20世紀初めに 16億人だったが、 現在その 3倍強 の 52億人に達し、 21世紀中には 100億人に達するとみられてい る。 従って、 地球は食糧, 水, 資源, 地球環境, 等全て人類生 存の必須条件で現在の倍の人口を維持しうるだけの能力を備え ていなければならない。 これらの必須条件が無限とまでいかな くても充分に余裕のあるうちは、 人口増加は人類の繁栄を示す もので結構なことである。 現に、 数十年前まではそうであった しかし、 現在予測される危機的課題はいずれも地球規模のも のであり、 将来益々激しさが増すもので、 非可逆的性格が強い 新た な ¾紙
その主な原因は、 世界人口の激増が引金であることが判ってい o a. The world's population was 1.6 billion in the early 20th century, but it is now more than tripled to 5.2 billion, and is expected to reach 10 billion in the 21st century. Therefore, the earth must have the capacity to maintain twice the population of today, with food, water, resources, the global environment, etc. all being essential conditions for human existence. As long as these prerequisites are not limited to infinity, there is plenty of room for population growth to indicate human prosperity. Indeed, this was until decades ago.However, all of the currently projected crisis issues are global, and will become increasingly intense in the future, with a strong irreversible character. The main cause has been found to be triggered by a surge in the world's population.o
幾世紀, 幾千万年かけて形成された森林や土壌や資源等が、 今や人間一生程の短い期間に消費されている。 また、 政治的 - 社会的安定を脅かす原因となっている。 人口増加の適否は環境 保全のためだけでなく、 各国の発展のために必要なことである。 特に、 発展途上国では人口増加が著るしく、 国連の予想では 85 億人 (2025年) の増加分のうち 95 %を占めている。 あらゆる面 から人口増加の減速が将来のために重要な課題となつており、 難解な問題である。 Forests, soils, and resources that have been formed over centuries and tens of millions of years are now consumed in the short period of human life. It also threatens political and social stability. The suitability of population growth is necessary not only for environmental protection but also for the development of each country. Developing countries, in particular, have seen remarkable population growth, accounting for 95% of the increase of 8.5 billion (2025) projected by the United Nations. In all aspects, slowing population growth is an important and challenging task for the future.
b . O まず各国を分析した結果によると、 人口増加が低水準に 落ちついているところは、 産業化が進み生活様式が変化し、 生 活水準が向上し、 教育水準も高い状況にある。 b. O First of all, according to the analysis of each country, where the population growth is at a low level, industrialization is progressing, lifestyles are changing, living standards are improving, and educational standards are high.
しかし、 発展途上諸国がこのままでいつ上記状況に至るか は疑問である。 特に、 未開発地域では 2000年前と同じ生活様式 あのる。 However, it is questionable when developing countries will reach this situation. In particular, undeveloped areas have the same lifestyle as 2000 years ago.
o 世界人口がいずれ 100億人に達するとすれば、 その時点で 現在の約 2倍の十分な食糧を供給することができるであろう か。 世界の農業生産量は新技術や新品種の導入によって着実 な伸びを見せている。 o If the world's population eventually reaches 10 billion, will it be able to supply about twice as much food at that time? Global agricultural production is steadily increasing with the introduction of new technologies and new varieties.
しかし、 一方で農業に不可欠な土地や水資源は、 汚染の危 機もあってつねに不足状態にある。 また、 資料によると、 世 界の農地面積 33億へクタールのうち、 60 %が砂漠化の影響を 受けている。 農業にとって重要な必要資源は、 土地, 水, 遺 feナであ 。 However, land and water resources, which are essential for agriculture, are always in short supply due to the danger of pollution. According to sources, 60% of the world's 3.3 billion hectares of agricultural land is affected by desertification. Important necessary resources for agriculture are land, water and remains.
O 他の資源や地球環境は、 同様に世界人口の増加に対応する 新た な 用敏
うえでさ らに重要であ'る。 地球環境は、 生命の生存に危機で あることは前掲の通りである。 O Other resources and the global environment are also becoming more agile in response to the growing world population. This is even more important. As mentioned above, the global environment is at stake for the survival of life.
C . もし、 発展途上諸国が農業や牧畜他の土地を将来入手可能で あるとすれば、 前記産業化, 生活水準の課題は相当改善される。 C. If the developing countries have access to agriculture, livestock and other land in the future, the issues of industrialization and standard of living will be considerably improved.
さらに、 電力が供給されるとすれば、 産業化, 生活水準, 教 育水準の課題は年々改善される可能性がある。 焼畑農業や薪集 めのため森林破壊や熱帯雨林減少の問題が進み、 砂漠化や地球 温暖化等が深刻化している状況を緩和できる。 世界には未だ 20 億以上の人々が電力の恩恵を受けない生活を送っている。 Furthermore, if electricity is supplied, the issues of industrialization, living standards, and educational standards may improve year by year. Slash-and-burn agriculture and firewood gathering will alleviate the situation of deforestation and the reduction of tropical forests, leading to the worsening of desertification and global warming. More than two billion people in the world still live without the benefits of electricity.
電力の供給は、 テレビ等電気機器を通じて先進諸国の情報取 得を可能にし、 電波を通じて広域的, 統一的な教育を可能にで きる。 世界が直面する前記の危機的課題に対しては、 大多数が 理解できる内容で共通の問題意識のもとに協力を要請すること もできる。 電気機器は、 未開発の地域でも略平均なレベルまで 広域的に教育や生活の水準を向上する機能を発揮する。 The supply of electric power will enable developed countries to obtain information through electrical equipment such as televisions, and will enable wide-area, unified education through radio waves. For the aforementioned critical issues facing the world, cooperation can be requested with a common awareness of the issues that can be understood by the majority. Electrical equipment can function to improve education and living standards on a wide scale, even in undeveloped areas, to almost the average level.
しかし、.現在は先進諸国さえ、 電気エネルギー用の燃料が不 足する状況にある。 電力のエネルギー源をどこに求めるかは、 大きな課題である。 But now, even developed countries are in short supply of fuel for electrical energy. Finding where to find the energy source of electricity is a major challenge.
(7) 本発明の第 7の目的は、 台風やハリケーン等の暴風を、 その勢 力発達の抑制, 発生段階の衰弱, 進路の変更等を人工的に制御し、 人間社会への被害を最小限にすることである。 現在の臨海域の都 市や, 町村への被害、 特に、 海上空港や人工島や長大橋等の構築 物への被害、 将来益々必要性が高まるであろう海上都市や海上交 通等の海洋開発への被害、 を少く し安全性を確保することである。 a . 台風は熱帯の海域で発生し、 発達しながら北上する。 台風だ けでも年間 20〜40個発生し、 そのうち 4〜 5個が上陸して大き 新た な 敏
な被害を起す。 発達した台風は 1026エルグ程度でけたちがいに 大きい。 現在の科学技術をもってしても消滅させることはでき ず、 観測や予報や風雨への備えの段階に止まっている。 又は通 過するのを待つ等自然のなすままに任せている。 (7) The seventh object of the present invention is to minimize storms such as typhoons and hurricanes by artificially controlling the development of power, deteriorating the stage of occurrence, and changing the course, and minimizing damage to human society. It is to limit. Damage to current coastal cities and towns and villages, especially to structures such as marine airports, artificial islands, and long bridges, and marine cities and marine traffic such as maritime traffic that will increasingly need in the future. The goal is to reduce damage to development and ensure safety. a. Typhoons occur in tropical waters and move north as they evolve. Even a typhoon alone produces 20 to 40 typhoons a year, 4 to 5 of which land and become large Cause serious damage. Developed typhoon is several orders of magnitude greater in the order of 10 26 ergs. Even today's science and technology can't make it disappear, it's just observation, forecasting, and preparing for the weather. Or leave it to nature to wait for it to pass.
b . そこで、 台風の発生 · 発達 · 衰弱の起爆材となっている要素 を分解し、 発達の原因である引き金作用を絶ち切ることにした。 b. Therefore, we decided to break down the elements that were the starting material for the occurrence, development, and weakness of the typhoon, and cut off the triggering action that caused the development.
本件としての抑制手段は、 基地系集団の配備によって太陽光 陰影部 (寒気) を形成し、 The control measure in this case is to form a shade of sunlight (cold) by deploying a base system group,
① 台風の発生, 進行する海面の水温が高くなる現象を抑制する。 ① Suppress the occurrence of typhoons and the increasing temperature of the sea surface.
② 海面で積乱雲のまわりから収束した上昇気流が発散し下層の 収束が上まわって気圧が下る現象、 目の中の断熱昇温, 密度減 少, 気圧低下の循環現象、 を抑制する。 ② Suppress the phenomenon that the rising air current converging around the cumulonimbus diverges on the sea surface and the convergence of the lower layer rises, lowering the pressure, the adiabatic heating in the eyes, the density decrease, and the circulation phenomenon of the pressure decrease.
③ 海面からの多量の水蒸気が蒸発する現象、 を抑制する。 ③ Suppress the phenomenon that a large amount of water vapor evaporates from the sea surface.
④ 海面上方の空気の温度上昇を抑制し湿気を多量に含む現象、 渦の中へ流入して上昇する現象、 を抑制する。 を Suppress the temperature rise of the air above the sea level and suppress the phenomenon that contains a lot of moisture and the phenomenon that the air flows into the vortex and rises.
⑤ 蒸発した水蒸気が上空で凝固する際放出する潜熱、 を小くす o 潜 Reduce the latent heat released when the evaporated water vapor solidifies in the sky o
等である。 And so on.
具体的には、 熱帯海域の上方の宇宙空間に前記装置を移動し 配置する推進体、 雲のない海面に太陽光陰影部を時間変化に呼 応して配置する管制体、 太陽光陰影部を形成する遮光体、 の諸 要素の組合せで上記抑制手段を達成する。 Specifically, a propulsion unit that moves and places the above device in outer space above the tropical sea area, a control unit that places a solar shading part in response to time changes on a cloudless sea surface, and a solar shading part The above-mentioned suppression means is achieved by a combination of the following elements:
台風の莫大なエネルギーの源泉は分析してみると、 太陽エネ ルギ一が地球の海洋, 大気に作用した結果である。 そこで、 太 陽光の照射を部分的に遮断することにした。 Analyzing the huge energy source of the typhoon, it is the result of solar energy acting on the Earth's oceans and atmosphere. Therefore, we decided to partially block the solar irradiation.
(8) 本発明の第 8の目的は、 研究, 開発された成果を、 次世代以後 新た な用紙
の地球開発や宇宙開発の他の領域にも応用し活用できるように することである。 (8) The eighth object of the present invention is to provide a new paper To be applied and utilized in other areas of earth development and space development.
地球環境の問題は、 時代の推移と共にまだ変動し, スケールが 大き く, タイムスパンが長い。 従って、 超長期の視野と、 現実の 追跡 , 分析と、 計画的な取組みとを必要とする。 そこで、 '開発の 趣旨や成果は、 次世代以後に次々 と全て引継げるように蓄積し、 全体としての可能性を高めることである。 Global environmental issues still fluctuate with the times, with large scale and long time span. Therefore, it requires a very long-term perspective, real-time tracking, analysis, and planned efforts. Therefore, 'The purpose and achievements of the development are to be accumulated so that they can be succeeded one after another after the next generation, and to increase the potential as a whole.
研究, 開発は、 全て予測されたような結果に到達しうるとは限 らない。 開発は成功しても、 資金や諸種の事情によって実用化さ れない場合も決して少くない。 技術開発は現状の課題を解決する ものである以上、 全て現実の直視と分析のうえに立った革新であ る。 革新は未知の分野への踏み込みであり、 リスクは常につきま とう。 宇宙への進出は経費, 安全面等充分に配慮した企画、 正確 な解析、 慎重な分析と対策、 技術の蓄積と総合、 が必要である。 Research and development may not all achieve the expected results. Even if development is successful, it is very unlikely that it will be practical due to funding or various circumstances. Technological development is an innovation based on real insight and analysis, as it solves the current challenges. Innovation is a step into unknown territories, and risks are always associated. Entering into space requires planning that takes due account of costs, safety, etc., accurate analysis, careful analysis and countermeasures, and accumulation and integration of technologies.
技術開発の結論, 結果は、 後世に於いて答が出されるのである。 そこで、 研究や開発の成果は、 実用化の有無は別にして、 将来、 他領域の宇宙開発, 地球開発にも活用されて、 総合的な効果を挙 げうるように企画する。 The conclusions and results of technological development will be answered in later generations. Therefore, the results of research and development are planned to be utilized in space and earth development in other fields in the future, with or without commercialization, so that comprehensive effects can be achieved.
o 宇宙空間に於ける人体への健康面の影響, 事故は、 なるベ く回避する。 事前に可能性を高める為に、 まず地球上に於て 出来得る限り、 模擬解析, 模擬試験, 実用試験, 等を行い実 用化への方向を探ることにする。 o Avoid human health effects and accidents in outer space as much as possible. In order to increase the possibility in advance, first, as far as possible on the earth, we will conduct simulation analysis, simulation tests, practical tests, etc., and seek directions for practical use.
o 基本設計, 実験, 実用化, 建設は、 全て数段階に分け、 段 階を踏む。 o Basic design, experimentation, practical application, and construction are all divided into several stages, and each stage is followed.
o 全体は、 数種の基本技術のブロ ックに分割し、 平行して推 進し、 各々をより可能性高いものにしてゆく。 新 た な 用紙
〇 コ ンピューターによる シュ ミ レーシ ヨ ンによって、 実際面 の予測や問題点, 可能性を追求する。 o Divide the whole into several basic technology blocks, proceed in parallel, and make each one more likely. New paper シ ュ Through computer simulation, we pursue actual predictions, problems, and possibilities.
ο 従来まで蓄積された公知技術、 例えば電子技術, コ ン ピューター, 製造技術, 組立技術, 宇宙技術, 気象技術を組 合せ · 応用して、 実用化への可能性を高めてゆく。 専門家の 知識は広く受入れる。 ο Combine and apply well-known technologies, such as electronic technology, computer technology, manufacturing technology, assembly technology, space technology, and weather technology, to increase the potential for practical application. Expert knowledge is widely accepted.
ο 修得された新たな技術は、 今後の宇宙開発, 例えば月面開 発等、 本件とは直接関係ない領域へも活用できるように配慮 する。 ο Consider that the acquired new technology can be used in areas that are not directly related to this project, such as future space development, for example, lunar development.
ο 段階を踏み、 ブロックに分割して取得した基本技術は、 地 球上でも活用できるようにする。 例えば太陽電池の自動連続 製作機は、 地球上必要な箇所へ設置して使用できる。 該製作 機が民間用, 地方用, 離島用, 発展途上国用に使用可能とな れば、 宇宙基地からの送電は産業用のみで良い。 電気分解等 の採取機は地上に応用でき、 採鉱機は月, 火星に活用できる。 ο 時代の変化, 技術の進展, 地球環境の変化やデータは、 常 に注目 し対応を速やかに検討する。 特に、 核融合実用化の可 能性の推移は影響が大きいが、 何如なる結果でも相乗効果を 発揮しうる企画が望ましい。 ο The basic technology acquired by dividing into blocks by taking steps will be made available on the earth. For example, automatic continuous production machines for solar cells can be installed and used where necessary on the earth. If the machine can be used for civilian, rural, remote island, and developing countries, power transmission from the Space Station may be for industrial use only. Extractors such as electrolysis can be applied on the ground, and miners can be used on the moon and Mars. ο Always pay attention to changes in the times, technological advances, changes in the global environment and data, and consider ways to respond quickly. In particular, the transition of the feasibility of nuclear fusion has a significant effect, but it is desirable to have a project that can produce a synergistic effect regardless of the result.
(9) 本発明の第 9の目的は、 開発の当初からその趣旨や開発必要性 を明確にするとともに、 少く とも本件開発に関しては、 開発の正 しい思想を持つことである。 (9) The ninth object of the present invention is to clarify the purpose and necessity of development from the beginning of the development, and to have at least the right idea of the development of the present invention.
本件開発は、 地球環境の保護という必要に迫られて、 地球上の 自然現象初め太陽, 宇宙という大自然の巨大な偉力を借り ること になる。 それが新たな自然破壊や無計画にならないよう、 部分的 な制御による部分的な自然の創生、 に止めることである。 現在ま 新た な ffl抵
での現象の具体的な把握と客観的な判断, データーや事象の分析, 綿密な計画性, に沿って慎重を期すことが必要になる。 In this project, the need to protect the global environment is being borrowed from the great power of nature, such as the natural phenomena on the earth, the sun, and the universe. In order to avoid new destruction and unplanned destruction, we must stop at the partial creation of nature through partial control. Currently a new ffl Therefore, it is necessary to carefully consider the specific phenomena and objective judgments in the above, analyze data and events, and carefully plan.
環境開発は、 現在及び将来の危機回避の必要条件と、 存続のた めの必要条件と、 安定的繁栄との境界を究め、 正しい方向性の探 索と認識のうえに立って企画 · 推進にあたらねばならない。 Environmental development is designed and promoted based on the search for the right direction and the recognition of the boundaries between current and future crisis avoidance requirements, survival requirements, and stable prosperity. I have to do it.
このことは、 将来、 いつの時代に於ても不変である害である。 本件開発は、 地球環境の悪化の傾向というかつてない危機, 深 刻化, 非可逆性, 損害の膨大性, にも拘らず、 根本的な対策の無 い現状の報道等に対し、 技術的な解決を求めて開始した。 This is a harm that will not change in any time in the future. Despite the unprecedented crisis of deepening the global environment, deepening, irreversibility, and enormous damage, the development has been technically responsive to the current situation without fundamental measures. Started looking for a solution.
現在の悪化の傾向が 21世紀にも進行するとすれば、 明らかに大 きな悲劇と, 限りない悔恨の時代が訪れる可能性は、 極めて高い からである。 水不足と砂漠化と森林破壊, 地球温暖化, オゾン層 の破壊, 酸性雨, エネルギー不足や資源枯渴, 世界人口の増大と 食料不足や未開発問題, 等の主課題とこれに付髄して起り うる被 害 · 損害の増大性と対応不可能性の危機である。 If the current deteriorating trend continues in the 21st century, it is highly probable that a period of apparently great tragedy and endless remorse will come. Main issues such as water shortage, desertification and deforestation, global warming, ozone depletion, acid rain, energy shortage and resource depletion, world population increase, food shortage and untapped issues, etc. Possible damage · Crisis of increasing damage and inability to respond.
現在採られよう としている種々の対応策は、 実効に乏しく, 根 本的な対策が無ければジリ貧の可能性もある、 とされている。 最 悪の場合、 上記、 主課題, 付随す.る危機が一挙に深刻さを増し降 りかかった時、 何ら有効な対策も技術的蓄積も無かったならば、 後世は何とすればよいか。 21世紀以後の世代は 20世紀を一体何の ように顧みるであろうか。 It is said that the various countermeasures that are currently being taken are ineffective, and if there is no fundamental countermeasure, there is a possibility of poor jiri. In the worst case, when the above-mentioned main issues and accompanying crises suddenly increase in severity, and if there are no effective countermeasures or technical accumulation, what should we do for future generations? How will generations after the 21st century look at the 20th century?
新たな用欲
発明 を実施す る た め の 最良 の 形態 New greed BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をより詳細に説述するために図面を参考にして説明 する。 Hereinafter, the present invention will be described with reference to the drawings in order to explain the present invention in more detail.
第 3図は本発明防護装置の一実施例を示す斜視図である。 図にお いて、 Fは発電体で、 発電部 F1と集電部 F8とは発電板凾 F7に収 容されるよう構成されている。 例えば、 帯長状の発電部 F1は先端 に発電伸展枠 F3を付設し、 発電制御部 F5の制御を受けて、 発電駆 動部 F4で巻取られ、 発電板凾 F7の中に収容される。 FIG. 3 is a perspective view showing an embodiment of the protection device of the present invention. In the figure, F is a power generating body, and the power generating unit F1 and the current collecting unit F8 are configured to be housed in a power generating plate box F7. For example, the belt-shaped power generation unit F1 has a power generation extension frame F3 attached to the tip, and under the control of the power generation control unit F5, it is wound by the power generation drive unit F4 and housed in the power generation plate box F7 .
発電部 F1は、 太陽光の照射を受けて発電する光発電板 F2と、 太 陽熱によって発電する熱発電板 F3と、 を備えている。 The power generation unit F1 includes a photovoltaic plate F2 that generates power by receiving sunlight, and a thermoelectric plate F3 that generates power by using solar heat.
光発電板 F2は、 例えばアモルフ ァスシリ コ ン太陽電池等で構成 されている。 アモルフ ァスシ リ コ ンは、 シ リ コ ンの単結晶に比べて 種々の特長があり、 宇宙空間に伸展して装備される太陽電池用とし て好都合である。 具体的に下記は全て光発電板 F2に好適な物性で めな 0 The photovoltaic plate F2 is composed of, for example, an amorphous silicon solar cell. Amorphous silicon has various features compared to silicon single crystals, and is suitable for use in solar cells that are extended and installed in outer space. Specifically, all of the following are physical properties suitable for the photovoltaic power generation plate F2.
製造エネルギーが少ない。 (基板温度は 300 °C, 単結晶 1000 °C ) 製造工程が簡単。(素材のァモルファス S形成と同時に基本接合) 必要膜厚は超薄膜。 (約 l zm、 単結晶 S の約 1 / 300 ) Low production energy. (Substrate temperature is 300 ° C, single crystal 1000 ° C) The manufacturing process is simple. (Basic bonding at the same time as the formation of Amorphous S of the material) (About l zm, about 1/300 of single crystal S)
大面積化容易。 (ガス反応であるため) Easy to increase the area. (Because it is a gas reaction)
基板材料が安価。 (ステンレス, 合金, 樹脂等) Substrate material is inexpensive. (Stainless steel, alloy, resin, etc.)
一枚の基板上で高い電圧得る。 (集積型太陽電池等) Obtain high voltage on one substrate. (Integrated solar cells, etc.)
飛躍的に低コス トの可能性大。 (大量生産, 製造自動化等) Dramatically low cost potential. (Mass production, production automation, etc.)
変換効率の改善が図られている。 (約 10 %程度。 目標 12〜15 % ) " また、 太陽電池による発電は、 Conversion efficiency is improved. (About 10%. Target 12-15%) "
ク リーンなエネルギー源である。 It is a clean energy source.
太陽光のエネルギーは無料で無尽蔵である。 た な ¾紙
ほぼ一定の効率で発電できる。 Solar energy is free and inexhaustible. Tana paper It can generate electricity with almost constant efficiency.
エネルギー消費場所で発電できる。 Generate electricity at energy consuming locations.
等の優れた特長を持っている。 It has excellent features such as
Bは変電体で、 前記発電部 F1で発電され集電部 F8で集電された 電力を貯蔵する蓄電部 B 1と、 電力を各板体に送電し推進用や管制 用に配電する配電部 B2と、 地球管制体 Xにマイクロ波送電を行う 送電部 B3と、 を具備している。 B is a transformer, a power storage unit B1 for storing power generated by the power generation unit F1 and collected by the power collection unit F8, and a power distribution unit for transmitting power to each plate and distributing the power for propulsion and control. B2 and a power transmission unit B3 for transmitting microwave power to the earth controller X.
Cは推進体で、 前記各体の必要な個所に装備された噴出部 C1と、 該噴出部 C1の噴出方向や噴出時間や配備位置を調整用の推進制御 部 C2と、 を具備している。 しかして各基地系の配備位置, 間隔, 姿勢を調整するよう構成している'。 C is a propulsion body, which comprises: an ejection section C1 provided at a necessary portion of each body; and a propulsion control section C2 for adjusting the ejection direction, ejection time, and deployment position of the ejection section C1. . Thus, it is configured to adjust the deployment position, spacing, and attitude of each base system '.
Dは管制体で、 地球端末機 Yや地球気象庁 Zからの気象データー, 地球管制体 Xからの指令電波, を送受信する交信部 D1と、気象デー ターや指合電波を入力し, あらかじめ記憶された設定目標用の主モ デル · 実験データー · 修正モデル等を分析して, 比較データーや調 整事項を出力する電子計算機 D2と、 から成っている。 D is a controller, which receives the weather data from the Earth Terminal Y and the Earth Meteorological Agency Z, the communication unit D1 for transmitting and receiving command radio waves from the Earth Controller X, and receives the weather data and finger radio waves and stores them in advance. And a computer D2 that analyzes the main model for the set target, the experimental data, the corrected model, etc., and outputs comparative data and adjustment items.
Eは遮光体で、 地球上の特定地域への太陽光線を遮光する遮光部 E 1と、 該遮光部の姿勢や長さや傾角等を前記管制体 Dからの指令 によって制御し調整する遮光制御部 E5と、 を具備している。 E is a light-shielding body, which is a light-shielding unit E1 that shields sunlight to a specific region on the earth, and a light-shielding control unit that controls and adjusts the position, length, inclination, and the like of the light-shielding unit according to a command from the controller D. And E5.
第 1 図の実施例では遮光部 E 1は薄帯板であってロール状に巻装 されている。 In the embodiment shown in FIG. 1, the light shielding portion E1 is a thin plate and is wound in a roll shape.
遮光部 E 1は、 太陽光線の照射にさらされた宇宙空間に於いて広 く伸展して装備されるものであるから、 その材質, 製造方法, 組立 方法には特に配慮を要する。 材質としては、 紫外線にも劣化しない ものであること、 大面積化, 大型化の製造が可能であること、 機械 的強度が高く耐腐蝕性の物質が得られること、 等が必要である。 : な用
このような必要条件に合致する材質は、 ァモルファス合金が良い。 ァモルフ ァス合金は一般に硬度及び引張強さが大き く、 高強度で ねばり強く、 きわめて高い耐食性を備えている。 また、 ァモルファ ス合金は、 急冷法による大量生産が便利である。 Since the light-shielding part E1 is widely extended and installed in outer space exposed to sunlight, special attention must be paid to its material, manufacturing method, and assembly method. The material must be one that does not deteriorate with ultraviolet rays, that it can be manufactured with a large area and large size, and that a material with high mechanical strength and corrosion resistance can be obtained. : Nayo A material that meets such requirements is an amorphous alloy. Amorphous alloys generally have high hardness and tensile strength, are high-strength, tough, and have extremely high corrosion resistance. Also, it is convenient to mass produce amorphous alloys by the quenching method.
生産されたものは一度ロールに巻取った後伸展しても良く、 また、 生産される速さで宇宙空間に伸展するよう構成されてもよい。 The produced product may be wound on a roll and then extended, or may be configured to extend into outer space at the production speed.
ロール巻取りの場合、 例えば厚さ 0. 5〜2. 0麵の薄帯板は、 直径 3 〜 4 mの口一ルに卷取られれば、 5〜20 kraの長さに伸展することが できる。 基地本体 Vゃ板凾 J7は、 なるべく少くて, 長距離, 広面 積を遮光しうるよう構成されることが望ま しい。 In the case of roll winding, for example, a thin plate with a thickness of 0.5 to 2.0 mm can be extended to a length of 5 to 20 kra if it is wound around a 3 to 4 m diameter mouth. it can. It is desirable that the base body V ゃ plate box J7 be configured to be as light as possible, and to shield light over long distances and wide areas.
遮光部 E1は遮光駆動部 E4によって巻取られ、 遮光制御部 E5に よって制御される。 遮光部 E1は薄板であるから、 先端に遮光伸展 枠 E3が付設され、 遮光制御部 E5の制御指令で前進後退し伸展長さ が調整される。 (調整必要箇所のみ) The light shielding unit E1 is wound by a light shielding driving unit E4 and is controlled by a light shielding control unit E5. Since the light-shielding portion E1 is a thin plate, a light-shielding extension frame E3 is attached to the end thereof, and the extension and retraction length is adjusted by a control command of the light-shielding control portion E5. (Only necessary adjustments)
遮光体 Eは発電体 Fの機能を兼ねるよう構成されていてもよい。 例えば、 アモルフ ァス合金の基板の上にァモルフ ァス絶綠体の膜 が付装され、 その上にァモルファス半導体が付されてもよい。 The light shield E may be configured to also have the function of the power generator F. For example, an amorphous amorphous film may be provided on a substrate made of an amorphous alloy, and an amorphous semiconductor may be provided thereon.
アモルフ ァス半導体は、 安価な基板の上に形成でき、 大面積化が 容易で、 低温形成が可能である等の特長がある。 Amorphous semiconductors have the features that they can be formed on inexpensive substrates, that they can easily be made larger, and that they can be formed at lower temperatures.
I は連結体で、 軽量で引張強度の大きいワイヤ等で形成され、 複 数個の基地本体 Vを連結し、 板体の伸展, 収納の機能を備えている。 連結体 I の外面には凹凸帯 1 8が形成されており、 伸展, 収納を先 導する作用がある。 I is a connecting body, which is made of lightweight wire with high tensile strength, etc., connects multiple base bodies V, and has the function of extending and storing the plate. An uneven band 18 is formed on the outer surface of the connector I, which has the effect of leading extension and storage.
遮光体 Eは、 反射体 Gの機能を兼用するよう構成されてもよい。 即ち、 遮光部 E 1の片面が鏡面に形成されていれば、 地球上の特定 地域を太陽の反射光線で照射することもできる。 た な 用紙
反射体 Gは前記管制体 Dからの指令により、 あるいは太陽光線の 角度や位置により 自動的に、 反射制御部 G5で制御されるよう構成 しておく。 The light shield E may be configured to also have the function of the reflector G. That is, if one surface of the light-shielding portion E1 is formed as a mirror surface, it is possible to irradiate a specific area on the earth with reflected light of the sun. Paper The reflector G is configured to be controlled by the reflection control unit G5 according to a command from the controller D or automatically according to the angle or position of sunlight.
反射体 Gは遮光体 Eが装備された遮光板凾 E7と一緒に装備され てもよい。 又、 遮光体 Eとは別に装備して反射機能専用であっても よい。 The reflector G may be equipped together with a light shield E7 equipped with a light shield E. Further, it may be provided separately from the light shield E and dedicated to the reflection function.
反射体 Gは遮光体 Eによる太陽光陰影部 E eに隣接する自然光照 射部に反射光が照射されるよう設定しておく。 自然光 · 反射光のプ ラスされた大気と、 太陽光陰影部との差異がより顕著に, 例えば両 部の大気の温度差として現出される。 The reflector G is set so that the natural light irradiating part adjacent to the sunlight shaded part E e by the light shield E is irradiated with the reflected light. The difference between the atmosphere where the natural light and reflected light are positive and the shaded area of the sun is more remarkable, for example, it appears as the temperature difference between the atmosphere in both parts.
反射体 Gは凹凸や歪みのない平面であることが必要である。 The reflector G needs to be a flat surface without unevenness or distortion.
帯状に形成された場合、 その両側面が連結体 I に, 例えば細溝で 支承され、 全体は幅広で長い平面板に形成されるべきである。 If formed in a strip, both sides should be supported on the connecting body I, for example by narrow grooves, and the whole should be formed as a wide and long flat plate.
反射部 G1は適当な長さの長方形に形成された場合、 その外周面 は補強枠 J2で補強され、 補強枠 J2の両側縁が連結体 I に支承され 0 When the reflecting portion G1 is formed in a rectangle of an appropriate length, its outer peripheral surface is reinforced by a reinforcing frame J2, and both side edges of the reinforcing frame J2 are supported by the connecting body I.
又は、 反射駆動部 G4に支承され、 反射制御部 G5を介してその傾 角が駆動部 J4によって調整される。 太陽光線の角度は時々刻々変 化するので、 反射光線が目標の地域に照射されるよう管制体 Dの電 子計算機 D2にプログラムしておく。 反射制御部 G5はその指令で動 Alternatively, the tilt angle is supported by the reflection drive unit G4, and the tilt angle is adjusted by the drive unit J4 via the reflection control unit G5. Since the angle of the sun's rays changes from moment to moment, it is necessary to program the computer D2 of the control body D so that the reflected light is directed to the target area. The reflection control unit G5 operates according to the command.
< 0 <0
第 4図は本発明防護装置の一実施例を示す断面図である。 FIG. 4 is a sectional view showing an embodiment of the protection device of the present invention.
図に於いて、 基地本体 Vの中には、 例えば発電体製作機 J F と、 反射体製作機 J Gとが並べて設置されている。 発電部 F 1と、 反射 部 G1とは重ね一体に張合わせて、 板凾 J7に巻装される。 In the figure, for example, a generator manufacturing machine J F and a reflector manufacturing machine J G are installed side by side in the base body V. The power generation unit F1 and the reflection unit G1 are overlapped and attached to each other, and wound around the plate box J7.
又は、 別々 に別の板凾 J7に巻装されて、 第 7 図に示すように基 新たな !l紙
地本体 Vの相互の間に伸展される際に重ね合せて、 一体にして連結 体 I に両側縁が装備されてもよい。 Or, it is wound separately on another board box J7 and a new! L paper is used as shown in Fig. 7. The joint body I may be provided with both side edges so as to be integrated as one body when extended between the ground bodies V.
第 4図に於いて、 基地本体 Vの中には、 遮光体製作機 J Eと、 反 射体製作機 J Gとは兼用されてもよい。 反射部 G1は、 遮光部 E1の 裏面が鏡面になるよう磨がかれる工程が増設されていてもよい。 In FIG. 4, in the base body V, the light shielding body manufacturing machine JE and the reflector manufacturing machine JG may be used in combination. The reflecting portion G1 may be provided with an additional step of polishing the back surface of the light shielding portion E1 so as to be a mirror surface.
第 5図は、 本発明防護装置の板ュニッ ト J Uの一実施例を示す図 ¾ 0 FIG. 5 is a diagram showing an embodiment of the plate unit JU of the protection device of the present invention.
以下、 各種〇〇板の総称としての板体について説明する。 Hereinafter, a plate body as a generic term for various types of plates will be described.
図に於いて、 板凾 J7の上面には太陽光発電板等の発電部 F 1を装 備している。 推進部 J6を付設し、 内部には制御部 J5と、 駆動部 J 4と、 ロール状に巻装された板部 J1と、 を収容している。 板部 J 1 は、 遮光部 E 1 , 発電部 F l, 反射部 G1が個別に巻装されていても よい。 これらがあらかじめ一体的に張合わされて、 ロール状に巻装 されてもよい。 In the figure, a power generation unit F1 such as a photovoltaic power generation plate is provided on the upper surface of the plate box J7. A propulsion unit J6 is provided, and contains a control unit J5, a drive unit J4, and a plate J1 wound in a roll. The plate part J1 may be individually wound with the light shielding part E1, the power generation part Fl, and the reflection part G1. These may be integrally laminated in advance and wound in a roll shape.
板体 Jの伸展及び巻取りは、 駆動部 J4の回動によって行われ、 駆動部 J4は制御部 J5によって制御される。 制御部 J5には、 管制 体 Dの電子計算機 D2に連結された端末機 D3を収めて自動的に制御 しうる場合、 制御部 J5のみの自動制御で行う。 例えば板体 Jの伸 展ゃ巻取りが一旦指令されたあと各板体 Jの張力を維持しながら駆 動部 J4を制御する。 伸展後の状態では適度の張力を維持し、 過度 のゆるみやたわみが起こらないように計測しつつ自動制御される。 制御部 J5は、 推進部 J6の推力や噴出方向の調節を自動制御 · 指令 制御で行う場合に作動する。 The extension and winding of the plate J are performed by the rotation of the drive unit J4, and the drive unit J4 is controlled by the control unit J5. When the control unit J5 can automatically control the terminal D3 connected to the computer D2 of the controller D, the control is performed by the automatic control of only the control unit J5. For example, after a command is given to extend and rewind the plate J, the driving section J4 is controlled while maintaining the tension of each plate J. In the state after extension, it is controlled automatically while maintaining an appropriate tension and measuring so as not to cause excessive loosening or bending. The control unit J5 operates when the thrust and ejection direction of the propulsion unit J6 are adjusted by automatic control and command control.
制御部 J5は板ユニッ ト J Uの巻取, 姿勢, 張力が全て、 出来る だけ自動的に調整されるよう構成されている。 無重力状態の軌道上 に於いて、 複数個の板ュニッ ト J Uがー対の基地本体 Vの間に装備 新たな ¾紙
された場合、 それらがなるべく一直線上に並ぶよう、 また各板体に ゆるみ, ねじれ等が起らないようにする。 その為に位置, 姿勢, 張 力を計測しつつ、 各推進部 J6や各駆動部 J4が操作されるよう構成 されたプログラムが制御部 J5に記憶されている。 発電部 F 1は、 太 陽光の照射を受けて太陽光発電が行われる光発電板 F2と、 宇宙空 間の熱を感知して感熱発電が行われる熱発電板 F3と、 によって構 成されている。 光発電板 F 2の裏面に熱発電板 F3が装備されてい てもよい。 The control unit J5 is configured so that the winding, posture, and tension of the plate unit JU are all automatically adjusted as much as possible. In a zero-gravity orbit, multiple plate units JU are installed between the paired base bodies V. New paper If possible, make sure that they are aligned in a straight line as much as possible, and that each plate does not become loose or twisted. For this purpose, a program configured to operate each propulsion unit J6 and each drive unit J4 while measuring the position, posture, and tension is stored in the control unit J5. The power generation unit F1 is composed of a photovoltaic power generation plate F2 that receives solar light to generate solar power, and a thermoelectric generation plate F3 that senses heat in space to generate thermal power. I have. A thermoelectric generation plate F3 may be provided on the back surface of the photovoltaic generation plate F2.
板凾 J7の内部には更に、 板体 Jの両空部に連結材 1 2がロール状 に巻装されている。 該連結材 1 2は、 連結駆動部 1 4と連結制御部 I 5によって制御されるよう構成されている。 板ュニッ ト J Uのロー ル状の巻装状態は、 異るところがあつても略同様に構成されている。 Inside the plate box J7, further, a connecting member 12 is wound in a roll shape in both empty portions of the plate body J. The connection member 12 is configured to be controlled by the connection drive unit 14 and the connection control unit I5. The rolled state of the plate unit JU is almost the same even if there are differences.
板凾 J7の内部には更に、 連結体 I の両端側にロール状に巻装さ れた誘導体 Hが収容されている。誘導体 Hは、誘導駆動部 H4によつ て駆動され、 該誘導駆動部 H4は誘導制御部 H5によって制御される。 In the inside of the plate box J7, a derivative H wound in a roll shape on both ends of the connector I is further housed. The derivative H is driven by an induction driving unit H4, and the induction driving unit H4 is controlled by an induction control unit H5.
連結体 I及び誘導体 Hは、 板凾 J7とは別の連結凾 1 7や誘導凾 H 7の中に収容されていてもよい。 板凾 J7の両端部、 又は上, 下端面 に付設されていてもよい。 連結凾 1 7や誘導凾 H7は、 基地本体 Vの 側面に付設されてもよい。 The connector I and the derivative H may be housed in a connector box 17 or an induction box H7 different from the board box J7. It may be attached to both ends, or the upper and lower ends of the plate box J7. The connecting box 17 and the guide box H7 may be attached to the side surface of the base body V.
次に、 本発明防護装置の基地系 Uの建設について説明する。 Next, construction of the base system U of the protection device of the present invention will be described.
第 7図は基地系の一実施例の建設順序を示す平面図である。 FIG. 7 is a plan view showing the construction order of one embodiment of the base system.
まず (a)図のように一対の基地本体 V , Vは一定以内の距離をおい て、 宇宙空間に相対向して配備されている。 その距離は各板体 Jの 長さ, 即ち連結材 1 2や誘導紐 H2の長さ以内である。 その長さ以上 離れていれば管制体 Dと無線で連絡をとりつつ推進体 Cを作動させ て位置, 姿勢を制御する。 そして、 一方の基地本体 Vの側面に付設 新たな用紙
された板ュニッ ト J Uの中から誘導体 Hを発射する。 誘導体 Hは誘 導推進部 H6の噴射で小型のロケッ 卜のように独自のロケッ ト推進 剤で推進してもよい。 誘導推進部 H6に光発電板 F2を備えその電力 で推力を得てもよい。 誘導体 Hは他方の基地本体 Vに結合され、 一 対の基地本体 V, Vは誘導紐 H2で連結される。 First, as shown in (a), a pair of base bodies V 1 and V 2 are installed facing each other in outer space at a certain distance. The distance is within the length of each plate J, that is, the length of the connecting member 12 and the guide string H2. If it is longer than that length, the propulsion unit C is operated and the position and attitude are controlled while communicating with the control unit D wirelessly. Then, attached to the side of one base body V, new paper The derivative H is fired from the plate unit JU. The derivative H may be propelled by a unique rocket propellant like a small rocket by injection of the guiding propulsion unit H6. The guidance propulsion unit H6 may be provided with a photovoltaic power generation plate F2 to obtain thrust with the power. The derivative H is connected to the other base body V, and the pair of base bodies V and V are connected by the guiding string H2.
次に、 図に示すように、 誘導紐 H2は他方の基地本体 Vに巻取ら れ、 該誘導紐 H2の終端に連結された連結体 I で両基地本体 V, V は展装される。 連結材 12は軽量であることは難しいので誘導紐 H 2 による引張力又は伸展モーターの回動力によって連結されること が確実と思われる。 無重力状態に於いて、 連結体 I の連結抵抗が小 さい場合は、 誘導体 Hを省略して、 直接噴出部 C1の推力によって 連結されてもよい。 なお、 連結材 1 2が軟ぃ場合は、 一定間隔で補 強枠 J2が必要と思われる。 Next, as shown in the figure, the guide string H2 is wound around the other base body V, and both base bodies V and V are deployed by the connecting body I connected to the end of the guide string H2. Since it is difficult for the connecting member 12 to be lightweight, it is considered that the connecting member 12 is surely connected by the pulling force of the guiding string H2 or the rotating power of the extension motor. In the zero-gravity state, if the connection resistance of the connector I is small, the derivative H may be omitted and the connection may be made directly by the thrust of the ejection part C1. When the connecting material 12 is soft, the reinforcing frame J2 may be necessary at regular intervals.
そして、 (c)図に示すように、 各板体 Jがー方の基地本体 Vから他 方の基地本体 Vに伸展されてゆく。 各板体 Jの伸展枠 J3は、 その 両端の駆動部 J4の回動によって、 連結材 1 2をガイ ドにして一定の 速さで進退する。 例えば伸展モーターには凹凸車 J8が付設され連 結材 1 2は合成樹脂の凹凸帯 1 8で形成される。 両者は自転車の新駆 動部のようにかみ合っている。 Then, as shown in (c), each plate J is extended from the base body V on one side to the base body V on the other side. The extension frame J3 of each plate body J advances and retreats at a constant speed by using the connecting members 12 as guides by the rotation of the driving portions J4 at both ends thereof. For example, the extension motor is provided with an uneven wheel J8, and the connecting material 12 is formed of an uneven belt 18 of synthetic resin. They are engaged like a new driving section of a bicycle.
板ュニッ ト J Uは、 一対の基地本体 V, Vの双方に付設され、 双 方から伸展枠 J3が進走し、 板体 Jが伸展されて中間で結合されて もよい。 The plate unit J U may be attached to both of the pair of base bodies V, V, and the extension frame J3 may advance from both sides, and the plate body J may be extended and joined in the middle.
伸展枠 J3の先導作用は板ュニッ ト J Uで代行されてもよい。 板ュ ニッ ト J Uの両端面に前記凹凸車 J8が付設されていれば、 板ュニッ ト J U内の板体 Jは自ら伸展される。 基地本体 Vの板ュニッ ト J Uの板 体 Jも伸展しつつ中間で連結される。 一対の基地本体 V, Vの空間が、 た な 用 ^
二対の板ュニッ ト J U, J Uによって連結される。 The leading action of the extension frame J3 may be replaced by a plate unit JU. If the uneven wheel J8 is attached to both end surfaces of the plate unit JU, the plate body J in the plate unit JU is extended by itself. The plate J of the plate unit JU of the base body V is also extended and connected in the middle. The space between a pair of base bodies V, V It is connected by two pairs of plate units JU, JU.
板ュニッ ト J Uの駆動部 J4も、 前記進展枠 J3も制御部 J5で制 御されており、 板体 Jに余り張力を加えず 4倍の速さで伸展又は収 納できる。 The drive unit J4 of the plate unit J U and the advancement frame J3 are also controlled by the control unit J5, so that the plate body J can be extended or stored at a speed four times as fast without applying excessive tension.
板ュニッ ト J Uの推進部 J6の推力が充分に強い場合は、 又、 無 重力状態の宇宙空間で、 推進部 J6の位置や姿勢制御が充分信頼お ける場合は、 誘導体 H, 連結体 I は省略できる可能性がある。 If the thrust of the propulsion unit J6 of the plate unit JU is sufficiently strong, or if the control of the position and attitude of the propulsion unit J6 is sufficiently reliable in the space of zero gravity, the derivative H and the connecting body I May be omitted.
即ち、 一対の基地本体 V, Vから、 二対の板ュニッ ト J U, J U が発進され、 中間で板凾 J7, J 7の背面が互いに結合される。 That is, two pairs of plate units JU, JU are launched from a pair of base bodies V, V, and the back surfaces of plate boxes J7, J7 are joined to each other in the middle.
このようにして一対, 又は複数対の基地本体 V……が、 複数の板 ュニッ ト J Uによって一体的に連結されて、 基地系 Uが組立される。 In this way, a pair or a plurality of pairs of base bodies V are integrally connected by a plurality of plate units J U to assemble the base system U.
第 8図は本発明防護装置の基地系集団 Wの一実施例を示す平面図 である。 基地系 Uは横長に連結されてもよく、 縦長に連結されても よく、 幅広に連結されてもよい。 単一形の基地系 U又は複数種の形 に連結された基地系 Uを一箇所に寄せ集めて、 一定の間隔をおいて 配備して所要の形状の基地形集団 Wが構成される。 各基地系 Uは地 球上の特定地域の目標に略合致した矩形の太陽光陰影部が形成され るよう、 管制体 Dの指令によって移動し配備される。 配備された後 も、 地球管制体 Xや地球端末機 Yの情報によって移動し変形する。 次に、 本発明の防護装置を実際に使用する状態を付図を参考にし て説明する。 第 9図は本発明防護装置の一使用状態を示す側面図で ある。 水湿域 Qの表面からは自然太陽光で照射されて水蒸気が蒸発 する。 水湿域 Qとはここでは、 海洋, 湖, 川, 降雨後の陸地, 沼等 である。 一般に、 水湿域 Qの周辺の隣水域 Q Rでは蒸発した水蒸気 により上空に雲が形成され、 この雲が移動し降雨現象がある。 しか し隣水域 Q Rを越えた内陸部の乾燥地域 Rではその雲も流れず、 水 新た な ¾
蒸気も到達しない。 従って降雨せず気化熱による気温低下の現象も ないから、 気温は上昇し乾燥地域となる。 FIG. 8 is a plan view showing an embodiment of the base system group W of the protection apparatus of the present invention. The base system U may be connected horizontally, vertically, or wide. A single base system U or base systems U connected in a plurality of types are gathered at one place and arranged at regular intervals to form a base shape group W of a required shape. Each base system U is moved and deployed in accordance with the command of the controller D so that a rectangular solar shading area that almost matches the target of the specific area on the earth is formed. Even after being deployed, it moves and deforms based on information from the Earth Control System X and the Earth Terminal Y. Next, a state in which the protection device of the present invention is actually used will be described with reference to the attached drawings. FIG. 9 is a side view showing one state of use of the protection device of the present invention. Water vapor evaporates from the surface of the water wet area Q when irradiated with natural sunlight. Here, the water wet area Q is the ocean, lake, river, land after rainfall, swamp, and the like. In general, in the adjacent water area QR around the water wet area Q, a cloud is formed in the sky due to the evaporated water vapor, and this cloud moves and causes a rainfall phenomenon. However, the cloud does not flow in the inland arid region R beyond the adjacent water area QR, and the water Steam does not reach. Therefore, there is no rainfall and there is no decrease in temperature due to heat of vaporization, so the temperature rises and the area becomes dry.
本発明の防護装置を使用する場合、 まずこの隣水域 Q Rの隣の乾 燥地域 Rは太陽光陰影部 E eが投影されるように宇宙空間に前記基 地系集団 Wを配備する。 上空は完全に被覆されては昼間でも暗く生 活に支障を生じるから、 間隙が形成される。 しかし整然と定間隔に なるよう推進体 Cで調整して、 管制体 Dの指令で必要な個数、 必要 な面積になるよう配備する。 太陽光線が真上から照射されるとは限 らないから所定の乾燥地域 Rに太陽光陰影部 E eが形成されるよう 配備される。 When the protection device of the present invention is used, first, in the dry area R next to the adjacent water area QR, the base group W is arranged in outer space so that the solar shade Ee is projected. If the sky is completely covered, it will be dark even in the daytime and hinder livelihoods, so gaps will be formed. However, it will be adjusted by propulsion unit C so that it will be regularly spaced, and will be deployed so that the required number and area will be required by the control unit D. Since the solar rays are not necessarily irradiated from directly above, the solar cells are installed so that the shaded area E e is formed in a predetermined dry area R.
太陽光陰影部 E eでは太陽光の照射がないから大気の温度は下る。 従って、 この寒気 Pには上空から空気が降下し、 隣の暖気 0の下に 入るように斜面の境界線 Sが形成される。 水湿地 Qや隣水域 Q Rに は太陽光が照射されているから、 水蒸気は大気と共に上昇し、 雲を 有する暖気 0が形成され、 寒気 Pの上に配置されるようになる。 In the sun shaded area E e, the temperature of the atmosphere drops because there is no sunlight irradiation. Therefore, in the cold air P, the air descends from the sky, and the boundary line S of the slope is formed so as to enter below the adjacent warm air 0. Since the water marsh Q and the adjacent water body QR are illuminated with sunlight, the water vapor rises with the atmosphere to form warm air 0 having clouds and to be disposed above the cold air P.
このような状態のとき、 境界線 Sは降雨現象を促進する前線 S と なる。 降雨するに必要な寒気 Pを構成する太陽光陰影部 E e の面積 は実験や計算によつて決定する。 In such a state, the boundary S becomes the front S that promotes the rainfall phenomenon. The area of the sun-shaded area E e that composes the cold air P required for rainfall is determined by experiments and calculations.
実験や計算によ り降雨する場合のモデルは電子計算機 D2に入力 し記憶させておく。 このモデルと、 現実の気象データーと、 新たな 降雨の設定目標とは、 電子計算機 D2に入力する。 そして、 あらか じめプログラムされた最適の条件で分析, 解析する。 この情報が管 制体 Dの指令情報として宇宙基地の各体を制御し操作する。 The model for rainfall caused by experiments and calculations is input and stored in the computer D2. The model, the actual weather data, and the new rainfall target are input to the computer D2. Then, analysis and analysis are performed under the optimal conditions programmed in advance. This information controls and operates each body at the Space Station as command information of Controller D.
降雨は必要量だけ時間を設定し、 乾燥地域 Rに水害を起さぬ程度 に遮光体 Eの面積を制御する。 又は、 乾燥地域 Rに隣接 (又は一定 の地域間隔を設けて) する次の新乾燥地域 RRに移動する。 移動は た な S¾
全て管制体 Dの指令で行う。 The rainfall is set for the required amount of time, and the area of the shading body E is controlled so that flooding does not occur in the dry area R. Or, move to the next new dry area RR adjacent to dry area R (or with a certain area interval). Move to S¾ All instructions are to be issued by Controller D.
移動後の新乾燥地域 R Rは遮光されるから気温が下り、 新寒気 P Pが形成される。 移動後の乾燥地域 Rは降雨したあとであるから、 新水湿域 を形成する。 大気中に水蒸気は多く残り、 地面は湿り、 貯水している場所も多い。 そこへ太陽光を照射すれば、 前記水湿域 Qと同様に水蒸気が蒸発し、 湿度の高い新暖気 00が構成される。 The new dry area after the movement R R is shaded, so the temperature drops and new cold air PP is formed. Arid area R after the migration is after rainfall, so it forms a new wet area. A lot of water vapor remains in the atmosphere, the ground is wet, and many places store water. When sunlight is radiated there, the water vapor evaporates in the same manner as in the water / humidity area Q, and new warm air 00 with high humidity is formed.
異なった 2つの気団、 新寒気 P P と新暖気 00との境界に斜面で ある新前線 S Sが構成される。 新暖気 0 0は新前線 S Sに沿っては い上り、 上空で断熱膨張 · 断熱冷却して凝固し雲が形成される。 新 乾燥地域 RRには降雨現象がみられる箬である。 このようにして、 次々に乾燥地域 Rは次第に内陸部まで降雨させることができる害で ある。 移動の回数を繰り返すと、 例えば砂漠地帯等で降雨量が少く なれば、 一定期間をおいて再度繰返せばよい。 基地系 Uの数量や面 積は多数を必要とし、 初期では経済的に負担になる。 しかしこのよ うな移動操作を繰り返し、 降雨地を新たな水湿地として活用すれば 広大な砂漠であつても降雨は不可能ではない。 太陽光線の照射部と 太陽光陰影部とを変更し移動することによって最初の水湿域 Qの水 を、 太陽光線のエネルギーと水の蒸発作用を利用して水分のみ吸上 る。 水蒸気は雲を形成し、 雲の浮遊性, 風の力, 降雨現象を活用し、 砂漠等の乾燥地域 Rに散水することになる。 At the boundary between two different air masses, the new cold air PP and the new warm air 00, a new front S S, which is a slope, is formed. The new warm air 00 rises along the new front S S, and adiabatically expands and adiabatically cools above the air to solidify and form clouds. There is a rainfall phenomenon in the new arid area RR. In this way, the arid area R is a harm that can gradually rain down to the inland area. If the number of transfers is repeated, for example, if the amount of rainfall decreases in desert areas, etc., it may be repeated again after a certain period of time. The number and area of the base system U require a large number, which is initially economically burdensome. However, repeating such a moving operation and using rainfall areas as new water marshes will not prevent rainfall even in vast deserts. The water in the first wet area Q is sucked up only by using the energy of the sun's rays and the evaporating action of the water by changing and moving the sun's irradiation part and the sun's shaded part. The water vapor forms clouds, and uses the cloud's buoyancy, wind power, and rainfall phenomena to spray water to dry areas R such as deserts.
こ こで、 水湿域 Q, Q Qからの水の蒸発作用を促進し、 雲を効果 的に形成するように、 水湿域 Q, Q Qには反射体 Gの反射部 G1を 設定して、 自然の太陽光に加えて反射光を照射してもよい。 第 9図 の左方の図はその一実施例を示す。 なお、 雲が移動し易いように、 風の方向を気象データー等から事前に確認しておく。 風は乾燥地域 Rの内陸部へ向って吹く 日、 吹く方向が望ましい。 Here, the reflection part G1 of the reflector G is set in the water wet areas Q and QQ so as to promote the evaporating action of water from the water wet areas Q and QQ and effectively form clouds. Reflected light may be applied in addition to natural sunlight. The figure on the left of FIG. 9 shows one embodiment. The direction of the wind should be checked in advance from weather data etc. so that the clouds can move easily. The wind blows toward the inland part of the arid region R, preferably on the day of the wind.
新た な ffl紙
第 10図は本発明の一実施例である。 図はかって夏期に降雨せず、 長期間水不足を体験した日本のある特定地域に適用した実例を示す 平面図である。 New ffl paper FIG. 10 shows an embodiment of the present invention. The figure is a plan view showing an example of application to a specific area in Japan that experienced a long-term lack of water without rainfall in the summer.
第 11図は地球上の砂漠としては広大な面積で知られるアフ リ カ大 陸の北部や、 ァラビヤ大陸に適用した実例を示す斜視図である。 Fig. 11 is a perspective view showing an example applied to the northern part of the African continent, which is known as a vast desert on the earth, and to the Arabian continent.
第 12図は同様に世界各地の乾燥地域に適用した実例を示す平面図 あ o Fig. 12 is a plan view showing an example applied to arid regions around the world.
本発明は未だ計算や実験を試みたわけではない。 発明者の推量に よって考えたものである。 従って、 基地系集団 Wの広さ (太陽光陰 影部 E eの広さ) や繰り返し回数等は実際には修正も必要とするこ とは勿論であり、 正確には計算 · 実験等の結果を待たねばならない。 砂漠は、 高度 · 地形 · 地質などの自然的特徴が地域によって著し く異る。 砂漠は晴天が多ぐ、 気温の日較差が大き く、 表面の過熱や 強風が特色である。 降水量が少く蒸発可能量が著る しく大きい。 日 中は植生がほとんどないため過熱されサハラ砂漠では 78 °Cを記録し ている。 夜間は晴天が多いため放射冷却が激しく露が降り、 時に霜 が下りる。 The present invention has not yet attempted calculations or experiments. This is based on the inference of the inventor. Therefore, it is needless to say that the area of the base system group W (the area of the shaded area E e) and the number of repetitions also need to be corrected. I have to wait. Deserts have very different natural features, such as altitude, topography, and geology, depending on the region. Deserts are often sunny, have large daily temperature ranges, and are characterized by overheating and strong winds on the surface. The precipitation is small and the evaporable amount is remarkably large. During the day, there is almost no vegetation and it is overheated, recording 78 ° C in the Sahara Desert. At night, there is a lot of fine weather, so radiative cooling causes intense dew and sometimes frost.
乾燥砂漠の生成の原因は、 地球上における気圧の変動と、 風系の 影響と、 海洋からの距離である。 即ち、 熱帯の赤道近傍で強烈な太 陽エネルギーによつて上昇した大気が上空で断熱膨張による断熱冷 却で降雨後、 水蒸気を放出して乾燥した大気が降下する。 The causes of dry desert formation are atmospheric pressure fluctuations on the earth, wind system effects, and distance from the ocean. In other words, the atmosphere rising near the equator in the tropics due to intense solar energy rains above the adiabatic cooling due to adiabatic expansion above the sky, then releases water vapor by releasing water vapor and falls.
中緯度には高圧帯があり、 乾燥した下降気流が卓越して降水をも たらすのに不適当なため、 大地は乾燥して砂漠を形成する。 At mid-latitudes, there are high-pressure zones, and the land is dry and forms deserts because dry downdrafts are inadequate to produce predominant precipitation.
次に、 地球のある特定地域に太陽光陰影部を形成した場合の、 特 定地域及びその周辺の気候の変化を電子計算機を用いてシュ ミ レー トする手段にづいて説明する。 まず、 地球の経線と緯線の間を細分 ^
線で分割し細分線の交点を格子点とする。 Next, a method for simulating changes in climate in a specific area and its surroundings when a sunshade is formed in a specific area of the earth using an electronic computer will be described. First, a subdivision between the Earth's meridians and parallels ^ The line is divided by a line, and the intersection of the subdivision lines is set as a lattice point.
地球上には場所によっていろいろな気候が存在する。 There are various climates on the earth depending on the location.
地球のある特定地域の気候という場合、 長期間にわたつて現れる 特徴的な天気現象で表わされる。 The climate of a certain part of the earth is expressed by characteristic weather phenomena that appear over a long period of time.
気候に影響する地球地理上の要因を分析し電子計算機に入力して < 0 Analyze geo-geographical factors that affect climate and input them to a computer to <0
(a) 気候条件は緯度とともに変化する。 地球は球型であるから、 並行に照射される太陽光線の地球の表面に到達する放射熱の角 度が異る。このため、低緯度(赤道地帯) に到達するエネルギー は高緯度 (極地方) に達する同量のエネルギーより も狭い表面 積に注がれる。 低緯度に到達するエネルギーは、 高緯度より も 厚みの薄い大気圏を通ってく る。 従って緯線 ·経線間を細分し て格子でおおい、 各格子点での大気圏を通ってく るエネルギー 量の物理量の値の時間変化を方程式に組み電子計算機に入力し ておく。 (a) Climatic conditions change with latitude. Since the earth is spherical, the angle of radiant heat that reaches the surface of the earth from parallel rays of sunlight is different. For this reason, the energy reaching low latitudes (equatorial zone) is devoted to a smaller surface area than the same amount of energy reaching high latitudes (polar regions). Energy reaching low latitudes travels through the atmosphere, which is thinner than at high latitudes. Therefore, the space between the parallels and meridians is subdivided and covered by a grid, and the time change of the physical quantity of the amount of energy passing through the atmosphere at each grid point is set in an equation and input to the computer.
南極の冷い乾燥した空気は下降し (極砂漠) 地球の表面に 沿って赤道へ広がる。 The cold, dry air of Antarctica descends (polar desert) and spreads along the Earth's surface to the equator.
赤道に集ってきた冷たい気団は暖く密度の低い気団を上方へ 追い上げる。 その結果地球的規模の空気の移動が起り、 中緯度 での逆気流によって複雑になる。 赤道上の軽くて暖ぃ気団は上 方で冷やされ多量の雨を降らせる。 乾燥した空気は北緯, 南緯 30度付近で再下降し乾燥した高気圧帯 (乾燥地帯) になる。 一 部の気団は低緯度へ戻り、 一部は極へと進み、 極から赤道へ 向つて進行中の極気団と出合う。 Cold air masses gathering at the equator will chase up warm, less dense air masses. The result is global movement of air, complicated by reverse airflow at mid-latitudes. A light warm air mass on the equator cools upwards, causing heavy rainfall. The dried air descends again at around 30 degrees north and south latitudes and becomes a dry high-pressure zone (dry zone). Some air masses return to low latitude, some go to the poles, and meet the ongoing polar air mass from the poles to the equator.
その結果、 気団どう しが衝突する不安定な気候帯が生じる。 北緯南緯 50〜60度付近は気候不安定な地域で、 高, 低気圧が 新た な 敏
交代し、 多湿な地域になる。 これら気団の動きを地球の気候型 に影響を与える要因として電子計算機に入力しておく。 The result is an unstable climate zone where air masses collide. Around 50 to 60 degrees north latitude and south latitude is an unstable climate area, and high and low pressures Turns into a humid area. The movement of these air masses is input to a computer as a factor affecting the climate type of the earth.
(b) 気候条件は、 大陸と海洋との相対的な位置関係や地形や高度 で変化する。 陸塊は海より も早く温り早く冷える。 従って、 前 記の各格子点での大陸と海洋との位置関係, 地形, 高度等を気 候への影響の係数と共に入力する。 (b) Climatic conditions vary depending on the relative positions of the continents and oceans, as well as terrain and altitude. Land masses warm and cool faster than the sea. Therefore, the positional relationship between the continent and the ocean at each grid point, the topography, the altitude, etc., are entered together with the coefficient of influence on the weather.
(C) 気候条件は、 森林や草原等自然植生等地上被覆の状態が、 中 気候より小さい小気候では特に重要である。 従って、 前記各格 子点での世界の気候分布と, 各地上被覆の気候に及ぼす係数と, を電子計算機に入力する。 (C) Climatic conditions are particularly important in small climates where the condition of ground cover, such as natural vegetation such as forests and grasslands, is smaller than the medium climate. Therefore, the global climate distribution at each grid point and the coefficient of each ground cover on the climate are input to the computer.
一般に人間は、 衣食住を通して気候と深い関係をもつ。 Generally, humans have a deep relationship with climate through clothing, food and shelter.
農業初め、 工業 · 商業 ·交通などにおいても気候からの影響を受 けることが多い。 各地域における産業は、 その土地の気候 · 風土を 反映したものである。 気温や降水量 どの一般的な気候の変化でさ- えも、 人間の生活様式を変える程の影響を及ぼす。 In the beginning of agriculture, industry, commerce, transportation, etc. are often affected by climate. The industries in each region reflect the local climate. Temperature and precipitation Any general climatic change can alter human lifestyles.
中には集中的に強烈な影響を及ぼすものがある。 Some have intensive and intense effects.
台風は、 熱帯低気圧のうち最大風速が 17 m / s以上になつた空気 の渦である。 限られた地域ではあるが大きな被害をもたらす。 第 21 図は日本を襲った主な台風の移動経路を示す図で、 大きな被害を受 ている。 気象観測史上だけでも、 約 5000人以上の犠牲者を出した① 初め、 1000人以上のものは 6件を数える。 A typhoon is an eddy of air with a maximum wind speed of 17 m / s or more in tropical cyclones. Although it is a limited area, it causes great damage. Fig. 21 shows the main typhoon movement routes that hit Japan, and they were heavily damaged. In the history of meteorological observation alone, it killed more than about 5,000 people. Initially, more than 1,000 people count six.
第 22図は台風並みの熱帯低気圧の発生分布を示す。 イ ン ド洋 · ァ ラビヤ海で発生するサイクロン、 は数万人の犠牲者を出した年も多 い。 世界全体で平均 80〜: L00個も 1年間に発生しており、 台風は約 3 0 %程度である。 Figure 22 shows the distribution of tropical cyclones similar to typhoons. Cyclones, which occur in the Indian Ocean and the Arabian Sea, often killed tens of thousands of people. On average 80 or more worldwide: L00 outbreaks occur in one year, and typhoons account for about 30%.
台風は、 強い風を伴う巨大な渦巻きで、 その風のエネルギーは、 7,;¾
平均的には広島原爆の約 10万倍、 関東大地震の約 100倍位と見積も られている。 台風は自然現象である以上、 将来も繰返すものであり、 過去の多くの大被害が今後も起り うる可能性は充分あり うることに なる。 Typhoons are huge swirls with strong winds, and the energy of the wind is 7 ,; ¾ On average, it is estimated to be about 100,000 times that of the Hiroshima Atomic Bomb and about 100 times that of the Great Kanto Earthquake. Since typhoons are natural phenomena, they will repeat in the future, and there is a good possibility that many great damages in the past can occur in the future.
被害は強風, 大雨, 洪水等による建築物, 樹木, 農作物, 地崩れ 等を繰り返す。 四面海に囲まれた日本では強風による塩害も大きい。 Damage is repeated in buildings, trees, agricultural crops, landslides, etc. due to strong winds, heavy rain, floods, etc. In Japan, which is surrounded by all four seas, salt damage from strong winds is large.
現在、 建築中, 又は将来も益々開発や利用の程度が増大するとみ られる臨海都市, 人工島, 空港等のウ ォーターフロ ン ト、 海洋交通 に於ける安全性や影響が大きいと考えられるからである。 This is because the safety and impact on the waterfront and marine traffic of seaside cities, artificial islands, airports, etc., which are currently under construction or are expected to increase in the degree of development and use more and more in the future, are considered. .
台風は、 大きな気圧降下と風の圧力が高潮を引き起す。 対策に苦 慮している地球温暖化は、 海水の膨張や氷の融解等による海水位の 上昇と、 台風の規模拡大と、 いう二重の危機拡大要素を含む。 Typhoons are subject to large pressure drops and wind pressures that cause storm surges. Global warming, for which measures are being taken, includes the double crisis-expansion factors of rising sea levels due to seawater expansion and ice melting, and expanding the scale of typhoons.
これらの要素が重なったとき、 ウォーターフロ ン トの被害が拡大 するばかりではない。 大都市はほとんど海に近い平野にある。 When these factors overlap, waterfront damage is not only magnified. Big cities are almost in plains near the sea.
次に、 本発明基地系集団をフ口ンガスによって破壊されたオゾン 層の修復という課題に対して適用を試みた実施例を説明する。 Next, an example in which the base group of the present invention is applied to the problem of repairing the ozone layer destroyed by humid gas will be described.
第 25図はその一実施例を示す図である。 FIG. 25 is a diagram showing one embodiment.
図において、 赤道周辺の低緯度地方で発生した雲, 特に積乱雲の 上端, 巻雲, 高層雲, 絹雲 , 絹積雲等上層雲は、 10 kmを越え、 18 km に達するものもある。 対流圏を越えて成層圏に至る。 In the figure, clouds generated in low-latitude regions around the equator, especially upper clouds of cumulonimbus clouds, cirrus clouds, high clouds, cirrus clouds, and silk cumulus clouds, exceed 10 km and some reach 18 km. It reaches the stratosphere beyond the troposphere.
一般に成層圏は、 空気及び水蒸気の濃度が極めて希薄である。 従って、 太陽光を遮ぎるものが少いから太陽光の照射は強烈であり、 紫外線の照射も極めて強い。 赤道直下周辺の太陽光の照射エネル ギ一で、 対流圏の大気は上昇し、 大気還流現象が発生する。 対流圏 に蓄積された残り 90 %、 約 70万ト ン以上のフロンは大気還流現象に 乗って対流している。 上昇気流と共に成層圏に入ったフロ ンは、 紫 新たな 用敏
外線 05の照射を受けて塩素を発生する。 この塩素 1個は約 1万個の オゾン分子と次々に反応してオゾン層が破壊され、 オゾンホールが 形成される。 オゾン層を破壊したのは全体の 10 %に過ぎず、 今後使 用を全面禁止しても残り 90 %がまだ対流圏中に蓄積されている。 今 後約一世紀間破壊し続けるとされる。 In general, the stratosphere has extremely low concentrations of air and water vapor. Therefore, sunlight is intense because there are few things that block sunlight, and UV irradiation is extremely strong. The solar irradiating energy immediately below the equator raises the atmosphere in the troposphere, causing atmospheric recirculation. The remaining 90% of the troposphere, which is more than 700,000 tons, is convectively riding on the atmospheric return phenomenon. The flon entering the stratosphere with the updraft is purple Generates chlorine when irradiated by outside line 05. This one chlorine reacts with about 10,000 ozone molecules one after another, destroying the ozone layer and forming an ozone hole. Only 10% of the total ozone layer was destroyed, and the remaining 90% is still stored in the troposphere even if its use is banned. It is said that it will continue to be destroyed for about a century.
オゾン層は短波長の紫外線 05が地上に降り注ぐのを遮断するバリ ヤーの役目を果たしているのであるから、 その弊害は前掲 (3)目的の 項目に掲載の通りである。 Since the ozone layer acts as a barrier to block the short-wavelength ultraviolet light 05 from flowing down to the ground, its evils are as described in the item (3) above.
一方、 希薄な成層圏中の水蒸気 01も紫外線 05の照射を受けて、 酸 素分子と水素分子に分解され、 該酸素分子 02からわずかながらォゾ ンが生成されている。 生成されたオゾン 03は、 成層圏中に於ける赤 道上空から極地上空への輸送流にのって輸送されている。 On the other hand, water vapor 01 in the dilute stratosphere is also irradiated with ultraviolet rays 05 and is decomposed into oxygen molecules and hydrogen molecules, and a small amount of ozone is generated from the oxygen molecules 02. The generated ozone 03 is transported along the transport stream from the equator to the polar surface in the stratosphere.
そこで、 成層圏における上記の蒸気蒸発、 オゾン生成を促進する システムを構成する。 第 25図に於て、 基地系集団 Wは宇宙空間に配 備されており、 該基地系集団 Wの反射体 Gによる太陽の反射光を成 層圏の中まで達した雲の上端 04に照射する。 反射光を受けた雲の上 端は、 太陽の直射光とプラスされた熱が加わるから、 水蒸気の蒸発 が促進される。 蒸発した水蒸気 01は紫外線 05の照射を受けて酸素分 子と水素分子とに分解される。 この酸素分子はさらに紫外線の照射 を受けて、 酸素原子に分解され、 該酸素原子は他の酸素分子 02と結 合してオゾン 03が生成される。 直射光と反射光とのプラスされた光 柱は気温が高いから水蒸気, 酸素, オゾンは勢いよ く上昇し、 また 光合成も促進される。 成層圏中のオゾン量は増加し、 破壊されたォ ゾン層を修復することができる。 生成されたオゾンは赤道上空を上 昇し、 極部上空へと気流にのって輸送される。 反射光柱は複数条同 じ雲の上端部に照射させてもよい。 反射体 Gや基地系集団 Wの制御 新たな 敏
は電子計算機 D2を用いて行う。 なお、 反射光のみでは蒸発作用が 充分でない場合、 雲の上端 04に太陽光の照射熱を吸収し易いように 黒色粉 06を拡散してもよい。 黒色粉 06は、 成層圏中を飛行機の拡散 体 07で拡散してもよい。 成層圏に於るオゾンへの生成課程の状況や データーは測定器搭載の観測体 08と交信して得る。 Therefore, a system that promotes the above-mentioned vapor evaporation and ozone generation in the stratosphere is constructed. In FIG. 25, the base system group W is provided in outer space, and the reflected light of the sun by the reflector G of the base system group W is applied to the upper end 04 of the cloud that has reached the stratosphere. . At the top of the cloud that receives the reflected light, the direct light of the sun and the added heat are applied, so that the evaporation of water vapor is promoted. The evaporated water vapor 01 is decomposed into oxygen molecules and hydrogen molecules by irradiation of ultraviolet rays 05. These oxygen molecules are further irradiated with ultraviolet rays and decomposed into oxygen atoms, and the oxygen atoms combine with other oxygen molecules 02 to generate ozone 03. Since the temperature of the light column with the direct light and the reflected light added is high, water vapor, oxygen, and ozone rise rapidly, and photosynthesis is promoted. The amount of ozone in the stratosphere increases, and the damaged ozone layer can be repaired. The generated ozone ascends above the equator and is transported by airflow over the poles. The reflected light column may irradiate the upper end of the same cloud. Control of reflector G and base group W New sensitivity Is performed using a computer D2. In addition, when the reflected light alone does not sufficiently evaporate, the black powder 06 may be diffused to the upper end 04 of the cloud so as to easily absorb the irradiation heat of sunlight. The black powder 06 may be diffused in the stratosphere by the airplane diffuser 07. The status and data of the production process of ozone in the stratosphere can be obtained by communicating with the observation object 08 equipped with a measuring instrument.
観測体 08はプロペラ付で成層圏中を移動でき、 テレビカメ ラ等で、 雲の上端 04や反射光の照射状態を観測し、 その情報を管制体 Dと交 信する。 その情報に基き、 反射体 Gを制御する。 Observation body 08 can move in the stratosphere with a propeller, and observes the top end of the cloud 04 and the irradiation state of the reflected light with a TV camera or the like, and communicates that information with Controller D. The reflector G is controlled based on the information.
なお、 オゾンホールの修復は、 小規模のものであれば成層圏に直 接酸素を拡散してもよい。 酸素は酸素夕ンク等に充填された液体酸 素が拡散体 07のノズルから直接噴出されてもよい。 酸素タンクは、 地上から飛行機に積載して拡散してもよいが、 彗星基地系 MUや星 面基地系 L Uで採集された酸素と, 帰還中のスペースシ ャ トルと, を活用すれば大量にできる。 The ozone hole can be repaired by diffusing oxygen directly into the stratosphere if it is small. As for oxygen, liquid oxygen filled in an oxygen tank or the like may be directly ejected from the nozzle of the diffuser 07. Oxygen tanks may be spread from the ground by loading on airplanes, but large amounts can be obtained by using oxygen collected by the comet base system MU or star base system LU and the returning space shuttle. it can.
次に、 本発明の基地系集団が酸性雨の緩和用に応用される手段を 実施例を用いて説明する。 Next, means for applying the base system group of the present invention for mitigating acid rain will be described using examples.
一般に化石燃料には硫黄分が含まれているので、 燃焼すると亜硫 酸ガスが発生する。 亜硫酸ガスは酸化されて微小な硫酸粒子となり、 雨に溶けたものは雨滴中で亜硫酸に変わる。 In general, fossil fuels contain sulfur, and when combusted, sulfur dioxide is generated. Sulfurous acid gas is oxidized to fine sulfuric acid particles, and those dissolved in the rain turn into sulfurous acid in raindrops.
化石燃料に含まれている窒素化合物は、 燃焼時に一酸化窒素, 二 酸化炭素となる。 燃焼の高温ガス中で空気中の窒素と酸素が結合し て一酸化窒素, 二酸化窒素になる。 これが空気中で酸化されて雨滴 中に非常に溶け易い硝酸になる。 Nitrogen compounds contained in fossil fuels become nitric oxide and carbon dioxide during combustion. In the high-temperature gas of combustion, nitrogen and oxygen in the air combine to form nitric oxide and nitrogen dioxide. This is oxidized in the air to nitric acid which is very soluble in raindrops.
空気中に於ける酸化は、 大気中のオゾンが紫外線で分解されて酸 素原子ができ、 水蒸気と反応した一酸化水素 O H , 光化学スモッグ 中の過酸化ラジカルが、 前記亜硫酸ガス, 二酸化窒素に作用して硫 新たな ^紙
酸や硝酸が生成される。 In the oxidation in air, ozone in the atmosphere is decomposed by ultraviolet rays to form oxygen atoms. Hydrogen monoxide OH, which reacts with water vapor, and peroxide radicals in photochemical smog, act on the sulfur dioxide and nitrogen dioxide. And new sulfur paper Acid and nitric acid are produced.
従って、 酸性雨の影響を小さ くするには、 太陽光陰影部の配備等 で上記の生成過程をどこかで断ち切るか、 反応を遅く, 起きにく く するか、 要素のどれかを除外するか、 等の酸生成抑制策が考えられ る O Therefore, in order to reduce the effect of acid rain, cut off the above formation process somewhere, such as by deploying a shade of sunlight, make the reaction slow, make it difficult to get up, or exclude any of the elements. Or other measures to suppress acid generation such as O
また、 上記の生成抑制策による生成前の上記汚染物質、 又は生成 済の硫酸や硝酸は、 太陽光陰影部による寒気と暖気とによる降雨促 進によって降雨量を多く し、 又は一定の短い周期で行い、 植物, 土 壌, 湖沼に被害が起る前に洗い流してしまう、 等の酸洗浄策が考え られる。 In addition, the contaminants before generation or the generated sulfuric acid or nitric acid by the above-mentioned generation control measures increase the amount of rainfall due to the promotion of rainfall due to cold and warm air caused by the shaded sunlight, or at a certain short period. Acid cleaning measures such as cleaning the plants, soil, lakes and marshes before damage occurs.
その為にはまず、 化石燃料が多量に燃焼される地域、 酸性雨被害 の多発する地域を調査し、 気象データーを分析し、 上記作用の起る 場所を明確に確認することである。 必要により気球による空中観測 を行いデーターを電子計算機で分析し、 管制体と連携する。 The first step is to investigate areas where fossil fuels are burned in large quantities and areas where acid rain damage is frequent, analyze weather data, and clearly identify the locations where the above effects occur. If necessary, conduct airborne observations with balloons, analyze the data with a computer, and cooperate with the air traffic controller.
このように、 基地系集団による緩和システムをプログラム化して 順次修正する。 In this way, the mitigation system based on the base system is programmed and modified sequentially.
酸性雨の根本的な解決は、 太陽光発電の電力等による化石燃料か らの転換である。 しかしこの実現は数十年将来になる公算が大きい。 第 19図は本発明の基地系, 基地系集団を月及び地球型惑星、 特に 火星, 金星に適用した一実施例を示す斜視図である。 The fundamental solution to acid rain is to switch from fossil fuels using solar power. However, this is likely to be in the future for decades. FIG. 19 is a perspective view showing an embodiment in which the base system and the base system group of the present invention are applied to the moon and terrestrial planets, particularly to Mars and Venus.
地球の周辺の宇宙空間に配備される地球基地系 (集団) は、 静止 軌道に配備される静止軌道基地 SW、 極軌道に配備される極軌道基 地 KW、 地球の近傍特に地球と太陽の間の公転軌道に配備される公 転軌道基地 TW、 とがある。 The Earth Base System (group) deployed in outer space around the Earth is a geosynchronous orbit base SW deployed in a geosynchronous orbit, a polar orbit base KW deployed in a polar orbit, near the earth, especially between the earth and the sun. Orbital base TW, which is deployed on the orbit of the orbit.
静止軌道基地 S Wは、 赤道近傍の上空 (地上 36000 km ) に打ち上 げて軌道傾角を 0 ° にする。 静止軌道基地 SWは公転周期と地球の 新たな ¾ 1¾
自転周期とが等しくなり、 地上からは基地系が同じ場所に静止した 位置関係になる。 この軌道は、 軌道の回動位置によって遮光板の開 閉か、 回動速度に差異を設ける必要があるが夜間照明を兼用できる。 The geostationary orbit base SW launches above the equator (36000 km above the ground) and sets the orbit inclination to 0 °. Geosynchronous Orbit Station SW is a revolution cycle and a new Earth ¾ 1¾ The rotation period becomes equal, and the base system is in a stationary position in the same place from the ground. This track requires the opening and closing of the light shielding plate or the difference in the rotation speed depending on the rotation position of the track, but can also be used for nighttime illumination.
極軌道基地 KWは、 打ち上げた基地系を軌道傾角 100 ° 程度にす ると、 太陽同期準極軌道になって地上の同じ地点を 1 日 2回同じ時 刻に訪れる。 この軌道は、 寒冷地帯に太陽光の反射光を照射するこ とができ、 極地への遮光もできる。 The polar orbit base KW, when the launched base system is set at an orbit inclination of about 100 °, enters a sun-synchronous subpolar orbit and visits the same point on the ground twice a day at the same time. This orbit can irradiate cold regions with the reflected light of sunlight, and can also shield the polar regions.
公転軌道基地 TWは、地球と太陽との引力の均衝点(ラグランジ 点) 近傍の太陽側の公転軌道で、 地球全体から略静止した位置関係 にあり公転速度も地球の公転速度並でよい。 地球の自転は公転の方 向と逆だから地球の公転と略同じ周期で公転すれば地球の特定地域 に太陽光陰影部を形成しうる。 公転速度に大きな差異を設けずとも 地球上の特定地域に太陽光陰影部を形成することができる。 遮光体 の開閉や姿勢や傾き角度についても大きな変動を必要とせず安定し ている。 発電体の姿勢や傾き角度もほとんど変動を必要としない。 The orbital base TW is a revolving orbit on the sun's side near the point of gravity (Lagrang point) of gravity between the earth and the sun. The orbit is almost stationary from the whole earth, and its orbital speed may be equivalent to that of the earth. Since the Earth's rotation is the reverse of the direction of the orbit, if it revolves at about the same cycle as the Earth's, it can form a shade of sunlight in a specific area of the earth. It is possible to form solar shading in a specific area on the earth without making a large difference in the revolving speed. The opening and closing of the light shield, posture and tilt angle do not require large fluctuations and are stable. The posture and inclination angle of the power generator hardly need to be changed.
発電体で発電された電力をマイク口波で地球上に送電する場合に、 その傾角を若干、 略地球の自転に伴う変動分だけ調整すればよい。 When the power generated by the power generator is transmitted to the earth by the microphone mouth wave, the tilt angle may be adjusted slightly by the amount of fluctuation that accompanies the rotation of the earth.
マイク口波の受信基地は地球上に夜, 昼に拘わらず受信できるよ うに複数箇所設置してもよく、 各大陸毎に設置して順に送電部の傾 角を若干調整して送電する体制をとつてもよい。 Microphone mouthwave receiving bases may be installed at multiple locations on the earth so that they can be received regardless of night or day. A system is set up for each continent and the power transmission unit is adjusted slightly in order to transmit power. May be used.
次に、 本発明の基地系集団を宇宙空間に於て実際に製造する手段 について説明する。 第 26図は製造装置の一実施例を示す平面図、 第 27図はその断面図である。 図において、 P Uは製作系で、.材料体 P1 と、 製造体 P2と、 組立体 P3と、 板凾体 P4と、 が各々の側面を結 合して構成されている。 まだ初期の段階で、 全体の極く一部を模擬 試験用に製作する場合は、 地上に於てロケッ ト本体の中に組込んだ 新た な ¾紙
ものを打上げて宇宙空間で側壁, 頭部他を除去して横に結合しても よい。 Next, means for actually producing the base system group of the present invention in outer space will be described. FIG. 26 is a plan view showing one embodiment of the manufacturing apparatus, and FIG. 27 is a sectional view thereof. In the figure, PU is a production system, which is composed of a material body P1, a manufactured body P2, an assembly P3, and a plate box P4, which are connected to each other. If only a small part of the whole is to be manufactured for the mock test at an early stage, a new paper embedded in the rocket body on the ground is required. It is also possible to launch the object and remove the side wall, head, etc. in outer space and combine them laterally.
材料体 P 1は、 内空部に材料凾 Pl aを貯留し、 自動的に製造速度 や種類の指令に応じて、 製造体 P2へ材料を支給する自動倉庫の作 用をなす。 全て管制部 Plbの材料計算機のプログラムに組まれ、 動力部 Pi cで動く。 材料凾 Pl aは材料基地間を往復するロケッ ト の供給体 P5から供給される。 The material body P1 stores the material box Pla in the inner space and operates as an automatic warehouse for automatically supplying the material to the body P2 in accordance with the production speed and type command. All are programmed in the material calculator program of the control unit Plb, and run by the power unit Pi c. The material box Pla is supplied from a supply unit P5 of a rocket that reciprocates between the material bases.
製造体 P2は、 材料体 P1の側部に結合され、 製造機 P2 a, 管制 部 P2b, 動力部 P2 cを収容している。 製造機 P2 a は板部 J1を自 動的に製造する機械で、 例えばアモルフ ァス合金の遮光部 E1上に ァモルファス半導体の発電部 F1を装備し集電部 F8に接続する工程 を自動連続工程で行う。 工程の制御は製造計算機のプログラムに組 まれ、 必要に応じ駐在員の指令に従う。 遮光板 E2は裏面が自動研 摩されて鏡面に近い反射体 Gの作用を兼ねてもよい。 Producing member P2 is coupled to the side of the body of material P1, and accommodates manufacturing machine P2 a, control unit P2b, a power unit P2 c. In machine making machine P2 a to automatically manufacture the plate portion J1, e.g. Amorufu § scan automatic continuous process the step of connecting the shielding portion E1 equipped with a power generating portion F1 of Amorufasu semiconductor on current collector F8 alloy Do with. The control of the process is set up in the program of the manufacturing computer and follows the instructions of the expatriates as needed. The back surface of the light-shielding plate E2 may be automatically polished and also serve as a reflector G close to a mirror surface.
組立体 P3は、 製造された板部 J1等を自動的に組立てる組立機 P 3 a と、 該組立機 P3 aを制御する管制部 P3b と、 該管制部 P3bの 制御で作動する動力部 P3 c と、 を収容している。 製造体 P2の自動 連続工程との関連で組立を完成するようにプログラム化し、 管制部 P3bの組立計算機に入力しておく。 The assembly P3 includes an assembling machine P3a that automatically assembles the manufactured plate portion J1 and the like, a control unit P3b that controls the assembling machine P3a, and a power unit P3c that operates under the control of the control unit P3b. And. Program to complete the assembly in connection with the automatic continuous process of the manufacturing body P2, and input it to the assembly computer of the control unit P3b.
板凾体 P4は、 組立された板体等を収納用の板凾 P4 a と、 自動収 納用ゃ板凾 P4 aを自動的に操作するプログラムを入力した管制部Plate box body P4 is control unit that inputs the plate凾P4 a for accommodating-assembled plate and the like, automatically the operation to program the automatic retract and for Ya plate凾P4 a
P4b と、 操作用の動力を供給する動力部 P4 c と、 を収容している。 基本的な建設方法、 手順の一例を下に紹介する。 P4b and a power unit P4c that supplies power for operation are housed. An example of the basic construction method and procedure is introduced below.
開発計画, 調查, 分析, 企画, シュ ミ レーシ ヨ ン, 実験計画。 ① まず、 本発明の防護装置に関する開発計画, 実験計画, …… 等を推進してゆくのに必要な年月, 経費, 人員, 協力機関につ 新た な ¾敏
いて計画をたてる。 Development planning, investigation, analysis, planning, simulation, experiment planning. (1) First, the new plans for the years, months, expenses, personnel, and cooperating institutions required to promote the development plan, experiment plan, etc. related to the protection device of the present invention. And make plans.
② 次に、 地球環境に関して更に詳しい調査, 分析, 企画を行う。 ② Next, we will conduct more detailed research, analysis and planning on the global environment.
過去のデーターや将来の予測についての資料をコンピューター に入力する。 例えば、 気候制御については諸要因, データーを 入力し、 部分的な太陽光陰影部の広さ, 時間と予測される気候 変動に関する予測を数値シュ ミ レーショ ンで解折する。 Enter past data and future forecasts into the computer. For example, for climate control, various factors and data are input, and numerical simulations are used to simulate the predictions of the partial solar shading area, time, and predicted climate change.
③ 基地系集団の位置の時間変化、 地球の公転 , 自転の時間変化、 基地系集団が地球表面に投影する太陽光陰影部の時間変化、 基 地系集団に及ぼす地球, 月, 太陽の引力の変化、 等について基 本的な方程式を求める。 プログラム化しコ ンピューターに入力 しておき、 計算に応じるようにしておく。 将来は実用化に向け て管制体の電子計算機にこれらが基礎として入力される。 (3) Temporal change of the position of the base system group, time change of the Earth's revolution and rotation, time change of the shaded sunlight projected by the base system group on the earth's surface, and the effect of the earth, moon, and sun on the base system group Find basic equations for changes, etc. Program it and input it to a computer so that it can respond to calculations. In the future, these will be input to the control computer as a basis for practical use.
④ 彗星や小惑星についても現在知られているものを全て調査し、 軌道計算の方程式を入力しプログラム化しておく。 調査 Investigate all known comets and asteroids, and enter orbit calculation equations and program them.
これらに、 実際に基地系が到達する場合を想定し、 修正機、 採集機等の必要な機能や軌道をプログラム化し入力しておく。 基地系集団は、 地球環境の悪化の傾向という、 かって予測もでき なかった非常の危機的状況に直面して、 必要に迫られて、 部分的な 気候制御を人間の意志で操作しうるように構成した。 部分的な気候 制御が実際に可能となれば、 地球の陸地の 1 / 3を占める砂漠 · 半砂 漠も活用できるようになる。 台風の制御が可能となれば海洋も活用 できる。 Assuming that the base system will actually arrive, the necessary functions and trajectories, such as the corrector and collector, are programmed and input. In the face of a once-unpredictable crisis, the trend of a deteriorating global environment, base-based populations need to be able to manipulate partial climate control on their own in need. Configured. If partial climate control becomes feasible, deserts and semi-deserts, which occupy one-third of the earth's land area, could be used. If typhoons can be controlled, the ocean can be used.
人間の生活が気候の影響を受けることが如何に大きいか、 そして 気候制御は人類初め生物の住家としての地球の実力を向上させる。 How much human life is affected by climate, and climate control enhances the Earth's ability as a dwelling place for humans and other living things.
自然環境は全く異るが、 地球以外の他の惑星にもいずれ必要とさ れる日が将来あるとすれば、 まず火星であろう。 周知のように、 地 新た な
球以外の惑星は、 水も空気もない、 酷暑か酷寒の死の世界である。 従って、 地球のように制御すべき気候もない。 問題は如何にして居 住可能な環境に近付けうるかである。 数種の研究が報告されている が、 技術的な可能性の検討までにもまだ遠い多くの問題を拘えてい る 0 The natural environment is quite different, but if there is a future day for other planets besides Earth, Mars would be the first. As we all know, new A planet other than a sphere is a world of dead heat or cold, without water or air. Therefore, there is no climate to control like the earth. The question is how to approach a habitable environment. Several studies have been reported, but many issues still far from technical feasibility 0
火星は大気の希薄さ、 酸素 ·水の希薄さ、 昼夜の温度差等から生 物の存在できる環境にない。 水は極冠に氷として存在し、 地下にも 厚さ数十 mにわたつて永久凍土が存在する。 火星は大気を生成する 手段として極冠を蒸発させることが紹介されている。 例えば小惑星 を極冠に衝突させて一瞬にして何十立方 kmの氷を蒸発させる。 Mars is not in an environment where living things can exist due to the air's leanness, oxygen and water leanness, and temperature differences between day and night. Water exists as ice on the polar cap, and permafrost also exists underground over several tens of meters thick. Mars is described as evaporating the polar cap as a means of producing the atmosphere. For example, an asteroid hits the polar cap and instantaneously evaporates tens of cubic kilometers of ice.
また、 火星への中継基地として火星の 2個の衛星を用いる方法も 紹介されている。 衛星フォボス、 ダイモスはコン ドライ ト質の小惑 星ようの天体で、平均密度は水の 2倍で重力も小さい。多分多量の水 を含み、資源は豊富である。フォボスは直径約 20〜 28 kmで高度約 6000 kmの軌道を回動し、 ダイモスは直径約 10〜 16 mで高度約 20150 kmの 軌道を回動する。 脱出速度は約 40 km /時で有利である。 A method using two Mars satellites as a relay station to Mars is also introduced. The satellites Phobos and Deimos are condrite-like objects with an average density twice that of water and low gravity. Probably rich in water and rich in resources. Phobos orbits at an altitude of about 6000 km with a diameter of about 20 to 28 km, and Deimos orbits at an altitude of about 20150 km with a diameter of about 10 to 16 m. The escape speed is advantageously about 40 km / h.
以上、 公知の知識から、 本件の基地系集団の建設は、 火星の開発 本格化との前後は別にして火星の衛星を拠点にして進められてもよ いと考えられる。 Based on the above-mentioned knowledge, it is considered that the construction of the base system group in this case may be carried out based on Mars satellites before and after the full-scale development of Mars.
彗星の軌道修正、 核融合炉の実用化がまだ技術的にも相当の年月 が必要であれば、 火星の衛星が残された可能性の高い拠点である。 If the correction of the orbit of a comet and the practical application of a fusion reactor still require a considerable amount of time in terms of technology, it is likely that the Mars satellite will remain.
フ ォボスは火星に引寄せられつつあり、 ダイモスは遠ざかりつつ ある。 資源の採集技術, 軌道の修正技術, 火星の極冠蒸発技術が現 技術水準で見通しがつく とされている。 資源採集後、 小型化した フォボスは極冠衝突用、 ダイモスは地球近くの軌道に遠い将来誘導 する道もある。 採鉱 · 精練を続けながら、 金属質は、 地球及び火星
の基地系集団の建設用, 大型の太陽の集熱凹面鏡の建設用, 衛星上 の基地建設用に活用できる。 Phobos is being drawn to Mars, and Deimos is moving away. It is said that prospects for resource collection technology, orbit correction technology, and Martian polar cap evaporation technology can be obtained at the current state of the art. After collecting resources, miniaturized Phobos is used for polar cap collision, and Deimos has a way to guide it to near-earth orbit in the future. Mining · While refining, metallurgical It can be used for the construction of a base system group, the construction of a large solar collector concave mirror, and the construction of a satellite base.
火星用の基地系集団はこの衛星の上に分離しうるよう建設されて もよい。 ダイモスは火星と同じ回転の向きに 1 日に約 4 / 5周する力、 ら、 静止軌道衛星に似ている。 また、 高度が高いから、 基地系集団 に多量の反射体を装備し、 火星の表面への太陽エネルギー補給用, 極冠の融解用, 夜間側への太陽光供給用として活用される。 フ オボ スは高度が低いから基地系集団を分離自在に建設するとすれば、 発 電体, 遮光体を多量に装備し、 火星の表面への電力供給用, 太陽光 陰影部の形成用に活用できる。 A base system cluster for Mars may be constructed on this satellite so that it can be separated. Deimos orbits about four-fifths a day in the same direction as Mars, and resembles a geosynchronous satellite. Also, due to its high altitude, a large amount of reflectors will be installed in the base system group, and it will be used for replenishing solar energy to the surface of Mars, melting the polar cap, and supplying sunlight to the night side. Since the phobos is low in altitude, if the base system group is constructed to be separable, it will be equipped with a large number of generators and shaders to supply power to the surface of Mars and to form shaded areas of sunlight. it can.
稀少な金属類は地球との往復時に持帰ることができる。 多量に含 有する水は宇宙活動用, または水素と酸素に分解してロケッ ト他の エネルギー用になる。 採鉱後の屑は将来小型化した衛星の軌道の修 正用に活用される。 衛星は月に比べて小さいホコ リや宇宙からの隕 石類は圧倒的に少いから太陽の集熱凹面鏡も偉力を発揮する。 直径 が小さいから夜間に相当する月日は数個所の昼の基地へ移動する力、、 表面に複数基設置した太陽電池基地からケーブルで送電すればよい。 Rare metals can be brought back to and from Earth. A large amount of water is used for space activities or broken down into hydrogen and oxygen for rockets and other energy. Scrap after mining will be used to correct the orbit of the miniaturized satellite in the future. Since the satellites are much smaller than the moon in dust and meteorites from space, the sun's heat collecting concave mirror is also effective. Since the diameter is small, the power required to move to several daytime bases during the nighttime, which corresponds to nighttime, and power can be transmitted by cable from multiple solar cell bases installed on the surface.
採鉱後の穴は絶好の駐在員の仮住基地になる。 温度は採鉱の熱で 充分である。 小惑星, 火星, 木星他全天体の宇宙天文台としても絶 好である。 彗星基地系もここで製作でき、 観測や探査や軌道修正に 便利である。 The hole after mining is a great temporary base for expatriates. The temperature is sufficient with the heat of mining. It is also a perfect space observatory for asteroids, Mars, Jupiter, and all other objects. A comet base system can also be manufactured here, which is convenient for observation, exploration, and orbit correction.
火星の衛星や小惑星の資源を採集することは、 彗星の軌道修正, 資源採集と併せて宇宙開発や基地系集団の建設にとって極めて重要 な意義を有する。 Collecting the resources of Mars satellites and asteroids, together with the correction of the orbit of the comet and the collection of resources, has crucial significance for space development and construction of the base system group.
火星の衛星や小惑星の採鉱, 精鍊はまず大型の太陽光集熱用の反 射体, 太陽光 (熱) 発電体, 採鉱機, 精鍊機が地球側から運び込ま 新た な m
れることである。 これらは全て、 できるだけ全自動機, 半自動機, に構成されていることが望ましい。 一度、 設定しておけば、 駐在員 が居なくても自動的に太陽光を追跡して集熱し発電して採鉱し、 自 動的に精鍊することが出来る。 火星の近日点にロケッ トで行き、 点 検又は増設して地球に帰れば、 通常の火星探査の途中に行いうる。 精度, 耐久性, 能力の優れた自動機を地球上でまず製作することが 必要になる。 Mars satellites and asteroids mining, Sei鍊first anti painful for large solar collector, solar (thermal) generators, mining machines, a new m brought fine鍊機from the earth side It is to be. It is desirable that all of these be configured as fully automatic and semi-automatic as possible. Once set, even if there are no expatriates, it can automatically track the sun, collect heat, generate power, mine, and automatically refine. If you go to the perihelion of Mars by rocket, check or expand and return to the earth, you can do it during normal Mars exploration. It is necessary to first manufacture an automatic machine with excellent accuracy, durability and ability on the earth.
これらの自動機は、 月面や火星面や小惑星等の星体にも使用可能 であり地球上でも使用できる。 集熱用の反射体の凝集光を直接又は 間接に星体の鉱石に当て、 さらに太陽光 (熱) 発電体による電力で 補助加熱して精鍊する。 反射体の凝集光の熱は、 宇宙空間に露らさ れると鉱石を融解する程の高温にまで蓄熱されることは難しい。 そ こで、 鉱石に照射された太陽の凝集光は、 その凝集光のみが通過す る集光孔を通し、 周辺は宇宙空間への熱放散を防止する蓄熱膜で被 覆し、 蓄熱することが望ましい。 星体は、 熱伝導度は高くなく、 熱 容量は極めて大きい。 融解する程の高温で昼の半日間照射を繰返せ ば周辺一帯は相当深度まで次第に温度が高くなる。 These automatic machines can be used on the moon, Mars, asteroids and other stars, and can also be used on Earth. The aggregated light from the heat-collecting reflector is directly or indirectly applied to the ore of the star, and then supplemented by electric power from a solar (heat) generator to refine it. It is difficult for the heat of the aggregated light of the reflector to be stored to a temperature high enough to melt the ore when exposed to space. Therefore, the aggregated light of the sun irradiated on the ore passes through the light-collecting hole through which only the aggregated light passes, and the surrounding area is covered with a thermal storage film that prevents heat from dissipating to outer space. desirable. Stars do not have high thermal conductivity and extremely large heat capacity. If the irradiation is repeated for half a day at a temperature high enough to melt, the surrounding area will gradually increase in temperature to a considerable depth.
従って、 この伝導熱は各種の利用のされ方がある。 適温範囲の距 離では駐在員の生活に必要な暖房室, 宇宙小工場, 宇宙生活に不可 欠な植物を育成用の温室, 等である。 単に採鉱後の穴を活用するの みで、 隕石や宇宙線から保護され保温された居住空間を提供できる C 次に、 本発明の基地系集団を製造するに必要な材料を供給する装 置の一実施例を、 第 28図を用いて説明する。 Therefore, this conduction heat is used in various ways. At a suitable temperature range, there are a heating room necessary for the life of expatriates, a small space factory, and a greenhouse for growing plants essential for space life. It is possible to provide an insulated space that is protected from meteorites and cosmic rays by simply utilizing the holes after mining.C Next, the equipment that supplies the materials necessary to manufacture the base system population of the present invention An embodiment will be described with reference to FIG.
宇宙空間で構造物を製造するために必要な材料とエネルギー iを 如何にして入手するかは、 その装置の実用化が現実のものとなるか 否かの重要な要素である。 地球から、 全ての材料, エネルギー源を な ¾ ^
運ぶには地球の引力が余りに大き過ぎてコス ト高になる。 月から運 ぶにも相当の引力があり、 月基地の建設までにも月面の粉塵, 昼夜 等エネルギー供給面で難点がある。 How to obtain the materials and energy i required to produce structures in outer space is an important factor in whether or not the practical application of the device will become a reality. All materials and energy sources from the earth ¾ ^ The gravitational force of the earth is too large to carry, which makes it expensive. There is considerable gravitational pull from the moon, and there are difficulties in the supply of energy, such as dust on the moon and day and night, before the construction of a lunar base.
第 28図 (a)〜(c)は、 火星の衛星ダイモス又は小惑星等の星体 Lに材 料供給用の装置を設けた実施例の断面図である。 火星の衛星ダイモ スは 1 日に火星の回りを 4 / 5周するから太陽光の照射方向が 1 日に 約 360 X 4 / 5度変化する。 採鉱又は精練に必要な期間とエネルギー は相当量必要であるから、 こ こでは太陽光の凝集反射熱と太陽光 (熱) による発電体の電力を用いる手段を説明する。 FIGS. 28 (a) to (c) are cross-sectional views of an embodiment in which a material supply device is provided on a star L such as the Mars satellite Dimos or an asteroid. The Martian satellite dimos orbits around Mars 4/5 a day, so the direction of sunlight changes by about 360 X 4/5 degrees a day. Since a considerable amount of time and energy is required for mining or refining, here we will explain how to use the coherent reflected heat of sunlight and the power of the generator by sunlight (heat).
図において、 L1は採鉱機、 L2は精鍊機で共にレール 3の上の移 動台上に積載され制御部 L4の制御で移動しうる。 L5は枠体で制御 部 L4と共に凝集反射体 L6の姿勢を制御する。 L7は蓄熱膜で星体 Lの表面に設置されて集光孔 L7 aを有し凝集光を通す。 集光孔 L7 aは反射体 L6の姿勢に応じて移動しうるよう移動台から突設され ていてもよい。 L8は集光孔 L7 aの近傍に装備された加熱機である。 発電体 Fの電力で凝集反射熱の補助を行い採鉱及び精鍊用に鉱石を 融解する。 採鉱機 L1 , 精鍊機 L2 , 制御部 L4は発電体 Fの電力で 作動する。 In the figure, L1 is a mining machine, and L2 is a refining machine, both of which are loaded on a moving table on the rail 3 and can move under the control of the control unit L4. L5 is a frame that controls the attitude of the coherent reflector L6 together with the controller L4. L7 is a heat storage film that is installed on the surface of the star L and has a light-collecting hole L7a that allows light to pass through. The light-collecting hole L7a may be protruded from a movable base so as to be movable in accordance with the attitude of the reflector L6. L8 is a heater provided near the condenser hole L7a. The power of generator F assists the cohesive reflection heat and melts the ore for mining and refining. Mining machine L1, refining machine L2, and control unit L4 operate with the power of generator F.
以上の装置では太陽の凝集光及び発電された電力の熱により鉱石 は融解され易い。 地球から運搬、 又は星体で精製され電気分解され た水素, 酸素が補助に加熱されてもよい。 星体 Lの溶解面はレール 用に整地板を併用してもよい。 With the above equipment, the ore is easily melted by the condensed light of the sun and the heat of the generated power. Hydrogen and oxygen transported from the Earth or purified and electrolyzed by the star may be supplementarily heated. For the melting surface of star L, a leveling plate may be used for the rail.
次に、 本発明の基地系集団を本格的に製造 · 運営するにも重要で あり、 将来の宇宙開発上重要な資源を保持する彗星の軌道修正、 資 源採集の手段について説明する。 第 29図はその一実施例を示す図で ある。 彗星の軌道を修正する手段として、 大型の凹面鏡による凝集 新たな ^
された反射光で彗星核を融解し、 太陽熱で蒸発噴出する反動に依る ことは、 既に紹介されている。 しかし、 彗星核の周辺は噴出したガ スゃチリで太陽光はその熱量を激減し、 又凹面鏡の付設も困難であ り、 制御も難しい。 Next, the means for correcting the orbit of a comet, which is important for the full-scale production and operation of the base system group of the present invention and retains important resources for future space development, and for collecting resources will be described. FIG. 29 is a diagram showing one embodiment thereof. As a means of correcting the comet's orbit, a large concave mirror aggregates a new ^ It has already been described that the comet nucleus is melted by the reflected light, and that it relies on the recoil that evaporates and gushes with solar heat. However, the area around the comet nucleus erupted from gas and dust, and the amount of sunlight greatly decreased, and it was difficult to install a concave mirror and control it.
そこで、 第 29図のように、 地球近傍の惑星 . 衛星上、 彗星軌道近 傍の彗星基地系 MU、 軌道を脱出後彗星に近接する彗星基地系 MU、 のいずれかから修正体 Mlや採集体 M2を発射する。 彗星基地系 MU は彗星 MCに最も近接するべき惑星を選んであらかじめその円軌道 上に配備しておく。 Therefore, as shown in Fig. 29, a modified Ml or a collected object from one of the planet near the earth, the satellite MU, the comet base MU near the comet orbit, and the comet base MU near the comet after exiting the orbit. Fire M2. The comet base system MU selects the planet that should be closest to the comet MC and deploys it in its circular orbit in advance.
彗星基地系 MU ,修正機 Ml,採集体 M2 , の運動は全てコ ンビユ ー ターで制御される。 彗星 MCの軌道や質量もコンピューターで計算 しておき、 彗星基地系 MUとの距離, 修正機 Mlの発射時機, 方向 も計算され制御される。 彗星 MCの軌道は二次曲線であるから、 太 陽を中心とする公転円軌道に修正するためには、 進行方向への速度 を低下させる必要がある。 そこで、 進行方向に位置する最も近い惑 星 · 衛星上を回動する基地系 MUから、 修正体 Mlを発射する。 又 は、 回周軌道から脱出して彗星を追跡し近接し一定の距離で追髄し、 修正体 Mlや採集体 M2を発射する。 修正体 Mlは彗星 M Cの表面に 到達し、 核の周壁を一部融解してガスやチリを噴出させる。 その反 動によって減速し、 公転円軌道に修正する。 到達させる位置, 融解 の程度は全て電子計算機で制御する。 制御はプログラム化し、 彗星 の軌道修正, 資源採集をシステムとして標準化しておく。 The movements of the comet base system MU, the corrector Ml, and the collector M2 are all controlled by the computer. The orbit and mass of comet MC are also calculated by computer, and the distance to comet base system MU, launch time and direction of corrector Ml are calculated and controlled. Since the orbit of Comet MC is a quadratic curve, it is necessary to reduce the speed in the traveling direction to correct the orbit around the sun. Therefore, a modified body Ml is launched from the base system MU that rotates on the closest planet or satellite located in the direction of travel. Alternatively, escape from the orbit and follow the comet, approach and pursue the medulla at a certain distance, and launch the modified Ml and the collector M2. The modified body Ml reaches the surface of comet MC and melts part of the core wall to eject gas and dust. The reaction decelerates and corrects the orbit. The position to be reached and the degree of melting are all controlled by a computer. The control is programmed, and the orbit correction and resource collection of comets are standardized as a system.
新たな 紙
本発明は上記したように構成したので、 最初に掲載した現状に於 ける諸課題に対して最適の解決手段を提供することができ、 本発明 の諸目的に沿う効益を挙げることができる。 New paper Since the present invention is configured as described above, it is possible to provide an optimal solution to the various problems at the present, which are first described, and to obtain effects according to the objects of the present invention.
具体的には下記のような効果があるものと推定できる。 Specifically, it can be estimated that the following effects are obtained.
(1) 本発明の防護装置は上記したように、 発電体と, 変電体と, 推 進体と, 管制体と, 遮光体と, を具備して基地系集団を構成し、 該遮光体による太陽光陰影部と、 遮光体によらない太陽光陰影部 と、 によって前記特定地域と周辺の気候を制御する配列, 数量, 姿勢の基地系集団が配備された。 従って、 人間の力では如何とも 成し得なかった自然の姿そのものである気候、 をどう しても不都 合な場合に限り、 太陽光の照射エネルギーを調節することによつ て部分的に制御しうる可能性がある。 (1) As described above, the protective device of the present invention comprises a power generator, a transformer, a propeller, a controller, and a light shield, and forms a base system group. A base group with an array, quantity, and attitude that controls the climate in the specific area and the surrounding area was provided by the solar shading part and the sun shading part without using the light shield. Therefore, only when it is inevitable that the climate, which is the form of nature that could not be achieved by human power, can be partially controlled by adjusting the irradiation energy of sunlight. May be controllable.
世界人口は、 この 20世紀で急増し将来も増加する。 人工水路, ダム, 水道を配置したが雨量の適当な日本でさえ、 都会や季節に よって水不足の危機が起ることがある。 熱帯地方や砂漠地帯では、 太陽光の照射が強いうえ雨量が極めて少ぃ。 温暖化の傾向が続け ばさらに雨も少くなる。 このま、では、 絶好の大気の組成や温度 に恵まれた地球に於ても、 雨量の関係で人類の活動や食糧の生産 や植物の生育にも適さない陸地が多過ぎる。 世界人口が増加する 将来に於て、 不測の危機が生じる可能性は極めて高い。 部分的に 気候を制御できるとすれば、 地球の一部不都合なき然を好都合な 自然に創設して、 住璟境をよりょく好適にし地球に於ける人類の 生存能力を拡大し、 将来の危機を救済する効益を期待することが できる。 The world population has increased rapidly in the last century and will increase in the future. Although there are artificial waterways, dams and water supply systems, even in Japan with adequate rainfall, there is a risk of water shortage depending on the city and season. In the tropics and desert areas, sunlight is strong and rainfall is extremely low. If the trend of warming continues, the rainfall will be less. Until now, there are too many terrestrial territories that are not suitable for human activities, food production, or plant growth due to rainfall, even on the earth, which is blessed with the perfect atmosphere composition and temperature. It is extremely likely that an unforeseen crisis will occur in the future as the world population increases. If climate could be partly controlled, we could create some unfavorable territories of the earth in favorable nature, improve living habits and expand humanity's ability to live on the earth, We can expect the benefits of relieving the crisis.
豪雨を予想される地域には、 その周辺に太陽光陰影部や反射光 照射部を配し気団や気圧に影響を与え周辺の気象条件を調整する。 新た な 用紙
降雨は、 程度の緩和や移動が促進され、 局部豪雨による大規模な水 害を未然に防止することができる。 In areas where heavy rain is expected, shaded areas and reflected light irradiating areas will be provided around the area to affect air mass and air pressure, and adjust the surrounding weather conditions. New paper Rainfall can be moderately mitigated and promoted to prevent large-scale floods caused by localized heavy rainfall.
また、砂漠等に年間の降雨量が極く少ぃ理由は、緯度,地形 (山 脈) , 周辺の海洋や湖との距離, 大気還流の降下, 風向き, 日射 量, 温度, 湿度等である。 従って、 これらを調查分析し、 前記基 地系集団の配備による太陽光陰影部の配置や繰返し移動, 人工池 等の配置によって降雨促進の条件を整えて、 人為的に必要期間, 必要量の降雨を順々に促進する降雨システムを構成する。 The reason why the annual rainfall is very small in deserts is latitude, topography (mountain range), distance from surrounding oceans and lakes, fall of atmospheric return, wind direction, solar radiation, temperature, humidity, etc. . Therefore, these were analyzed and analyzed, and the conditions for accelerating rainfall were set by arranging the shaded area of the above-mentioned base system group, arranging the repetitive movement, and arranging artificial ponds. Constitute a rainfall system that in turn promotes rainfall.
現実に降雨が可能な条件を設定できたとすれば、 次の効果を期 待できる。 If the conditions under which rain can actually occur can be set, the following effects can be expected.
砂漠に計画的に降雨できれば、 熱砂は緑の植生で被覆される。 強烈な太陽の輻射熱による大気の温度上昇は抑制できる。 水の蒸 発時の潜熱効果, 大気中の水蒸気, 雲の増量による反射吸収効果, 等は、 周辺の気候を緩和できる。 従って、 陸地の 1 / 3を占める砂 漠 · 半砂漠の緑化は、 直接的な影響のみでも地球の温暖化の傾向 を緩和できる効果がある。 If the rainfall can be planned in the desert, the hot sand will be covered with green vegetation. Atmospheric temperature rise due to intense solar radiation heat can be suppressed. The latent heat effect during water evaporation, the atmospheric water vapor, and the reflection and absorption effect due to the increase in clouds can alleviate the surrounding climate. Therefore, greening deserts and semi-deserts, which occupy one-third of the land, has the effect of mitigating global warming trends with only direct effects.
植物は、 降雨と強い太陽光によってきわめて生育が早い。 樹種 を選定した植林や播種の機械化は、 数年の中に森林を構成する可 能性が生じる。 新に森林が創生されることは、 森林の酸素供給, 炭酸ガス吸収能力をたかめて、 大気中の炭酸ガス濃度の増加に対 しては抑制の効果がある。 従って、 地球の温暖化の傾向は緩和で きる効果がある。 Plants grow very fast due to rainfall and strong sunlight. Tree planting and mechanization of sowing can create forests in a few years. The creation of a new forest enhances the ability of the forest to supply oxygen and absorb carbon dioxide, and has the effect of suppressing an increase in the concentration of carbon dioxide in the atmosphere. Therefore, the effect of global warming can be mitigated.
新な森林の創生は、 さらに薪や材木の取得による森林破壊や砂 漠化を防止することをも意味し、 地球の温暖化への傾向を緩和で さな。 Creating new forests also means preventing the deforestation and desertification of firewood and timber, and will not ease the global warming trend.
地球の温暖化を緩和できれば、 地中水分の蒸発による現在の農 新たな闲敏
地の荒廃を防止する作用もある。 砂漠への定期的な降雨を実現で きれば、 強い太陽光の照射もあって効果的な大農場 · 牧場を建設 できる。 現代の建設機械, 農業機械を導入して大規模かつ計画的 に穀倉地帯等を実現できるとすれば、 将来の食糧供給能力を大幅 に拡大する可能性もある。 大農場や森林に隣接して、 計画的に清 潔な未来都市を多数建設できる。 高速鉄道, 高速道路, 飛行場も 初期であれば計画的にできる。 建設用の砂, 水, セメ ン トは、 供 給に不足しない。 If global warming can be mitigated, the current agriculture due to evaporation of underground water It also has the effect of preventing the devastation of the land. If regular rainfall in the desert can be realized, effective large farms and ranches can be constructed due to strong sunlight. If large-scale and planned granary areas can be realized by introducing modern construction and agricultural machinery, there is a possibility that the future food supply capacity will be significantly expanded. A number of clean future cities can be systematically constructed adjacent to large farms and forests. High-speed railways, highways, and airfields can be planned in the early stages. Construction sand, water and cement are not in short supply.
砂漠は超広大な平原であり、 砂地であるから、 整地も建設も行 われ易い。 熱帯や亜熱帯に位置していても、 雨量や森林が確保で きる。 夏期は必要に応じ基地系集団を適当に散在して配備すれば、 クーラー代用の避暑効果もできる。 The desert is a vast expanse of plains and sand, so it is easy to level and construct. Rainfall and forests can be secured even in tropical and subtropical areas. In summer, if base groups are appropriately scattered and deployed as needed, summer heat can be used as a substitute for coolers.
前記基地系集団には、 太陽光や宇宙空間の熱量で発電する発電 体と、 地球へマイクロ波で送電する変電体と、 を装備しているか ら、 前記未来都市へは宇宙から電力を供給できる。 核融合が実用 になっても各地へ配備されるには年月を要する。 多数配備されれ ば地球の温暖化傾向を促す。 Since the base system group is equipped with a power generator that generates electricity using the heat of sunlight or outer space, and a transformer that transmits microwaves to the earth, power can be supplied to the future city from space. . Even if nuclear fusion becomes practical, it will take years for it to be deployed elsewhere. If deployed in large numbers, it will promote global warming.
エネルギー供給はあつても気候, 特に気温や雨量を制御できな ければ熱帯地方の近代化は著しく遅れる。 人間の活動, 特に頭脳 活動は気候に影響が大きい。 Even if the energy supply cannot control climate, especially temperature and rainfall, the modernization of the tropics will be significantly delayed. Human activities, especially brain activities, have a significant effect on climate.
将来、 地球としての諸種の能力は拡充する必要に迫られる。 In the future, the capabilities of the Earth will need to be expanded.
生命にとって危険な要素を多く含む宇宙は、 人類にとって大量 移住は難を極める。 まず、 地球に於ける人間の活動範囲を充実し、 地球全体としての諸能力が向上しなければ無理であろう。 大気や 磁気等多重に保護された地球上でさえ、 未だ人間も植物も住めな い砂漠がある。 地球の自然も活用できねば、 宇宙への本格的な進 新た な )¾紙
出, 特に居住は不可能であろう。 気候も経済力も食糧も頭脳も世 界人口の数分の 1が恵まれ、 大多数が困難な多くの問題を含む。 人口のみ急増して本格的な宇宙居住や 21世紀以後に突入するには、 余りに危険が多過ぎる。 In the universe, which contains many dangerous elements for life, mass migration is extremely difficult for humanity. First, it would be impossible if the scope of human activities on the earth was enhanced and the capabilities of the entire earth were not improved. Even on Earth, which is multiply protected, such as the atmosphere and magnetism, there are still deserts where no humans or plants can live. If the nature of the earth cannot be used, a full-fledged advance to space is possible. Out, especially residence would not be possible. The climate, economic strength, food and brains benefit from a fraction of the world's population, and many involve many difficult issues. There is too much danger for the population to skyrocket and enter full-scale space habitation and the 21st century and beyond.
陸地の 1 / 3を占める未開発の砂漠は、 如何に活用できるかが人 類の未来に残された可能性の 1つであり、 大きな意義を有する。 それだけに開発は、 当初から用意周到で長期的, 大局的な観点に たち計画的で人道的, 平和的, 協力的であることを要す。 Undeveloped deserts, which occupy one-third of the land, are one of the possibilities left for the future of humankind, and their significance is significant. As such, development requires a well-planned, humanitarian, peaceful, and cooperative approach from the outset, with a well-prepared, long-term, global perspective.
砂漠は大気還流のェンジンであるから、 その気候緩和は台風等 暴風の緩和にも好影響をもたらす。 Since the desert is an air circulation engine, its climate mitigation will have a positive effect on the mitigation of typhoons and other storms.
後述のように基地系集団は、 台風等の周辺の海面に太陽光陰影 部を形成するよう配備すれば、 台風の勢力を抑制するこ とができ る O As will be described later, if the base system group is deployed to form solar shading on the sea surface around a typhoon or the like, the power of the typhoon can be suppressed.
従って、 台風等により過去受けてきた多くの被害は、 将来避け ることができる可能性がある。 Therefore, many damages caused by typhoons in the past may be avoided in the future.
大型の暴風, 波浪が抑制されるとすれば、 将来の海洋に於ける 建築物, 海洋への進出は、 安全にかつ拡充できる。 If large-scale storms and waves are suppressed, future entry into buildings and oceans can be safely and expanded.
地球表面の 7割を占める海洋は、 砂漠同様人類に活用し難い力 地球としての能力を拡充できる未来に残された未開発の可能性の 1つである。 その意味で台風等の制御可否は、 将来に大きな意義 を有する。 The ocean, which accounts for 70% of the earth's surface, is one of the undeveloped possibilities left in the future that can expand the capacity of the earth as hard as humans in the desert. In that sense, whether or not typhoons can be controlled will have great significance in the future.
(2) 基地系は、 複数個の基地本体と、 複数個の遮光体や発電体と、 複数個の結合体と、 を具備しているので、 宇宙空間に相対向して 配備された複数個の基地本体は連結体で結合されて、 骨組状に形 成される。 (2) Since the base system includes a plurality of base bodies, a plurality of light-shielding bodies and power generating bodies, and a plurality of combined bodies, the plurality of base systems are arranged facing each other in outer space. The base bodies are connected by a connector to form a frame.
また、 伸展枠を有し, 延設ゃ収納自在の遮光体, 発電体が装備 な FB紙
されているので、 骨組状の空間はその遮光体, 発電体によって装 備される。 従って、 例えば梯子状の基地本体, 連結体による骨組 みは、 管制体の指令で帯状に形成され、 また梯子状に復元するこ ともできる。 FB paper with an extension frame and a light-shielding body and power generator that can be extended and stored. The framed space is equipped with its light-shielding body and power generator. Therefore, for example, a frame consisting of a ladder-like base body and a joint body can be formed in a belt shape by the command of the controller, and can be restored to a ladder shape.
(3) 基地系は、 複数個の基地本体と、 結合や分離が管制体の操作で 行いうる結合体と、 遮光体の収納部, 制御部, 伸展枠が装備され た連結体と、 を具備しているので、 格子状に形成される。 (3) The base system is equipped with a plurality of base bodies, a combined body that can be combined and separated by the operation of the control body, and a combined body equipped with a storage unit for the light shield, a control unit, and an extension frame. So that they are formed in a grid.
発電体,遮光体,反射体は、延設 · 収納自在に構成される。 従つ て、 基地系は管制体の指令によって発電能力面積, 太陽光陰影部 や反射光の面積が、 調節可能な幅広い平面板状に構成される。 The generator, light shield, and reflector are configured to be freely extended and stored. Therefore, the base system is configured as a wide flat plate whose power generation capacity area, solar shading area and reflected light area can be adjusted according to the command of the control body.
(4) 基地系集団は、 複数個の基地本体, 梯子状の基地系, 格子状の 基地系が、略一平面内に司令された間隔,配列で配置される。従つ て基地系集団は、 全体として長 (正) 方形状, 略円板状, 略円環 状, 特定形状等必要な任意の形状の太陽光陰影部を形成しうるよ うに配備される。 (4) In the base system group, a plurality of base bodies, ladder base systems, and grid base systems are arranged at a commanded interval and array in a substantially plane. Therefore, the base system group is deployed so that it can form any desired shape of sunlight shading, such as a rectangular (rectangular) shape, a substantially disk shape, a substantially toroidal shape, or a specific shape as a whole.
(5) 基地系集団は、 複数個の基地系, 梯子状の基地系, 格子状の基 地系が、 配置高さの異る複数面内に指令された間隔, 配列で配備 される。 従って、 隣接する基地系等は、 飛行中に接触, 衝突する 等の事故の危険性がある場合、 配備高さを必要量差をつければ回 避できる。 (5) In the base system group, a plurality of base systems, ladder base systems, and grid base systems are arranged at commanded intervals and arrays in multiple planes having different arrangement heights. Therefore, if there is a danger of an accident such as a collision or collision during flight, the adjacent base systems can be evacuated by increasing the deployment height by the required amount.
(6) 遠方に相対向して配備された複数の基地本体は、 管制体の司令 で発射され, 進行方向を自由に制御される誘導体によって連結さ れる。 誘導体は誘導推進部付の誘導伸展枠に軽量の誘導紐を連結 しているので、 距離が長くても高速で飛行して連結される。 連結 体は、 連結材が軽量でなくても無重力の宇宙空間では、 誘導紐を 巻取ることによって確実に基地本体の間に装備される。 板ュニッ 新たな 紙
トは、 幅広で帯長であるから全体として相当の重量がある。 ロー ル状への巻取抵抗、 伸展抵抗は小さ くないが、 前記連結体によつ て確実に伸展及び収納を行うことができる。 (6) The multiple base units that are deployed facing each other at a distance are fired by the command of the traffic controller and connected by a derivative whose direction of travel can be freely controlled. Derivatives are connected with a light guide string to a guide extension frame with a guide propulsion unit, so they can be connected at high speed even at long distances. Even if the connecting material is not lightweight, in a weightless space, the connecting body is securely installed between the base bodies by winding up the guide string. Banunitsu new paper The belt is wide and long, so it has a considerable weight as a whole. Although the roll-up resistance and the extension resistance in the roll shape are not small, the extension and storage can be surely performed by the connecting body.
連結材は筋状に装備されその筋間隔に共通する幅で遮光体, 反 射体, 発電体を形成しておけば、 必要とする板体を装備できる。 誘導体, 連結体, 板体は各々の伸展枠や推進部が各制御部によつ て自動制御され、 管制体の司令によって制御できる。 The connecting members are provided in the form of streaks, and if the light shields, reflectors, and power generators are formed with a width common to the spacing between the streaks, the necessary plates can be installed. The extension frame and the propulsion section of the derivative, connected body, and plate body are automatically controlled by each control section, and can be controlled by the command of the control body.
(7) 基地系は、 基地本体 · 連結体 · 板ユニッ トが、 相互の必要な端 面に、自動結合,分離する共通構造の結合具を具備している。従つ て、 多数の組合せを管制体の指令で必要な任意の形態に建設でき る。 基地系集団は、 移動時及び作動時でも随時二 形態替えゃ組替 えを迅速かつ的確にできる。 (7) In the base system, the base body, the connecting body, and the plate unit are equipped with a joint with a common structure that automatically connects and separates the necessary end faces. Therefore, a number of combinations can be constructed in any form required by the directive of the controller. The base system group can quickly and accurately perform the two-way reshuffle / reshuffle at any time during movement and operation.
(8) 前記板ユニッ トは、 背面が結合された左板凾 ·右板凾を一定距 離をおいて配備し、 左 ·右前面の引出窓から引出された板部が隣 の板凾の背面に連結される。 又は引出窓から引出された板部の先 端の伸展枠に連結される。 従って、 小数の基地本体の中間に板凾 を介するのみで非常に長距離の連続板体 (基地系) が構成される。 例えば、 一対の基地本体は長距離の空間に対向して配備し、 両者 間に板凾を複数個配して基地系を構成し、 この基地系を横に複数 配列すれば、 基地本体の数は少数でも広大な面積の基地系集団が 構成される。 (8) In the plate unit, a left plate box and a right plate box with the back connected are arranged at a fixed distance, and the plate part drawn out from the left and right front drawer windows is the next plate box. Connected to the back. Or, it is connected to the extension frame at the end of the plate part pulled out from the drawer window. Therefore, a very long-distance continuous plate (base system) is constructed just by passing a plate box in the middle of a small number of base bodies. For example, if a pair of base bodies are arranged facing each other in a long-distance space, and a plurality of plate boxes are arranged between them, a base system is constructed, and if a plurality of base systems are arranged horizontally, the number of base bodies can be reduced. A large number of base-based groups are constructed in a small number.
(9) 前記板ュニッ トは、 左、 右の両前面に引出窓を形成し、 中間に 隔壁のない略直方体の板凾で形成した場合、 同種の板部は左右の 引出窓から引出し伸展して両伸展型を構成できる。 異種の板部は 同方向に装備して一方の引出窓から重ねて引出し伸展して重伸展 型を構成できる。 新たな ^ ^
両伸展型は前記のように長い帯状に構成され、 重伸展型は前記 のように 2種又は 3種の板部の機能を併有できる。 従って、 一種 の板凾でありながら、 必要に応じ複数の用途に応じうる効果があ り、 共通性による利点もある。(9) When the plate unit is formed with a drawer window on both the left and right front surfaces and a substantially rectangular parallelepiped plate box without a partition in the middle, the same kind of plate unit is drawn out and extended from the left and right drawer windows. To form a double extension type. Different types of boards can be equipped in the same direction and can be stacked and pulled out from one drawer window to form a heavy extension type. New ^ ^ As described above, the double extension type is configured in a long strip shape, and the double extension type can have two or three types of plate portions as described above. Therefore, although it is a kind of plate box, it has the effect that it can be used for multiple applications as needed, and has the advantage of commonality.
ο) 前記板ユニッ トは、 遮光板凾, 発電板凾, 反射板凾が各々別に 構成された場合、 必要な 2種の板凾の面を当接, 仮結合して、 同 じ速さで伸展すれば、 必要な板部が随意重ね合されて 2種, 3種 の機能を有する重伸展型の板部を提供できる。 板ュニッ トは各々 単独の用途に応じ得、 また、 仮結合のみで必要な重伸展型を提供 できるから共通性の広い利点がある。 ο) When the light-shielding plate box, the power generation plate box and the reflection plate box are separately constructed, the plate unit comes into contact with the required two types of plate boxes and temporarily joins them together at the same speed. When extended, the necessary plate portions are arbitrarily overlapped to provide a heavy extension type plate portion having two or three types of functions. Each plate unit can be used for a single application, and it can provide the necessary heavy extension type only by temporary connection, which has the advantage of wide commonality.
ΐ) 前記板ュニッ トは、 板凾の配置や姿勢の自動的な調節手段であ るプログラム内蔵の制御部によって調節できる。 また、 基地本体 や板ュニッ ト間の配置 · 連結 · 分離は、 その結合部をプログラム 内蔵の制御部によって自動又は指令で操作できる。 ii) The plate unit can be adjusted by a control unit with a built-in program, which is a means for automatically adjusting the arrangement and posture of the plate box. The arrangement, connection, and separation between the base body and the board unit can be controlled automatically or by command from the control unit in the program.
α¾ 基地系は、 飛行方向の先端に基地本体を装備し、 後方に複数の 板凾及び板体を帯状に連結して、 彗星状に板体を吹流して軌道上を 飛行する。 従って、 先端の基地本体の位置や配列が管制体, 推進体 によって制御されれば、 後方の帯状の板体は基地本体に追従して飛 行し、 位置や配列が制御される。 即ち、 板体の途中, 板凾は推進体 や制御部を省略できるか、 又は簡単化できる。 帯長の板体は極めて 単純な形態に構成される。 特に、 遮光体の場合は柔軟性のある板状 で幅広の板体で構成されれば、 広大な面積を遮光する機能を発揮で sる。The α¾ base system is equipped with a base body at the tip of the flight direction, and connects a plurality of plate boxes and plates in a belt shape at the rear, and blows the plate like a comet to fly in orbit. Therefore, if the position and arrangement of the base body at the tip is controlled by the control body and the propulsion body, the rear strip-shaped plate will fly following the base body and the position and arrangement will be controlled. That is, the propulsion unit and the control unit can be omitted or simplified in the middle of the plate body. The strip-shaped plate is constructed in a very simple form. In particular, in the case of a light shield, if it is formed of a flexible plate and a wide plate, a function of shielding light over a large area can be exhibited.
¾ 基地系は、 ロケッ ト本体を直接基地本体として代用し、 ロケッ ト本体の側部の板凾と板凾との間に板体を装備して、 配置や配列 を制御する電子計算機を装備した。 新た な闭紙
従って、 ロケッ ト本体はそのまま活用でき、 宇宙空間に於いて、 自動的に板体等を帯状に装備できる。 基地本体は宇宙空間で組立 てる等の手数を省略し、 即座に宇宙に於ける基地系の代り として 活用できるから、 特に初期実験用に於て能率的である。 基地 In the base system, the rocket body was directly substituted for the base body, a plate was provided between the plate boxes on the side of the rocket body, and an electronic computer for controlling the arrangement and arrangement was provided. . New paper Therefore, the rocket itself can be used as it is, and a plate or the like can be automatically installed in a space in space. The base body can be used immediately as a substitute for the base system in space, eliminating the need to assemble it in outer space, etc., and is particularly efficient for initial experiments.
基地系は、 材料凾を自動操作する材料体と、 該材料凾の材料か ら板部等の製品を自動製造用の製造体と、 該製品を自動組立用の 組立体と、 該組立体で組立後の板体等の完成品を自動収納する板 凾体と、 等複数の小ブロ ックを総合した全 (半) 自動の製作系で 製作される。 複数の基地系は次々に製作系に相対向して宇宙空間 に配備される。 この製作系は、 地球上で十分に試作 · 実験 , 修正 •検查を繰返して信頼性の充分に高い耐久性のある全 (半) 自動 機に構成される。 そして基地系から、 又は地球管制体からの遠隔 操作、 又は極く小人数の駐在員のみで運営される。 従って、 宇宙 に於ける安全性等開発 · 実験途上にある現代及び近い将来に於て も、 模擬試験用等少数の基地系は配備しうる。 この製作系は、 本 発明の基地系集団の製作用のみでなく、 月, 火星, 衛星, 小惑星 等全般的な宇宙開発の推進用にも活用される。 さらに、 地球上の 各地に於ても、 太陽電池付建築物の構成に適用することができる。 地方, へき地, 発展途上国でも製作できるから、 化石燃料から太 陽電池への転換を総合的に行いうる効果がある。 The base system includes a material body for automatically operating the material box, a product for automatically manufacturing a product such as a plate portion from the material of the material box, an assembly for automatically assembling the product, and the assembly. Manufactured in a fully (semi-) automated manufacturing system that integrates a plate box that automatically stores finished products such as assembled plates and other small blocks. Multiple base systems are deployed one after another in space, facing the production system. This production system is a fully (semi-) automatic machine with sufficient reliability and durability by repeating trial production, experimentation, correction and inspection on the earth. It can be operated remotely from the base system or from the earth control system, or operated with only a small number of expatriates. Therefore, a small number of base systems, such as those for simulation tests, can be deployed in modern and near future developments such as safety development in space. This production system is utilized not only for the production of the base system group of the present invention but also for the promotion of general space development of the moon, Mars, satellites, asteroids, and the like. Furthermore, it can be applied to the construction of a building with solar cells in various places on the earth. Since it can be manufactured in rural areas, remote areas, and developing countries, it has the effect of comprehensively converting fossil fuels to solar cells.
な5) 前記製作系は、 細長凾状の材料体, 製造体, 組立体, 板凾体の 小プロックは並べて横方向に連接されている。 各々の端部は結合 (配列) して製作系集団が構成される。 材料の供給体は材料体の 側部に結合 · 分離自在に連結される。 広大な面積を要する遮光体 • 発電体の板体は、 横方向に連設された製作系集団によって連続 工程で, 効率的に, 短期間に、 製作される。 5) In the manufacturing system, the elongated box-shaped material body, the manufactured body, the assembly, and the small block of the plate box body are arranged side by side and connected in the horizontal direction. Each end is joined (arranged) to form a production group. The material supply is connected to the side of the material body in a detachable manner. Light-shielding body requiring a large area • The plate of the power generator is manufactured in a continuous process, efficiently and in a short period of time by a group of manufacturing systems connected in a horizontal direction.
新た な 紙
製作系の各部, 各機は、 地上で製作 · 組立 · 検査しておけば信 頼性あるものを提供できる。 ロケッ ト本体に収容して、 打上げ後、 側壁の一部を除去して平面で結合すれば即座に連結できる。 全体 で一体の製作系を簡単な操作で、 又は自動的に構成しうる。 New paper Each part of the production system and each machine can provide reliable products if they are produced, assembled, and inspected on the ground. After being housed in the rocket body and launched, a part of the side wall can be removed and joined by a flat surface for immediate connection. The whole integrated production system can be configured by simple operation or automatically.
(17) 前記基地系集団は、 乾燥地域に充分な広さの太陽光陰影部を形 成すれば、 太陽光の照射が遮断されエネルギーが供給されない。 太陽光陰影部は、 雲のない夜間が連続して続く ことになり、 激し い放射冷却が連続することになるから、 寒気を形成する。 乾燥地 域に隣接する水湿域には、 以前通り太陽光のエネルギーは供給さ れているから昼間は大気の温度は上昇し、 水蒸気は蒸発し湿度の 高い暖気を形成する。 即ち、 乾燥地域であっても寒気と暖気が隣 接して形成される。 性質の異る 2つの気団の境界には斜めに傾斜 した前線が形成される。 暖気は斜めの前線に沿って寒気の上には い上る。 上空では断熱膨張による断熱冷却によって露点温度以下 になると凝結して、 水滴や氷晶 (雲) ができる。 周辺の地域には 降雨現象が起ることになる。 降雨現象が引起されるに充分な寒気 は、 太陽光陰影部の形状, 広さ, 設定時間長さ, を電子計算機に 入力し、 シュ ミ レーショ ンゃ繰返し実験のデーターによって最適 のものをモデル化しておく。 設定される乾燥地域や周辺の地形, 水湿域との距離, 過去の気象データー, 等も全て入力され計算さ れる。 求められた結果は記録し、 さらに良い結果を得るよう修正 して実験を再現すれば良い。 乾燥地域に降雨できることは、 草木 や森林等生物の生存に有利な自然を人工的に創設でき易くする。 農場や牧場も構成できるから食糧生産を増す可能性を拡大し、 水 不足を解消して人類の生活圏を拡大することができる。 (17) If the base system group forms a sufficiently large shade of sunlight in an arid area, the irradiation of sunlight is cut off and energy is not supplied. The shaded areas of the sun will form a chill because the night without clouds will be continuous and the intense radiant cooling will be continuous. As the energy of sunlight is supplied to the water and wet area adjacent to the dry area as before, the temperature of the atmosphere rises during the day, and the water vapor evaporates to form humid warm air. In other words, cold and warm air are formed adjacent to each other even in an arid region. An oblique front is formed at the boundary between the two air masses with different properties. The warm air rises above the cold along a diagonal front. Above the sky, adiabatic cooling due to adiabatic expansion condenses below the dew point temperature, forming water droplets and ice crystals (clouds). Rainfall will occur in the surrounding area. For the cold enough to cause a rainfall phenomenon, the shape, width, and set time length of the shaded area of the sun were input to a computer, and the optimal one was modeled based on the data from the simulation-repeated experiment. Keep it. The set dry area and surrounding terrain, distance from water and wet areas, past weather data, etc. are all input and calculated. The results can be recorded and modified to obtain better results and the experiment recreated. The ability to rain in arid areas makes it easier to artificially create nature that is beneficial to living things such as vegetation and forests. Farms and ranches can also be configured, increasing the potential for increasing food production, eliminating water scarcity, and expanding human habitat.
基地系集団は広い面積を有するが、 太陽光のエネルギーを応用 新た な 紙
しつつ無重力の宇宙空間に於て電子計算機の制御によって行える。 従って、 初期の基地建設には費用も要するが乾燥地域の総面積に 比べ省力的で維持管理費も経済的にできる効果がある。 Base group has a large area, but uses solar energy New paper It can be performed in a weightless space by controlling the computer. Therefore, the construction of the initial base requires cost, but it has the effect of saving labor and economical maintenance cost compared to the total area of the arid area.
装置の運営に繰返し性, 永続性をもたせることができ、 乾燥地 域の利用に期待がもてる。 The operation of the equipment can be made repeatable and permanent, and the use of dry areas can be expected.
前記のように乾燥地域に降雨させることができるのは、 海, 湖, 川等の水湿域から遠く離れていない一定距離以内に限られる。 そ こで、 降雨後の旧乾燥地域を新水湿域とし、 内陸側の新乾燥地域 に太陽光陰影部を形成すれば前記の場合と同じように新暖気と新 寒気とが形成される。 それらの境界には新前線が形成され降雨現 象があるよう数値シュ ミ レーショ ン, 実験で最適のプログラムを 形成しておく。 As mentioned above, rainfall in arid areas is limited to a certain distance that is not far away from wet areas such as seas, lakes and rivers. Therefore, if the old dry area after rainfall is used as the new water wet area and the shade of sunlight is formed in the new dry area on the inland side, new warm air and new cold air are formed in the same manner as described above. An optimal program is formed by numerical simulations and experiments so that a new front is formed at those boundaries and there is a rainfall event.
このように、 内陸側の乾燥地域へ順次移動してゆく操作を繰返 せば、 海 · 湖 · 川から遠く離れた内陸の乾燥地域、 例えば広大な 砂漠等にも降雨現象を実現できる害である。 一度の移動で不充分 な場合は数回、 このような移動を繰返すことによって降雨が充分 に行われるようできる。 砂漠等の広大な地域に一度に太陽光陰影 部を形成する程には基地系の数量は準備しにくい場合、 上記のよ うに 「移動」 「繰返し」 の操作によって、 基地系の数も少くて済 む。 移動や繰返しは電子計算機を活用しプログラム化しておけば 的確に操作できる。 基地系集団の必要面積は止む得ぬが、 宇宙空 間であるから他の乾燥地域への移動は可能である。 In this way, if the operation of sequentially moving to the inland arid area is repeated, rainfall can be realized in inland arid areas far from the sea, lake, and river, such as vast deserts. is there. If a single move is not enough, it can be repeated several times to ensure sufficient rainfall. If it is difficult to prepare the number of base systems enough to form a shaded area in a large area such as a desert at one time, the number of base systems will be small due to the “movement” and “repetition” operations as described above. Done. Movement and repetition can be performed accurately if programmed using an electronic computer. The required area of the base group is inevitable, but it is possible to move to other arid regions because it is in outer space.
以上の操作が実際に実現でき効果が挙るとすれば、 地球上の陸 地の 1 / 3を占める砂漠 · 半砂漠は緑化への期待がもてる。 If the above operations can be realized and effective, deserts and semi-deserts, which occupy one-third of the land area on earth, are expected to be green.
広大な砂漠を緑化できれば周辺の気候を温暖化でき、 大気還流 のエンジンの作用を抑制し、 地球温暖化の傾向に対しても緩和す 新たな用紙
ることができる効果がある。 Greening a vast desert can warm the surrounding climate, curb the action of the engine that recirculates the air, and mitigate global warming. There is an effect that can be.
(19) 前記乾燥地域や新乾燥地域には、 降雨した雨水を流す人工溝と 該雨水を貯留する人工池とを形成すれば、 水蒸気の蒸発を促進す ることができる。 従って、 人工溝、 人工池は、 本来の海や湖や川 等の水湿域に相当する効果を発揮することができ、 砂漠の奥地に も新水湿域を形成することは可能である。 これらは定期的, 人為 的に降雨現象を起させるために、 前記の基地系, 基地系集団の機 能の補助 · 向上に重要なものとなる。 人口池, 水田, 等は砂漠の 低地を活用すればよい。 (19) In the arid region or the new arid region, if an artificial ditch for flowing rainwater and an artificial pond for storing the rainwater are formed, the evaporation of water vapor can be promoted. Therefore, the artificial ditch and the artificial pond can exhibit the effect equivalent to the original wet area such as the sea, lake and river, and it is possible to form the new wet area even in the interior of the desert. These are important for assisting and improving the functions of the base system and base system group in order to cause rainfall phenomena periodically and artificially. Artificial ponds, paddy fields, etc. can make use of desert lowlands.
管制体は、 地球の緯線 · 経線の間を分割した格子点に於ける気 象要素の値を一定の時間毎に計算し、 各時刻の予想図を求めるプ ログラム、 等を具備しているので、 地球の格子点近傍の気象現象 を種々のデーターから計算して推定できる。 即ち、 年間を通じて '地球規模の天候を予測できる。 The control body has a program that calculates the value of the weather element at grid points divided between the latitude and longitude lines of the earth at regular intervals and obtains a forecast map at each time. The weather phenomena near the grid points of the earth can be calculated and estimated from various data. That is, 'We can forecast global weather throughout the year.
また、 この推定を'もとにして、 一部分のみ太陽光陰壁部を設け た場合に於ける気候変動を推定し、 実際に気候制御を行う ことも できる。 特定地域に於ける気候制御を行ったのちは、 別の新たな 特定地域に移動して気候制御を行うこともできる。 即ち、 小数の 基地系集団によって地球規模の気候制御を部分的に順次替えて行 う ことができるから、 多数の地域の気候制御が可能となる。 Also, based on this estimation, it is possible to estimate climate change when only a part of the sunshade wall is provided, and actually perform climate control. After climate control in a specific area, it is possible to move to another new specific area to control the climate. In other words, a small number of base system groups can partially change the global climate control in order, so that climate control in many regions becomes possible.
(2ί) 管制体は、 特異気象が予測される地域周辺の気象要素の時間変 化の予想図を求めて自動的に交信するプログラム、 等を具備して いるので、 特異気象が予測される地域, 又はその原因となる地域 にあらかじめ太陽光陰影部を形成すれば、 特異気象による災害を 未然に抑制又は緩和できる。 年間を通じて太陽光陰影部の移動を 予定のスケジュールに組込んでおけば、 他の特定地域の気候制御 新た な用紙
と共に、 特異気象による被害を未然に救済できると推定される。 異常気象は世界各地の生活に大きな影響を及ぼしている。 干ば つ, 熱波, エルニーニョ, 洪水, 寒波, モンスーン異常等である。 農業に壊滅的な打撃をもたらす大熱波、 砂漠化も進行させている 干ばつ、 多くの災害を出す大雨や洪水、 冷害や被害者も出る寒波、 他である。 (2ί) The traffic control system is equipped with a program that automatically obtains time-varying forecast maps of weather elements around the area where peculiar weather is predicted, etc. If shading of sunlight is formed in advance, or in the area that causes it, disasters due to peculiar weather can be suppressed or mitigated beforehand. By incorporating the movement of solar shading throughout the year into the scheduled schedule, climate control in other specific areas New paper At the same time, it is estimated that the damage caused by peculiar weather can be relieved beforehand. Extreme weather has had a significant impact on life around the world. Droughts, heat waves, El Nino, floods, cold waves, monsoon anomalies. Big heat waves are devastating to agriculture, droughts are driving desertification, heavy rains and floods are causing many disasters, cold waves are causing cold damage and victims, and others.
異常気象の原因は複雑で明らかではないが、 大気, 植生, 海洋, 雪氷など相互に影響を及ぼす 1 つの系を想定し、 地球規模で大気 の現象をとらえ直す。 平常と比べて異常な現象, その原因, 過去 の情報, データー, 等プログラム化し記憶させておく。 The causes of extreme weather are complex and unclear, but we assume a single system that interacts with the atmosphere, vegetation, the ocean, snow and ice, and recapture atmospheric phenomena on a global scale. Abnormal phenomena compared to normal, their causes, past information, data, etc. are programmed and stored.
異常気象が発生する地域周辺の大気大循環, 大気候, 中気候, 海洋のデーターも入力しておく。 各地の気象庁, 端末機, 地球管 制部は管制体の交信部と全てネッ トワークされ、 交信する。 The data of general circulation, large climate, medium climate, and ocean around the area where abnormal weather occurs are also input. The Meteorological Agency, terminals, and the Earth Control Department in each region are all networked and communicated with the communication unit of the control body.
気象現象は全て太陽のエネルギーが原動力であるから、 異常気 象も太陽光の強度等が大きく影響する。 従って、 異常気象の実態 が解析されデーター化され太陽光の強度との関係が明らかになれ ば、 部分的に太陽光陰影部を形成することによつて調整の方向に 向う害である。 例えば干ばつ, 熱波は熱帯の太陽光エネルギーが 異常に集中した状態で現れ、 上空で放湿した乾燥空気の流れが原 因である。 従って、 情報やデーターに基き入力して太陽光陰影部 の広さ, 時間, 降雨促進等との設定の施し方が出力される。 この 出力に基いて基地系集団を制御すれば良い。 異常気象を調整する 最適な制御モデルは、 数値シュ ミ レーショ ンゃ実験や実際のデー タ一によって精度向上が図られる。 All meteorological phenomena are driven by the energy of the sun, so abnormal weather is also greatly affected by the intensity of sunlight. Therefore, if the actual condition of abnormal weather is analyzed and converted into data and the relationship with the intensity of sunlight is clarified, it is harm to the direction of adjustment by partially forming a shaded portion of sunlight. For example, droughts and heat waves appear with abnormally concentrated tropical solar energy, caused by the flow of dry air humidified above. Therefore, it inputs based on information and data, and outputs the setting method such as the size of the shaded area of sunlight, time, and promotion of rainfall. The base group may be controlled based on this output. The optimal control model for adjusting abnormal weather can be improved in accuracy through numerical simulations – experiments and actual data.
) 酷暑が続く熱帯や周辺の地域では、 イナゴ等の害虫が大発生し、 農作物等に大被害をもたらすことがある。.この地域に情報連絡を 新たな ¾欲
受て、 基地系集団を配備し太陽光陰影部も形成する。 この地域は 連日夜間の放射冷却と併せて極度の寒気を形成し、 数日にして害 虫類の激増を抑制し、 撲滅する効果を期待できる。 準備や労力は 少くて済み、 殺虫剤等化学物質の汚染の心配もない。 Pests such as locusts can be outbreaks in tropical and surrounding areas where intense heat continues, causing serious damage to agricultural crops. Communicate information to this area New desire In response, a base system group will be deployed to form a shaded area of sunlight. This area produces extreme cold in conjunction with daily radiant cooling, and can be expected to suppress and eliminate pest proliferation in a few days. Preparation and labor are small, and there is no need to worry about contamination with pesticides and other chemicals.
^ 地球温暖化の傾向に対して、 種々の対応策が講じられているが そのいずれもが大して効果なく、 温暖化が益々進行してゆく場合 のことも検討しておかねばならない。 人口増加やエネルギー対策 はいずれも解決までに数十年も遅れるから、 大気中の二酸化炭素 初め温室効果ガスは年毎に増加する。 太陽の活動も温暖化を進め る傾向にある。 現在のところ根本的な解決策はないとされている。 本発明の気候制御は着想, 発明による構想の段階であるから、 当 然実験されていない。 ^ Various countermeasures have been taken against the trend of global warming, but none of them is very effective, and it is necessary to consider the case where global warming is increasing. Since both population growth and energy measures are delayed for decades before resolution, atmospheric carbon dioxide and other greenhouse gases will increase every year. Solar activity also tends to warm. At the moment there is no fundamental solution. Since the climate control of the present invention is at the stage of conception and invention conception, it has not been tested.
止むを得ず、 将来温暖化現象が益々進行した場合、 平均高さ If the unavoidable future warming phenomenon is increasing, the average height
2000 m以上の南極氷山の融解進行は抑制対策が困難とされている。 It is considered difficult to control the melting of Antarctic icebergs over 2000 m.
氷融解による海水位 5 mの上昇は、 世界のほとんどの臨海都市 を水没化し損害及び危険は想像を絶する。 1〜 2 mの上昇のみに よる台風時の危険も莫大なものがある。 海岸線に全て堤防を増築 するだけでも図り知れない出費が必要である。 温暖化は陸 · 海共 に全て危険である。 A rise in sea level of 5 meters due to ice melting will submerge most coastal cities in the world, and the damage and danger is unimaginable. The dangers of a typhoon caused only by a rise of 1-2 m are enormous. It would be enormous expense to just add an additional embankment to the coastline. Warming is dangerous for both land and sea.
そこで常時は各地域の気候制御に配備されている前記基地系集 団を極地や周辺の氷塊部に太陽光陰影部を形成するように配備す る。 温暖化が進んだ極地でも寒気が形成されれば、 氷塊の融解は 抑止され、 大幅な海水位の上昇を食い止めると推定される。 Therefore, the above-mentioned base system group, which is normally deployed for climate control in each region, is deployed so as to form a shade of sunlight in polar regions and surrounding ice blocks. It is presumed that the formation of cold air in the warmer polar regions would prevent the melting of ice blocks and stop a significant rise in sea level.
^5) 冬期の寒冷地帯は氷点下数十度の日が続き、 ッン ドラと力モシ 力とエスキモーのみの世界であり、 広大な土地は農業もできぬ荒 地である。 ^ 5) In winter, the cold region continues to be several tens of degrees below freezing, is a world of only tundra, power and power, and eskimos. The vast land is a wasteland that cannot be farmed.
新た な 兩敏
豪雪地帯は数 mの積雪で道路も施設も住宅も不便を極める。 これらの地帯に太陽の直射光に加えて反射光を照射できれば、 どう しょう もない両地帯の冬期の状態を部分的に緩和できる。 地上の気象庁や、 端末機の気象情報に基き、 電子計算機による 自動制御、 指令制御が可能であるように配備する。 必要に迫られ る地域に実質的効益の為に限り弊害を避けるためには、 シユ ミ レーシヨ ン, 過去のデーターの積み重ね, 最適なプログラムによ る制御が不可欠である。 A new sense The heavy snowfall area is covered by several meters of snow, making roads, facilities and houses extremely inconvenient. If these zones can be illuminated with reflected light in addition to direct sunlight, the winter conditions in both zones can be partially alleviated. Based on the meteorological information on the ground and the weather information of the terminal, the system will be installed so that automatic control and command control can be performed by a computer. In order to avoid adverse effects only in areas where there is a need for practical benefits, simulations, accumulation of past data, and control by optimal programs are indispensable.
6) 基地系集団は、 台風発生の季節前に台風多発の熱帯周辺の海面 に太陽光陰影部を形成するよう配備されるから数夜連続の放射冷 却で寒気が形成され、 台風の発生し易い熱帯海域の海面に於ける 海水の温度上昇を抑制できる。 台風発生の条件は上昇気流, 海水 の温度が 27 °C以上になることである。 太陽光の遮断により前記条 件が抑制されれば台風の発生自体を少くできる。 6) Base station populations are deployed so that solar shading is formed on the sea surface around the tropics where typhoons frequently occur before the typhoon season occurs. It is possible to suppress seawater temperature rise on the surface of the tropic sea area. The condition of the typhoon is that the temperature of the updraft and seawater is 27 ° C or more. If the above conditions are suppressed by blocking the sunlight, the occurrence of the typhoon itself can be reduced.
一旦発生した台風は、 その周域の海面に太陽光陰影部を形成す るよう配備すれば、 海面やその上方の大気への太陽熱供給がなく なる。 海面からの水蒸気は蒸気を少くでき、 台風の中心に向って 流れる空気は水蒸気を多量に含まず、 流入する空気は温度を低く 抑制できる。 従って、 流入空気が台風の中心付近で上昇する勢い は抑えられ、 上空で水蒸気が凝結して雲粒が形成される際の潜熱 の放出量は抑制され、 積雲や積乱雲等の対流雲のエネルギー源、 即ち台風のエネルギー源は弱め得る。 Once a typhoon has been deployed to form a shade of sunlight on the surrounding sea surface, solar heat will not be supplied to the sea surface or the atmosphere above it. Water vapor from the sea surface can reduce steam, the air flowing toward the center of the typhoon does not contain a large amount of water vapor, and the temperature of the incoming air can be kept low. Therefore, the rate of rise of the incoming air near the center of the typhoon is suppressed, the amount of latent heat released when water vapor condenses to form cloud droplets in the sky is suppressed, and the energy source of convective clouds such as cumulus clouds and cumulonimbus clouds That is, the energy source of the typhoon can be weakened.
台風発生から 2〜 3 日以内の未発達の台風は、 特に効果が大き く減衰や消滅することもあると推定される。 未発達の台風は、 生 成されるエネルギー量も小さいうえ台風の直径も小さいから必要 とする基地系の数も少くて済む。 その周域の海面に形成される太 新たな 用紙
陽光陰影部の幅は台風の直径に比べて幅広にできるから、 上記の 効果を著しくできる。 It is estimated that undeveloped typhoons within 2 to 3 days after the occurrence of the typhoon have a particularly large effect and may be attenuated or disappear. Undeveloped typhoons generate less energy and have a smaller typhoon diameter, so they require fewer base systems. A new form of paper formed on the sea surface around the area Since the width of the sun shaded area can be made wider than the diameter of the typhoon, the above effects can be remarkably achieved.
発達中や最盛期の台風は、 生成エネルギー量も大きいうえ相当 量の基地系の数、 従って基地系集団の総面積も大きいものを必要 とする。 減衰させるには相当の実験や計算により求めた条件を投 与してもなお数日を要すると推定される。 しかし、 前記基地系集 団は、 台風の発達の条件である流入空気が暖いこと, 海面温度が Typhoons during development and at their peak require large amounts of energy to be generated and a large number of base systems, and thus a large area of base system groups. It is estimated that it takes several days to attenuate even if the conditions obtained by considerable experiments and calculations are applied. However, the above-mentioned base system constellation requires that the incoming air is warm,
27 °C以上のこと, 水蒸気の蒸発量や含有水蒸気量が多いこと, を 断ち切れるから、 対流雲の維持を弱めることができる。 Since the temperature is 27 ° C or higher, and the amount of water vapor evaporation and water vapor content is high, the maintenance of convective clouds can be weakened.
基地系集団の配備は、 台風の発生予防, 未発達の台風の衰弱, 消滅, 発達中の台風の衰弱等の効果が明確化すれば、 過去受けた 莫大な被害と同じょうな被害や心配から今後解放されることにな る 0 If the effects of preventing the occurrence of typhoons, weakening and extinction of undeveloped typhoons, and weakening of developing typhoons are clarified, the deployment of the base system group will be the same as the enormous damage and worries suffered in the past. Will be released in the future 0
上記配備は具体的に、 強風による家屋や建築物の倒壊, 破損, 農作物への被害, 大雨による河川のはんらん, 池水, 山崩れ, 崖 崩れ, 高潮等々の被害を毎年、 将来もずつと防ぎうる。 台風の銀 座通りとまで言われる 日本や関係国にとって効果が大きい。 建設 中の海上空港, 海上都市, 近い将来の海洋開発, 等は、 過度な制 約を受けず安全性も高くなる。 サイクロン等による毎年数万人の 犠牲も救済される。 Specifically, the above deployment can prevent damage to houses and buildings due to strong winds, damage to crops, damage to agricultural crops, river swelling, pond water, landslides, cliffs, storm surges, etc. due to heavy rain every year and in the future. The effect is great for Japan and related countries, even called Ginza-dori, the typhoon. Marine airports under construction, maritime cities, marine development in the near future, etc. will not be overly restricted and will be more secure. Every year, tens of thousands of victims of cyclones are saved.
7) 発達中の台風は勢力が強大であるから、 前記の基地系集団によ る太陽光陰影部のみでは衰弱が遅い場合、 周辺の海面や移動前の 海面へ冷却剤 (水) を満載した冷却船を配置する。 そして、 該冷 却船から放水ノズル等の散冷管から冷却剤 (水) を散布 (水) し て、 海水温の上昇をさ らに抑制してもよい。 7) Since the developing typhoon has a strong power, if the weakness is slow only by the shaded area of the base station group, the surrounding sea surface and the sea surface before moving are filled with the coolant (water). Arrange a cooling ship. Then, a coolant (water) may be sprayed (water) from a cooling tube such as a water discharge nozzle from the cooling ship to further suppress an increase in seawater temperature.
例えば極地近傍の氷片ゃ寒冷な海水をタンカ一等に満載して、 新たな用紙
複数の大型の消防放水ノズル等で散水しながら航行する。 海水温や 周辺の空気は相当の温度低下を期待できる。 太陽光陰影部が形成 された海面は、 太陽光のエネルギーが遮断され雲のない場所は昼 夜連続の放射冷却で寒気が形成され、 更にタンカ一等冷却船数台 が並んで散布する。 台風中心へ流入する空気や海水面の温度は相 当降下されるから、 台風の勢力を減衰させる効果が早い。 For example, ice sheets near the polar region, cold seawater, etc. Navigate while spraying water with multiple large firefighting nozzles. The seawater temperature and surrounding air can be expected to drop significantly. On the sea surface where the sun shaded area is formed, sunlight is cut off, and in places without clouds, cold air is formed by continuous radiant cooling day and night, and several cooling vessels such as tankers are scattered side by side. Since the temperature of the air and seawater flowing into the center of the typhoon drops considerably, the effect of attenuating the typhoon's power is quick.
8) 前記基地系集団によって、 赤道近傍に太陽光陰影部を形成すれ ば、 大気還流位置を緯度方向へ移動させることができる。 8) If a shade of sunlight is formed near the equator by the base system group, the atmospheric return position can be moved in the latitude direction.
赤道地帯では太陽光のエネルギーによって水蒸気を多量に含ん だ大気が上昇し、 上空で水蒸気を放出して降雨後高緯度方向へ移 送される。 乾燥し再降下する大気は降水をもたらすのに不適当な 程乾燥したまま、 大地に吹付けて地面を次々に乾燥させて生成さ れる。 従って、 乾燥した降下気流の位置, 即ち、 大気還流位置を ズラせてやれば、 降雨する地域と、 乾燥する地域も移動する害で ある。 設定時間や面積等はプログラムされ、 電子計算機で制御さ れる。 面積には限りがあるので、 ズラせうる距離にも限界がある が、 部分的に変化する効果は期待しうる。 In the equatorial region, the atmosphere containing a large amount of water vapor rises due to the energy of sunlight, and the water vapor is released above the sky and transferred to higher latitudes after rainfall. A dry, re-falling atmosphere is created by spraying the ground and drying the ground one after another, leaving the drying area inappropriately dry to bring precipitation. Therefore, if the position of the dry downdraft, that is, the position of the air return is shifted, the rainfall area and the dry area will move. The set time and area are programmed and controlled by a computer. Since the area is limited, there is a limit to the distance that can be shifted, but the effect of partial change can be expected.
& 9) 大基地系集団による大気還流位置の移動のみでは、 移動されう る距離に限界がある。 そこで、 乾燥地域への乾燥した大気の降下 気流を弱め、 降雨に対する抑制作用を緩和する。 そして乾燥地域 に別の中基地系集団による太陽光陰影部を形成して寒気を形成し、 周囲の暖気との間に斜めの前線を形成する。 & 9) There is a limit to the distance that can be moved simply by moving the atmosphere return position by the large base system group. Therefore, the downdraft of the dry atmosphere into the arid area is weakened, and the effect of suppressing rainfall is reduced. Then, in the arid region, a sunshade is formed by another middle base system group to form cold air, and an oblique front is formed between it and the surrounding warm air.
前記大基地系集団によって新水湿域の位置も乾燥地域に近く形 成される。 乾燥地域が砂漠の場合、 周囲の暖気は昼間相当温度が 高いが、 太陽光陰影部は昼夜連続して放射冷却が続くから、 数日 の中にかなり気温の下った寒気が形成される害である。 即ち、 性 新たな用紙
質の異る 2つの大気が隣接して存在することになつて、 その境界 には斜めの前線が形成される。 周囲の暖気の中、 既に降雨した新 水湿域は水蒸気の充満した大気が昼間温度は上昇し、 前線をはい 上って上空に達する。 上空では前記大基地系集団によって乾燥し た大気の移送は弱められているので、 断熱膨張による断熱冷却の 作用も通常程度になり降雨現象がみられる害である。 即ち、 両基 地系集団の相乗作用によって、 砂漠等に降雨促進の効果が現出さ Lる 0 The location of the new wetland is formed close to the arid area by the large base system group. If the dry area is a desert, the surrounding warm air has a high temperature during the daytime, but the shaded area of the sun continues to cool radiantly day and night, causing the cold to form during a few days. is there. That is, sex new paper An oblique front is formed at the boundary between two adjacent atmospheres of different quality. In the surrounding warm air, the rain-filled area of the new water wets the atmosphere filled with water vapor, the daytime temperature rises, and it crosses the front and reaches the sky. In the sky, the transport of dry air is weakened by the large base system group, and the effect of adiabatic cooling by adiabatic expansion is also normal, causing rainfall phenomena. In other words, the synergistic effect of the two basement groups has the effect of promoting rainfall in deserts etc. 0
m 基地系集団は、地球一一太陽の双方の引力が均衡する公転軌道 に地球と同じ周期で配備され、 地球の特定地域に太陽光陰影部を 形成するよう制御する管制体, 推進体を具備している。 従って、 太陽光陰影部は、 昼部の地球上半球の特定地域に、 基地系集団の 大きな位置の推進変動や姿勢変動を要することなく形成される。 m The base system group is equipped with a control body and a propulsion unit that are deployed at the same period as the Earth in orbits where the gravitational forces of the Earth and the Sun are balanced, and that control the formation of solar shading in specific areas of the Earth. are doing. Therefore, solar shading is formed in a specific area of the earth's hemisphere in the daytime without the need for propulsion fluctuations or attitude fluctuations at large locations of the base system group.
地球の自転は公転の方向と同じであるから、 推進体の作動に よつて若干の公転速度を調整するのみで太陽光陰影部を特定地域 に形成できる。 Since the rotation of the earth is the same as the direction of the orbit, the sun shaded area can be formed in a specific area only by adjusting the orbital speed slightly by operating the propulsion body.
太陽光の照射方向, 送電すべき地球の方向は常に基地系に対し て略垂直な方向に安定しているから、 発電部, 送電部の姿勢抑制 も大きな変動を必要としない。 また、 太陽光照射側の地球の両半 球に太陽光陰影部が終日形成されるのでその面積の太陽エネル ギー相当分、 地球温暖化に対しては効果的である。 Since the direction of sunlight irradiation and the direction of the earth to be transmitted are always stable in a direction substantially perpendicular to the base system, the attitude control of the power generation unit and power transmission unit does not require large fluctuations. In addition, since the sun-shaded area is formed all day in both hemispheres of the earth on the sun-irradiated side, the area equivalent to the solar energy is effective against global warming.
地球上からは遠い距離にあるので、 赤道近傍のみに限らず両極 地, 南北両半球に若干の制御で太陽光陰影部を形成できる。 Since it is far from the earth, solar shading can be formed with slight control not only near the equator but also in the polar regions and the north and south hemispheres.
1) 基地系集団は、 時間変化 (自転や公転の位置変化) に応じて遮 光体や推進体を自動制御するプログラム (遮光制御手段) 、 自転 や公転による位置変化のデーターに応じて送電体を自動制御する 新たな闲鉞
プログラム (送電制御手段) 、 を含む管制体を具備している。 1) The base system group consists of a program (light-shielding control means) that automatically controls the light-shielding body and the propulsion body according to the time change (change in the position of rotation and revolution), and the power transmission element in accordance with the data of the position change by the rotation and revolution. New 闲 acetes that automatically controls A program (power transmission control means) is provided.
従って、 大きな軌道の変更を必要とせず管制体の電子計算機で 行う ことができる。 Therefore, it can be performed by the computer of the control body without requiring a large orbit change.
前記基地系集団は、 遮光体の上面に発電部, 下面に反射部を装 備しているので、 地球の周りを回動する静止軌道上では昼間は太 陽光 (熱) 発電が行われて電力を供給できる。 熱帯の帯状地域は 太陽光陰影部が赤道方向に移走して一時的に涼風を供.給できる。 The base system group is equipped with a power generation unit on the upper surface of the light-shielding body and a reflector on the lower surface. Therefore, in a geosynchronous orbit that rotates around the earth, solar (thermal) power generation is performed during the daytime, Can be supplied. In tropical belts, the shaded area of the sun moves in the equatorial direction and can supply cool breeze temporarily.
夜間は特定地域に太陽の反射光を照射して照明の作用を供給で きる。 熱帯地域は酷暑の風土下、 電力の恩恵を受得ず、 従って電 気機器の使用による情報や教育の著しい遅れで多くの発展が疎外 されているが、 ある程度の近代化を期待できる。 下面の反射部は 発電部を兼ねた反射率の良い半鏡面状であれば、 夜間も電力を供 7Pa ¾ 0 At night, a specific area can be illuminated with the sun's reflected light to provide lighting effects. Tropical areas do not benefit from electricity in a hot summer climate, and thus have been largely alienated by the considerable delay in information and education resulting from the use of electrical equipment, but some modernization can be expected. If the reflecting part on the lower surface is also a semi-mirror surface with good reflectivity that also serves as a power generating part, power can be supplied even at night.
基地系集団は、 静止軌道からのズレを検知しその修正用に噴出 部や重心調整部を制御する制御部を搭載していれば、 静止軌道を 回周する運行を継'続できる。 If the base system group is equipped with a control unit that detects the deviation from the geosynchronous orbit and controls the jetting unit and the center-of-gravity adjustment unit for correction, it can continue the operation of orbiting the geosynchronous orbit.
3) 前記基地系集団は、 地球は公転 , 自転しているので、 地球の特 定地域に四角形の太陽光陰影部を投影するよう推進体によって基 地系集団全体の運行速度を変更 ·調整する必要があり困難を伴う。 そこで、 横長い基地系集団の両端近傍の遮光体、 基地系全体を調 整し、 その傾動を指令制御するプログラム内蔵の電子計算機を搭 載しておく。 3) The base system group changes and adjusts the operating speed of the entire base system group by the propulsion body so that the square solar shading part is projected on a specific area of the earth because the earth is revolving and rotating. Necessary and difficult. Therefore, an electronic computer with a built-in program that adjusts the light shields near both ends of the horizontal base system group and the entire base system and controls the tilt command is installed.
即ち、 四角形の投影形, 面積, 投影地域等は基地系自体又は基 地系両端近傍の遮光体の傾動操作によって調整すれば、 飛行速度 の変更の必要性を解消 · 吸収しうる可能性がある。 In other words, if the projected shape, area, projected area, etc. of the square are adjusted by tilting the light shields near the base system itself or both ends of the base system, the necessity of changing the flight speed may be eliminated and absorbed. .
傾動操作は、 慣性等の大きなエネルギー損失を必要とせず機動 新たな ¾紙
的である。Tilt operation does not require large energy loss such as inertia, and is mobile. It is a target.
) 基地系集団は、 対流圏から成層圏に形成される上層雲の上端周 辺に太陽光の反射光を照射し、 該反射光と直射光との合計された 太陽光エネルギーによって、 上層雲から水蒸気の蒸発が促進され るように配備された。 蒸発した水蒸気は、 反射光, 直射光の紫外 線によって酸素分子 · 水素分子に分解される。 酸素分子は 2個の 酸素原子に分解され、 酸素原子は他の酸素分子と結合してオゾン が生成される。 The base system group irradiates the reflected light of sunlight around the upper edge of the upper cloud formed in the stratosphere from the troposphere, and the evaporation of water vapor from the upper cloud by the total solar energy of the reflected light and the direct light Have been deployed to be promoted. The evaporated water vapor is decomposed into oxygen molecules and hydrogen molecules by reflected light and ultraviolet light. Oxygen molecules are broken down into two oxygen atoms, which combine with other oxygen molecules to produce ozone.
これら生成の過程や量は、 成層圏に浮遊した測定球によって測 定され、 その測定データーは.管制体の電子計算機に入力される。 電子計算機のプログラムは、 前記水蒸気の蒸発からオゾンの生成 までの光化学反応が効果的に行われる最適の配列 ·数量 (反射光 量) の基地系集団が配備されるよう構成しておけば、 自動的に制 御される。 オゾンの生成が新たな水蒸気によって促進されれば、 フロ ンガスによる部分的に破壊されたォゾンホールを修復できる。 一般に、 絹雲, 絹積雲等の上層雲の上端周辺は、 高緯度地方で 3000〜8000 mの高さに形成されるが、低緯度地方では 6000〜 18000 mの高さに形成される。 強烈な太陽光のエネルギーに依るもので ある 0 The process and amount of these formations are measured by a measuring sphere suspended in the stratosphere, and the measured data is input to the computer of the control body. If the computer program is configured so that a base group of the optimal arrangement and quantity (reflected light amount) in which the photochemical reaction from the evaporation of water vapor to the generation of ozone is effectively performed is provided, the program is automatically executed. Is controlled in a controlled manner. If the generation of ozone is facilitated by the new water vapor, the ozone hole partially destroyed by the front gas can be repaired. Generally, the upper clouds around the upper end of the upper clouds, such as cirrus and silk cumulus clouds, are formed at a height of 3000 to 8000 m in high-latitude regions and 6000 to 18000 m in low-latitude regions. Depends on intense solar energy 0
現在の成層圏に於けるオゾン層は、 十数億年昔原始的な藻類に よる光合成の結果、 大量の酸素を放出後、 成層圏に上昇した酸素 が太陽の紫外線による光化学反応によって形成されたものである。 オゾン層の修復には地上からの酸素の上昇は期待できないし、 間 に合わない。 地上の水は太陽エネルギーにより蒸発し、 気象現象 の雲という形で対流圏から成層圏に水蒸気を運んで広く散在され ている。 従って、 それを活用するに越したことはないと考えられ 新た な 用紙
る。 折角、 太陽エネルギーによって成層圏という 16000 mを越え る上空まで水蒸気が運ばれている。 その位置エネルギーを活用し、 更に太陽エネルギーを加えて水蒸気の蒸発, 上昇を促し、 上記の 光化学反応を施しオゾンの生成を促進する。 The ozone layer in the current stratosphere is formed by photosynthesis by primitive algae billions of years ago, and after releasing a large amount of oxygen, oxygen that has risen to the stratosphere is formed by photochemical reactions caused by ultraviolet rays of the sun. is there. The rise of oxygen from the ground cannot be expected or will not be in time for the restoration of the ozone layer. Surface water evaporates due to solar energy and is widely scattered carrying water vapor from the troposphere to the stratosphere in the form of meteorological clouds. Therefore, it is considered that there is no better way to utilize it. You. In the end, solar energy transports water vapor over the stratosphere, over 16,000 m. Utilizing the potential energy, solar energy is further added to promote the evaporation and rise of water vapor, and the above photochemical reaction is performed to promote the generation of ozone.
前記基地系集団の配備位置の移動 ·、姿勢制御等が太陽光発電に よって成されるから、 太陽エネルギーを四重に活用して、 オゾン 層を修復することになる。 Since the movement of the deployment position of the base system group, the attitude control, and the like are performed by photovoltaic power generation, the ozone layer is repaired by using the solar energy fourfold.
対流圏から成層圏に拡散された大量のフロンはもはや回収され る手段がなく、 今後約一世紀の間オゾン層を破壊し続けると予測 されている。 地球の大気は解毒剤のない毒薬を飲んだのも同然と されている。 危機的状況を回避する手段として残された道は、 フ ロンを代替物質へ切替ることと破壊された (る) オゾン層を修復 することである。 しかし、 破壊が進むと修復するには余りにも広 犬な成層圏である。 小範囲のオゾンホールの段階から持続的な修 復の実情を観測しながら進め、 太陽エネルギーの力を活かせば可 能性はある。 Large amounts of CFCs diffused from the troposphere into the stratosphere have no means to be recovered and are expected to continue depleting the ozone layer for about a century. The Earth's atmosphere is supposed to be drinking poisons without antidote. The only way to avoid the crisis is to switch from chlorofluorocarbons to alternative substances and to repair the depleted ozone layer. However, the stratosphere is too broad to be repaired as the destruction progresses. There is a possibility if we proceed while observing the actual situation of continuous restoration from the small-scale ozone hole stage and harness the power of solar energy.
5) 前記オゾン層の修復は、 上層雲の上端周辺へ太陽の直射光と, 一条の反射光のみによって水蒸気の蒸発が不充分な場合、 複数の 反射体から複数条の反射光を照射し、 焦点を上層雲へ集中させる。 太陽光のエネルギーは複数倍になり、 前記促進の効果を高めうる。 5) The ozone layer is repaired by irradiating multiple rays of reflected light from multiple reflectors when the evaporation of water vapor is insufficient due to the direct sunlight from the sun and only one reflected light around the top of the upper cloud. To the upper clouds. The energy of sunlight is multiplied multiple times, and the effect of the promotion can be enhanced.
反射光柱は太陽の直射光と重複した太陽エネルギーを成層圏の 空間に全て受けているから、 気温も高くなると共に、 紫外線の量 も多くなる。 従って、 この反射光柱 空気が上昇する動きが大き くなるから、 蒸発した水蒸気の上昇を促進する作用があり、 水蒸 気からオゾンへの光化学反応も数倍に促進される。 反射光柱は、 反射光であるから、 直射光と全く同じ方向とはならないが、 なる 新た な用紙
ベく地表に対して垂直 (即ち真上) の方向になるよう反射体の配 列 · 数量 · 姿勢を制御する。 水蒸気の上昇機能は促進され、 成層 圏中に拡散され易いためである。 Since the reflected light column receives all solar energy in the stratosphere that overlaps with the direct sunlight, the temperature rises and the amount of UV radiation increases. Therefore, since the movement of the reflected light column air rising becomes large, there is an action of promoting the rise of the evaporated water vapor, and the photochemical reaction from the water vapor to the ozone is promoted several times. Since the reflected light column is reflected light, it does not have the same direction as the direct light, but new paper The arrangement, quantity, and attitude of the reflectors are controlled so that they are perpendicular (ie, directly above) the surface of the ground. This is because the function of increasing water vapor is promoted and is easily diffused into the stratosphere.
地球はき転し上層雲の位置は移動するから、 自動的に制御でき るようにプログラムをあらかじめ構成し電子計算機に入力してお Since the earth rotates and the position of the upper cloud moves, a program is pre-configured so that it can be controlled automatically and input to a computer.
< 0 <0
基地系集団は、 上層雲の位置や蒸発の状況を観測する望遠鏡に 連携して電子計算機で制御する。 上層雲の移動や時間変更に追従 しうる。 The base system group is controlled by a computer in conjunction with a telescope that observes the position of the upper cloud and the state of evaporation. It can follow the movement of upper clouds and changes in time.
06) 上層雲の上端周辺には、 直接光, 反射光による放射熱を吸収し 易いように黒色粉をあらかじめ拡散しておく。 水蒸気は蒸発を促 進され水蒸気からオゾンへの生成は促進できる。 06) Around the upper edge of the upper cloud, diffuse black powder in advance so as to easily absorb the radiant heat due to direct light and reflected light. Water vapor is promoted to evaporate, and the generation of ozone from water vapor can be promoted.
雲は略白色で一般に太陽光を吸収し易いとはいえない。 黒色粉 を拡散すると、 その部分の太陽光エネルギーは吸収され易く、 温 度上昇し、 蒸発は促進される。 それらの状況は観測体で測定して 電子計算機で制御すれば、 宇宙空間と成層圏とは遠く離れていて も自動的に制御できる。 Clouds are nearly white and generally not easy to absorb sunlight. When the black powder diffuses, the solar energy in that area is easily absorbed, the temperature rises, and evaporation is accelerated. If these conditions are measured by an object and controlled by a computer, it can be controlled automatically even if the space is far from the stratosphere.
7) 彗星基地系で氷塊を電気分解して精製された酸素を成層圏まで 運搬して放散すれば、 小範囲ながらある程度のオゾン層破壊は修 復される可能性がある。 彗星核は氷その他で形成されているので、 太陽を中心とする略円軌道に軌道修正して電気分解し、 酸素と水 素を精製する。 酸素を凝縮した液体酸素は、 酸素タンクに充塡し て地球の静止軌道基地にも保管しておく。 この酸素タンクは必要 に応じスペースシャ トル等で荷物室に満載し、 地球へ帰還時に成 層圏のォゾンホール等に拡散する。 拡散された酸素は太陽光の紫 外線によつて前記の光化学反応を起してオゾンが生成され、 ォゾ 新たな 紙
ンホールは修復される。 近い将来、 スペースシャ トル等は地球と 往復する回数は増えるであろう。 そこで、 帰還時の空の荷物室を 応用すれば、 引力に逆らわないから相当量の液体酸素を積載可能 で放散量も多量にできる。 7) If oxygen purified by electrolysis of ice blocks at the comet base system is transported to the stratosphere and released, the ozone depletion in a small area may be repaired to some extent. Since the comet nucleus is formed of ice and other materials, the orbit is corrected to a substantially circular orbit around the sun and electrolyzed to purify oxygen and hydrogen. Liquid oxygen condensed with oxygen is filled in an oxygen tank and stored at the Earth's geostationary orbit base. This oxygen tank fills the luggage room with a space shuttle if necessary, and diffuses into the stratospheric ozone hole when returning to Earth. The diffused oxygen causes the above-mentioned photochemical reaction by the ultraviolet rays of sunlight to produce ozone. The hole is restored. In the near future, space shuttles and the like will make more round trips to the earth. Therefore, if an empty luggage compartment at the time of return is applied, a considerable amount of liquid oxygen can be loaded and the amount of emission can be increased because it does not go against gravity.
前記基地系集団は、 太陽光陰影部の形成によって、 種々の気象 制御の可能性があるから、 これを応用して酸性雨の緩和を行いう る効果があると推定される。 The base system group has various weather control possibilities due to the formation of the shaded portion of sunlight, and it is presumed that the base group is applied to alleviate acid rain.
即ち、 太陽光陰影部では太陽の紫外線が遮断されて太陽光の影 響を受けることが無いから、 通常の状態より も紫外線の分解 · 酸 化等が進行しにく く生成反応を抑制する酸生成抑制の機能がある。 In other words, since the sun's ultraviolet rays are blocked in the shaded areas of the sun and are not affected by the sunlight, the decomposition and oxidation of the ultraviolet rays are less likely to proceed than in the normal state, and the acid that suppresses the generation reaction is reduced. There is a function of generation suppression.
また、' 寒気と暖気の形成によって気圧に変動が生じて気流が生 じ、 汚染物質を広く拡散して薄くする酸拡散の機能がある。 In addition, the formation of cold and warm air fluctuates the air pressure and generates an air current, which has the function of acid diffusion to diffuse and thin the pollutants widely.
寒気と暖気との間には前線が形成され、 降雨を促進して植物, 土壌, 河川湖沼に被害が生じる前に洗い流す酸洗浄の機能がある。 A front line is formed between the cold and warm air, which has the function of acid washing, which promotes rainfall and flushes before damage occurs to plants, soil, rivers and lakes.
以上の三機能によって、 特定の地域に発生する酸性雨の被害を 緩和できる効果があると推定される。 It is presumed that these three functions have the effect of mitigating the damage of acid rain occurring in specific areas.
具体的な運用は、 酸性雨の多発地域と、 化石燃料の使用量が多 い地域とを調査し、 気象データーを分析し、 基地系集団の設定条 件を決定する。 この条件を修正しプログラム化しておく。 空気中 における酸化の実態は観測用の計測器を気球等に積載し、 その データーで修正する。 Specifically, it will conduct surveys on areas where acid rain frequently occurs and areas that use a lot of fossil fuels, analyze meteorological data, and determine the conditions for setting base stations. This condition is corrected and programmed. The actual state of oxidation in the air is corrected by loading observation instruments on balloons and other data.
このようにして、 酸性雨の緩和システムを構成する。 In this way, an acid rain mitigation system is constructed.
根本的な解決は基地系集団に発電体を量産で多量に装備し、 地 球へマイク口波で送電して化石燃料から太陽エネルギーによる電 力への転換を図る。 The fundamental solution is to equip the base system group with a large number of power generators in mass production, and to transmit power to the earth by microphone microphone to convert from fossil fuels to electricity by solar energy.
^9) 二次曲線の軌道の太陽に近い円弧部の軌道に近接して配備され 新た な用紙
た基地系から、 彗星の頭部へ修正体を発射すれば、 彗星核の周壁 タガに噴出孔が形成され、 内部の核の凝結したガスゃチリが太陽 熱で蒸発し噴出される。 この揮発性物質の噴出する反動によって 彗星が運行する二次曲線の軌道を円い公転軌道に修正できる。 ^ 9) New paper placed near the orbit of the arc of the quadratic curve near the sun When the modified body is fired from the base system to the head of the comet, a vent hole is formed in the peripheral wall of the comet nucleus, and the condensed gas and dust inside the nucleus evaporates and is ejected by solar heat. The recoil emitted by this volatile substance can modify the orbit of the quadratic curve operated by the comet into a circular orbit.
彗星は、 太陽を中心とする円い公転軌道に落ちつけば、 地球と の距離が近くなる時期は格段に早く確実に訪れ、 距離も火星や金 星程度になり往復可能な範囲になる。 前記基地系は公転軌道の彗 星と一定の距離をおいて追従して運行し、 採集体を発射して彗星 核の表面に到達させ、 彗星の資源を採集する。 If the comet falls into a circular orbit around the sun, the comet will come much sooner when the distance to Earth is short, and the distance will be around Mars or Venus, and it will be a reciprocable range. The base system operates following a comet in orbit at a certain distance, launches a collector, reaches the surface of the comet nucleus, and collects comet resources.
彗星核は太陽系を生んだ原始星雲と同じ起源をもつ氷の塊で、 その 86 %は、 水素, 酸素, であり、 メタンやアンモニヤも含む。 従って電気分解等によって精製すれば、 宇宙開発を推進するうえ でもつとも基本的な資源である水素, 酸素, 水, 数種の有機物が 入手できることになる。 The comet nucleus is a block of ice of the same origin as the proto nebula that generated the solar system, of which 86% is hydrogen, oxygen, and also includes methane and ammonia. Therefore, if refined by electrolysis or the like, hydrogen, oxygen, water, and some kinds of organic substances, which are basic resources for promoting space development, can be obtained.
O 地球近くの宇宙空間に於ける宇宙活動の動力源, 特にロケッ トの燃料として液体水素, 液体酸素は重要なエネルギー補給 源になる。 O Power sources for space activities in outer space near the Earth, especially liquid hydrogen and liquid oxygen as rocket fuels, are important energy sources.
o 地球近くの宇宙基地に貯留すれば、 月, 火星, 金星, 小惑星, 他の彗星への往復の可能性が大き くなり、 探査や開発が進む。 o 基地系集団の建設や、 位置制御用の推進体に於ける噴出エネ ルギ一源に活用できる。 o Storing at a space station near Earth increases the likelihood of a round trip to the Moon, Mars, Venus, asteroids, and other comets, which will advance exploration and development. o It can be used for the construction of a base system group and the source of blast energy for propulsion vehicles for position control.
〇 スペースシャ トルの帰還時に成層圏に酸素を拡散すれば、 ォ ゾンホールを修復することができる。 拡 散 Ozone holes can be repaired by diffusing oxygen into the stratosphere when the space shuttle returns.
(40) 修正体は彗星の軌道に最も近い位置の惑星 · 衛星やその回周軌 道にあらかじめ配備された彗星基地系から発射されるので、 到達 すべき彗星核の表面の位置を正確に設定することができる。 修正 新た な用紙
体は種々の計測機を搭載しておけば彗星基地系を介して地球への 交信を確実に行うことができる。 また、 彗星の運行速度を加味し て修正体の飛行燃料, 速度は節約されうる。 彗星の軌道, 最も近 い位置の惑星軌道, 修正体の発射条件, 等は全て電子計算機で計 算できる。 これらは全て現状又は近い将来の宇宙技術, 電子計算 機の制御技術, ロボッ ト技術, 等で成しうる技術範囲内にある。 一度完成され、 プログラム化されたものは、 以後の彗星にほとん ど適用できる。 (40) The corrected object will be launched from the planet closest to the comet's orbit, a satellite or a comet base system pre-deployed in its orbit, so the position of the surface of the comet nucleus to be reached must be set accurately. can do. Correction New paper If the body is equipped with various measuring instruments, it can reliably communicate with the earth via the comet base system. Also, taking into account the speed of the comet, the fuel and speed of the modified body can be saved. The orbit of the comet, the orbit of the closest planet, the launch conditions of the modified body, etc. can all be calculated by a computer. These are all within the technical scope that can be achieved with the current or near future space technology, computer control technology, robot technology, and the like. Once completed and programmed, it is almost applicable to subsequent comets.
以上のことは大部分、 地球でなしうるから、 安全で宇宙開発上 の資源宝庫を人類の手中にできる可能性がある。 Most of the above can be done on Earth, so there is a possibility that human resources will have a safe and treasure trove of space development.
(41) 彗星基地系は、 惑星 · 衛星の回周軌道を脱出して彗星に近接し 附髄して運行することができる。 従って、 彗星核と一定の距離、 例えば太陽との引力の均衡点を自動制御で維持しつつ、 附髄運行 すれば、 彗星の観測, 追加の修正体の発射, 採集体の発射, 管理, 採集体への太陽光発電による電力供給等を全て自動制御, 又は遠 隔制御, 指令制御で行いうる。 太陽を中心の円公転軌道を運行時 も随行できるから、 彗星の資源採取, 駐在員仮住上も極めて好都 合である。 資源宝庫は技術開発と太陽光のエネルギーによって人 類の手中にできる可能性があり、 極めて経済的である。 入手され た資源は離脱エネルギーが少くてよいから、 彗星核から地球や近 くの惑星, 他の基地系へ運搬も容易である。 宇宙開発全体が一挙 に現実味を帯びた新たな企画になる可能性がある。 本件の基地系 集団の構築にも極めて有効的である。 しかし、 新たな分野だけに 技術開発上他の壁をク リヤーしなくてはならない。 (41) The comet base system can escape from the orbit of planets and satellites and move close to the comet. Therefore, while maintaining a certain distance from the comet nucleus, for example, the equilibrium point of gravity with the sun by automatic control, the operation of the spinal cord will allow observation of comets, launch of additional modified bodies, launch of collectors, management, and collection. Power supply to the body by photovoltaic power can be controlled automatically, or remotely controlled or commanded. Since it can follow the circular orbit around the sun, it is very convenient for comet resource extraction and temporary expatriates. Resource treasures are extremely economical, with the potential to be in the hands of mankind through technological development and solar energy. Since the obtained resources have low departure energy, they can be easily transported from the comet nucleus to the earth, nearby planets, and other base systems. There is a possibility that the whole space development will become a new and realistic project at once. It is also very effective for the construction of the base system group in this case. However, technology development has to clear other barriers only in new areas.
星面基地系は、 発電体によって発電された太陽光の電力と、 凹 面鏡の反射部と、 によって太陽のエネルギーは高密度に凝集して 新たな用紙
局部に集中することができる。 この凝集されたエネルギーで惑星, 小惑星, 衛星等の星面の鉱石を溶融 · 採鉱 , 精鍊することは可能 と 7ょる Q In the star base system, the solar energy generated by the power generator and the reflecting part of the concave mirror condense the solar energy at a high density and produce new paper. You can concentrate on local areas. Planetary This aggregation energy, asteroids, ore melt-mining star surface such as a satellite, can be Sei鍊and 7 Yoru Q
全自動, 遠隔操作, テレビ映像による視覚指令操作等が可能で あれば、 駐在員は常住を要さず資源を採集することができる。 凹 面鏡はその規模や姿勢制御が問題となるが、 空気が薄く、 風も無 く、 引力も小さいから設置は可能となる。 制御は太陽光の電力で 行える。 両者によって凝集された熱は、 蓄熱膜で蓄熱される。 太 陽光の角度の変化によって焦点の位置は変化する。 しかし蓄積さ れた熱は相当に大きいから、 追加される凝集熱と, 発電体の電力 熱と, で即座に高温となり、 融解 , 精鍊できる。 凹面鏡を大型化 すれば、 位置変化は鉱石採集箇所の変更となり、 鉱石の新たな入 手箇所取得用に便利である。 凹面鏡の支持は枠体で成されその制 御は制御部で行う。 If fully automatic, remote control, and visual command operation using television images are possible, expatriates can collect resources without requiring permanent residence. Although the size and attitude control of a concave mirror poses a problem, it can be installed because the air is thin, there is no wind, and the attractive force is small. The control can be performed by solar power. The heat agglomerated by both is stored in the heat storage film. The position of the focal point changes with the change in the angle of the sunlight. However, since the accumulated heat is quite large, the additional heat of coagulation and the electric power generated by the generator quickly raises the temperature, and can be melted and refined. If the concave mirror is enlarged, the change in position will change the ore collection point, which is convenient for obtaining a new ore source. The concave mirror is supported by a frame, and its control is performed by a control unit.
本発明の防護装置は、 前記のように遮光体, 発電体, 反射体を 装備して地球の気候制御を行う ものであるが、 地球以外の惑星 · 衛星にも将来いずれ適用される可能性はある。 その理由は、 o 他の惑星では、 最初の段階、 エネルギー源は太陽光 (熱) 発 電に頼らざるを得ない。 しかし、 昼夜があり、 粉塵が貯留して いる。 従って、 惑星の表面には反射体や発電体は使用されにく いから、 宇宙空間に配備された基地系集団からのマイクロ波送 電に頼らざるを得ない。 The protection device of the present invention is equipped with a light shield, a power generator, and a reflector to control the climate of the earth as described above. However, the protection device may be applied to other planets and satellites in the future. is there. The reasons are: o On other planets, the first stage, energy sources have to rely on solar (thermal) power. However, there are day and night, and dust is stored. Therefore, reflectors and power generators are difficult to use on the surface of the planet, so we have to rely on microwave power transmission from a group of base systems deployed in outer space.
o 太陽からの距離が地球と異り、 大気や水がないから、 太陽光 の照射補助, 太陽光の部分遮敵を設ける必要がある。 o Since the distance from the sun is different from that of the earth, and there is no air or water, it is necessary to provide sunlight irradiation assistance and provide partial sunlight shielding.
o 他の惑星で地球の大気, 水に相当するものを形成するには、 改造を行う必要がある。 その際、 太陽光陰影部を部分的に設け たな用紙
て降雨促進をし、 雨を早期に降らせる必要がある。 o Modifications need to be made to create the equivalent of Earth's atmosphere and water on other planets. At that time, paper with the sun shade partly provided It is necessary to promote rainfall and make rain fall early.
〇 改造後の惑星では気候制御, 温度制御を行う必要がある。 気 候 It is necessary to control the climate and temperature on the reconstructed planet.
O 夜間は太陽光による熱補助や照明を行う必要がある。 O At night, it is necessary to provide heat support and lighting with sunlight.
従って、 将来他への応用が必要とされるものは、 現在の必要性 , と併せてじっ く り研究, 開発に取り組み最終的に最も良いものが 実用化される方が良い。 Therefore, in the future, applications that need to be applied to others should be carefully researched and developed in conjunction with the current needs, and finally the best ones should be put into practical use.
また、 火星 ·金星には地球用の基地系集団の数倍〜数十倍の面 積のものが必要であろうから、 地球用の基地系集団の製作 ·運用 が不可能であれば、 金星の改造など最初から取り組まぬ方が良い と考えられる。 In addition, Mars and Venus will need to have an area several times to several tens of times larger than the Earth base system group, so if production and operation of the Earth base system group is impossible, Venus It would be better not to work on it from the beginning, such as remodeling.
前記、 彗星基地系で軌道修正が可能となれば、 火星, 金星に衝 突させ、 空気や水類の素になるものを蒸発させて、 基地系集団に よる太陽光陰影部で早期に降雨させることができる。 降雨すれば、 炭酸ガスは溶解して海に流れ大気中の成分を調整できる。 彗星核 は氷塊であるから金星では特に冷却効果もある。 降雨促進は採集 体からの情報が活用される。 火星, 金星の環境改造は、 現段階で は夢物語と思えても 1つ 1つの技術開発を踏台にすれば、 遠い将 来には現実に近くなるかも知れない。 技術や開発の必要条件と他 への応用の目標意識が重要になる。 If it is possible to correct the orbit in the comet base system, it will collide with Mars and Venus, evaporate air and water elements, and rain early in the shaded area of sunlight by the base system group. be able to. When it rains, the carbon dioxide gas dissolves and flows into the sea, where the components in the atmosphere can be adjusted. Since the comet nucleus is an ice block, it also has a cooling effect on Venus. Information from collectors will be used to promote rainfall. At this stage, the remodeling of the environment on Mars and Venus may seem like a dream, but with the development of each technology, it may be closer to reality in the distant future. Technology and development requirements and awareness of the goals of other applications will be important.
新たな ffi紙
図 面 の 簡 単 な 説 明 New ffi paper Brief explanation of drawings
第 1図は、 世界人口及びそれに付隨する事項の傾向 , 予測を示す図、 第 2図は、 代表的な地球規模の危機とその因果関係を示す図、 第 3図は、 本発明防護装置の一実施例を示す図、 Fig. 1 shows the world population and its accompanying trends and forecasts. Fig. 2 shows a typical global crisis and its causal relationship. Fig. 3 shows the protective device of the present invention. FIG.
第 4図は、 同上装置の基地本体の一実施例を示す図、 FIG. 4 is a diagram showing one embodiment of a base body of the above equipment,
第 5図は、 同上装置の板ユニッ トの一実施例を示す断面図、 FIG. 5 is a cross-sectional view showing one embodiment of the plate unit of the above device,
第 6図は、 同上装置の板ュニッ トの他の一実施例を示す断面図、 第 7図は、 同上装置の基地系の他の一実施例を示す平面図、 FIG. 6 is a cross-sectional view showing another embodiment of the plate unit of the above device, FIG. 7 is a plan view showing another embodiment of the base system of the above device,
第 8図は、 同上装置の基地系集団の一実施例を示す平面図、 FIG. 8 is a plan view showing an embodiment of a base system group of the above equipment,
第 9図は、 同上装置の使用状態の一実施例を示す断面図、 FIG. 9 is a cross-sectional view showing one embodiment of a use state of the above device,
第 10図は、 同上装置の使用状態の一実施例を示す平面図、 FIG. 10 is a plan view showing an embodiment of a use state of the above device,
第 11図は、 同上装置の使用状態の一実施例を示す斜視図、 FIG. 11 is a perspective view showing one embodiment of a use state of the above device,
第 12図は、 同上装置の使用状態の他の一実施例を示す平面図、 第 13図は、 同上装置の基地系集団の一実施例を示す平面図、 第 14図は、 同上装置の基地系の他の実施例を示す平面図、 FIG. 12 is a plan view showing another embodiment of the use state of the above-mentioned apparatus, FIG. 13 is a plan view showing one embodiment of a base system group of the above-mentioned apparatus, and FIG. Plan view showing another embodiment of the system,
第 15図は、 同上装置の基地系の他の実施例を示す断面図、 FIG. 15 is a sectional view showing another embodiment of the base system of the above equipment,
第 16図は、 同上装置の基地系の他の実施例を示す斜視図、 FIG. 16 is a perspective view showing another embodiment of the base system of the above equipment,
第 17図は、 同上装置の基地系の他の実施例を示す斜視図、 FIG. 17 is a perspective view showing another embodiment of the base system of the above equipment,
第 18図は、 同上装置の基地系の他の実施例の断面図、 FIG. 18 is a cross-sectional view of another embodiment of the base system of the above equipment,
第 19図は、 同上装置の使用状態を示す断面図、 FIG. 19 is a cross-sectional view showing a use state of the above device,
第 20図は、 同上装置の使用状態を示す断面図、 FIG. 20 is a cross-sectional view showing a use state of the above device,
第 21図は、 過去の台風の進路を示す図、 Fig. 21 shows the path of the past typhoon,
第 22図は、 世界の台風の発生及び進路を示す平面図、 Fig. 22 is a plan view showing the occurrence and course of typhoons around the world,
第 23図は、 本発明防護装置を台風の制御に用いた実施例の図、 第 24図は、 同上装置を台風の制御に用いた他の実施例の平面図、 第 25図は、 同上装置をオゾン層の修復に用いた実施例の図、 新たな用鉱
第 26図は、 同上装置を製造する装置の一実施例を示す平面図、 第 27図は、 同上装置を製造する装置の一実施例を示す断面図、 第 28図は、 同上装置を製造する装置の一実施例を示す断面図、 第 29図は、 同上装置を製造する装置の一実施例を示す平面図、 第 30図は、 世界人口の過去の傾向, 未来の予測を示す図、 である。 FIG. 23 is a diagram of an embodiment in which the protective device of the present invention is used for controlling a typhoon, FIG. 24 is a plan view of another embodiment in which the above device is used for controlling a typhoon, and FIG. Of the example of using ozone for the restoration of the ozone layer. FIG. 26 is a plan view showing an embodiment of an apparatus for manufacturing the above-described apparatus. FIG. 27 is a cross-sectional view showing an embodiment of an apparatus for manufacturing the above-mentioned apparatus. FIG. 29 is a cross-sectional view showing one embodiment of the device, FIG. 29 is a plan view showing one embodiment of the device for manufacturing the same device, and FIG. 30 is a diagram showing past trends and future predictions of the world population. is there.
0… 00 ··· • · · τΕΓ υ¾' "^l 0 ... 00 ··· • · · τΕΓ υ¾ '"^ l
P… …寒 気、 …新寒 、 Ee - …太陽光陰影部、 P…… Cold,… Shinkan, Ee-… Shade of sunlight,
…水 湿 域、 …新水湿域、 QR〜 …隣水域、… Water wet area,… new water wet area, QR ~… adjacent water area,
" …乾燥地域、 " …新乾燥地域、 "... arid area," ... new arid area,
S… …前 線、 SS〜 …新前線、 S…… front line, SS〜… new front line,
T… …台 風、 T!… …目風の目、 2〜 …壁 雲、 T ... Typhoon, T! …… Eye-eyed eyes, 2 to… wall clouds,
Ί 〜 T貴 SL■¾、 Τ · …上昇気流、 Ί ~ T precious SL ■ ¾, Τ ·… updraft,
5 ... …丄卜 )m - Φ3sヽ … …基地系、 5 ...… 丄) m-Φ3s ヽ…… base system,
… …基地本体、 …… The base itself,
…基地系集団、 …静止軌道基地、 … Base group,… geostation orbit base,
… …地球管制体、 ··· …極軌道基地、 …… Earth control body…… Polar orbit base,
… …地球端末機、 TW …公転軌道基地、 …… Earth terminal, TW…
Ζ… …地球 ^象台、 Ζ…… Earth ^ Elephant stand,
Β… …変電体、 C… …推進体、 D… …管制体、 Β…… Transformer, C…… Propeller, D…… Control body,
BL" …蓄電部、 (!… …噴出部、 Dl〜 …電信部、 BL "... power storage unit, (! ... spouting unit, Dl ~ ... telegraph unit,
B2〜 …配電部、 C2〜 …推進制御部、 D2 - …電子計算機 B2--Distribution unit, C2--Propulsion control unit, D2--Computer
B3〜 …送電部、 B3-… power transmission unit,
新たな用紙
± r 6 · /- - ΦΙΪ /A- 44ϋNew paper ± r 6 /--ΦΙΪ / A- 44ϋ
¾Siソ Ώ 1牛:^ 1 P機慨、 J_ .発 体製作機、 r-¾Si Ώ 牛 1 cow: ^ 1 P, J_.
JG '^射 1 製作機、 πττ JG '^ shooting 1 machine, πττ
¾ώ兀很ュ ッ 1 、 "発 ¾板ュ一ッ ト、 GU •反射板ユーッ 卜、 ¾ώ 很 很 很 "" 反射 反射 反射
Τζ … 夺优 τ p= ή-L t-ί-…… 夺 优 τ p = ή-L t-ί-
•feノし 1平、 ··発 ¾ ^ /-i- ¾1本、 '反射体、 • fe し 1 flat, · departure ¾ ^ / -i- ¾ one, 'reflector,
1 1 ¾, ^fgvな i f=f ή-L τ¾Ι7 1 1 ¾, ^ fgv i f = f ή-L τ¾Ι7
;丄 ¾ U口 P "発电 '反 τ部、 ; 口 ¾ U P
ή-4. ή-4.
¾! EEK7 ¾ίτ irrr c=r ii_L Ε ? ¾ίτ l t •fcソし fJ口 P ··発 ¾駆勤部、 G4 *反射駆動部、 EK! EEK7 ¾ίτ irrr c = r ii_L Ε? Lτ l t • fc os fJ mouth P
, 制御部 Γ、 = fr+ , Control unit Γ, = fr +
兀制 rPJ細 ifcii ¾n Vpt system rPJ fine ifcii ¾n
御ロ ¾. ロ
1 、 ·· 7 ihrl ¾π 17 1, 7 ihrl ¾π 17
し 5 * fe射制御部、 ^ j=S- ^ *«- -A-T7 r T ή-L 、^· - rxf 5 * fe emission control section, ^ j = S- ^ * «--A-T7 r T ή-L, ^ ·-rxf
£J , i維 i¾";©ロ R、 F6— ··発電推進部、 G6 ,反射 if進咅 ϋ、 ϊ¾· j=f^ -tcr .'rz. t=r ュ -nr z. £ J, i ¾ i¾ "; © R, F6-Power generation propulsion unit, G6, Reflection if progress ϋ, j = f ^ -tcr .'rz. T = r -nr z.
JJ / ¾ώ兀 图、 "発 恨幽、 '·反射板凾、 JJ / ¾ώ
JU ·' ·· ュ一 ッ 卜 、 JU · '· ·
XT τ T XT τ T
導体、 "連結体、 ··板 体、 Conductor, "connecting body,
Τ1 Ti Τ1 Ti
XI丄 導口 、 3£ ロ BTi 板 β > XI 丄 inlet, 3 £ B BTi plate β>
TO -μ J^. TO -μ J ^.
Ώ.Δ R7 ¾^ m > …連結材、 TO J Ώ.Δ R7 ¾ ^ m>… Connecting material, TO J
"補強枠、 "Reinforcement frames,
¾ /ώ jgi To /rh ^fr, ¾ / ώ jgi To / rh ^ fr,
…連結伸展枠、 ·'伸展枠、 … Consolidated extension frame, · 'Extension frame,
*±■ -½ ET? ¾L立 r^rf rrr * ± ■ -½ ET? ¾L r ^ rf rrr
14··· ' ··駆動部、 14 '' Drive unit,
運結 Λ- i制t ifcul Good luck Λ- i-t ifcul
lO s¾ 帀リ脚 、 … ll御立部 Γ7 TC lO s ¾ 脚 ll 帀… 御 御 御 部 TC 7 TC
i 、 ··制御¾π部 -frrr、 i, control ¾π part -frrr,
Τβ 、由 -U T2 Τβ, Y -U T2
no ■■ ¾7Zr道港" ^な口 R P …理? 推 部、 ··推進部、no ■■ Z7Zr Dokomin "^ Naguchi R P ...
n 、由 -r- =z. Trr n, reason -r- = z. Trr
11 f 導 Eli、 …連結 m、 ·· W. 11 f derived Eli,… concatenated m, ··· W.
TO …凹凸 To TO… unevenness To
flf "凹 ππ凸 n卓 -=tr、 flf "concave ππ convex n table-= tr,
AIL t-L* ru ¾: 1 Pポヽ vv · ··製作系集団、 P5 供給体、 AIL t-L * ru ¾: 1 P Po ヽ vv ··· Production group, P5 supplier,
ate bil *frr ate bil * frr
ΨΤ 1牛、 rid β " · "材料凾、 Plb ? ΨΤ 1 cow, rid β "·" material box, Plb?
管制咅 β 、 Plc.".…動力部、 Control 咅 β, Plc. ".... Power unit,
¾: ΛΗ, 1 ヽ i 製造機、 ihil rr? ¾: ΛΗ, 1 ヽ i manufacturing machine, ihil rr?
L L ώ " P2b -管制部 、 P2c 動力部、 L L ώ "P2b -Control unit, P2c Power unit,
P3〜 …組立体、 P3a - "組立機、 P3b 管制部 、 P3c 動力部、P3 ~… Assembly, P3a-"Assembly machine, P3b control unit, P3c power unit,
…板凾体ヽ P4 & ' "板 凾、 P4b 管制部 、 P4c……動力部、 新たな 紕
01 水蒸気、 Lト ··…採鉱機、 Ml -…修正体、 … Pan box body ヽ P4 &'“Pan box, P4b control unit, P4c …… Power unit, new 01 Steam, L · · · · Mining machine, Ml-... modified body,
02 ft聽ヽ M2 - …採集体、 02 ftear ヽ M2-… Gatherer,
素、 Elementary,
03 オゾン、 …レ一ル、 MU - …彗星基地系 03 Ozone,… Rail, MU-… Comet base system
04 ヽ …制御部、 ΜΟ· 04…… Control unit, ΜΟ ·
m 皿、 m dish,
05 …紫外線、 L5〜 …枠 体、 05 ... UV light, L5 ~ ... frame,
06 黒色粉、 1^·· …反射体、 06 Black powder, 1 ^
07 ……拡散体、 L7〜 、、、 ヽ 07 …… Diffuser, L7〜 、、、 ヽ
08 ……観測体、 L7a - …集光孔、 08 …… observer, L7a-… collector hole,
… …加熱機、 …… Heating machine,
L… …星 体、 L ... star,
。… …採鉱部、 . …… Mining department,
!!!… …星面基地系、 ! !!…… star base system,
産 業 上 の 利 用 可 能 性 Industrial availability
以上のように、 本発明に係る防護装置は、 地球環境の悪化の傾向 を改善し、 部分的に自然を創生して人間の居住環境を拡大し、 さら に人間が持続的に存続しうる地球としての諸能力を向上させる可能 性があり、 21世紀以後に残された多くの危機的課題に対して更に深 く検討されるに適している。 As described above, the protective device according to the present invention can improve the tendency of deterioration of the global environment, partially create nature and expand the living environment of humans, and can further sustain humans. It has the potential to improve Earth's capabilities and is suitable for further in-depth consideration of many of the critical issues remaining after the 21st century.
新 †- な FB
New †-na FB
Claims
請 求 の 範 囲 ) 地球に相対向して宇宙空間に配備される宇宙基地で、 (Scope of request) A space station deployed in outer space facing the earth.
(a) 太陽光発電用の光発電板, 太陽熱発電用の熱発電板を有する 発電部と、 該発電部に接続された集電部と、 を含む発電体、 及 び該発電体の電力を貯蔵用の蓄電部と、 該電力を配電用の配電 部と、 該電力を送電用の送電部と、 を含む変電体 ; (a) A power generation unit including a photovoltaic power generation plate for photovoltaic power generation, a thermoelectric generation plate for solar thermal power generation, a current collection unit connected to the power generation unit, and power generated by the power generation unit. A power transformer including: a power storage unit for storage; a power distribution unit for distributing the power; and a power transmission unit for transmitting the power;
(b) 配備位置や配列を制御用の噴出部と、 該噴出部を制御用の噴 出制御部と、 を含む推進体 ; (b) a propulsion body including: an ejection portion for controlling the deployment position and arrangement; and an ejection control portion for controlling the ejection portion;
(c) 地球上の特定地域に太陽光陰影部を投影用の遮光部と、 該遮 光部を制御用の遮光制御部と、 を含む遮光体 ; (c) a light-shielding unit including: a light-shielding unit for projecting a sunlight shading part on a specific area on the earth; and a light-shielding control unit for controlling the light-shielding part;
(d) 地球気象庁や地球端末機からの気象情報やデーターの収集機 能, 地球管制部と交信機能, を有しネッ トワークされた交信部 と、 該交信内容を入力し、 前記太陽光陰影部に形成される寒気 と、 陰影部のない太陽光照射部に形成される暖気と、 によって 前記特定地域とその周辺の気候を制御し所定のプログラムで処 理し新指令やデーターを出力用の電子計算機と、 を含む管制 体 ; を具備して基地系が構成され、 最適の配置 · 数量の基地系 の集りである基地系集団が配備されたことを特徴とする防護装 ) 前記基地系は、 宇宙空間に相対向して配備された複数個の基地 本体と、 該基地本体の間を連結する細長い連結体と、 該連結体に 側縁が支承され前記基地本体の間の宇宙空間に伸展して装備され る前記発電体, 遮光体と、 該発電体, 遮光体の先端に付設され両 端が前進 · 後退自在に連結体に装備された伸展枠と、 を具備し、 前記管制体の指令で前記発電体, 遮光体が伸展 · 収納自在に装備 新たな ffi紙
された特許請求の範囲第 1項に記載の防護装置。 (d) a networked communication unit having a function of collecting weather information and data from the Earth Meteorological Agency and earth terminals, a communication function with the earth control unit, and inputting the contents of the communication; The cold air formed in the area and the warm air formed in the sunlight-irradiated area without shading control the climate in the specific area and its surroundings, process it with a predetermined program, and output new commands and data to the electronic A base system comprising: a computer; and a control system comprising: a base system group, which is a collection of base systems having an optimal arrangement and number of base systems. A plurality of base bodies arranged opposite to each other in the outer space, an elongated connecting body connecting the base bodies, a side edge supported by the connecting body, and extending into the space between the base bodies; The power generator, the light shield, and the generator An extension frame attached to the distal end of the electric body and the light-shielding body and having both ends movable forward and backward so as to be able to move forward and backward, and the power-generating body and the light-shielding body can be extended and housed by the command of the controller. Equipment New ffi paper The protective device according to claim 1, wherein the protective device is provided.
) 前記基地系集団は、 長い梯子状に形成され宇宙空間に横に並 ベて配備された梯子状の複数個の基地系と、 該基地系を横方向に 順次結合用に前記基地本体や連結体に付設された結合具と、 該結 合具の結合 , 分離を自在に制御する管制体と、 を具備し、 該管制 体の指令で幅広い格子状に構成された特許請求の範囲第 1項に記 載の防護装置。 The base system group includes a plurality of ladder-like base systems formed in a long ladder shape and arranged side by side in outer space, and the base body and the connection for sequentially connecting the base systems in a lateral direction. Claim 1 comprising: a connecting member attached to a body; and a control body for freely controlling connection and separation of the connecting member, wherein the control unit is configured to form a wide grid in accordance with a command from the control unit. Protective device described in.
) 前記基地系集団は、 地球の特定地域の配置及び水湿域の配置 に略適合し、 宇宙空間の推進, 地球の自転 · 公転の方向に便利な 形状に配列された複数個の基地系と、 該基地系による地上への投 影の情報, 気象情報, データー指令を交信し入力し処理する電子 計算機を備えた管制体と、 を具備して構成された特許請求の範囲 第 1項に記載の防護装置。) The base system group consists of a plurality of base systems arranged in a shape convenient for the promotion of outer space, the direction of the rotation and revolving of the earth, which approximately conforms to the location of the specific area of the earth and the location of the water and wet area. The control system according to claim 1, further comprising: a control unit including an electronic computer that communicates, inputs, and processes information on projection by the base system onto the ground, weather information, and data commands. Protective equipment.
) 前記基地系集団は、 宇宙空間に於ける配備位置の高度が一定 距離ずらされて複数段に配備された梯子状の複数個の基地系と、 該基地系による地上への投影の情報, 気象情報, データー, 指令 を交信し入力し処理する電子計算機を備えた管制体と、 を具備し て構成された特許請求の範囲第 1項に記載の防護装置。) The base system group includes a plurality of ladder-like base systems which are arranged in a plurality of stages with the altitude of a deployment position in outer space shifted by a fixed distance, information on projection of the base system onto the ground, The protection device according to claim 1, comprising: a control body including a computer that communicates, inputs, and processes information, data, and instructions.
) 前記基地系は、 宇宙空間に相対向して配備された複数の基地 本体と、 該基地本体の間を誘導電波で飛行し誘導紐で接続する誘 導体と、 該誘導体の先導等によって装備される連結体と、 光発電 板 · 熱発電板を有する発電体を装備し、 前記基地本体 · 連結体で 囲まれる空間に伸展して装備される板ュニッ 卜と、 を具備して構 成された特許請求の範囲第 1項に記載の防護装置。 The base system is equipped with a plurality of base bodies disposed opposite to each other in outer space, an inductor that flies between the base bodies by an induction radio wave and is connected with an induction string, and a derivative of the derivative. And a power unit having a photovoltaic power generation plate and a thermoelectric power generation plate, and a plate unit extending and provided in a space surrounded by the base body and the connection power generation unit. The protection device according to claim 1.
) 前記基地系は、 宇宙空間に相対向して装備された基地本体と、 該基地本体を連結する連結体と、 配備位置や姿勢を制御用の推進 新たな ¾紙
部 · 制御部を装備し板体の端縁を接続し、 基地本体 · 連結体で囲 まれた空間に伸展して装備される板ュニッ 卜と、 該板ュニッ ト · 基地本体 · 連結体を連結用に必要な外面に装備された共通構造の 結合部と、 を具備して構成された特許請求の範囲第 1項に記載 の防護装置。) The base system includes a base body mounted opposite to the outer space, a connecting body for connecting the base bodies, and a propulsion for controlling a deployment position and an attitude. ・ The control unit is equipped to connect the edges of the plate body, and the base unit is extended and installed in the space surrounded by the base unit and the connected unit, and the plate unit is connected to the base unit and the connected unit 2. The protective device according to claim 1, comprising: a joint having a common structure provided on an outer surface necessary for use.
) 前記板ユニッ トは、 左 · 右の前面に引出窓, 背面に結合部, 上面に発電部, 端部に推進部, 内部に制御部を装備せる左板凾 , 右板凾と、 該左板凾 · 右板凾の内部に各種の板部が収容された左 板体と、 を具備し、 前記結合部によって背面が連結された複数の 板凾 · 右板凾を一定距離をおいて配備し、 前面の引出窓から引出 し伸展された板部がその隣に配備された板凾の背面部に、 又は板 部の伸展枠に、 連結して帯長の連続板体が構成された特許請求の 範囲第 7項に記載の防護装置。) The left and right plate boxes are equipped with a drawer window on the left and right front side, a connecting part on the back side, a power generation part on the top side, a propulsion part at the end, and a control part inside. A left box body in which various board parts are accommodated in the right box box; and a plurality of board boxes and a right board box whose back surfaces are connected by the connecting portion, are arranged at a certain distance. A patent in which a plate extending and extending from the front drawer window is connected to the back of a plate box arranged next to the plate or the extension frame of the plate to form a continuous plate having a belt length. The protective device according to claim 7.
) 前記板ユニッ トは、 上面に光発電板, 端部に推進部, 左右の 前面に引出窓, 内部に制御部を収容せる板凾と、 該板凾の内部に 隣接して装備された一対のロール状の板部と、 を具備し、 前記板 凾の左右の引出窓から左右両方向に引出されて伸展される両伸展 型, 該板凾の一方の引出窓から同方向に引出されて伸展される重 伸展型, が構成された特許請求の範囲第 7項に記載の防護装置。) 前記板ユニッ トは、 内部にロール状の遮光部を装備せる遮光 板凾と、 内部にロール状の発電部を装備せる発電板凾と、 内部に ロール状の反射部を装備せる反射板凾と、 を具備し、 必要な 2種 の板凾の前面一背面、 上面一上面、 底面一底面を当接して連結し、 必要な 2種の板部を重ね合わせ伸展して重伸展型が構成された特 許請求の範囲第 7項に記載の防護装置。) The plate unit has a photovoltaic plate on the upper surface, a propulsion unit at the end, drawer windows on the left and right front surfaces, and a plate box for accommodating a control unit inside. A roll-type plate portion, which is drawn out in the left and right directions from the left and right drawer windows of the plate box and is extended, and is drawn out in one direction from one drawer window of the plate box and extends. 8. The protective device according to claim 7, wherein the protective device comprises a heavy extension type. The plate unit includes a light-shielding plate housing having a roll-shaped light-shielding portion therein, a power generation plate box having a roll-shaped power generation portion therein, and a reflection plate housing having a roll-shaped reflection portion therein. And the two types of required plates are connected by contacting the front-to-back, top-to-top, and bottom-to-bottom surfaces of the required two types of plates, and the required two types of plates are overlapped and extended to form a heavy extension type. The protective device according to claim 7 which has been made.
) 前記板ュニッ トは、 宇宙空間に於ける板凾の配置や姿勢の自 新た な 用紙
動的な調節手段であるプログラムと、 基地本体や板ュニッ ト間の 配置 · 連結 · 分離用の結合部を自動操作, 指令操作する制御手段 であるプログラムと、 を内蔵せる制御部を具備して構成された特 許請求の範囲第 7項に記載の防護装置。) The plate unit is a new sheet of paper with the layout and orientation of the plate box in outer space. It has a control unit that incorporates a program that is a dynamic adjustment means, and a program that is a control means that automatically operates and commands the connection unit for disposition, connection, and separation between the base body and plate unit. The protective device according to claim 7 configured.
) 前記基地系は、 宇宙空間の軌道上で先頭に配備された基地本 体と、 該基地本体の横壁に基端を連結し横 (後) 方向に平行に配 備された細長い連結体と、 該連結体に両端を装備し一定の距離を おいて前記基地本体に平行に配備された複数個の板ュニッ トと、 該板ュニッ ト, 連結体の導出 · 組立 · 収納が全自動又は指令に よって行われるプログラム内蔵の電子計算機を搭載した管制体と、 を具備して、 構成された特許請求の範囲第 1項'に記載の防護装置。) 前記基地系は、 宇宙空間の軌道上で先頭に配備された基地本 体代用のロケッ ト本体と、 該ロケッ ト本体の横壁に導出され連結 された板ュニッ トと、 該板ュニッ トに基端を連結し横 (後) 方向 に平行に配備された細長い連結体と、 該連結体に両端を結合し一 定の距離をおいて前記基地本体に平行に配備された複数個の板ュ ニッ トと、 該板ュニッ ト, 連結体の導出 · 組立 · 収納の工程を監 視するテレビカメ ラ, 地球管制体の指令で前記動作が行われるプ ログラム内蔵の電子計算機, を搭載したロケッ ト操縦室兼用の管 制体と、 を具備し、 ロケッ ト本体を頭核に彗星状に飛翔する初期 実験機が構成された特許請求の範囲第 1項に記載の防護装置。) 前記基地系は、 材料凾を貯留し該材料凾を自動操作用の制御 部, 動力部を収容した小ブロッ クの材料体と、 該材料体の側部に 結合され板部製造用の製造機, 自動製造用の制御部, 動力部を収 容した小プロッ クの製造体と、 該製造体の側部に結合され前記板 部等を組立用の組立機, 自動組立用の制御部, 動力部を収容した 新た な用紙
小プロックの組立体と、 該組立体の側部に結合され板ュニッ トを 自動操作用の制御部, 動力部を収容した小ブロッ クの板凾体と、 を具備し、 小ブロッ クの総合である全 (半) 自動の製作系で製作 されるように構成した特許請求の範囲第 1項に記載の防護装置。) 前記製作系は、 それらの端部を順に管制体の指令で結合 (配 列) して製作順に板ュニッ トを伸展装備するよう構成された製作 系集団と、 材料体の側部に結合 · 分離自在に連結され, 材料供給 用の材料凾を積載した材料基地間を往復用のロケッ トである供給 体と、 に連携して構成された特許請求の範囲第 14項に記載の防護 ) 前記製作系は、 地球上で製作 ·組立 · 検査され内空部に収容 される前記各部, 機と、 打上げ後宇宙空間で側部を順次結合して 構成されたロケッ ト本体代用のブロック本体と、 前記各体の制御 部が各々の操縦室で代用される管制体と、 を具備して構成された 特許請求の範囲第 14項に記載の防護装置。The base system comprises: a base body disposed at the head of the orbit in outer space; an elongate connecting body having a base end connected to a lateral wall of the base body and arranged in parallel in a lateral (rear) direction; A plurality of plate units provided at both ends of the connection body and arranged at a fixed distance in parallel with the base body, and the extraction, assembly, and storage of the plate unit and the connection body are fully automatic or commanded. The protection device according to claim 1, comprising: a controller mounted with a computer with a built-in program to be executed. The base system comprises: a rocket body for a base body, which is provided at the head of the orbit in outer space; a plate unit led out and connected to a side wall of the rocket body; and a base unit based on the plate unit. An elongated connecting body connected to the ends and arranged in parallel in the lateral (rear) direction; and a plurality of plate units arranged parallel to the base body at fixed distances by connecting both ends to the connecting body. A rocket control equipped with a board unit, a TV camera that monitors the process of deriving, assembling, and storing the connected unit, a connected computer, and a computer with a built-in program that performs the above-mentioned operation in response to commands from the earth controller. 2. The protection device according to claim 1, further comprising: a controller that also serves as a room; and an initial experimental aircraft configured to fly in a comet-like manner with the rocket main body as a head nucleus. The base system stores a material box, and a small block material body containing a control unit and a power unit for automatic operation of the material box, and a material block connected to a side of the material body to manufacture a plate part. A small block product containing a machine, a control unit for automatic manufacturing, and a power unit; an assembling machine for assembling the plate and the like connected to the side of the product, a control unit for automatic assembly; New paper containing power unit An assembly of small blocks, and a plate box body of small blocks coupled to the side of the assemblies and for controlling the plate unit for automatic operation and accommodating the power unit. 2. The protective device according to claim 1, wherein the protective device is configured to be manufactured by a fully (semi-) automatic manufacturing system. ) The production system consists of a production system group that is configured to connect (arrange) their ends in order according to the control body and extend and equip the plate units in the production order, and to connect to the side of the material body. 15. The protective device according to claim 14, wherein the protective member is configured to be linked to a supply body which is removably connected and is a rocket for reciprocating between material bases on which a material box for material supply is loaded. The production system consists of the above-mentioned parts and machines that are produced, assembled, inspected and housed in the interior space on the earth, and a block body for a rocket body that is constructed by sequentially connecting the sides in space after launch. 15. The protection device according to claim 14, wherein the control unit of each body includes: a control body substituted for each cockpit.
) 前記基地系集団は、 前記太陽光陰影部によって形成される寒 気 · 暖気の間に前線を形成し、 該前線に沿って上空にはい上る暖 気を断熱膨張 · 断熱冷却, 及び露点温度以下の凝結 · 雲の形成 · 降雨実現, 等に充分な設定時間 ·面積 · 形状等の諸条件を計算 · 制御用のプログラムと、 該太陽光陰影部が設定される以前, 及び 以後の気象の変動を決定づける変動要素やデーターを集計して分 析 · 解析するプログラムと、 該太陽光陰影部による降雨の貯水機 能 · 貯水量を集計し解析するプログラムと、 を内蔵の電子計算機 を搭載した管制体を具備して構成された。 特許請求の範囲第 1項 に記載の防護装置。 ) The base system group forms a front line between the cold air and the warm air formed by the solar shading portion, and adiabatically expands the heat that rises in the sky along the front line, adiabatic cooling, and below the dew point temperature. Setting time sufficient for cloud formation · Cloud formation · Rainfall realization, etc. · Calculate conditions such as area · shape · Weather program before and after the control program and the setting of the solar shading part A control system equipped with a built-in computer that integrates and analyzes a variable and data that determine the amount of water, and a program that analyzes and analyzes the rainfall caused by the shaded area of the sun. It was comprised including. The protection device according to claim 1.
) 前記基地系集団は、 降雨後の乾燥地域に設定された新水湿域 新た な 甩紘
と、 該新水湿域に隣接して設定された一定幅の新隣水域と、 該新 隣水域に隣接する地域に気象データーを観測 · 交信用の端末機が 設置された新乾燥地域と、 該新乾燥地域の上の太陽光陰影部に形 成された新寒気と、 前記新水湿域の上の大気に形成された新暖気 と、 該新暖気 · 新寒気の境界に形成された降雨促進用の新前線と、 を構成する最適のプログラムを装備した電子計算機を搭載し、 前 記太陽光陰影部を内陸側の新乾燥地域へ順次移動し、 降雨後これ らの配備位置の移動を繰返す複数の基地系の集りで構成された特 許請求の範囲第 1項に記載の防護装置。 -) 前記プログラムは、 降雨した雨水を集めて流す人工溝と、 集 め流された雨水を貯留して新水湿域に設定された次の降雨操作時 に於ける大気への蒸発を援助用の人工池や水田と、 による水蒸気 蒸発量のデーターを降雨条件設定用に含んで構成された特許請求 の範囲第 17項に記載の防護装置。) The base system group is a new water and wet area set in arid area after rainfall. A new arid area with a certain width set adjacent to the new wet area, and a meteorological data observation area in an area adjacent to the new arid area; a new dry area where communication terminals are installed; Fresh cold formed in the shade of sunlight above the new dry area, fresh warm air formed in the atmosphere above the fresh water and wet area, and rain formed on the boundary between the fresh warm and fresh cold Equipped with a new front line for promotion and a computer equipped with an optimal program that configures, the above-mentioned solar shading is sequentially moved to the new dry area on the inland side, and the location of these deployments after rainfall is moved. 2. The protection device according to claim 1, comprising a collection of a plurality of base systems that are repeated. -) The program includes an artificial ditch for collecting and flowing the rainwater that has rained, and supporting the evaporation of the collected rainwater to the atmosphere during the next rainfall operation set in the new wet area. 18. The protective device according to claim 17, wherein data of the amount of water vapor evaporation by an artificial pond and a paddy field are included for setting rainfall conditions.
) 前記管制体は、 地球の緯線, 経線の間を各々数分の 1乃至数 十分の 1 に分割した細分線の交点(格子点)に於ける気象要素(気 圧, 風, 気温, 湿度) の値を一定の時間毎に計算し、 各要素の各 時刻の予想図を求めるプログラムと、 該予想図に於ける気象デー ターが自動的に交信されて入力され, 各格子点に於ける気象要素 の時間変化が気象の変動に影響を与える変動要素 (太陽光の放射 量, 地形, 高度, 海流, 大気還流現象, 植生) によって求められ るプログラムと、 特定の地域周辺の格子点で囲まれる周辺地域が 太陽光陰影部で覆われた場合に於ける気象要素の時間変化を数値 解析で処理し部分的な気象現象の変動システムの特徴がシュ ミ レー トされる数値シュ ミ レーショ ン用のプログラムと、 を具備せ る電子計算機を搭載して構成された特許請求の範囲第 1項に記載 新たな ¾紙
の防護装置。) The control body is a weather element (atmospheric pressure, wind, temperature, humidity) at the intersection (grid point) of the subdivision line that divides the latitude and longitude lines of the earth into one-hundredths to several tenths. Is calculated at regular time intervals, and a program for obtaining a forecast map at each time for each element, and weather data in the forecast map are automatically communicated and input, and the weather data at each grid point is input. It is surrounded by a program that is determined by the variation factors (solar radiation amount, topography, altitude, ocean current, atmospheric recirculation phenomenon, vegetation) whose temporal changes affect the climate change, and grid points around a specific area Time change of meteorological elements when the surrounding area is covered by the shade of sunlight is processed by numerical analysis to simulate the characteristics of a partial meteorological phenomenon fluctuation system. Electronic meter with program and New ¾ paper according to paragraph 1 the claims that is configured by mounting the machine Protective equipment.
) 前記管制体は、 天気図に於いて特異気象 (豪雨, 豪雪, 強風, ) The air traffic control body is a unique weather (heavy rain, heavy snow, strong wind,
) が予測される地域周辺に於ける気象要素 (気圧, 風, 気 温, 湿度) の時間変化の予想図を求めて自動的に交信するプログ ラムと, 太陽光陰影部による気象要素の過去の気象変動を入力し て解析するプログラムと、 前記特定地域の周辺に太陽光陰影部が 設置された場合に於ける気象条件の時間変化を数値解析で処理し 部分的な降雨現象の特徴がシュ ミ レー トされる数値シュ ミ レー シヨ ン用のプログラムと、 を具備せる電子計算機を搭載して構成 された特許請求の範囲第 1項に記載の防護装置。 ), A program that automatically obtains a forecast of temporal changes in weather elements (atmospheric pressure, wind, air temperature, humidity) around the area where the forecast is made, A program that inputs and analyzes weather fluctuations, and a temporal analysis of weather conditions when a sunshade is installed around the specific area is processed by numerical analysis to characterize partial rainfall phenomena. 2. The protection device according to claim 1, wherein the protection device according to claim 1 is configured to include a program for a numerical simulation to be rated, and a computer including the program.
) 前記基地系集団は、 異常気象の発生地域周辺の大気大循環, 大気候, 中気候, 海洋の温度等の異常を調整用に充分な広さの太 陽光陰影部を最適の位置に投影する遮光体 ·推進体と、 地球気象 庁及び異常気象の周辺に複数個配備された端末機からの異常気象 の情報やデーターが収集される地球管制部, 該情報ゃデーターや 指令を交信用の交信部, 該情報やデーターや指令を入力し過去の 制御条件等を記憶せるプログラムを内蔵し制御指令を出力する電 子計算機, を含む管制体と、 を具備し、 異常気象を修正する大気 候調整用の大基地系集団, 中気候等調整用の中基地系集団によつ て構成された特許請求の範囲第 1項に記載の防護装置。) The base system group projects a solar shading area large enough to adjust abnormalities such as general circulation around the area where abnormal weather occurs, large climate, moderate climate, and ocean temperature to the optimal position. Shade / propulsion unit and the Earth Control Department where information and data on abnormal weather are collected from terminals installed around the GMT and abnormal weather, and communication of the information and data And a computer which has a built-in program for inputting the information, data, and commands and stores past control conditions, etc., and which outputs a control command, and an air conditioner for correcting abnormal weather. 2. The protective device according to claim 1, comprising a large base system group for use in climate control, and a middle base system group for medium climate control.
) 前記基地系集団は、 酷暑で害虫 · 病気等が激増中の特定地域 に激増抑制用の寒気を形成する太陽光陰影部を最適の位置に投影 する遮光体 · 推進体と、 地球気象庁及び害虫発生中の周辺に複数 個配備された地球端末機から気温降下等気象情報やデーターが収 集される地球管制部, 該情報やデーターや指令を交信用の交信部, 該交信の内容を入力し過去の制御条件等を記憶せるプログラムを 新た な甩紙
内蔵し害虫等の激増抑制用の寒気を形成する最適の配列 · 数量 · 姿勢の制御指令を出力する電子計算機, を搭載した管制体と、 を 具備して構成された特許請求の範囲第 1項に記載の防護装置。) The base system group is composed of a shading body and a propulsion body that project a shade of sunlight that forms cold air to suppress the surge in a specific area where pests and diseases are rapidly increasing due to intense heat. The Earth Control Department, where weather information and data such as temperature drop are collected from multiple earth terminals installed around the area where the incident is occurring, the communication unit for communication of such information, data and commands, and the contents of the communication are input. New program to store past control conditions etc. Claim 1. The control system, comprising: a built-in computer that outputs a control command for controlling an optimal arrangement, quantity, and attitude of a cold air for suppressing the surge of pests and the like. Protective device according to item 1.
) 前記基地系集団は、 北極 · 南極 · 周辺の氷塊海岸部に氷塊の 融解を防止するに充分な広さの太陽光陰影部を投影する最適の数 量 ·配列の遮光体と、 地球気象庁や極地周辺に複数個配備された 地球端末機からの温暖化情報やデーターを交信用の交信部, 該交 信の内容を入力し計算ゃシユ ミ レーショ ンの結果等を記憶し、 地 球温暖化による極地や周辺の氷塊の融解を防止する最適条件に制 御するプログラムを内蔵の電子計算機,, を搭載した管制体と、 を 具備して構成された特許請求の範囲第 1項に記載の防護装置。) The base system group consists of the optimal number and array of light-shielding bodies that project solar shading large enough to prevent melting of the ice blocks on the Arctic, Antarctic, and surrounding ice blocks. Global warming information and data from multiple earth terminals installed around the polar regions, the communication section for communication, input and calculate the contents of the communication, and store the results of simulation, etc. 2. The protection device according to claim 1, comprising: a computer having a program for controlling an optimum condition for preventing melting of the polar region and surrounding ice blocks due to the computer; apparatus.
) 前記基地系集団は、 寒冷地帯, 豪雪地帯に寒冷緩和や豪雪融 解に充分な広さ · 強さの太陽の反射光を照射する最適の数量 ·配 列の反射体と、 寒冷地帯, 豪雪地帯に複数個配備された地球端末 機からの寒冷情報や豪雪情報が収集される地球管制部, 該情報や データーや指令を交信用にネッ トワークされた交信部, 該交信の 内容を入力し計算ゃシユ ミ レーショ ンの結果等を記憶し、 寒冷緩 和や豪雪融解の最適条件に制御するプログラムを内蔵の電子計算 機, を搭載した管制体と、 を具備して構成された特許請求の範囲 第 1項に記載の防護装置。) The base system group has a size sufficient for irradiating the reflected light of the sun with a sufficient size for cold relaxation and heavy snow melting in cold regions and heavy snow regions, and an array of reflectors. Earth control unit that collects cold information and heavy snow information from multiple earth terminals installed in the zone, communication unit that is networked to communicate such information, data and commands, and inputs and calculates the contents of the communication Claims comprising: a computer which stores a simulation result and the like, and which has a built-in computer, and a program which controls a program for controlling optimal conditions for cooling moderation and heavy snow melting. Protective device according to paragraph 1.
) 前記基地系集団は、 中央に台風の目を有する発達中の熱帯低 気圧 (台風, ハリケーン, サイクロン) の多発海域に、 海域上方 の気温上昇, 水蒸気蒸発, 気流上昇, 潜熱放出, 台風発達促進, 等の循環を抑制用に前記海域に太陽光陰影部を形成する遮光体と、 過去の台風の気象データーや現台風の気象データーの設定目標等 入力値が入力されたプログラム, 前記循環に対する抑制に最適の 新たな用 ^
台風方程式,' が入力されたプログラム, 台風の存在する空間を格 子点でおおい各格子点での気圧 · 風 · 温度等物理量の値の時間変 化を台風方程式と数値解析で処理し太陽光陰影部で形成される台 風の特徵をシュ ミ レー トする数値シュ ミ レーショ ン用のプログラ ム, 等を内蔵の電子計算機を搭載した管制体と、 該電子計算機の 出力や指令に応じて推進する推進体と、 を具備して構成された特 許請求の範囲第 1項に記載の防護装置。) The base system population is located in a frequent area of developing tropical cyclones (typhoons, hurricanes, cyclones) with a typhoon eye in the center, temperature rise above the sea area, steam evaporation, airflow rise, latent heat release, typhoon development promotion A light-shielding body that forms a shaded portion of sunlight in the sea area for suppressing the circulation of,, etc., a setting target of past typhoon weather data or current typhoon weather data, a program to which input values are input, suppression of the circulation Perfect for new ^ The typhoon equation, the program in which 'is input, the space where the typhoon exists, is covered by grid points, and the time variation of the physical quantities such as air pressure, wind, and temperature at each grid point is processed by the typhoon equation and numerical analysis. A control body equipped with a built-in electronic computer, such as a numerical simulation program that simulates the characteristics of typhoons formed by shading, and propulsion in accordance with the output and commands of the electronic computer 2. The protection device according to claim 1, comprising:
) 前記基地系集団は、 前記台風の周辺の海面へ冷却剤 (水) を 散布用の散冷管を装備した散冷船に於ける計測データーと、 該散 冷船の配置, 数量, 散布速度, 冷却水の冷却効果が実験確認され る冷却データーと、 該海面の冷却効果が前記台風方程式に及ぼす 影響度と、 前記太陽光陰影部による海面の冷却効果と、 を数値化 せるプログラム内蔵の電子計算機を搭載した管制体を具備して構 成された特許請求の範囲第 26項に記載の防護装置。) The base group collects measurement data on a cooling boat equipped with a cooling pipe for spraying coolant (water) to the sea surface around the typhoon, and the arrangement, quantity, and spraying speed of the cooling boat. , Cooling data for experimentally confirming the cooling effect of cooling water, the degree of influence of the cooling effect of the sea surface on the typhoon equation, and the cooling effect of the sea surface due to the shaded sunlight, and a built-in electronic program for numerically expressing 27. The protection device according to claim 26, comprising a controller mounted with a computer.
) 前記基地系集団は、 赤道近傍への太陽光エネルギーで加熱さ れた大気が上昇し上空で断熱膨張 · 断熱冷却後降雨する熱帯降雨 帯, 及び上空で水蒸気放出後乾燥した大気が再降下する高気圧帯) In the base system group, the atmosphere heated by solar energy near the equator rises, adiabatic expansion in the sky, a tropical rain zone where rain falls after adiabatic cooling, and the dry air after the release of water vapor in the sky fall again High pressure zone
(砂漠地帯) , 等の大気還流位置の緯度方向への移動誘起用に赤 道近傍に太陽光陰影部を形成する遮光体と、 前記熱帯降雨帯 ·砂 漠地帯の位置, 太陽光エネルギー量及び太陽光陰影部の影響度等 が入力され必要とする太陽光陰影部の面積 , 設定時間等を出力す るプログラム内蔵の電子計算機を搭載した管制体と、 該電子計算 機の出力や指令によって移動すべき方向に推進を実行する推進体 と、 を具備して構成された特許請求の範囲第 1項に記載の防御装 置。(A desert area), a shading body that forms a shade of sunlight near the equator to induce the movement of the atmosphere return position in the latitudinal direction, etc., and the position of the tropical rain zone, desert zone, solar energy, A control body equipped with a computer with a built-in program that outputs the required area of the sun shaded area and the set time, etc. that receives the degree of influence of the sun shaded area, etc., and moves according to the output and commands of the computer The protection device according to claim 1, comprising: a propulsion body that performs propulsion in a direction to be performed.
) 前記基地系集団は、 前記大気還流位置の移動後乾燥した降下 新た な 兩紙
気流の位置移動用, 及び前記熱帯降雨域 (新湿域) の緯度方向へ の移動用に赤道近傍に太陽光陰影部を形成する大基地系地集団と、 該大気還流位置の奥部 (高緯度) に相当する乾燥地域に前記新水 湿域上空の暖気, 寒気形成用の太陽光陰影部の寒気, 前線, 等を 構成して乾燥地域に降雨を促進する中基地系集団と、 を含む複数 種の基地系集団の組合せで構成された特許請求の範囲第 28項に記 載の防護装置。) The base group is a descent descent after moving to the atmosphere return position. A large base system group that forms a shade of sunlight near the equator for moving the position of the airflow and moving the tropical rain area (new wet area) in the latitudinal direction; And a middle base group that promotes rainfall in arid areas by forming warm air above the new water wet area, cold air in the shade of sunlight for forming cold air, fronts, etc. in an arid area equivalent to 29. The protective device according to claim 28, wherein the protective device is constituted by a combination of species base group.
) 前記基地系集団は、 地球—太陽の引力均衡点 ( ラグランジェ 点 )近傍の公転軌道を計算し、 地球周囲を回動の月の引力が前記 引力均衡点に及ぼす修正必要量を計算するプログラム, 全基地系 の配列のズレを検知し修正必要量を指令 · 制御するプログラム, 地球の公転 · き転及び基地系の公転の時間変化に応じ遮光体が地 球の特定地域に太陽光陰影部を形成するに必要な公転速度や配備 位置の修正必要量を指令 ' 制御するプログラム, 等を含む電子計 算機を搭載した管制体と、 該管制体の電子計算機の出力や指令に 応じ修正必要量を推進する推進部, 該噴出部を制御する噴出制御 部, を含む推進体と、 該管制体, 推進体によって地球の特定地域 に太陽光陰影部を形成する遮光体と、 を具備して構成された特許 請求の範囲第 1項に記載の防護装置。The base system group calculates a revolving orbit near an earth-sun gravitational equilibrium point (Lagrange point), and calculates a necessary correction amount of the gravitational force of the moon rotating around the earth on the gravitational equilibrium point. A program for detecting the deviation of the array of all base systems and instructing the required correction amount · A program for controlling and controlling the sun's shading on a specific area of the earth according to the time change of the earth's revolution, rotation and the revolution of the base system. A control system equipped with an electronic computer that includes a program that controls the revolving speed and deployment position required to form the engine, and a program that controls the control position, etc., and needs to be corrected according to the output and commands of the computer of the control system A propulsion unit including a propulsion unit for propelling an amount, an ejection control unit for controlling the ejection unit, and a light shielding unit for forming a sunlight shading portion in a specific area of the earth by the control body and the propulsion unit. Structured Patent Claim No. 1 Protection device according to.
) 前記基地系集団は、 前記遮光体の太陽側の表面に装備された 太陽光 (熱) 発電用の発電部, 該発電部に接続された集電部, を 含む発電体と、 該発電体で発電された電力を貯蔵する蓄電部, 該 電力を地球の受電基地にマイクロ波で送電する送電部, を含む変 電体と、 地球の公転 · 自転及び基地系の公転の時間変化を計算し, 地球の受電基地への送電時間の調整等により前記送電部を姿勢制 御するプログラム内蔵の電子計算機を搭載した管制体と、 を具備 新たな用紙
して構成された特許請求の範囲第 1項に記載の防護装置。The base system group includes: a power generation unit including: a power generation unit for solar (heat) power generation provided on a surface of the light-shielding body on the sun side; and a current collection unit connected to the power generation unit. And a power transmission unit that transmits the power to the Earth's power receiving base by microwave, and a time change of the Earth's revolution, rotation, and base system revolution. And a controller equipped with a computer with a built-in program for controlling the attitude of the power transmission unit by adjusting the power transmission time to a power receiving base on the earth or the like. The protective device according to claim 1, wherein the protective device is configured as follows.
) 前記基地系集団は、 静止軌道に配備され太陽側の昼間は上面 に太陽光の照射を受けて太陽光発電を兼用する発電部, 太陽の反 対側の夜間は特定地域に太陽の'反射光の照射を兼用する反射部, 該発電部 · 反射部を上 · 下面に装備し昼間熱帯に帯状の太陽光陰 影部が移走する遮光部, がー体に形成された遮光体と、 地球管制 体からの情報 · 指令を交信する交信部, 該情報 · 指令を入力し各 体を制御する電子計算機, を搭載した管制体と、 静止軌道からの ズレを修正し噴出部や重心調整部を制御する制御部を搭載した推 進体と、 を具備し、 昼間の電力供給 · 涼風供給 , 夜間の照明供給 を兼ねて構成された特許請求の範囲第 1項に記載の防護装置。) 前記基地系集団は、 地球の公転 · 自転速度に適応して基地系 集団の公転速度の調整量を吸収用に, 該集団両端縁の遮光体又は 基地系全体の姿勢を太陽光線に直角 · 平行の両方向に傾動調整し て地球の特定地域に所定の形の投影を制御するプログラム内蔵の 電子計算機を搭載した管制体と、 該管制体の指令を受けて前記配 備姿勢の傾動調整を推進する推進体と、 地球の所定の受電基地へ 凝集されたマイクロ波を送電上, 静止軌道基地系の中継受電部へ 送電する送電部及び該送電部の送電方向 · 強さ · 時間を制御する 制御部を含む送電体と、 を具備して構成された特許請求の範囲第 1項に記載の防護装置。) The base system group is a power generation unit that is deployed in a geosynchronous orbit and is also used for solar power generation by irradiating sunlight on the upper surface during the daytime on the sun side, and to reflect a specific area at night on the opposite side of the sun. A light-reflecting unit that also serves as light irradiation; a power-generating unit; a light-shielding unit equipped with a reflective unit on the upper and lower surfaces to allow a belt-like shade of the sun to move in the tropics during the daytime; A control unit equipped with a communication unit that communicates information from the control body and commands, a computer that inputs the information and commands to control each unit, and a jetting unit and a center-of-gravity adjustment unit that correct deviations from geosynchronous orbit. The protection device according to claim 1, comprising: a propeller having a control unit for controlling the power supply; and a power supply for daytime, a supply of cool air, and a supply of illumination at night. ) The base system group is adapted to adjust the rotation speed of the base system group in accordance with the orbit of the earth and absorb the adjustment amount of the rotation speed of the base system group. A control body equipped with a computer with a built-in program that controls the projection of a predetermined shape on a specific area of the earth by adjusting the tilt in both parallel directions, and promoting the tilt adjustment of the deployment posture in response to instructions from the control body And a power transmitting unit that transmits the aggregated microwaves to a predetermined power receiving base on the earth and transmits it to the relay power receiving unit of the geosynchronous orbit base system, and control the power transmission direction, strength, and time of the power transmitting unit 2. The protection device according to claim 1, comprising: a power transmitting body including a part;
) 地球に対向して宇宙空間に配備される宇宙基地で、 ) A space station that is deployed in outer space facing the earth.
(a) 太陽光発電用の光発電板, 太陽熱発電用の熱発電板を有する 発電部と、 該発電部に接続された集電部と、 を含む発電体 ; 及 び該発電体の電力を貯蔵する蓄電部と、 該電力を配電する配電 部と、 該電力を送電する送電部と、 を含む変電体 ; 新たな闭紙
(b) 配備位置や姿勢制御用の噴出部と、 該噴出部を制御用の噴出 制御部と、 を含む推進体 ; (a) a power generator including: a photovoltaic power generation plate for photovoltaic power generation; a power generation unit having a thermoelectric power generation plate for solar thermal power generation; and a current collection unit connected to the power generation unit; A power storage unit comprising: a power storage unit for storing; a power distribution unit for distributing the power; and a power transmission unit for transmitting the power; (b) a propulsion body including: an ejection portion for controlling a deployment position and a posture; and an ejection control portion for controlling the ejection portion;
(c) 対流圏から成層圏に形成される上層雲の上端周辺に太陽光の 反射光が照射され、 蒸散した水蒸気の成層圏への上昇を促進す る反射部と、 該反射部を制御用の反射制御部と、 を含む反射 体 ; (c) A reflection part that irradiates the reflected light of sunlight around the upper edge of the upper cloud formed in the stratosphere from the troposphere, and promotes the ascent of evaporated water vapor to the stratosphere, and a reflection control part that controls the reflection part. And a reflector comprising:
(d) 該上層雲への反射光 · 直射光による水蒸気蒸散の.状態, 成層 圏の酸素 , 水蒸気 · 紫外線 · オゾン · フ口ン等の測定器を積載 し成層圏に浮遊する測定部に連携した観測体と、 該測定部, 地 球気象台, 地球管制体とネッ トワークされ情報や指令の交信機 能を有する交信部と、 該情報や指令が入力 · 処理 · 記憶され、 前記反射体の反射光, 直射光の紫外線による前記水蒸気の酸素 分子 ·水素分子への分解, 酸素分子 · 酸素原子の結合, 即ちォ ゾンの生成, 水蒸気上昇を促進用のプログラムを内蔵せる電子 計算機を搭載した管制体 ; (d) The state of water vapor transpiration due to the reflected light and direct light to the upper cloud, the stratosphere's oxygen, water vapor, ultraviolet light, ozone, and other measuring instruments are loaded and linked to the measuring part floating in the stratosphere. An observation object, a communication unit which is networked with the measuring unit, the earth meteorological observatory, and the earth control body and has a function of communicating information and commands, and the information and commands are input, processed, and stored, and the reflected light of the reflector A controller equipped with an electronic computer having a built-in program for decomposing the water vapor into oxygen molecules and hydrogen molecules by direct ultraviolet light, bonding oxygen molecules and oxygen atoms, that is, generating ozone, and promoting the rise of water vapor;
を具備して基地系が構成され、 破壊されたオゾン層の修復用に最 適の配列 ·数量 · 姿勢の基地系の集りである基地系集団が配備さ れたことを特徴とする防護装置。A protective device comprising: a base system comprising: a base system group, which is a collection of base systems having an optimal arrangement, quantity, and attitude for repairing a destroyed ozone layer.
) 前記基地系集団は、 成層圏に形成される上層雲の上端周辺に, 複数条の反射光が太陽の直射光とともに照射される複数の反射体 と、 上層雲から水蒸気の蒸発, 及び該水蒸気の上昇を促進する反 射光柱, 該水蒸気からオゾンへの生成, 等を促進する最適の条件 に制御するプログラム内蔵の電子計算機を搭載した管制体と、 を 具備して構成された特許請求の範囲第 34項に記載の防護装置。) The base group is composed of a plurality of reflectors, which are irradiated with a plurality of reflected lights together with the direct light of the sun, around the upper end of the upper cloud formed in the stratosphere, evaporation of water vapor from the upper cloud, and rise of the water vapor. 34. A controller equipped with a computer with a built-in program for controlling to an optimum condition for promoting the reflection light column for promoting the generation of water vapor to ozone, and the like. Protective device according to paragraph.
) 前記基地系集団は、 成層圏に形成される上層雲の上端周辺に, 前記反射体の反射光, 太陽の直射光による放射熱を吸収して蒸発 たな用紙
作用の促進機能を有するの黒色粉の拡散部を備えた拡散体と、 該 黒色粉による上層雲からの蒸発, 及び水蒸気からオゾンへの生成 過程の測定部を備えた観測体と、 それらを制御用の電子計算機や データーを交信用の交信部を含む管制体と、 を具備して構成され た特許請求の範囲第 34項に記載の防護装置。) The base system group consists of a sheet of paper evaporating around the upper end of the upper cloud formed in the stratosphere by absorbing the reflected light from the reflector and the radiant heat from the direct sunlight. A diffuser having a black powder diffusion part having a function of promoting the action, an observation body having a measurement part of a process of evaporating the upper cloud by the black powder and generating water vapor into ozone, and controlling the same. 35. The protective device according to claim 34, comprising: a computer for use in communication and a control unit including a communication unit for exchanging data.
) 前記基地系集団は、 彗星基地系で氷塊を電気分解して生成さ れた液体酸素を充塡用の酸素タンクと、 該酸素タンクを積載して 成層圏に放散用の放散体と、 を搭載して構成された特許請求の範 囲第 34項に記載の防護装置。The base system group includes an oxygen tank for charging liquid oxygen generated by electrolyzing ice blocks in the comet base system, and a diffuser for loading the oxygen tank and discharging to the stratosphere. A protective device according to claim 34, wherein the protective device is configured as follows.
) 地球に対向して宇宙空間に配備される宇宙基地で、 ) A space station that is deployed in outer space facing the earth.
(a) 太陽光発電用の光発電板, 太陽熱発電用の熱発電板を有する 発電部と、 該発電部に接続された集電部と、 を含む発電体 ; 及 び該発電体の電力を貯蔵用の蓄電部と、 該電力を配電する配電 部と、 該電力を送電用の送電部と、 を含む変電体 ; (a) a power generator including: a photovoltaic power generation plate for photovoltaic power generation; a power generation unit having a thermoelectric power generation plate for solar thermal power generation; and a current collection unit connected to the power generation unit; A power transformer including: a power storage unit for storage; a power distribution unit for distributing the power; and a power transmission unit for transmitting the power;
(b) 配備位置や姿勢制御用の噴出部と、 該噴出部を制御用の噴出 制御部と、 を含む推進体 ; (b) a propulsion body including: an ejection portion for controlling a deployment position and a posture; and an ejection control portion for controlling the ejection portion;
(c) 化石燃料の燃焼の多発や酸性雨の多発の各特定地域からの データーを定量的に収集 ·統計 · 分析するプログラム, 該地域 のデーターを収集 · 分析用のプログラム, 太陽光陰影部による 酸生成抑制の条件制御用のプログラム, 寒気と暖気との形成に よる気圧変動を誘起し気流移動 ·酸拡散の条件制御用のプログ ラム, 寒気 · 暖気 ·前線により降雨を促進し、 被害発生前に洗 浄する条件制御用のプログラム, 上記の条件を分析し推進体に 移動等の指令を出力用のプログラム, 等内蔵の電子計算機と、 空中の観測器や地球管制体 · 気象庁とネッ トワークされ交信機 能を有する交信部と、 を含む管制体 ; 新た な 用紙
(d) 前記管制体の指令を受けて特定地域に太陽光陰影部を投影す る遮光部と、 該遮光部を個々に制御する遮光制御部と、 を含む 遮光体 ; (c) Quantitative data collection / statistics / analysis program from each specific area where fossil fuel combustion or acid rain frequently occurs, data collection for the area, analysis program, sunlight shading Program for condition control of acid generation suppression, air flow movement by inducing air pressure fluctuation due to formation of cold air and warm air Program for acid diffusion condition control, cold air, warm air It is connected to a computer for built-in conditions, a program for controlling conditions for cleaning, a program for analyzing the above conditions and outputting commands such as movement to the propulsion system, etc., and a network with airborne observatories, earth control bodies, and the Japan Meteorological Agency. A communication unit with a communication function, and a traffic control system including a new form (d) a light-shielding portion that projects a sun-shaded portion to a specific area in response to an instruction from the control body, and a light-shielding control portion that individually controls the light-shielding portion.
を具備し、 特定地域の酸性雨を緩和する基地系の集りである基地 系集団が配備されたことを特徴とする防護装置。A protective device comprising: a base group which is a group of base systems for mitigating acid rain in a specific area.
) 太陽を焦点に二次曲線の軌道を運行する彗星の太陽に近い円 弧軌道に近接して配備される宇宙基地で、 ) A space station that is deployed close to an arc orbit near the sun of a comet that operates a quadratic orbit around the sun.
(a) 太陽光発電用の光発電板, 太陽熱発電用の熱発電板を有する 発電部と、 該発電部に接続された集電部と、 を含む発電体 ; 及 び該発電体の電力を貯蔵用の蓄電部と、 該電力を配電用の配電 部と、 該電力を送電用の送電部と、 を含む送電体 ; (a) a power generator including: a photovoltaic power generation plate for photovoltaic power generation; a power generation unit having a thermoelectric power generation plate for solar thermal power generation; and a current collection unit connected to the power generation unit; A power transmitting unit including: a power storage unit for storage; a power distribution unit for distributing the power; and a power transmission unit for transmitting the power.
(b) 配備位置や配列を制御用の噴出部と、 該噴出部を制御用の噴 出制御部と、 を含む推進体 ; (b) a propulsion body including: an ejection portion for controlling the deployment position and arrangement; and an ejection control portion for controlling the ejection portion;
(c) 二次曲線の軌道を太陽を中心の円環状公転軌道に修正用の修 正部と、 彗星核の状況を観測 · 交信用の核交信部と、 着星核に 向けて発射用の発射室と、 を含む修正体 ; (c) Correction section for correcting the quadratic curve's orbit to an orbit around the sun, observation of the status of comet nucleiNuclear communication section of communication, and launching towards the star nucleus A launching chamber, and a modified body comprising:
(d) 彗星核に到達し氷塊を電気分解して生成された液体酸素や液 体水素等採集された資源を貯留用の資源凾と、 該資源凾を運搬 用の運搬機と、 彗星核との間を往復用の発着室と、 を含む採集 体 ; (d) a resource box for storing the collected resources such as liquid oxygen and liquid hydrogen that have reached the comet nucleus and electrolyzed the ice block, a transporter for transporting the resource box, and a cometary nucleus. A departure / departure room for reciprocating between, and a collecting body comprising:
(e) 前記修正体, 採集体, 地球管制体とネッ トワークされ、 彗星 核の状況や軌道修正の状況や資源採集の状況等の交信機能を有 する交信部と、 該交信の内容を入力し, あらかじめ記憶された プログラムで処理されて必要な指令を出力する電子計算機と、 を含む管制体 ; (e) A communication unit, which is networked with the corrected body, the collecting body, and the earth control body, and has a communication function such as the status of comet nuclei, the status of orbit correction, and the status of resource collection, and the contents of the communication. , A computer which is processed by a program stored in advance and outputs necessary commands, and a control system including:
を具備して彗星基地系が構成されたことを特徴とする防護装置。 新たな用紙
) 前記修正体は、 二次曲線の彗星の軌道に最も近い惑星 · 衛星 又はその付傍の彗星基地系に仮搭載された一次修正体と、 該一次 修正体から発射後, 彗星核の状況を観測し, その観測状況や交信 電波を受信する彗星基地系の管制体と交信する核交信部と、 該交 信電波を入力して所定のプログラムで処理後, 更に軌道修正を要 する彗星に近い惑星 · 衛星又はその近傍の新な彗星基地系に仮搭 載された追加修正体と、 を具備して構成された特許請求の範囲第 39項に記載の防護装置。A protective device comprising a comet base system comprising: New paper ) The modified body is a primary modified body temporarily mounted on a planet or satellite closest to the orbit of the quadratic comet or a comet base system adjacent to it, and the state of the comet nucleus after launching from the primary modified body A nuclear communication unit that communicates with the control system of the comet base system that observes and observes the observation status and communication radio waves, and is close to a comet that requires further correction of the orbit after inputting the communication radio waves and processing them with a predetermined program. 40. The protection device according to claim 39, further comprising: an additional correction body temporarily mounted on a new comet base system in the vicinity of a planet or a satellite.
) 前記彗星基地系は、 前記修正体を発射した彗星基地系が彗星 に近接し彗星頭部近傍に位置制御され, 付随して運行するプログ ラム内蔵の電子計算機を搭載した管制体と、 該電子計算機の出力 を受けて, 付随運行する位置を修正用の推進体と、 太陽光の照射 を受けて発電され蓄電された電力を送電する変電体と、 前記管制 体の指令で軟着核し前記変電体からの電力で資源を採集する採集 体と、 を具備して構成された特許請求の範囲第 39項に記載の防護 ) 惑星, 小惑星, 衛星の星面に配設される宇宙基地で、 The said comet base system comprises: a control body equipped with a computer with a built-in program that is operated in accordance with the position of the comet base system that fired the corrected object is controlled in proximity to the comet and near the comet head; In response to the output of the computer, a propulsion body for correcting the position of the accompanying operation, a transformer for transmitting the power generated and stored under the irradiation of sunlight, and A protection body according to claim 39, comprising: a collection body that collects resources using electric power from a transformer; and a space station that is arranged on a star surface of a planet, an asteroid, or a satellite.
(a) 太陽光発電用の光発電板, 太陽熱発電用の熱発電板を有する 発電部と、 該発電部に接続された集電部と、 を含む発電体 ; 及 び該発電体の電力を貯蔵用の蓄電部と、 該電力を配電用の配電 部と、 該電力を送電用の送電部と、 を含む変電体 ; (a) a power generator including: a photovoltaic power generation plate for photovoltaic power generation; a power generation unit having a thermoelectric power generation plate for solar thermal power generation; and a current collection unit connected to the power generation unit; A power transformer including: a power storage unit for storage; a power distribution unit for distributing the power; and a power transmission unit for transmitting the power;
(b) 採集すべき鉱石を含む星面に焦点を合わせ太陽の反射光を凝 集用の囬面鏡の反射部と、 該反射部を駆動して太陽光の照射方 向に順応して設定角度を調整用の反射制御部と、 を含む反射 体 ; (b) Focus on the star surface including the ore to be collected and set the reflected light of the sun according to the direction of sunlight irradiation by driving the reflecting part of the focusing mirror and the reflecting part. A reflection control unit for adjusting the angle; and a reflector comprising:
(c) 該反射体の凝集された反射光で半融解された鉱石を採集し前 新た な 用紙
記発電体の電力による補助熱で融解し導入用の採鉱機と、 該採 鉱機に連設され必要な資源を精鍊用の精鍊機と、 該採鉱機, 精 鍊機を制御用の採集制御部と、 を含む採集体 ; (c) before collecting the ore that has been semi-melted with the reflected light of the reflector, A mining machine for melting and introducing with the auxiliary heat generated by the power of the power generator, a purifying machine connected to the mining machine for purifying necessary resources, and a collecting control for controlling the mining machine and the purifying machine. And a collecting body comprising:
(d) 前記星面の鉱石採集箇所周域に固設されたレールと、 該レー ルに移動自在に装備され, 前記反射体, 採集体を搭載する移動 台と、 該移動台を制御用の移設制御部と、 を含む移設体 ; (d) a rail fixed around the ore-collecting point on the star surface, a movable base mounted on the rail and mounted with the reflector and the collector, and a movable base for controlling the movable base. A relocation control unit; and a relocation body including:
(e) 前記反射体, 採集体, 移設体の各制御部に接続さ.れ, 太陽光 変化, 採集個所変化の対応操作, 遠隔操作, テレビ映像操作等 のプログラムを記憶せる電子計算機と、 それらの情報や地球管 制体等の指令を交信用の交信部と、 を含む管制体 ; (e) An electronic computer connected to each control unit of the reflector, collecting body, and relocating body, and capable of storing programs for responding to changes in sunlight, changes in collecting locations, remote control, television image control, and the like. The communication department of the communication of information and instructions of the earth control body, etc .;
を具備し、 初期配設後、 (半) 自動的に採鉱 · 精鍊を継続する星 面基地系が構成されたことを特徴とする防護装置。A protective device comprising a star base system that automatically continues (min) mining and refining after initial installation.
) 火星と太陽との引力が略均衡する公転軌道に火星の表面に相 対向して配備される宇宙基地で、 ) A space station that is deployed opposite to the surface of Mars in a orbit where the attraction between Mars and the Sun is approximately balanced,
(a) 太陽光発電用の光発電板, 太陽熱発電用の熱発電板を有する 発電部と、 該発電部に接続された集電部と、 を含む発電体、 及 び該発電体の電力を貯蔵用の蓄電部と、 該電力を配電用の配電 部と、 該電力を送電用の送電部と、 を含む送電体 ; (a) A power generation unit including a photovoltaic power generation plate for photovoltaic power generation, a thermoelectric generation plate for solar thermal power generation, a current collection unit connected to the power generation unit, and power generated by the power generation unit A power transmitting unit including: a power storage unit for storage; a power distribution unit for distributing the power; and a power transmission unit for transmitting the power.
(b) 配備位置や配列を制御用の噴出部と、 該噴出部を制御用の噴 出制御部と、 を含む推進体 ; (b) a propulsion body including: an ejection portion for controlling the deployment position and arrangement; and an ejection control portion for controlling the ejection portion;
(c) 太陽を焦点に二次曲線の軌道を運行する彗星, または太陽を 中心に円い公転軌道に修正された彗星を, 火星の太陽側の表面 に衝突すベく衝突軌道に修正用の修正部と、 彗星核に付設され 諸種の計測データーを交信用の交信部と、 を含む修正体 ; (c) A comet that moves in a quadratic orbit around the sun, or a comet that has been corrected to a circular orbit around the sun, is converted to a collisional orbit that collides with the sun-side surface of Mars. A correction unit including a correction unit, and a communication unit for communicating various measurement data attached to the comet nucleus;
(d) 火星の表面に着陸して前記彗星の衝突前後の火星を観測し情 報, 映像, データーを送信用の観測体 ; 新たな 1¾紙
(e) 前記修正体, 観測体, 地球管制体と交信し情報, 映像, デー ター等を交信用の交信部と、 それらを入力し所定のプログラム で処理し新指令やデーターを出力用の電子計算機と、 を含む管 制体 ; (d) Landing on the surface of Mars, observing Mars before and after the comet's collision, and transmitting information, video, and data to the observation object; New 1¾ paper (e) A communication section for communicating information, images, data, etc., with the above-mentioned modified body, observation body, and earth control body, and inputting them, processing them with a predetermined program, and outputting new commands and data to an electronic device for output. A computer and a control system comprising:
(f) 火星の表面の特定箇所に太陽光陰影部を投影用の遮光部と、 該遮光部を制御用の遮光制御部と、 を含む遮光体 ; (f) a light-shielding body including: a light-shielding portion for projecting a sunlight-shading portion on a specific portion of the surface of Mars; and a light-shielding control portion for controlling the light-shielding portion;
を具備して基地系が構成され、 前記太陽光陰影部に形成される寒 気と、 陰影部のない太陽光照射部に形成される暖気と、 によって、 前記彗星衝突後の降雨促進, 火星の大気安定後の気候制御, 用に 最適の配置 , 数量の基地系集団が配備されたことを特徴とする防 ) 金星と太陽との引力が略均衡する公転軌道に金星の表面に相 対向して配備される宇宙基地で、 The base system is configured to include: a cold air formed in the solar shading part, and a warm air formed in the sunlit part without the shading part, thereby promoting rainfall after the comet collision, Prevention of climate control after atmospheric stabilization, optimal arrangement and number of base system populations deployed) Opposite to the surface of Venus in a orbit where the attraction between Venus and the Sun is approximately balanced At the deployed space station,
(a) 太陽光発電用の光発電板, 太陽熱発電用の熱発電板を有する 発電部と、 該発電部に接続された集電部と、 を含む発電体 ; 及 び該発電体の電力を貯蔵用の蓄電部と、 該電力を配電用の配電 部と、 該電力を送電用の送電部と、 を含む送電体 ; (a) a power generator including: a photovoltaic power generation plate for photovoltaic power generation; a power generation unit having a thermoelectric power generation plate for solar thermal power generation; and a current collection unit connected to the power generation unit; A power transmitting unit including: a power storage unit for storage; a power distribution unit for distributing the power; and a power transmission unit for transmitting the power.
(b) 配備位置や配列を制御用の噴出部と、 該噴出部を制御用の噴 出制御部と、 を含む推進体 ; (b) a propulsion body including: an ejection portion for controlling the deployment position and arrangement; and an ejection control portion for controlling the ejection portion;
(c) 太陽を焦点に二次曲線の軌道を運行する彗星, または太陽を 中心に円い公転軌道に修正された彗星を, 金星の太陽側の表面 に衝突すベく衝突軌道に修正用の修正部と、 彗星核に付設され 諸種の計測データーを交信用の交信部と、 を含む修正体 ; (c) A comet that moves in a quadratic orbit around the sun, or a comet that has been modified to a circular orbit around the sun, to a collisional orbit that collides with the sun-side surface of Venus. A correction unit including a correction unit, and a communication unit for communicating various measurement data attached to the comet nucleus;
(d) 金星の表面に着陸して前記彗星の衝突前後の金星を観測し情 報, 映像, データーを送信用の観測体 ; (d) Landing on the surface of Venus, observing Venus before and after the comet's collision, and transmitting information, video, and data;
(e) 前記修正体, 観測体, 地球管制体と交信し情報, 映像, デー 新たな闭紙
ター等を交信用の交信部と、 それらを入力し所定のプログラム で処理し新指令やデーターを出力用の電子計算機と、 を含む管 制体 ; (e) Information, video, and data in communication with the corrected object, the observed object, and the earth control body. A communication unit for exchanging data, etc., and a computer for inputting them, processing them with a predetermined program, and outputting new commands and data;
(f) 金星の表面の特定箇所に太陽光陰影部を投影用の遮光部と、 該遮光部を制御用の遮光制御部と、 を含む遮光体 ; (f) a light-shielding body including: a light-shielding portion for projecting a sunlight shading portion on a specific portion of the surface of Venus; and a light-shielding control portion for controlling the light-shielding portion;
を具備して基地系が構成され、 前記太陽光陰影部に形成される寒 気と、 陰影部のない太陽光照射部に形成される暖気と、 によって、 前記彗星衝突後の降雨促進, 金星の大気安定後の気候制御, 用に 最適の配置 · 数量の基地系集団が配備されたことを特徴とする防 The base system is configured to include: the cold air formed in the shaded portion of sunlight, and the warm air formed in the sunlight irradiating portion without the shaded portion. Optimum layout for climate control after air stabilization · Prevention characterized by the number of base system groups deployed
新たな 敏
New dexterity
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1/55288 | 1989-03-05 | ||
JP5528889 | 1989-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1990010378A1 true WO1990010378A1 (en) | 1990-09-20 |
Family
ID=12994397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1990/000283 WO1990010378A1 (en) | 1989-03-05 | 1990-03-05 | Protective apparatus |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU5168090A (en) |
WO (1) | WO1990010378A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995006228A1 (en) * | 1993-08-23 | 1995-03-02 | Goede Gabor | Device and procedure for utilizing solar energy mainly for protection against cyclones, tornados, hails, etc. |
US5556029A (en) * | 1994-09-12 | 1996-09-17 | Griese; Gary B. | Method of hydrometeor dissipation |
NL1033380C2 (en) * | 2007-02-12 | 2008-01-03 | Servirad Avv | Sunlight reflection and absorption system is aimed at reduction and possibly complete abatement of earth warming as a result of greenhouse effect |
US9457919B2 (en) * | 2015-01-05 | 2016-10-04 | Curtis Bradley | Climate-regulating-system |
CN112103994A (en) * | 2020-08-25 | 2020-12-18 | 同济大学 | Layered coordination control method and device for wind-hydrogen coupling system based on MPC |
FR3141449A1 (en) * | 2022-10-26 | 2024-05-03 | intelligent design | Device for the preservation of glaciers |
CN118332888A (en) * | 2024-06-13 | 2024-07-12 | 陕西夸克自控科技有限公司 | FPGA single particle fault simulation method and system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57150328A (en) * | 1981-03-10 | 1982-09-17 | Seiichi Takagi | Sea water evaporating system for greening desert |
JPS62220122A (en) * | 1986-02-25 | 1987-09-28 | イエン−チユン チ− | Suppression action of weather phenomena |
-
1990
- 1990-03-05 AU AU51680/90A patent/AU5168090A/en not_active Abandoned
- 1990-03-05 WO PCT/JP1990/000283 patent/WO1990010378A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57150328A (en) * | 1981-03-10 | 1982-09-17 | Seiichi Takagi | Sea water evaporating system for greening desert |
JPS62220122A (en) * | 1986-02-25 | 1987-09-28 | イエン−チユン チ− | Suppression action of weather phenomena |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995006228A1 (en) * | 1993-08-23 | 1995-03-02 | Goede Gabor | Device and procedure for utilizing solar energy mainly for protection against cyclones, tornados, hails, etc. |
US5556029A (en) * | 1994-09-12 | 1996-09-17 | Griese; Gary B. | Method of hydrometeor dissipation |
NL1033380C2 (en) * | 2007-02-12 | 2008-01-03 | Servirad Avv | Sunlight reflection and absorption system is aimed at reduction and possibly complete abatement of earth warming as a result of greenhouse effect |
US9457919B2 (en) * | 2015-01-05 | 2016-10-04 | Curtis Bradley | Climate-regulating-system |
CN112103994A (en) * | 2020-08-25 | 2020-12-18 | 同济大学 | Layered coordination control method and device for wind-hydrogen coupling system based on MPC |
CN112103994B (en) * | 2020-08-25 | 2022-04-01 | 同济大学 | Layered coordination control method and device for wind-hydrogen coupling system based on MPC |
FR3141449A1 (en) * | 2022-10-26 | 2024-05-03 | intelligent design | Device for the preservation of glaciers |
CN118332888A (en) * | 2024-06-13 | 2024-07-12 | 陕西夸克自控科技有限公司 | FPGA single particle fault simulation method and system |
CN118332888B (en) * | 2024-06-13 | 2024-08-30 | 陕西夸克自控科技有限公司 | FPGA single particle fault simulation method and system |
Also Published As
Publication number | Publication date |
---|---|
AU5168090A (en) | 1990-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jacobson | 100% clean, renewable energy and storage for everything | |
Ming et al. | Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change? | |
Wu et al. | Environmental impacts of large-scale CSP plants in northwestern China | |
Hanslmeier | Water in the Universe | |
Monin et al. | Climate as a problem of physics | |
Cocks | Energy demand and climate change: issues and resolutions | |
CN102027869A (en) | Method and equipment for carrying out air conditioning on natural environment by applying chimney type air guide tower | |
Pierazzo et al. | Ozone perturbation from medium-size asteroid impacts in the ocean | |
WO1990010378A1 (en) | Protective apparatus | |
Clilverd et al. | Linkages between the radiation belts, polar atmosphere and climate: electron precipitation through wave particle interactions | |
Hanif et al. | Environmental chemistry: A comprehensive approach | |
Haberle | The climate of Mars | |
Barker et al. | Resource utilization and site selection for a self-sufficient martian outpost | |
Bolonkin et al. | Macro-Projects: environments and technologies | |
JP2906165B2 (en) | Protective equipment | |
Tomlinson | Space colonies: A realistic plan | |
Winteringham | Energy use and the environment | |
Kostigen | Hacking Planet Earth: How Geoengineering Can Help Us Reimagine the Future | |
Bolonkin | Artificial environments on Mars | |
Sandhyavitri et al. | Evaluation the effectiveness implementation of the weather modification technology for mitigating peatland fires | |
Saha | Modern climatology | |
Gawali | Interplay of diverse atmospheres | |
Schaus | Our Livable World: Creating the Clean Earth of Tomorrow | |
Komerath | Credit for Reducing Sunshine Narayanan M. Komerath, Ravi Deepak, Adarsh Deepak | |
Jasani | Environmental Modifications: New Weapons of War? |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH DE DK ES FI GB HU JP KR LK LU MC MG MW NL NO RO SD SE SU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB IT LU ML MR NL SE SN TD TG |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |