JP2017042026A - Shock absorption structure - Google Patents

Shock absorption structure Download PDF

Info

Publication number
JP2017042026A
JP2017042026A JP2015176129A JP2015176129A JP2017042026A JP 2017042026 A JP2017042026 A JP 2017042026A JP 2015176129 A JP2015176129 A JP 2015176129A JP 2015176129 A JP2015176129 A JP 2015176129A JP 2017042026 A JP2017042026 A JP 2017042026A
Authority
JP
Japan
Prior art keywords
support
clamp
beams
power generation
struts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015176129A
Other languages
Japanese (ja)
Inventor
幹雄 加藤
Mikio Kato
幹雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOOOP Inc
Original Assignee
LOOOP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LOOOP Inc filed Critical LOOOP Inc
Priority to JP2015176129A priority Critical patent/JP2017042026A/en
Publication of JP2017042026A publication Critical patent/JP2017042026A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shock absorption structure concerning a solar cell power generation trestle with low material costs and a low construction cost by effectively disposing constituting members having a truss structure to relax stress generated at columns and connection structure sections even when relatively thin and light members are used when an external force such as a strong wind and an earthquake are applied.SOLUTION: A plurality of solar cell panels 1 is installed on a rail 3 through a plurality of L-shaped fittings 2. The rail 3 is installed on a truss structure member 16 formed by integrally fixing pipes 4, 5, support beams 6, 7, 8, 9, 10, 11, support rods 12, 13, and rail installation parts 14, 15 with welding or bolts at each portion. The support rods 12, 13 are connected to columns 19, 24, 28, 31 through support pipes 18, 22, 26, 29.SELECTED DRAWING: Figure 1

Description

本発明は、太陽光発電設備の主に架橋構造に関するものである。The present invention mainly relates to a crosslinked structure of a photovoltaic power generation facility.

太陽光発電は主に建物の屋上、屋根に設置することによってその普及が計られてきたが数十年にわたる日照を保証される屋根や屋上がマンション建設等の原因で都会では特に少なく、地方では家屋数自体が少ないので自ずと太陽光発電に対する電力業界の期待は大きくならないのが現状である。また強風対策のための強度保持、防火対策、工事に危険が伴い敷設費用がかさむ等の屋根上に置いた時の固有の問題が大きく、単位面積あたりの出力の向上を計る種々の工夫や、種々の屋根形状に対応することや、屋根材そのものに発電機能を持たせることで対応してきたが、設置費用の大幅な下落を達成していない。Solar power generation has mainly been installed by installing it on the roof and roof of buildings, but roofs and roofs that guarantee sunshine for decades are particularly rare in urban areas due to construction of condominiums, etc. Since the number of houses is small, the electric power industry's expectation for solar power generation does not increase. In addition, there are many problems inherent to placing on the roof, such as strength maintenance for firefighting countermeasures, fire prevention countermeasures, and construction costs that are dangerous and laying costs increase, and various measures to improve output per unit area, Although it has responded by adapting to various roof shapes and providing the power generation function to the roof material itself, it has not achieved a significant drop in installation costs.

一方、原子力発電は、一気に爆発させる原子爆弾を徐々にウランを核分裂させることにより熱としてエネルギーを取り出すしくみは開発当初、その効果だけが宣伝され拍手喝采のもとに推進されてきたが、近年起きた福島原発での放射能漏れによる影響のマイナス面は計り知れないものとなっている。さらに、数万年単位でも消滅することのないTRU(超ウラン元素)をはじめとする多量の毒物発生と発電や送電、変電設備へのテロ攻撃等に対する極端な脆弱性が顕在化して徐々にその存在意義が疑問視される。On the other hand, in nuclear power generation, the mechanism of extracting energy as heat by gradually fissioning uranium from atomic bombs that explode at a stroke has been promoted with applause only in the early stages of development. The negative impact of the radioactive leakage at the Fukushima nuclear power plant is immeasurable. Furthermore, the generation of a large amount of poisons such as TRU (super uranium element) that will not disappear even in units of tens of thousands of years, and extreme vulnerability to terrorist attacks on power generation, power transmission, substation facilities, etc. have gradually emerged. The significance of existence is questioned.

原子力発電のコストは、発電端の評価でkwhあたり約6円とされる価格も受電端では送電費、変電費、配電費、一般管理費、その他経費等、全てが原価に加わるのでこれらの経費を均等に水力、火力等の種類別発電量で按分し加えると約15円強になる。原子力発電所は都会から遠く大電力を運ぶために変電費、送電費の比重も大きく、又関連する仕事量や借入金が多いために単なる按分するのでなく重さを加えて再按分するならばkwhあたり17円以上になるのは避けられないところとなる。さらに再処理費用や、高レベル核廃棄物の処分設備費用、テロ攻撃からの防護費用を加えるならば20円を優に超え、実に各家庭に対する販売価格さえも上まることにもなる可能性がはなはだ高いのである。さらに設備の信頼性を著しく損なう応力腐食割れは、中性子を利用する装置の宿命的な問題で、その対策のために検査すればするほどさらに熱疲労の回数が増加し、さらに腐食割れが生じやすくなることから解決困難の問題として未だに解決の糸口すら見いだせていない。また高級な材料を使用して対応することはコスト上の競争力をさらに失うことは自明である。The cost of nuclear power generation is estimated to be about 6 yen per kwh in the evaluation of the power generation end. Since the receiving end also includes all costs such as transmission, substation, distribution, general and administrative expenses, these expenses. If it is equally distributed by the amount of power generation by type such as hydropower and thermal power, it will be slightly over 15 yen. If nuclear power plants are far from the city and carry large amounts of electricity, the ratio of substation and transmission costs is large, and there is a lot of related work and borrowing. It will be inevitable that the price will be 17 yen or more. Furthermore, if reprocessing costs, disposal costs for high-level nuclear waste, and protection costs from terrorist attacks are added, it can easily exceed 20 yen, and even the selling price for each household may actually increase. Hanahada is expensive. Furthermore, stress corrosion cracking, which significantly impairs the reliability of equipment, is a fatal problem of equipment that uses neutrons, and the more times it is examined for countermeasures, the more the number of thermal fatigues increases and the more likely corrosion cracking occurs. Therefore, even the clue of the solution has not yet been found as a difficult problem. It is obvious that using high-grade materials will further reduce cost competitiveness.

高速増殖炉においてはさらに中性子の破壊力が増すこと、また熱応力の集中度が増し実用に供する発電方法としての水準を維持することはまことに困難な事業となることや燃料のプルトニウムを得るために使用済み核燃料の再処理を行わなければならず、一層採算が引き合うシステムにはなり得ない。To increase the destructive power of neutrons in the fast breeder reactor, and to maintain the standard as a power generation method for practical use due to the increased concentration of thermal stress, and to obtain plutonium fuel Spent nuclear fuel must be reprocessed and it cannot be a more profitable system.

このように欠点だらけの原子力発電が21世紀のエネルギー政策の主体である続けるひとつの大きな理由は太陽光発電を大規模に行うためには巨大面積が必要という、最大の弱点を抱えているからに他ならない。One major reason why nuclear power generation full of shortcomings continues to be the subject of the energy policy of the 21st century is because it has the greatest weakness that it requires a huge area to perform photovoltaic power generation on a large scale. There is nothing else.

一方水力発電は太平洋、日本海から太陽エネルギーによって蒸散した水分が日本列島に雨雪として山に降り注ぐことで莫大な位置のエネルギーが蓄積される。明治以降この日本唯一の自前のエネルギーである水力を最重点の電力源として開発されてきた。近年ダムのマイナス面、すなわち流れを遮断すること、上流の養分や土砂が海に達しない、すぐに土砂でダム湖が埋められ投資効果がない等の理由や用水の必要性が低下したこと等でダムはムダなどと極端にその効用に対する評価を失うことになっている。しかし川の流れを遮断することや上流の養分や土砂が海に達しないこと等の自然なメカニズムを破壊するマイナス面は、ダム建設の条件として上流から下流への流れを維持する貫流水路を付加し、ダムに蓄える水資源は濾した清水とする様な工夫で解消できることや、急激な電力負荷の変動に対して大きな対応力を持つことを考慮するならば、広い意味での自然エネルギーとして不動の地位を維持していくことが理にかなった21世紀の考え方となる。Hydropower, on the other hand, accumulates enormous energy as water evaporated by solar energy from the Pacific Ocean and the Sea of Japan falls into the mountains as rain and snow on the Japanese archipelago. Since the Meiji Era, it has been developed with hydroelectric power, which is Japan's only independent energy, as the most important power source. In recent years, the negative aspects of dams, such as blocking the flow, upstream nutrients and sediments not reaching the sea, dam lakes immediately filled with sediment and lack of investment effect, etc. And the dam is supposed to lose evaluation for its utility, such as waste. However, the negative aspect of disrupting the natural mechanisms such as blocking the river flow and the upstream nutrients and sediments not reaching the sea is the addition of a once-through water channel that maintains the flow from upstream to downstream as a condition for dam construction. However, if we consider that the water resources stored in the dam can be eliminated with a device such as filtered fresh water, and that it has a great ability to respond to sudden fluctuations in power load, it will not move as natural energy in a broad sense. It is a 21st century way of thinking that would make sense to maintain this position.

また、近年太陽光発電セル自体のコストは抜本的に下がったのであるが、工事費や流通経費等、他の経費がかさみ、また強風や降雹によって破壊しないための強度対策や防火対策にたいしてコストの負荷が大きく他の発電方式の発電単価に比べて競争力が未だに高いとはいえない。In recent years, the cost of the solar power cell itself has drastically decreased, but other costs such as construction costs and distribution costs are added, and the cost of the strength and fire prevention measures to prevent destruction due to strong winds and droughts. The load is large, and the competitiveness is still not as high as the unit price of other power generation methods.

一方、この太陽光を利用したソーラーシステムの最近の技術では、農業と太陽光発電を両立させるソーラーシェアリング方式が、広い土地を持つ農家の間で、徐々に浸透しつつある。太陽光パネルを太陽光が地面に届く程度に間隔を開けて配置し、太陽光発電と農作物の育成を両立させようとする技術である。この太陽光パネルを支える支柱の高さは、農業を行うためにはトラクターなどの農業機械や人が通る程度の高さに配置する必要がある。しかし、複数の太陽光パネルを設置する箇所が高所であり、かつ、農業を行う場所とトラクターなどが通る空間を確保するためには、支柱の間隔は出来うる限り大きく取り、支柱本数も少なくする必要があるため、太陽光発電架台全体を支える支柱自体にはおのずと強度が求められ、また、支柱と架台各部分の部材連結も重要となる。支柱と架台各部材との連結に関しては、溶接によるもの、ボルト締め、もしくはクランプなどによる結合が考えられる。この内、溶接は、農地での組み立てでは、溶接機器の動作に必要な電気を用意するのが困難であるし、また、溶接時の溶接物質が農作物に外をなす可能性があるため、溶接方法を用いること自体が難しい。また、クランプによる方法も、強度的に比較的弱い締結の場合は有効な手段ではあるが、長期間、強度を保持する構造には向かない場合が多く、やはり、締結部材であるボルト・ナットを用いる方法が無難であると考える。On the other hand, in the recent technology of solar system using sunlight, a solar sharing method that balances agriculture and photovoltaic power generation is gradually spreading among farmers with large land. It is a technology that attempts to achieve both solar power generation and crop cultivation by arranging solar panels spaced apart so that sunlight reaches the ground. In order to carry out agriculture, it is necessary to arrange the pillars supporting the solar panels at such a height as to pass through agricultural machines such as tractors and people. However, the place where multiple solar panels are installed is high, and in order to secure a space for farming and tractors to pass through, the spacing between the columns should be as large as possible and the number of columns should be small. Therefore, the strut itself supporting the entire photovoltaic power generation stand is naturally required to have strength, and the connection between the strut and each part of the stand is also important. As for the connection between the column and each member of the gantry, connection by welding, bolt tightening, clamping, or the like can be considered. Among them, welding is difficult to prepare for the operation of the welding equipment when assembling on the farmland, and there is a possibility that the welding material at the time of welding may leave the crops. It is difficult to use the method itself. The clamp method is also an effective means for fastening with relatively weak strength, but it is often not suitable for a structure that maintains strength for a long period of time. I think the method used is safe.

また、この架台構造の強度において、特に注意しなければならないのは、主に太陽光パネル面に強風を受けた場合及び積雪荷重に対する強度の確保と、あるいは縦揺れや横揺れの地震を受けた時に耐えうる構造であるかが重要である。また、支柱および架台の強度を確保する上で更に重要なのは、強風、地震、豪雪などの外力が加わった場合に、連結する各部材を含めて、発生する応力をどれだけ、分散させ行き渡らせた応力緩和構造が出来るかが重要である。Also, special attention should be paid to the strength of this gantry structure, mainly when the solar panel surface is subjected to strong winds, ensuring the strength against snow load, or having suffered vertical and roll earthquakes. It is important whether the structure can withstand sometimes. Furthermore, what is more important in securing the strength of the columns and mounts is how much the generated stress is dispersed and distributed when external forces such as strong winds, earthquakes, heavy snowfall, etc. are applied. It is important whether a stress relaxation structure can be formed.

特開2014−212177には、太陽光パネルを保持する一般的な架台の提案がなされている。太陽光パネルのサイズが大きい場合に、中空アルミの補強材を使う事で耐風強度を確保するとある。また、特開2014−025210では、柱や壁などを連結する方法についての一般的な方法で突っ張り梁による連結が示されている。さらに、特開2011−091166では、特に強風に対する対応策として、通風スリットや気流制御板といった構造を架台内に設ける事によって、太陽光パネルに生じる揚力を起き難くするとある。また、特開2015−098725では、太陽光架台を支える杭を地中内で梁材を介して連結し、ベース材にも工夫を凝らすことで風圧や地震に対して安定した強度を保つことのできる構造の提案がなされている。Japanese Unexamined Patent Application Publication No. 2014-212177 proposes a general gantry for holding a solar panel. When the size of the solar panel is large, the wind-resistant strength is secured by using a hollow aluminum reinforcing material. Japanese Patent Application Laid-Open No. 2014-025210 discloses a connection using a tension beam by a general method for connecting columns and walls. Furthermore, in Japanese Patent Application Laid-Open No. 2011-091166, as a countermeasure against particularly strong winds, it may be difficult to generate lift generated in the solar panel by providing a structure such as a ventilation slit or an airflow control plate in the gantry. Also, in Japanese Patent Application Laid-Open No. 2015-098725, a pile that supports a solar mount is connected through a beam material in the ground, and the base material is devised to maintain a stable strength against wind pressure and earthquake. A possible structure has been proposed.

特開2014−212177JP2014-212177 特開2014−025210JP2014-025210A 特開2011−091166JP2011-091166A 特開2015−098725JP2015-098725A

本発明は、太陽光発電と農業とをシェアリングする場合のように、背の高い部位に太陽光パネルを設置すると共に支柱を立てる箇所が各架台の四隅など比較的少ない場合においても、強風や地震、豪雪などに充分耐え得る構造を提案するものである。この内、本発明は、特に強風に対する強度に注力して有効手段について提案する。Even when solar panels are installed in tall parts and there are relatively few places to stand up the pillars, such as the four corners of each mount, as in the case of sharing photovoltaic power generation and agriculture, It proposes a structure that can withstand earthquakes and heavy snow. Of these, the present invention proposes effective means, particularly focusing on the strength against strong winds.

複数の太陽光パネルを支える架台の中央に、三角配置の梁を張り巡らしたトラス構造をもつ構成部材を配し、この構成部材には梁と梁の中間に連結する支持部材を配して支柱と連結する。強風もしくは地震などの外力が加わると、地面から支柱、もしくは、太陽光パネルからトラス構造を持つ構成部材のルートを通して、応力を伝達し、各部材が均一な力関係となるよう工夫した。In the center of the pedestal that supports multiple solar panels, a structural member with a truss structure with a triangular arrangement of beams is placed, and a supporting member that connects between the beam and the beam is placed on this structural member. Concatenate with When external forces such as strong winds or earthquakes are applied, stress is transmitted through the struts from the ground or from the solar panels through the roots of the structural members, so that each member has a uniform force relationship.

本発明によれば、強風もしくは地震などの外力をトラス構造を持つ構成部材で吸収緩和することにより、一般的に太い支柱や強固な部材や複雑な部材や構造を避けることが出来るので、比較的細くて軽い部材で強固な架台を構成が可能となり、部材費と施工費の両方を安くする事が出来る。According to the present invention, by absorbing and mitigating external forces such as strong winds or earthquakes with structural members having a truss structure, it is generally possible to avoid thick struts, strong members, complicated members and structures. A thin frame can be constructed with a thin and light material, and both the material cost and the construction cost can be reduced.

本発明を示したアイソメ図である。It is an isometric view showing the present invention. 本発明の架台裏面からの矢視図である。It is an arrow view from the mount back surface of this invention. 本発明の架台後面からの矢視図であるIt is an arrow view from the gantry rear surface of the present invention.

農業と発電の両方をシェアリングするような複数の太陽光パネルを少数の支柱で支える太陽光発電架台において、太陽光パネルで受けた強風もしくは地震による支柱の揺れによる荷重が直接支柱や各連結部材に加わる所を支柱や各部材を連結した先のトラス構造を持つ構成部材によって応力緩和し、集中応力を避けて、分散させる構造とした。In a photovoltaic power generation stand that supports a plurality of solar panels that share both agriculture and power generation with a small number of columns, the loads due to strong winds received by the solar panels or the shaking of the columns due to an earthquake are directly applied to the columns and each connecting member. Stress was relaxed by a component member having a truss structure connected to the support post and each member at the place added to the structure, and a structure in which concentrated stress was avoided and dispersed was adopted.

図1は、太陽光パネル(1)とL型金具(2)とからなるユニットが複数あり、3本のレール(3)に設置されている。このレール(3)は、パイプ(4)、(5)と支持梁(6)(7)(8)(9)(10)(11)と支持棒(12)(13)とレール設置部(14)(15)とが溶接もしくはボルト固定で固定一体化して構成されるトラス構造部材(16)に設置され、このトラス構造部材(16)の支持梁(6)と(7)との支持棒(12)上の間の中間地点をクランプ(17)で連結した支持パイプ(18)をクランプ(20)を介して、支柱(19)に連結している。同様に、支持梁(7)と(8)との支持棒(13)上の間の中間地点をクランプ(21)で連結した支持パイプ(22)を介して、クランプ(23)で支柱(24)に連結。支持梁(9)と(10)との支持棒(13)上の間の中間地点をクランプ(25)で連結した支持パイプ(26)を介して、クランプ(27)で支柱(28)に連結。支持梁(10)と(11)との支持棒(12)上の間の中間地点をクランプ(28)で連結した支持パイプ(29)を介して、クランプ(30)で支柱(31)に連結する構造を採る。In FIG. 1, there are a plurality of units including a solar panel (1) and an L-shaped bracket (2), which are installed on three rails (3). The rail (3) includes pipes (4), (5), support beams (6) (7) (8) (9) (10) (11), support rods (12) (13), and rail installation portions ( 14) and (15) are installed on a truss structure member (16) constituted by being fixed and integrated by welding or bolt fixing, and a support rod for the support beams (6) and (7) of this truss structure member (16) (12) A support pipe (18) in which an intermediate point between the upper and lower ends is connected by a clamp (17) is connected to a support (19) via a clamp (20). Similarly, a support (22) connected by a clamp (21) at an intermediate point between the support beams (7) and (8) on the support rod (13) is connected by a clamp (23) to a column (24 ). Connected to the support column (28) by the clamp (27) through the support pipe (26) connecting the intermediate point between the support beams (9) and (10) on the support rod (13) by the clamp (25). . The intermediate point between the support beams (10) and (11) on the support rod (12) is connected to the column (31) by the clamp (30) via the support pipe (29) connected by the clamp (28). Adopt a structure.

これらの構成の意味は、地震の場合には、支柱(19)→クランプ(20)→支持パイプ(18)→クランプ(17)→、支持棒(12),支柱(31)→クランプ(30)→支持パイプ(29)→クランプ(28)→、支持棒(12),支柱(24)→クランプ(23)→支持パイプ(22)→クランプ(21)→、支持棒(13),支柱(28)→クランプ(27)→支持パイプ(26)→クランプ(25)→、支持棒(13)に外部応力が伝達していって、トラス構造部材(16)に張り巡らした支持梁(6)(7)(8)(9)(10)(11)で力を分散し緩和するというものである。また、強風の場合は、地震の応力伝達とは異なり、複数のパネル(1)に風を受けると複数のL型金具(2)を介してレール(3)、(32)、(33)に伝達した応力をパイプ(4)、(5)に連結したクランプ(34)、(35)、(36)、(37)を介して支柱(19)、(30)、(28)、(24)に伝達し、さらに支持パイプ(18)、(29)、(22)、(26)からトラス構造部材(16)に伝達させるルートか、支持棒(12)、(13)とレール設置部(14)、(15)を介してトラス構造部材(16)に応力を伝達するレールを採り、いずれにしても支持梁(6)、(7)、(8)、(9)、(10)、(11)で応力を分散し緩和する部分が応力緩和の中心部分となる。In the case of an earthquake, the meaning of these structures is a support | pillar (19)-> clamp (20)-> support pipe (18)-> clamp (17)-> support bar (12), support | pillar (31)-> clamp (30) → Support pipe (29) → Clamp (28) → Support bar (12), strut (24) → Clamp (23) → Support pipe (22) → Clamp (21) → Support bar (13), strut (28 ) → clamp (27) → support pipe (26) → clamp (25) → external stress is transmitted to the support rod (13), and the support beam (6) stretched around the truss structure member (16) ( 7) The force is dispersed and relaxed by (8), (9), (10), and (11). In the case of strong winds, unlike earthquake stress transmission, when the wind is received by the plurality of panels (1), the rails (3), (32) and (33) are passed through the plurality of L-shaped brackets (2). Posts (19), (30), (28), (24) via clamps (34), (35), (36), (37) connecting the transmitted stress to pipes (4), (5). To the truss structure member (16) from the support pipes (18), (29), (22), (26), or the support rods (12), (13) and the rail installation portion (14). ), (15), a rail that transmits stress to the truss structure member (16) is adopted, and in any case, the supporting beams (6), (7), (8), (9), (10), (10) The part where the stress is dispersed and relaxed in 11) becomes the central part of the stress relaxation.

図2は、本発明の架台裏面からの矢視図を示す。架台全体に対して、支柱(19)と支柱(31)の間隔は、支柱(24)と支柱(28)の間隔に比べて幅広とし、トラス構成部材(16)の支持梁(6)、(7)、(8)、(9)、(10)、(11)で形成する三角形の中央に支持パイプ(18)、(29)、(22)、(26)をクランプ(21)、(25)、(30)、(38)で固定する構造とする。これにより各連結部材の応力が均等に分配される構造となる。FIG. 2 shows an arrow view from the back of the gantry of the present invention. The distance between the support column (19) and the support column (31) is wider than the interval between the support column (24) and the support column (28) with respect to the entire gantry, and the support beams (6), ( 7), (8), (9), (10), (11), the support pipes (18), (29), (22), (26) are clamped at the center of the triangle (21), (25). ), (30), and (38). Thereby, it becomes a structure where the stress of each connection member is distributed equally.

図3は、本発明の架台後面からの矢視図を示す。支柱(24)と支柱(28)間に、角パイプ(40)、(41)を連結し、そこにパワコンや分電盤、接続箱といった太陽光発電設備に必要な電気関係の箱(39)を複数台設置できるようにした。FIG. 3 shows an arrow view from the rear surface of the gantry of the present invention. Square pipes (40) and (41) are connected between the strut (24) and the strut (28), and there are electrical boxes (39) necessary for solar power generation equipment such as power conditioners, distribution boards and junction boxes. Multiple units can be installed.

ソーラーシェアリングによる太陽光発電と農業を両立させる、もしくは太陽光パネルを高い位置に設置する事で、架台下の空間を遊び場、生活の場、駐車場など有効に使えるので、従来のように、太陽光発電所を置くことで、その土地の役割を全て無くしてしまうような状態を避けることが出来る。また、原子力発電が容易ではない現状で、かつ、農業収入に売電収入が加わる事で農家も潤うことになるので、今後も益々期待できる。By combining solar power generation and agriculture with solar sharing, or installing solar panels at a high position, the space under the mount can be used effectively such as playgrounds, living places, parking lots, etc. By installing a solar power plant, it is possible to avoid a situation where the role of the land is completely lost. In addition, nuclear power generation is not easy, and farmers can get better by adding electricity sales to their agricultural income.

1 太陽光パネル
2 L字金具
3,32,33 レール
4,5 パイプ
6,7,8,9,10,11 支持梁
12,13 支持棒
14,15 レール設置部
16 トラス構造部材
17,20,21,23,25,27,30,38 クランプ
18,29,26,22 支持パイプ
15,16,17,19,20,21,22 連結部材
24,31,19,28 支柱
34,35,36,37 クランプ
39 電気関係の箱
40,41 角パイプ
DESCRIPTION OF SYMBOLS 1 Solar panel 2 L-shaped metal fittings 3, 32, 33 Rail 4, 5 Pipe 6, 7, 8, 9, 10, 11 Support beam 12, 13 Support bar 14, 15 Rail installation part 16 Truss structure members 17, 20, 21, 23, 25, 27, 30, 38 Clamps 18, 29, 26, 22 Support pipes 15, 16, 17, 19, 20, 21, 22 Connecting members 24, 31, 19, 28 Struts 34, 35, 36, 37 Clamp 39 Electrical box 40, 41 Square pipe

Claims (3)

複数の太陽光パネル(1)を配置する構造において、支持梁(6)(7)、(8)、(9)、(10)、(11)と支持棒(12)、(13)とレール設置部(14)、(15)とから構成されるトラス構造部材(16)を介して、前記支持梁(6)と(7)との支持棒(12)上の間の中間地点をクランプ(17)で連結した支持パイプ(18)をクランプ(20)を介して、支柱(19)に連結し、支持梁(7)と(8)との支持棒(13)上の間の中間地点をクランプ(21)で連結した支持パイプ(22)を介して、クランプ(23)で支柱(24)に連結し、支持梁(9)と(10)との支持棒(13)上の間の中間地点をクランプ(25)で連結した支持パイプ(26)を介して、クランプ(27)で支柱(28)に連結し、支持梁(10)と(11)との支持棒(12)上の間の中間地点をクランプ(28)で連結した支持パイプ(29)を介して、クランプ(30)で支柱(31)に連結する事で、地震や強風などの外力が加わった場合に、前記、トラス構造部材(16)を中心に応力緩和して架台全体の強度を確保する事を特徴とする衝撃吸収構造。In a structure in which a plurality of solar panels (1) are arranged, support beams (6) (7), (8), (9), (10), (11) and support rods (12), (13) and rails The intermediate point between the support beams (6) and (7) on the support rod (12) is clamped via a truss structure member (16) composed of installation portions (14) and (15) ( The support pipe (18) connected in 17) is connected to the support column (19) through the clamp (20), and an intermediate point between the support beams (7) and (8) on the support rod (13) is formed. The support beam (22) connected by the clamp (21) is connected to the support column (24) by the clamp (23), and the intermediate between the support beams (9) and (10) on the support rod (13). The point is connected to the support column (28) by the clamp (27) through the support pipe (26) connected by the clamp (25). The intermediate point between the beams (10) and (11) on the support rod (12) is connected to the column (31) by the clamp (30) through the support pipe (29) connected by the clamp (28). Thus, when an external force such as an earthquake or strong wind is applied, the shock absorbing structure is characterized in that the strength of the entire gantry is secured by relaxing the stress around the truss structure member (16). 前記請求項1の支柱(19)と支柱(31)の間隔は、支柱(24)と支柱(28)の間隔に比べて幅広とし、トラス構成部材(16)の支持梁(6)、(7)、(8)、(9)、(10)、(11)で形成する三角形の中央に支持パイプ(18)、(29)、(22)、(26)をクランプ(21)、(25)、(30)、(38)で固定した構造を特徴とする前記請求項1の衝撃吸収構造。The distance between the struts (19) and the struts (31) according to claim 1 is wider than the distance between the struts (24) and the struts (28), and the support beams (6), (7) of the truss component member (16). ), (8), (9), (10) and (11), clamp the support pipes (18), (29), (22) and (26) in the center of the triangle (21) and (25). The shock absorbing structure according to claim 1, wherein the structure is fixed at (30), (38). 前記請求項1の支柱(24)と支柱(28)間に、パイプ(40)、(41)を連結し、そこにパワコンや分電盤、接続箱といった太陽光発電設備に必要な電気関係の箱(39)を複数台設置できるようにした事を特徴とする前記請求項1の衝撃吸収構造。Pipes (40) and (41) are connected between the support post (24) and the support post (28) of claim 1 and there are electrical relations necessary for photovoltaic power generation equipment such as a power conditioner, a distribution board and a connection box. The shock absorbing structure according to claim 1, wherein a plurality of boxes (39) can be installed.
JP2015176129A 2015-08-20 2015-08-20 Shock absorption structure Pending JP2017042026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015176129A JP2017042026A (en) 2015-08-20 2015-08-20 Shock absorption structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015176129A JP2017042026A (en) 2015-08-20 2015-08-20 Shock absorption structure

Publications (1)

Publication Number Publication Date
JP2017042026A true JP2017042026A (en) 2017-02-23

Family

ID=58203696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015176129A Pending JP2017042026A (en) 2015-08-20 2015-08-20 Shock absorption structure

Country Status (1)

Country Link
JP (1) JP2017042026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599680A (en) * 2018-04-28 2018-09-28 绵阳鑫阳知识产权运营有限公司 A kind of photovoltaic module carrier in wind load with secure support performance
JP2021095691A (en) * 2019-12-13 2021-06-24 Ykk Ap株式会社 Outdoor structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599680A (en) * 2018-04-28 2018-09-28 绵阳鑫阳知识产权运营有限公司 A kind of photovoltaic module carrier in wind load with secure support performance
JP2021095691A (en) * 2019-12-13 2021-06-24 Ykk Ap株式会社 Outdoor structure
JP7299150B2 (en) 2019-12-13 2023-06-27 Ykk Ap株式会社 outdoor structure

Similar Documents

Publication Publication Date Title
Sharma et al. Design parameters of 10 KW floating solar power plant
JP6377503B2 (en) Photovoltaic power generation equipment using airborne wires
JP2017042025A (en) Solar panel inclination structure
KR101004108B1 (en) Equipment for fixing solar panel using steel wire
KR101642387B1 (en) Floating solar power generating system
KR101185807B1 (en) a horizontal type of a solar cell generating system
WO2016045473A1 (en) Flexible photovoltaic bracket
Bhattacharya et al. Use of offshore wind farms to increase seismic resilience of Nuclear Power Plants
US9759452B2 (en) Support structure for multiple heliostats
JP2017042026A (en) Shock absorption structure
CN205792361U (en) Anti-lightning strike band wind-power electricity generation and the telescopic device of solar generating of condenser lens
JP2015073061A (en) Solar system
CN206196499U (en) A kind of photovoltaic agricultural greenhouse support
KR101186349B1 (en) The photovoltaic power generation facilities
JP3196432U (en) Mounting structure
JP3188267U (en) Solar system
JP2015086654A (en) Truss beam frame for solar panel and assembling method using the same
CN106972821A (en) A kind of photovoltaic module erection tower at rotatable pair of inclination angle
CN107317542A (en) A kind of flotation gear of solar panel waterborne
CN207897530U (en) The photovoltaic cell component mounting bracket of agricultural greenhouse
CN205142088U (en) Be applicable to concrete roof adjustable angle photovoltaic installing the system
JP5445318B2 (en) Solar panel support device
JP7386413B2 (en) Installation method for power generation equipment for pillars
JP2005277038A (en) Sunlight power generation system
JP2016023419A (en) Pole support structure