JP2005277036A - Manufacturing method of flexible printed circuit board - Google Patents

Manufacturing method of flexible printed circuit board Download PDF

Info

Publication number
JP2005277036A
JP2005277036A JP2004087161A JP2004087161A JP2005277036A JP 2005277036 A JP2005277036 A JP 2005277036A JP 2004087161 A JP2004087161 A JP 2004087161A JP 2004087161 A JP2004087161 A JP 2004087161A JP 2005277036 A JP2005277036 A JP 2005277036A
Authority
JP
Japan
Prior art keywords
circuit board
printed circuit
flexible printed
drying
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004087161A
Other languages
Japanese (ja)
Inventor
Naoko Osawa
直子 大澤
Koen O
宏遠 王
Hironobu Kawasato
浩信 川里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2004087161A priority Critical patent/JP2005277036A/en
Publication of JP2005277036A publication Critical patent/JP2005277036A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a flexible printed circuit board small in dimension change rate which does not cause a change in dimension in forming a circuit by removing the unnecessary part of a metallic conductor by etching. <P>SOLUTION: This manufacturing method of the flexible printed circuit board made of a conductor layer and a polyimide layer includes steps of directly applying a polyimide precursor resin solution on a conductor, drying, and curing by thermal treatment. The method is characterized in that a ratio of making the polyimide precursor resin layer into imide is controlled to a range of 12-18%, before the curing process carried out after drying at 150°C or lower and carried out at a drying temperature or higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フレキシブルプリント基板の製造法に係り、詳しくはポリイミド系樹脂を導体上に直接塗布してフレキシブルプリント基板を製造する方法に関する。   The present invention relates to a method for manufacturing a flexible printed circuit board, and more particularly to a method for manufacturing a flexible printed circuit board by directly applying a polyimide resin onto a conductor.

従来、フレキシブルプリント基板は、エポキシ樹脂やウレタン樹脂等の接着剤を用いてポリイミドフィルムを導体上に貼りあわせることにより製造されている。ポリイミドフィルムそれ自体は優れた耐熱性を有するが、接着剤の耐熱性が劣り、ハンダで高温に加熱した際にふくれや剥がれを生じたり、あるいは、回路の難燃性を低下させるという問題があった。また、高温に加熱する際に寸法が変化したり、回路に加工する際に使用される種々の薬品により接着剤が侵されてその接着力が低下するというような問題もあった。   Conventionally, a flexible printed circuit board is manufactured by bonding a polyimide film on a conductor using an adhesive such as an epoxy resin or a urethane resin. The polyimide film itself has excellent heat resistance, but the heat resistance of the adhesive is inferior, causing problems such as blistering and peeling when heated to a high temperature with solder, or reducing the flame resistance of the circuit. It was. In addition, there is a problem that the dimensions change when heated to a high temperature, and the adhesive is affected by various chemicals used when processing into a circuit, resulting in a decrease in adhesive strength.

一方、ポリイミド系前駆体樹脂溶液を銅箔等の導体上に直接塗布してフレキシブルプリント基板を製造する方法としては、塗布して硬化させた後に導体と樹脂の熱膨張係数の差により生じるカールを矯正する方法(例えば特許文献1参照)や、低熱膨張樹脂を塗布してカールを防止する方法(例えば特許文献2参照)が提案されていたが、いずれも充分ではなかった。そこで、硬化反応を進める前にある範囲の温度で一定量以上の溶剤を乾燥することにより、カールを防止する方法(例えば特許文献3参照)が提案された。   On the other hand, as a method of manufacturing a flexible printed circuit board by directly applying a polyimide precursor resin solution onto a conductor such as copper foil, curling caused by the difference in the thermal expansion coefficient between the conductor and the resin after being applied and cured. A method for correcting (for example, see Patent Document 1) and a method for preventing curling by applying a low thermal expansion resin (for example, see Patent Document 2) have been proposed, but none of them is sufficient. Therefore, a method of preventing curling by drying a certain amount of solvent at a certain temperature range before proceeding with the curing reaction (see, for example, Patent Document 3) has been proposed.

しかし、この方法は乾燥後の中間品のイミド化率については考慮されていなかったため、その後熱処理により硬化させ、得られたフレキシブルプリント基板をエッチングにより金属導体の不要部分を除き、回路を形成する際に寸法変化(以下、寸法変化率という)が生じるなどの問題が発生した。また、乾燥後の中間品のイミド化率とカールについての報告があるが(例えば特許文献4参照)、広範なため実用的ではなかった。
特開昭56−23791号公報 特開昭60−243120号公報 特開平1−245587号公報 特開平5−13902号公報
However, since this method did not consider the imidation ratio of the intermediate product after drying, it was subsequently cured by heat treatment, and the resulting flexible printed circuit board was etched to remove unnecessary portions of the metal conductor, thereby forming a circuit. The problem of dimensional change (hereinafter referred to as dimensional change rate) occurred. Moreover, although there is a report on the imidization ratio and curl of the intermediate product after drying (see, for example, Patent Document 4), it is not practical because of its wide range.
JP-A-56-23791 JP-A-60-243120 Japanese Patent Laid-Open No. 1-245587 Japanese Patent Laid-Open No. 5-13902

本発明は上記のような従来技術の問題点に鑑みて、フレキシブルプリント基板をエッチングにより金属導体の不要部分を除き、回路を形成する際に寸法変化(以下、寸法変化率という)が生じない寸法変化率の小さいフレキシブルプリント基板を得ることを目的とする。   In view of the above-described problems of the prior art, the present invention eliminates unnecessary portions of metal conductors by etching a flexible printed circuit board and does not cause a dimensional change (hereinafter referred to as a dimensional change rate) when forming a circuit. An object is to obtain a flexible printed circuit board with a small change rate.

本発明者らは、上記課題を解決するために種々検討の結果、塗工乾燥後の硬化工程前における中間品のイミド化率を特定の範囲内に制御することにより、寸法変化率の小さいフレキシブルプリント基板を得ることができることを見出し本発明を完成した。   As a result of various studies in order to solve the above problems, the present inventors have controlled the imidation ratio of the intermediate product before the curing step after coating and drying within a specific range, thereby reducing the dimensional change rate. The present invention was completed by finding that a printed circuit board can be obtained.

すなわち、本発明は、ポリイミド前駆体樹脂溶液を導体上に直接塗布、乾燥した後、熱処理により硬化させて導体層とポリイミド層とからなるフレキシブルプリント基板を製造する方法において、150℃以下で乾燥した後、乾燥温度以上の温度で行われる硬化工程前のポリイミド前駆体樹脂層におけるイミド化率を12〜18%の範囲に制御することを特徴とするフレキシブルプリント基板の製造法である。   That is, the present invention is a method for producing a flexible printed board comprising a conductor layer and a polyimide layer by applying and drying a polyimide precursor resin solution directly on a conductor and then drying it at 150 ° C. or less. Then, the imidation rate in the polyimide precursor resin layer before the curing step performed at a temperature equal to or higher than the drying temperature is controlled to be in a range of 12 to 18%.

上記本発明の好ましい態様としては、導体上に直接塗布するポリイミド前駆体樹脂溶液が少なくとも2種以上で、それぞれを複数層に塗付し、複数回乾燥した後、硬化前のイミド化率を12〜18%とし、最後に一括して熱処理により硬化させることが望ましい。
また、上記本発明の好ましい態様としては、第1層と第2層を塗布して乾燥し、その上に第3層を塗付して乾燥した後、熱処理することが望ましい。
As a preferred embodiment of the present invention, at least two types of polyimide precursor resin solutions that are directly applied onto a conductor are coated on a plurality of layers, dried a plurality of times, and an imidation ratio before curing is 12 It is desirable to set it to ˜18% and finally harden it by heat treatment at the end.
Moreover, as a preferable aspect of the present invention, it is desirable that the first layer and the second layer are applied and dried, and the third layer is applied thereon and dried, followed by heat treatment.

さらに、上記本発明の好ましい態様としては、ポリイミド前駆体樹脂の少なくとも1種が下記一般式(1)

Figure 2005277036
(但し、式中R1〜R8は水素、ハロゲン、低級アルコキシ基、低級アルキル基のいずれかであり、そのうちの少なくとも1つは低級アルコキシ基である)で示される構成単位を有するポリアミドイミド前駆体樹脂であることが望ましい。 Furthermore, as a preferable aspect of the present invention, at least one of the polyimide precursor resins is represented by the following general formula (1).
Figure 2005277036
(Wherein R 1 to R 8 are any one of hydrogen, halogen, a lower alkoxy group, and a lower alkyl group, at least one of which is a lower alkoxy group). A body resin is desirable.

本発明によれば、エッチング後の金属導体の不要部分を除き、回路を形成する際に寸法変化率の小さい作業性に優れたフレキシブルプリント基板を容易に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the flexible printed circuit board excellent in workability | operativity with a small dimensional change rate can be easily manufactured, except the unnecessary part of the metal conductor after an etching.

本発明において、ポリイミド系前駆体樹脂としては、その分子中に閉環したイミド環を実質的に含まず加熱硬化させることによりイミド結合を生ずる、ポリイミド前駆体樹脂、ポリアミドイミド前駆体樹脂、ポリイミドエステル前駆体樹脂等を挙げることができ、代表的にはポリアミック酸である。好ましくはジアミノベンズアニリド又はその誘導体を含むジアミン類と芳香族テトラカルボン酸無水物とを反応させて得られるポリイミド系前駆体樹脂である。   In the present invention, the polyimide precursor resin includes a polyimide precursor resin, a polyamide imide precursor resin, and a polyimide ester precursor, which do not substantially contain a closed imide ring in the molecule and generate an imide bond by heat curing. Body resin and the like, typically polyamic acid. A polyimide precursor resin obtained by reacting a diamine containing diaminobenzanilide or a derivative thereof with an aromatic tetracarboxylic anhydride is preferable.

特に好ましくはポリイミド前駆体樹脂の少なくとも1種が下記一般式(1)

Figure 2005277036
(但し、式中R1〜R8は水素、ハロゲン、低級アルコキシ基、低級アルキル基のいずれかであり、そのうちの少なくとも1つは低級アルコキシ基である)で示される構成単位を有するポリアミドイミド前駆体樹脂である。 Particularly preferably, at least one of the polyimide precursor resins is represented by the following general formula (1)
Figure 2005277036
(Wherein R 1 to R 8 are any one of hydrogen, halogen, a lower alkoxy group, and a lower alkyl group, at least one of which is a lower alkoxy group). Body resin.

一般式(1)のポリアミド前駆体樹脂は、芳香族テトラカルボン酸無水物である無水ピロメリット酸と下記一般式(2)

Figure 2005277036
(但し、式中R1〜R8は上記の場合と同じである)で示されるジアミノベンズアニリド誘導体とを反応させて得られる。 The polyamide precursor resin of the general formula (1) is composed of pyromellitic anhydride which is an aromatic tetracarboxylic anhydride and the following general formula (2).
Figure 2005277036
It is obtained by reacting with a diaminobenzanilide derivative represented by the formula (wherein R 1 to R 8 are the same as those described above).

ここでジアミノベンズアニリド誘導体としては、置換基として少なくとも1個の低級アルコキシ基を有する必要がある。ここでいう低級とは炭素数10以下のことであり、炭素数が10を越えると耐熱性が低下し好ましくない。低級アルコキシ基としては、好ましくはメトキシ基又はエトキシ基であり、吸水性の改善という観点から、より好ましくはアルコキシ基がアミド結合のオルト位に存在することである。さらに好ましくは、安価であるという点から式(3)

Figure 2005277036
で示される2’−メトキシ−4,4’−ジアミノベンズアニリドである。 Here, the diaminobenzanilide derivative needs to have at least one lower alkoxy group as a substituent. The term “lower” here means 10 or less carbon atoms, and if the carbon number exceeds 10, the heat resistance is lowered, which is not preferable. The lower alkoxy group is preferably a methoxy group or an ethoxy group, and more preferably an alkoxy group is present at the ortho position of the amide bond from the viewpoint of improving water absorption. More preferably, from the point of being cheap, the formula (3)
Figure 2005277036
2′-methoxy-4,4′-diaminobenzanilide represented by the formula:

このようなポリイミド系前駆体樹脂の合成反応は、一般的にはN−メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)のアミド系溶媒、ジメチルスルフォキサイド(DMSO)、硫酸ジメチル、スルホラン、ブチロラクトン、クレゾール、フェノール、ハロゲン化フェノール、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ダイグライム等の溶媒中で、反応温度0〜200℃、好ましくは0〜100℃の範囲で行われる。これらの溶媒中に上記一般式に反応するジアミン化合物及び酸無水物化合物をほぼ等モル混合することにより、前記ポリイミド系樹脂の前駆体溶液が得られる。   The synthesis reaction of such a polyimide precursor resin is generally performed by N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc) amide solvent, dimethyl sulfoxide (DMSO), The reaction is carried out in a solvent such as dimethyl sulfate, sulfolane, butyrolactone, cresol, phenol, halogenated phenol, cyclohexanone, dioxane, tetrahydrofuran, diglyme and the like at a reaction temperature of 0 to 200 ° C, preferably 0 to 100 ° C. By mixing approximately equimolar amounts of the diamine compound and the acid anhydride compound that react with the above general formula in these solvents, a precursor solution of the polyimide resin can be obtained.

本発明では、このようなポリイミド系前駆体樹脂溶液を直接導体上に塗布するわけであるが、塗布方法としては任意の方法が可能であり、例えばバーコード方式、グラビアコート方式、ロールコート方式、ダイコート方式等が挙げられる。樹脂溶液に泡が巻き込まれないことからダイコート方式が好ましい。本発明では、導体上に直接塗布するポリイミド前駆体樹脂溶液が少なくとも2種以上を、それぞれを複数層になるように塗付するのが望ましく、複数回乾燥した後のイミド化率を12〜18%とし、最後に一括して熱処理により硬化させるものである。ここでイミド化率は、乾燥した後の樹脂層サンプルを赤外線吸光分析によるイミド基の吸収波長1780cm-1の吸光量を求め、同サンプルを100%イミド化した時のイミド基の吸光量に対する百分率として求めた値である。 In the present invention, such a polyimide-based precursor resin solution is directly applied onto a conductor, but any method can be used as an application method, for example, a barcode method, a gravure coating method, a roll coating method, Examples include a die coating method. The die coating method is preferable because bubbles are not involved in the resin solution. In the present invention, it is desirable to apply at least two kinds of polyimide precursor resin solutions to be applied directly on the conductor so as to form a plurality of layers, and the imidization ratio after drying a plurality of times is 12 to 18 %, And finally hardened by heat treatment. Here, the imidization ratio is a percentage of the absorbance of the imide group when the resin layer sample after drying is obtained by measuring the absorbance of the absorption wavelength of 1780 cm −1 of the imide group by infrared absorption analysis, and 100% imidization of the sample. It is the value calculated as.

乾燥は、150℃以下、好ましくは130℃以下で行われるが、この段階でのイミド化率を12〜18%、好ましくは14〜16%に制御する。乾燥が強くイミド化率が18%を越えると、フレキシブルプリント基板の寸法変化率は収縮側へシフトし、乾燥が弱くイミド化率が12%未満になると寸法変化率は膨張側へシフトする傾向を示す。いずれにしろ、エッチングにより銅の不要部分を除き、回路を形成する際の寸法変化率が大きいため実用的ではない。また、イミド化率が12〜18%の乾燥後の中間品は、残存溶媒量が、その後に硬化させて得られるポリイミドに対して30重量%以上であることが好ましい。   Drying is performed at 150 ° C. or lower, preferably 130 ° C. or lower, and the imidization ratio at this stage is controlled to 12 to 18%, preferably 14 to 16%. When drying is strong and the imidization rate exceeds 18%, the dimensional change rate of the flexible printed circuit board shifts to the shrink side, and when drying is weak and the imidization rate is less than 12%, the dimensional change rate tends to shift to the expansion side. Show. In any case, the unnecessary portion of copper is removed by etching, and the dimensional change rate when forming a circuit is large, which is not practical. Moreover, it is preferable that the intermediate | middle goods after drying whose imidation rate is 12 to 18% are 30 weight% or more with respect to the polyimide obtained by making it harden | cure after that.

ここでいう硬化とは、イミド化反応を強制的に進めて樹脂の硬化を促す工程をいう。このイミド化反応は、通常150℃を越える温度、特に160℃を越える温度で速やかに進行する。このように一定量以上の溶媒を蒸発させた後、150℃を越える温度で硬化を行うわけであるが、イミド化反応を充分行うために最高硬化温度は250℃以上、好ましくは300℃以上である。この硬化工程において、温度を急激に上昇させると樹脂の発泡が起こる虞があるので、多段階熱処理若しくは連続昇温熱処理を行うのが好ましい。   Curing as used herein refers to a step of forcibly promoting imidization reaction to promote resin curing. This imidization reaction usually proceeds rapidly at a temperature exceeding 150 ° C., particularly at a temperature exceeding 160 ° C. Thus, after evaporating a certain amount or more of the solvent, curing is performed at a temperature exceeding 150 ° C. In order to sufficiently perform the imidization reaction, the maximum curing temperature is 250 ° C or more, preferably 300 ° C or more. is there. In this curing step, if the temperature is rapidly increased, foaming of the resin may occur. Therefore, it is preferable to perform a multistage heat treatment or a continuous temperature raising heat treatment.

このような乾燥工程、硬化工程は任意のプロセスを採用することができるが、塗布された導体が、装置に接触しないフローティング形式のものを使用することが好ましい。フローティング形式とは、導体を気流中に浮遊させた状態で乾燥および硬化を行うものであり、導体を連続的に走行させつつ、導体面に対して上又は下に配置したノズルから均一に気流を導体面に向けて吹き出し、走行する導体を浮遊させると共に、波を打つように湾曲しながら走行させるものである。   Although any process can be adopted as such a drying step and a curing step, it is preferable to use a floating type in which the applied conductor does not contact the apparatus. In the floating type, the conductor is dried and cured in a state where it is suspended in the airflow, and the airflow is uniformly generated from nozzles arranged above or below the conductor surface while the conductor is continuously running. The conductor is blown out toward the conductor surface, and the running conductor is floated, and it is made to travel while curving so as to hit a wave.

加熱は熱風を気流として吹き出すことにより行うことが好ましいが、赤外線加熱、電磁誘導加熱等を使用又は併用してもよい。加熱雰囲気としては空気や、窒素、炭素ガス、アルゴン等の不活性ガス等のいずれも選択可能である。   Heating is preferably performed by blowing hot air as an air stream, but infrared heating, electromagnetic induction heating, or the like may be used or used in combination. As the heating atmosphere, any of air, an inert gas such as nitrogen, carbon gas, and argon can be selected.

本発明によるフレキシブルプリント基板に用いられる導体としては、銅、アルミニウム、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン又はその合金等が挙げられる。好ましくは銅である。また、導体は、その接着力の向上を目的として、サイディング、ニッケルメッキ、銅−亜鉛合金メッキ、あるいは、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤、好接着性樹脂によるアンカーコーティング等の化学的、機械的な表面処理が施されてもよい。   Examples of the conductor used for the flexible printed circuit board according to the present invention include copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, and alloys thereof. Copper is preferred. In addition, for the purpose of improving the adhesive strength of the conductor, chemicals such as siding, nickel plating, copper-zinc alloy plating, or aluminum alcoholate, aluminum chelate, silane coupling agent, anchor coating with good adhesive resin, etc. A mechanical surface treatment may be applied.

以下、実施例及び比較例に基づいて、本発明を具体的に説明するが、本発明がこれに限定されないことは勿論である。   Hereinafter, the present invention will be specifically described based on examples and comparative examples, but the present invention is of course not limited thereto.

各例における残存溶媒率は、塗工乾燥後の中間品のポリイミド前駆体を170℃で60分間加熱したときの重量減少により求めた。イミド化率は、赤外線吸光分析によるイミド基の吸収波長1780cm-1の吸光量を求め、同サンプルを100%イミド化した時のイミド基の吸光量に対する百分率とした。寸法変化率は、銅エッチング前後の寸法変化率により求めた。なお寸法変化率が+とは導体側へカールしていること、−とは導体側と反対側にカールしていることを意味する。 The residual solvent ratio in each example was determined by weight reduction when the intermediate polyimide precursor after coating and drying was heated at 170 ° C. for 60 minutes. The imidation rate was determined by obtaining the absorbance at an absorption wavelength of 1780 cm −1 of the imide group by infrared absorption analysis, and taking the percentage of the absorbance of the imide group when the sample was imidized 100%. The dimensional change rate was obtained from the dimensional change rate before and after copper etching. The dimensional change rate of + means curling to the conductor side, and-means curling to the side opposite to the conductor side.

なお、各例における略号は以下のとおりである。
PMDA:ピロメリット酸二無水物
BTDA:3,3’−4,4’−ベンゾフェノンテトラカルボン酸二無水物
DDE:4,4’−ジアミノジフェニルエーテル
MABA:2’−メトキシ−4,4’−ジアミノベンズアニリド
BAPP:2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン
DMAC:ジメチルアセトアミド
In addition, the symbol in each example is as follows.
PMDA: pyromellitic dianhydride BTDA: 3,3′-4,4′-benzophenone tetracarboxylic dianhydride DDE: 4,4′-diaminodiphenyl ether MABA: 2′-methoxy-4,4′-diaminobenz Anilide BAPP: 2,2′-bis [4- (4-aminophenoxy) phenyl] propane DMAC: dimethylacetamide

合成例1
BAPP6モルをDMAC44kgに溶解した後、10℃に冷却し、BTDA6モルを徐々に加えて、反応させ、粘稠なポリイミド前駆体樹脂(ポリアミック酸A)を得た。
Synthesis example 1
After 6 mol of BAPP was dissolved in 44 kg of DMAC, it was cooled to 10 ° C., 6 mol of BTDA was gradually added and reacted to obtain a viscous polyimide precursor resin (polyamic acid A).

合成例2
MABA32モルとDDE8モルをDMAC124kgに溶解した後、10℃に冷却し、PMDA40モルを徐々に加えて、反応させ、粘稠なポリイミド前駆体樹脂(ポリアミック酸B)を得た。
Synthesis example 2
After 32 mol of MABA and 8 mol of DDE were dissolved in 124 kg of DMAC, the mixture was cooled to 10 ° C., 40 mol of PMDA was gradually added and reacted to obtain a viscous polyimide precursor resin (polyamic acid B).

実施例1
銅箔に、第1層がポリアミック酸A、第2層がポリアミック酸B、第3層がポリアミック酸Aでそれぞれのフィルム厚さが3、20、3μmになるように塗布し、第1層と第2層は100℃で2分間、フローティング形式の乾燥炉で乾燥した。その後、第3層を塗布し、135℃の乾燥炉でライン速度3m/minで約5分間走行させることにより乾燥を行った。このときの中間品の残存溶媒率はイミド化率は15%であった。次いで、130〜360℃まで順次温度が高められた複数のフローティング形式の硬化炉を走行させることにより、硬化を行い、樹脂層の厚み25μmの銅張品を得た。得られた銅張品すなわち、フレキシブルプリント基板は寸法変化率が0%と良好なものであった。
Example 1
The copper foil was coated such that the first layer was polyamic acid A, the second layer was polyamic acid B, the third layer was polyamic acid A, and the respective film thicknesses were 3, 20, and 3 μm. The second layer was dried in a floating drying oven at 100 ° C. for 2 minutes. Thereafter, the third layer was applied and dried by running in a drying furnace at 135 ° C. at a line speed of 3 m / min for about 5 minutes. The residual solvent ratio of the intermediate product at this time was 15%. Next, curing was carried out by running a plurality of floating type curing furnaces whose temperatures were sequentially increased from 130 to 360 ° C., thereby obtaining a copper-clad article having a resin layer thickness of 25 μm. The obtained copper-clad product, that is, the flexible printed circuit board, had a good dimensional change rate of 0%.

実施例2
第3層塗布後の乾燥工程において、ラインスピードを実施例1より速くして、イミド化率12%の中間品を得た。これ以外の方法は上記実施例1と同様にしてフレキシブルプリント基板を作成した。得られたフレキシブルプリント基板は寸法変化率が+0.03%であった。
Example 2
In the drying process after coating the third layer, the line speed was made faster than that in Example 1 to obtain an intermediate product having an imidization rate of 12%. Other than this, a flexible printed circuit board was prepared in the same manner as in Example 1 above. The obtained flexible printed circuit board had a dimensional change rate of + 0.03%.

実施例3
第3層塗布後の乾燥工程において、ラインスピードを実施例1よりやや速くして、イミド化率14%の中間品を得た。これ以外の方法は上記実施例1と同様にしてフレキシブルプリント基板を作成した。得られたフレキシブルプリント基板は寸法変化率が+0.01%であった。
Example 3
In the drying process after application of the third layer, the line speed was set slightly higher than in Example 1 to obtain an intermediate product having an imidization ratio of 14%. Other than this, a flexible printed circuit board was prepared in the same manner as in Example 1 above. The obtained flexible printed circuit board had a dimensional change rate of + 0.01%.

実施例4
第3層塗布後の乾燥工程において、ラインスピードを実施例1よりやや遅くして、イミド化率16%の中間品を得た。これ以外の方法は上記実施例1と同様にしてフレキシブルプリント基板を作成した。得られたフレキシブルプリント基板は寸法変化率が−0.01%であった。
Example 4
In the drying process after application of the third layer, the line speed was slightly slower than in Example 1 to obtain an intermediate product having an imidization ratio of 16%. Other than this, a flexible printed circuit board was prepared in the same manner as in Example 1 above. The obtained flexible printed circuit board had a dimensional change rate of -0.01%.

実施例5
第3層塗布後の乾燥工程において、ラインスピードを実施例1より遅くして、イミド化率18%の中間品を得た。これ以外の方法は上記実施例1と同様にしてフレキシブルプリント基板を作成した。得られたフレキシブルプリント基板は寸法変化率が−0.03%であった。
Example 5
In the drying process after application of the third layer, the line speed was made slower than in Example 1 to obtain an intermediate product having an imidization ratio of 18%. Other than this, a flexible printed circuit board was prepared in the same manner as in Example 1 above. The obtained flexible printed circuit board had a dimensional change rate of -0.03%.

比較例1
第3層塗布後の乾燥工程において、ラインスピードを実施例1より速くして、イミド化率9%の中間品を得た。これ以外の方法は上記実施例1と同様にしてフレキシブルプリント基板を作成した。得られたフレキシブルプリント基板は寸法変化率が+0.06%であった。
Comparative Example 1
In the drying process after application of the third layer, the line speed was made faster than in Example 1 to obtain an intermediate product having an imidization rate of 9%. Other than this, a flexible printed circuit board was prepared in the same manner as in Example 1 above. The obtained flexible printed circuit board had a dimensional change rate of + 0.06%.

比較例2
第3層塗布後の乾燥工程において、ラインスピードを実施例1より遅くして、イミド化率25%の中間品を得た。これ以外の方法は上記実施例1と同様にしてフレキシブルプリント基板を作成した。得られたフレキシブルプリント基板は寸法変化率が−0.06%であった。
Comparative Example 2
In the drying process after application of the third layer, the line speed was made slower than in Example 1 to obtain an intermediate product having an imidization rate of 25%. Other than this, a flexible printed circuit board was prepared in the same manner as in Example 1 above. The obtained flexible printed circuit board had a dimensional change rate of -0.06%.

Figure 2005277036
Figure 2005277036

Claims (4)

ポリイミド前駆体樹脂溶液を導体上に直接塗布、乾燥した後、熱処理により硬化させて導体層とポリイミド層とからなるフレキシブルプリント基板を製造する方法において、150℃以下で乾燥した後、乾燥温度以上の温度で行われる硬化工程前のポリイミド前駆体樹脂層におけるイミド化率を12〜18%の範囲に制御することを特徴とするフレキシブルプリント基板の製造法。   In the method of manufacturing a flexible printed circuit board composed of a conductor layer and a polyimide layer by directly applying and drying a polyimide precursor resin solution on a conductor and then drying it, after drying at 150 ° C. or lower, The manufacturing method of the flexible printed circuit board which controls the imidation ratio in the polyimide precursor resin layer before the hardening process performed at temperature in the range of 12 to 18%. 導体上に直接塗布するポリイミド前駆体樹脂溶液が少なくとも2種以上で、それぞれを複数層に塗付し、複数回乾燥した後、硬化工程前のイミド化率を12〜18%とし、最後に一括して熱処理により硬化させる請求項1に記載のフレキシブルプリント基板の製造法。   At least two or more types of polyimide precursor resin solutions to be applied directly on the conductor, each of which is applied to a plurality of layers, dried a plurality of times, and the imidization ratio before the curing step is set to 12 to 18%. The method for producing a flexible printed circuit board according to claim 1, wherein the flexible printed circuit board is cured by heat treatment. 第1層と第2層を塗布して乾燥し、その上に第3層を塗付して乾燥した後、熱処理する請求項2に記載のフレキシブルプリント基板の製造法。   The manufacturing method of the flexible printed circuit board of Claim 2 which heat-processes, after apply | coating and drying a 1st layer and a 2nd layer, apply | coating and drying a 3rd layer on it. ポリイミド前駆体樹脂の少なくとも1種が下記一般式(1)
Figure 2005277036
(但し、式中R1〜R8は水素、ハロゲン、低級アルコキシ基、低級アルキル基のいずれかであり、そのうちの少なくとも1つは低級アルコキシ基である)で示される構成単位を有するポリアミドイミド前駆体樹脂である請求項1〜3のいずれか1項に記載のフレキシブルプリント基板の製造法。

At least one of the polyimide precursor resins is represented by the following general formula (1)
Figure 2005277036
(Wherein R 1 to R 8 are any one of hydrogen, halogen, a lower alkoxy group, and a lower alkyl group, at least one of which is a lower alkoxy group). It is a body resin, The manufacturing method of the flexible printed circuit board of any one of Claims 1-3.

JP2004087161A 2004-03-24 2004-03-24 Manufacturing method of flexible printed circuit board Pending JP2005277036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004087161A JP2005277036A (en) 2004-03-24 2004-03-24 Manufacturing method of flexible printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004087161A JP2005277036A (en) 2004-03-24 2004-03-24 Manufacturing method of flexible printed circuit board

Publications (1)

Publication Number Publication Date
JP2005277036A true JP2005277036A (en) 2005-10-06

Family

ID=35176382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004087161A Pending JP2005277036A (en) 2004-03-24 2004-03-24 Manufacturing method of flexible printed circuit board

Country Status (1)

Country Link
JP (1) JP2005277036A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513902A (en) * 1990-09-04 1993-01-22 Chisso Corp Elexible printed substrate and manufacture thereof
JP2000101205A (en) * 1998-09-21 2000-04-07 Sony Chem Corp Metal clad board and flexible printed wiring board using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513902A (en) * 1990-09-04 1993-01-22 Chisso Corp Elexible printed substrate and manufacture thereof
JP2000101205A (en) * 1998-09-21 2000-04-07 Sony Chem Corp Metal clad board and flexible printed wiring board using the same

Similar Documents

Publication Publication Date Title
US8034460B2 (en) Metallic laminate and method of manufacturing the same
JP5425093B2 (en) Metal foil laminate
JPH0522399B2 (en)
JPH08250860A (en) Flexible printed board
TWI485062B (en) Flexible metal-clad laminate and manufacturing method thereof
JP2006336011A (en) Polyimide resin and method for producing the same
JP2738453B2 (en) Manufacturing method of copper clad laminate
JP4571043B2 (en) Laminated body and method for producing the same
JP2003335874A (en) Polyimide film
US20030108748A1 (en) Method for preparing substrate for flexible print wiring board, and substrate for flexible print wiring board
JP2006269558A (en) Method of producing flexible laminate substrate
JP4615401B2 (en) Laminated body
JP2007062274A (en) Flexible laminated board cladded with copper layer on single site and manufacturing method of it
JP4183765B2 (en) Manufacturing method of flexible printed wiring board
JP2007189011A (en) Substrate for flexible printed wiring board and its production process
JP2761655B2 (en) Manufacturing method of flexible printed circuit board
JPS6384188A (en) Manufacture of flexible printed circuit substrate
JP2005277036A (en) Manufacturing method of flexible printed circuit board
JP4684601B2 (en) Manufacturing method of flexible laminated substrate
JPH0366824B2 (en)
JP4889194B2 (en) Manufacturing method of substrate for flexible printed wiring board
JP4935406B2 (en) High heat resistant polyimide resin composition
JP2007090630A (en) Polyimide film laminate and utilization of it
JP2005336264A (en) Polyimidebenzoxazole film
JP4126432B2 (en) Method for producing polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061020

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20090818

Free format text: JAPANESE INTERMEDIATE CODE: A131

A131 Notification of reasons for refusal

Effective date: 20100330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615