JP2005276711A - Method of restoring fuel cell catalyst and restoring apparatus - Google Patents

Method of restoring fuel cell catalyst and restoring apparatus Download PDF

Info

Publication number
JP2005276711A
JP2005276711A JP2004090557A JP2004090557A JP2005276711A JP 2005276711 A JP2005276711 A JP 2005276711A JP 2004090557 A JP2004090557 A JP 2004090557A JP 2004090557 A JP2004090557 A JP 2004090557A JP 2005276711 A JP2005276711 A JP 2005276711A
Authority
JP
Japan
Prior art keywords
fuel cell
aqueous solution
catalyst
compound
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004090557A
Other languages
Japanese (ja)
Inventor
Akira Morita
亮 森田
Takushi Nagano
拓士 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004090557A priority Critical patent/JP2005276711A/en
Publication of JP2005276711A publication Critical patent/JP2005276711A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a apparatus of restoring fuel cell catalyst in which a degraded catalyst layer of a fuel cell is restored in a simple manner. <P>SOLUTION: This method of restoring a fuel cell catalyst includes a first step of adhering Pt ions onto a carbon black carrier on the side of degraded electrode, and a second step of providing hydrogen and gas containing hydrogen to an electrode opposite to the degraded electrode and reducing the Pt ions adhered to the carbon black carrier to Pt by applying a voltage between both electrodes. In the restoring apparatus, a water container 40, a Pt compound aqueous solution container 42 and an acid aqueous solution container 44 are coupled to the fuel cell 30 via a liquid supply passage 32, and thus the catalyst layer on the side of the degraded electrode receives supplies from the respective containers. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池等の燃料電池触媒が劣化したときに触媒を修復する方法、およびこの修復方法を実施するのに好適な燃料電池触媒の修復装置に関する。   The present invention relates to a method of repairing a catalyst when a fuel cell catalyst such as a polymer electrolyte fuel cell is deteriorated, and a fuel cell catalyst repairing apparatus suitable for carrying out this repairing method.

近年、化石燃料の埋蔵量が激減しており、その代替となる燃料の開発が求められている。化石燃焼の代替燃料としては、容易に生成することが可能であり、環境に対する負荷の少ない水素が注目されている。水素ガスを用いたエネルギー源としては、発電の際に二酸化炭素等を発生せず、クリーンなエネルギー源である燃料電池が注目されており、各種開発が盛んに行われている。   In recent years, reserves of fossil fuels have drastically decreased, and development of alternative fuels has been demanded. As an alternative fuel for fossil combustion, hydrogen, which can be easily generated and has a low environmental impact, has attracted attention. As an energy source using hydrogen gas, a fuel cell which does not generate carbon dioxide during power generation and is a clean energy source has attracted attention, and various developments have been actively conducted.

燃料電池の一種である固体高分子型燃料電池は、水素などの燃料ガス又は空気などの酸化剤ガスが供給される一対の電極と、前記電極に挟持される電解質膜と、を備え、白金等の触媒上で電気化学的に反応させ、電気を発生させるものである。   A polymer electrolyte fuel cell, which is a type of fuel cell, includes a pair of electrodes supplied with a fuel gas such as hydrogen or an oxidant gas such as air, and an electrolyte membrane sandwiched between the electrodes, such as platinum. It is made to react electrochemically on this catalyst and generate electricity.

従来の固体高分子型燃料電池は、プロトン伝導性を有し、選択的に水素イオンを移動させることが可能な電解質膜と、燃料である水素ガスが供給される水素電極(アノード電極)と、酸化剤として空気が供給される酸素電極(カソード電極)とで構成される。   A conventional polymer electrolyte fuel cell has proton conductivity and can selectively move hydrogen ions, a hydrogen electrode (anode electrode) to which hydrogen gas as fuel is supplied, It comprises an oxygen electrode (cathode electrode) to which air is supplied as an oxidant.

水素電極は、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒層と、気孔を有する多孔質部材で構成されるガス拡散層とを有しており、電解質膜の一方の面と触媒層とが密着するように配置される。同様に、酸素電極は、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒層と、気孔を有する多孔質部材で構成されるガス拡散層とから構成されており、電解質膜の他方の面に触媒層が密着するように配置されている。また、水素電極と酸素電極とは、外部回路を通じて電気的に接続されており、水素電極と酸素電極との外側には、各ガスの流通路を形成するセパレータがそれぞれ設置されている。   The hydrogen electrode has a catalyst layer mainly composed of carbon powder supporting a platinum-based metal catalyst and a gas diffusion layer composed of a porous member having pores, and one surface of the electrolyte membrane, It arrange | positions so that a catalyst layer may closely_contact | adhere. Similarly, the oxygen electrode is composed of a catalyst layer mainly composed of carbon powder supporting a platinum-based metal catalyst and a gas diffusion layer composed of a porous member having pores, and the other side of the electrolyte membrane. It arrange | positions so that a catalyst layer may closely_contact | adhere to this surface. In addition, the hydrogen electrode and the oxygen electrode are electrically connected through an external circuit, and separators that form flow paths for the respective gases are installed outside the hydrogen electrode and the oxygen electrode.

固体高分子型燃料電池は、水素電極に供給された水素ガスと触媒層に担持された金属触媒との反応によって生じた水素イオンが電解質膜を通過して酸素電極まで移動し、酸素電極に供給された空気中の酸素と触媒上で電気化学反応を起こすことで発電する。固体高分子型燃料電池で発生した電気は、外部回路を介して外部装置に供給される。   In the polymer electrolyte fuel cell, hydrogen ions generated by the reaction between the hydrogen gas supplied to the hydrogen electrode and the metal catalyst supported on the catalyst layer move to the oxygen electrode through the electrolyte membrane, and are supplied to the oxygen electrode. Electricity is generated by causing an electrochemical reaction on the catalyst with oxygen in the air. Electricity generated in the polymer electrolyte fuel cell is supplied to an external device via an external circuit.

通常、水素電極や酸素電極に供給され、反応に寄与しなかった水素ガスや空気は排出口を通じて排出される。また、電解質膜は、プロトン伝導性を有し、水素イオンのみを選択的に透過させると共に、各電極間のガスの移動を遮る役割も果たしている。   Normally, hydrogen gas or air that is supplied to the hydrogen electrode or oxygen electrode and does not contribute to the reaction is discharged through the discharge port. In addition, the electrolyte membrane has proton conductivity, selectively transmits only hydrogen ions, and plays a role of blocking gas movement between the electrodes.

固体高分子電解質型燃料電池において、固体高分子電解質(ポリテトラフルオロエチレン)とカーボン粒子と触媒物質を含む電極があるが、この電極では、触媒物質がカーボン粒子表面のプロトン伝導経路部とテフロン(R)骨格部に位置しているため、プロトン伝導経路部の触媒物質のみが反応に関与し、テフロン(R)骨格部の触媒物質は反応に関与しない問題があった。   In a solid polymer electrolyte fuel cell, there is an electrode containing a solid polymer electrolyte (polytetrafluoroethylene), carbon particles, and a catalytic material. In this electrode, the catalytic material is separated from the proton conduction path on the carbon particle surface and Teflon ( Since it is located in the (R) skeleton, only the catalyst material of the proton conduction pathway is involved in the reaction, and the catalyst material of the Teflon (R) skeleton is not involved in the reaction.

このような問題を解決するために、固体高分子電解質(ポリテトラフルオロエチレン)とカーボン粒子と触媒物質を含む電極において、触媒物質を固体高分子電解質のプロトン伝導経路およびプロトン伝導経路に接するカーボン粒子の表面に主として担持させた燃料電池とその製造方法が提案されている。(特許文献1)   In order to solve such a problem, in the electrode including a solid polymer electrolyte (polytetrafluoroethylene), carbon particles, and a catalyst material, the catalyst material is contacted with the proton conduction path and the proton conduction path of the solid polymer electrolyte. A fuel cell supported mainly on the surface of the metal and a manufacturing method thereof have been proposed. (Patent Document 1)

このような燃料電池においては、触媒物質の利用率が高くなる点で優れている。しかし、燃料電池を比較的長期に運転する場合、電極、特にカソード電極の性能低下の問題が生じる。すなわち、燃料電池のカソード電極側では、図5の(A)に概念的に示すように触媒物質として用いられるPtがカーボン粒子上でシンタリングを起こす現象、図5の(B)に概念的に示すようにPtがカーボン粒子から溶出する現象等が生じる。   Such a fuel cell is excellent in that the utilization factor of the catalyst substance is increased. However, when the fuel cell is operated for a relatively long period of time, there is a problem that the performance of the electrode, particularly the cathode electrode, is deteriorated. That is, on the cathode side of the fuel cell, a phenomenon in which Pt used as a catalyst material causes sintering on carbon particles as conceptually shown in FIG. 5A, conceptually shown in FIG. 5B. As shown, a phenomenon in which Pt is eluted from the carbon particles occurs.

この理由は、下記に示すように、Ptの酸化電位、溶出電位が燃料電池のカゾード電位に近いためと思われる。
Ptの酸化電位:Pt+H2O→PtOH+H+ at0.98V(vs.NHE)Ptの溶出電位:Pt→Pt2++2e- at1.2V(vs.NHE)
The reason for this seems to be that the oxidation potential and elution potential of Pt are close to the cathode potential of the fuel cell, as shown below.
Pt oxidation potential of: Pt + H 2 O → PtOH + H + at0.98V (vs.NHE) Pt elution potential of: Pt → Pt 2+ + 2e - at1.2V (vs.NHE)

このため、Ptのシンタリングによってカーボン粒子上の個々のPt粒子の表面積が大幅に低下し、また,カーボン粒子からのPtの溶出によってカーボン粒子上のPt粒子の担持量が低下し、触媒反応が大幅に低下、すなわち触媒が劣化したことになる。   For this reason, the surface area of individual Pt particles on the carbon particles is significantly reduced by sintering of Pt, and the amount of Pt particles supported on the carbon particles is reduced by elution of Pt from the carbon particles, so that the catalytic reaction A significant decrease, that is, the catalyst has deteriorated.

特開2000−173626号公報JP 2000-173626 A

上述の諸問題を解決すべく、本発明は、燃料電池における劣化触媒層を簡便な方法で修復することができる燃料電池触媒の修復方法と燃料電池触媒の修復装置を提供することを目的とする。   In order to solve the above problems, an object of the present invention is to provide a fuel cell catalyst repair method and a fuel cell catalyst repair device capable of repairing a deteriorated catalyst layer in a fuel cell by a simple method. .

請求項1に記載の本発明の燃料電池触媒の修復方法は、劣化電極側のカーボンブラック担体上にPtイオンを付着させる第1の工程と、該劣化電極に対する反対電極に水素または水素含有ガスを供給し、前記両電極間に電圧を印加してカーボンブラック担体上に付着したPtイオンをPtに還元する第2の工程とを含むことを特徴とする燃料電池触媒の修復方法である。   The method for repairing a fuel cell catalyst according to claim 1 of the present invention includes a first step of depositing Pt ions on the carbon black support on the deteriorated electrode side, and hydrogen or a hydrogen-containing gas on the opposite electrode to the deteriorated electrode. And a second step of reducing the Pt ions deposited on the carbon black support to Pt by applying a voltage between the electrodes and applying a voltage between the electrodes.

請求項1に記載の本発明の燃料電池触媒の修復方法によれば、カーボンブラック担体上に付着されたPtイオンを水素の存在下、両電極間に電圧を印加することによってPtイオンを効率的にPtに還元することができる。   According to the method of repairing a fuel cell catalyst of the present invention as set forth in claim 1, Pt ions deposited on a carbon black support are efficiently converted by applying a voltage between both electrodes in the presence of hydrogen. Can be reduced to Pt.

請求項2に記載の本発明の燃料電池触媒の修復方法は、触媒層にPt化合物の水溶液を供給し、Pt化合物の水溶液から発生するPtイオンをカーボンブラック担体上に付着させることを特徴とする請求項1に記載の燃料電池触媒の修復方法である。   The method for repairing a fuel cell catalyst of the present invention according to claim 2 is characterized in that an aqueous solution of a Pt compound is supplied to the catalyst layer, and Pt ions generated from the aqueous solution of the Pt compound are deposited on the carbon black support. A method for repairing a fuel cell catalyst according to claim 1.

請求項2に記載の本発明の燃料電池触媒の修復方法によれば、触媒層にPt化合物の水溶液を供給するのみで、簡便にPtイオンがカーボンブラック担体上に付着する。   According to the method for repairing a fuel cell catalyst of the present invention as set forth in claim 2, Pt ions are simply deposited on the carbon black support simply by supplying an aqueous solution of the Pt compound to the catalyst layer.

請求項3に記載の本発明の燃料電池触媒の修復方法は、前記Pt化合物の水溶液が、Pt(NH34Cl2であって、前記PtイオンがPt(NH34 +であることを特徴とする請求項2に記載の燃料電池触媒の修復方法である。 In the method for repairing a fuel cell catalyst of the present invention according to claim 3, the aqueous solution of the Pt compound is Pt (NH 3 ) 4 Cl 2 , and the Pt ion is Pt (NH 3 ) 4 2 + . The method for repairing a fuel cell catalyst according to claim 2, wherein:

請求項3に記載の本発明の燃料電池触媒の修復方法によれば、Pt(NH34Cl2は、Pt化合物の水溶液として用いることができ、この水溶液を触媒層に供給するのみで、簡便にPtイオンがカーボンブラック担体上に付着する。 According to the method for repairing a fuel cell catalyst of the present invention according to claim 3, Pt (NH 3 ) 4 Cl 2 can be used as an aqueous solution of a Pt compound, and only by supplying this aqueous solution to the catalyst layer, Pt ions are easily deposited on the carbon black support.

請求項4に記載の本発明の燃料電池触媒の修復方法は、第1の工程後に、前記劣化電極側の触媒に隣接する拡散層及び/またはセパレータに水を供給して拡散層及び/またはセパレータに付着したPtイオンを除去することを特徴とする請求項1乃至請求項3のいずれかに記載の燃料電池触媒の修復方法である。   According to a fourth aspect of the present invention, there is provided a method of repairing a fuel cell catalyst according to the present invention, wherein after the first step, water is supplied to the diffusion layer and / or separator adjacent to the catalyst on the deteriorated electrode side to The method for repairing a fuel cell catalyst according to any one of claims 1 to 3, wherein Pt ions adhering to the catalyst are removed.

請求項4に記載の本発明の燃料電池触媒の修復方法によれば、拡散層及び/またはセパレータに付着したPtイオンは、水によって除去され、除去されたPtイオンは必要に応じて再利用される。   According to the method for repairing a fuel cell catalyst of the present invention described in claim 4, Pt ions attached to the diffusion layer and / or the separator are removed by water, and the removed Pt ions are reused as necessary. The

請求項5に記載の本発明の燃料電池触媒の修復方法は、第2の工程後に劣化電極側の触媒層に酸性水溶液を供給して触媒層およびこれに隣接する高分子電解質膜からPt化合物の水溶液を除去することを特徴とする請求項1乃至請求項3のいずれかに記載の燃料電池触媒の修復方法である。   According to a fifth aspect of the present invention, there is provided a method for repairing a fuel cell catalyst according to the present invention, wherein after the second step, an acidic aqueous solution is supplied to the catalyst layer on the deteriorated electrode side, The method for repairing a fuel cell catalyst according to any one of claims 1 to 3, wherein the aqueous solution is removed.

請求項5に記載の本発明の燃料電池触媒の修復方法によれば、触媒層およびこれに隣接する高分子電解質膜からPt化合物の水溶液を除去し、必要に応じて除去されたPt化合物の水溶液が再利用される。   According to the method for repairing a fuel cell catalyst of the present invention according to claim 5, the aqueous solution of the Pt compound is removed from the catalyst layer and the polymer electrolyte membrane adjacent to the catalyst layer, and the removed aqueous solution of the Pt compound is removed as necessary. Will be reused.

請求項6に記載の本発明の燃料電池触媒の修復装置は、燃料電池のカソード電極側に液供給路と液排出路をそれぞれ連結し、液供給路と液排出路に水、Pt化合物の水溶液、および酸性水溶液のいずれを順次供給するための切り替え手段を備えたことを特徴とする燃料電池触媒の修復装置である。   According to a sixth aspect of the present invention, there is provided an apparatus for repairing a fuel cell catalyst comprising: a liquid supply path and a liquid discharge path connected to a cathode electrode side of the fuel cell; And a fuel cell catalyst repairing device comprising switching means for sequentially supplying any one of the acidic aqueous solution.

請求項6に記載の本発明の燃料電池触媒の修復装置によれば、カソード電極側に連結された液供給路を介して水、Pt化合物の水溶液、および酸性水溶液が触媒層に供給され、カーボンブラック担体上にPtイオンを付着させ、不必要なPtイオンは,水、酸性水溶液により除去される。   According to the fuel cell catalyst repair device of the present invention described in claim 6, water, an aqueous solution of a Pt compound, and an acidic aqueous solution are supplied to the catalyst layer through a liquid supply path connected to the cathode electrode side, and carbon Pt ions are deposited on the black carrier, and unnecessary Pt ions are removed by water or an acidic aqueous solution.

請求項7に記載の本発明の燃料電池触媒の修復装置は、前記液排出路に燃料電池のカソード側から排出される液を少なくとも水、Pt化合物の水溶液、および酸性水溶液のいずれを戻すための切り替え手段を備えたこと請求項6に記載の燃料電池触媒の修復装置である。   According to a seventh aspect of the present invention, there is provided a fuel cell catalyst repair device for returning at least one of water, an aqueous solution of a Pt compound, and an acidic aqueous solution to a liquid discharged from the cathode side of the fuel cell to the liquid discharge path. 7. The fuel cell catalyst repair device according to claim 6, further comprising switching means.

請求項7に記載の本発明の燃料電池触媒の修復装置によれば、劣化した触媒層の修復に使用された液は、回収された再利用される。   According to the fuel cell catalyst repairing apparatus of the present invention described in claim 7, the liquid used for repairing the deteriorated catalyst layer is recovered and reused.

本発明の燃料電池触媒の修復方法は、劣化した触媒層において、溶出等により減少したPtを補給して触媒層を修復することができる。また、本発明の燃料電池触媒の修復装置は、燃料電池に液供給路、液排出路を連結し、液の供給運転、排出の運転によって簡便に燃料電池触媒を修復することができる。   In the method for repairing a fuel cell catalyst according to the present invention, in a deteriorated catalyst layer, Pt decreased due to elution can be replenished to repair the catalyst layer. The fuel cell catalyst repair device of the present invention connects a liquid supply path and a liquid discharge path to a fuel cell, and can easily repair the fuel cell catalyst by a liquid supply operation and a discharge operation.

本発明の燃料電池触媒の修復方法は、劣化電極側のカーボンブラック担体上にPtイオンを付着させる第1の工程と、該劣化電極に対する反対電極に水素を供給し、前記両電極間に電圧を印加してカーボンブラック担体上に付着したPtイオンをPtに還元する第2の工程とを含む。劣化電極は、通常カソード電極であるので、第1の工程は、カソード電極側のカーボンブラック担体上にPtイオンを付着させる。   The method for repairing a fuel cell catalyst according to the present invention includes a first step of attaching Pt ions on a carbon black support on the deteriorated electrode side, supplying hydrogen to an opposite electrode to the deteriorated electrode, and applying a voltage between the two electrodes. And a second step of reducing Pt ions applied to the carbon black support to Pt. Since the deteriorated electrode is usually a cathode electrode, the first step deposits Pt ions on the carbon black carrier on the cathode electrode side.

カーボンブラック担体上にPtイオンを付着させる方法としては、Pt化合物の水溶液をカソード電極側に供給する方法が望ましい。Pt化合物の水溶液としては、代表的には、Pt(NH34Cl2 が挙げられるが、この他にPtCl2 、Pt(CN)2、PtO2 、H2PtCl6等も使用可能であるが、扱いやすさ、水への溶解のしやすさの点から特にH2PtCl6が好ましい。 As a method for depositing Pt ions on the carbon black support, a method of supplying an aqueous solution of a Pt compound to the cathode electrode side is desirable. A typical example of the aqueous solution of the Pt compound is Pt (NH 3 ) 4 Cl 2, but PtCl 2 , Pt (CN) 2 , PtO 2 , H 2 PtCl 6, etc. can also be used. However, H 2 PtCl 6 is particularly preferred from the viewpoint of ease of handling and ease of dissolution in water.

劣化電極側に供給されるPt化合物の水溶液の種類、供給量等は、劣化電極の触媒層の劣化度に応じてPt化合物の濃度調整をすることが好ましい。   It is preferable to adjust the concentration of the Pt compound according to the degree of deterioration of the catalyst layer of the deteriorated electrode, such as the type and supply amount of the aqueous solution of the Pt compound supplied to the deteriorated electrode.

図1はこのときの状態を概念的に示す説明図であって、〈A)は触媒層のカーボンブラック担体10表面に供給されたPt化合物の水溶液,例えば、Pt(NH34Cl212が流下している状態を示し、(B)はカーボンブラック担体10上にPt(NH34 2+からなるPtイオン14が付着した状態を示している。 FIG. 1 is an explanatory view conceptually showing the state at this time. <A) is an aqueous solution of a Pt compound supplied to the surface of the carbon black support 10 of the catalyst layer, for example, Pt (NH 3 ) 4 Cl 2 12. (B) shows a state in which Pt ions 14 made of Pt (NH 3 ) 4 2+ are attached on the carbon black support 10.

そして、カソード電極側の触媒層を流下して外部に排出されたPt(NH34Cl2等のPt化合物の水溶液は、再利用することができる。その後、必要に応じて触媒層に隣接するセパレータ,拡散層等に水を流し、セパレータ,拡散層等に付着した余分なPt化合物の水溶液を除去することができる。除去されたPt(NH34Cl2等のPt化合物の水溶液は,再利用することができると共にセパレータ,拡散層の本来の性能を維持することができる。 The aqueous solution of Pt compound such as Pt (NH 3 ) 4 Cl 2 flowing down the catalyst layer on the cathode electrode side and discharged to the outside can be reused. Thereafter, if necessary, water is allowed to flow through a separator, a diffusion layer or the like adjacent to the catalyst layer, and an excess aqueous solution of the Pt compound attached to the separator, the diffusion layer or the like can be removed. The removed aqueous solution of the Pt compound such as Pt (NH 3 ) 4 Cl 2 can be reused and the original performance of the separator and the diffusion layer can be maintained.

次に本発明は、両電極間に電圧を印加してカーボンブラック担体上に付着したPtイオンをPtに還元する第2の工程とを有する。この工程は、図2に示すように、図2(A)において、劣化電極20側の触媒層中でカーボンブラック担体上に付着したPt(NH34 2+等のPtイオンは、図2〈B)に示すように、劣化電極20と反対側の電極22に水素ないし水素を含むガスを供給して2次電池24によって両電極間に電圧を印加する。 Next, the present invention includes a second step of applying a voltage between both electrodes to reduce Pt ions attached on the carbon black support to Pt. As shown in FIG. 2, in this step, in FIG. 2A, Pt ions such as Pt (NH 3 ) 4 2+ adhering to the carbon black support in the catalyst layer on the deteriorated electrode 20 side are as shown in FIG. As shown in <B>, hydrogen or a gas containing hydrogen is supplied to the electrode 22 on the side opposite to the deteriorated electrode 20, and a voltage is applied between the electrodes by the secondary battery 24.

これによってカーボンブラック担体上に付着したPt(NH34 2+等のPtイオンは、還元されてPt微粒子となる。図2〈B)においては、Pt化合物の水溶液としてPt(NH34Cl2を用いた場合の還元反応を示した。すなわち、Pt(NH34 2++2e-→Pt+4NH3によりPtの微粒子が生成される。 As a result, Pt ions such as Pt (NH 3 ) 4 2+ adhering to the carbon black carrier are reduced to form Pt fine particles. FIG. 2 (B) shows the reduction reaction when Pt (NH 3 ) 4 Cl 2 is used as the aqueous solution of the Pt compound. That is, fine particles of Pt are generated by Pt (NH 3 ) 4 2+ + 2e → Pt + 4NH 3 .

水素ガスによる還元反応は、還元温度、還元時間等を調整する必要があるが還元時間、還元温度によっては、固体高分子電解質を劣化させるおそれもある。本発明において、水素または水素含有ガスを供給しながら、2次電池を介して両電極間に電圧を印加することによって還元を行う工程のため、固体高分子電解質を劣化させるおそれがない。   In the reduction reaction with hydrogen gas, it is necessary to adjust the reduction temperature, the reduction time, and the like. However, depending on the reduction time and the reduction temperature, the solid polymer electrolyte may be deteriorated. In the present invention, since the reduction is performed by applying a voltage between the two electrodes via the secondary battery while supplying hydrogen or a hydrogen-containing gas, there is no possibility of degrading the solid polymer electrolyte.

両電極間に印加される電圧は、+0.1〜−2.0Vが好ましく、より好ましくは−0.2〜−0.1V、さらに好ましくは−0.4〜−0.8Vである。この電圧が+0.1Vよりも高いと、白金が析出しない等の弊害があり、また、−2.0Vよりも低いと、各材料の還元劣化、水素発生等の問題が生じやすい。両電極間に電圧が印加される時間は、劣化触媒層の劣化の程度、すなわち溶出されたPtの量等を配慮して選定すべきであるが、例えば、1〜60minが好ましく、5〜20minがより好ましい。   The voltage applied between both electrodes is preferably +0.1 to -2.0 V, more preferably -0.2 to -0.1 V, and still more preferably -0.4 to -0.8 V. When this voltage is higher than +0.1 V, there is a problem such as platinum does not precipitate, and when it is lower than −2.0 V, problems such as reduction deterioration of each material and generation of hydrogen tend to occur. The time during which the voltage is applied between both electrodes should be selected in consideration of the degree of deterioration of the deteriorated catalyst layer, that is, the amount of eluted Pt, but is preferably 1 to 60 minutes, for example, 5 to 20 minutes. Is more preferable.

次に劣化電極側に酸性水溶液を流して固体高分子電解膜や触媒層中に残存するPt(NH34Cl2等のPt化合物の水溶液を除去することができる。ここで、酸性水溶液としては、固体高分子電解膜の分解・損傷等を考慮すると、硫酸水溶液、リン酸水溶液、過塩素酸水溶液、塩酸水溶液等を挙げることができる。これらのなかでアニオンの吸着、アニオンの安定性の点から硫酸水溶液が最も好ましい。酸性水溶液の濃度は、0.01〜2.0Mが好ましく、より好ましくは0.05〜1.0Mである。劣化電極側にから排出される酸性水溶液は、そのまま排出してもよいし、回収して再利用することもできる。 Next, an acidic aqueous solution is allowed to flow to the deteriorated electrode side to remove an aqueous solution of a Pt compound such as Pt (NH 3 ) 4 Cl 2 remaining in the solid polymer electrolyte membrane or the catalyst layer. Here, examples of the acidic aqueous solution include a sulfuric acid aqueous solution, a phosphoric acid aqueous solution, a perchloric acid aqueous solution, and a hydrochloric acid aqueous solution in consideration of decomposition and damage of the solid polymer electrolyte membrane. Among these, an aqueous sulfuric acid solution is most preferable from the viewpoint of anion adsorption and anion stability. The concentration of the acidic aqueous solution is preferably 0.01 to 2.0M, more preferably 0.05 to 1.0M. The acidic aqueous solution discharged from the deteriorated electrode side can be discharged as it is, or can be recovered and reused.

以上の工程によって、カーボンブラック担体から溶出によって失われたPt微粒子は、カーボンブラック担体上に新たにPt微粒子が担持されて触媒層が修復される。   Through the above steps, the Pt fine particles lost by elution from the carbon black support are newly supported on the carbon black support to restore the catalyst layer.

図3は,本発明の燃料電極触媒の修復装置の好ましい実施の形態を示す概略的構成図である。図3に示す修復装置は、燃料電池30とカソード電極の一方側に連絡された液供給路32は切り替え弁34、ポンプ36,切り替え弁38を介してそれぞれ水容器40、Pt化合物水溶液容器42、酸性水溶液容器44を接続されている。また、水容器40、Pt化合物水溶液容器42、酸性水溶液容器44は、切り替え弁46及び切り替え弁48を介して液排出路50は燃料電池30のカソード電極の他方側と接続されている。   FIG. 3 is a schematic configuration diagram showing a preferred embodiment of the fuel electrode catalyst repair device of the present invention. In the repairing device shown in FIG. 3, the liquid supply path 32 connected to one side of the fuel cell 30 and the cathode electrode has a water container 40, a Pt compound aqueous solution container 42, a switching valve 34, a pump 36, and a switching valve 38, respectively. An acidic aqueous solution container 44 is connected. The liquid container 50, the Pt compound aqueous solution container 42, and the acidic aqueous solution container 44 are connected to the other side of the cathode electrode of the fuel cell 30 through the switching valve 46 and the switching valve 48.

この修復装置においては、カソード電極側の触媒層が劣化した場合、ポンプ36の作動によってPt化合物の水容器42からPt化合物の水溶液が切り替え弁34を介してカソード電極側の触媒層に導入される。所定時間後、切り替え弁34の作動によって水容器40から水がカソード電極側の触媒層に導入される。次いで、所定時間後、切り替え弁34の作動によって酸性水溶液容器44から酸性水溶液がカソード電極側の触媒層に導入される。また、各操作の間には、それぞれの液をより完全に除去するために、各液がカソード電極側の触媒層に導入された後、それぞれ切り替え弁38の作動によってカソード電極側の触媒層に空気が導入され、触媒層が乾燥されて液がより完全に除去される。   In this repair device, when the catalyst layer on the cathode electrode side deteriorates, an aqueous solution of Pt compound is introduced from the Pt compound water container 42 to the cathode electrode side catalyst layer through the switching valve 34 by the operation of the pump 36. . After a predetermined time, water is introduced from the water container 40 into the catalyst layer on the cathode electrode side by the operation of the switching valve 34. Next, after a predetermined time, the acidic aqueous solution is introduced from the acidic aqueous solution container 44 into the catalyst layer on the cathode electrode side by the operation of the switching valve 34. In addition, during each operation, in order to remove each liquid more completely, each liquid is introduced into the catalyst layer on the cathode electrode side, and then is switched to the catalyst layer on the cathode electrode side by operating the switching valve 38. Air is introduced and the catalyst layer is dried to remove the liquid more completely.

なお、これら一連の操作において、カソード電極側の触媒層から排出されたそれぞれの液は、液排出路50を経て該修復装置外に排出されてもよいが、図に示すように、切り替え弁48、切り替え弁46の作動によって再び各容器に戻され、再利用することもできる。   In these series of operations, each liquid discharged from the catalyst layer on the cathode electrode side may be discharged out of the repair device via the liquid discharge path 50, but as shown in the figure, the switching valve 48 is used. Then, it can be returned to each container again by the operation of the switching valve 46 and reused.

以下、本発明の実施例について説明する。
<触媒層構成>
40質量%Pt担持密度のカーボン(田中貴金属工業(株)製)
5質量%Nafion溶液(Aldrich製)
Nafionとカーボンの比率=質量比1.0
Examples of the present invention will be described below.
<Catalyst layer configuration>
40% by mass Pt supported carbon (Tanaka Kikinzoku Kogyo Co., Ltd.)
5% by mass Nafion solution (manufactured by Aldrich)
Ratio of Nafion to carbon = mass ratio 1.0

<修復操作>
[Pt(NH34Cl2 1g 、水30ml]を流し込み
電圧−0.5Vを10min印加(対極に水素500cc/min)
0.1M H2SO4で置換 30min
蒸留水で置換30min
<Repair operation>
[Pt (NH 3 ) 4 Cl 2 1 g, water 30 ml] was poured, and a voltage of −0.5 V was applied for 10 min (hydrogen at the counter electrode 500 cc / min)
Replacement with 0.1 MH 2 SO 4 30 min
Replacement with distilled water for 30 min

上記の構成からなる触媒層を上記の修復操作によって修復した。
このとき修復(再生)前後の触媒層による電極のサイクリックボルタモグラフを図4に示す。
<測定条件>
アノード:水素500cc/min 常圧、
カソード:窒素500cc/min 常圧、
加湿:アノード60℃、カソード60℃
セル温度:40℃
ポテンショ・ガルバノスタットを使用
アノード側に対し、カソード側に0.05〜1.4V印加
操作速度:50mV/s
The catalyst layer having the above structure was repaired by the repairing operation.
FIG. 4 shows a cyclic voltammogram of the electrode by the catalyst layer before and after the repair (regeneration) at this time.
<Measurement conditions>
Anode: Hydrogen 500cc / min normal pressure,
Cathode: nitrogen 500 cc / min normal pressure,
Humidification: anode 60 ° C, cathode 60 ° C
Cell temperature: 40 ° C
Potentio galvanostat is used. 0.05 to 1.4 V is applied to the cathode side with respect to the anode side. Operating speed: 50 mV / s

図4から本発明の修復方法によれば、劣化した触媒層は、修復(再生)後は、新たなPtの生成によって出力電流が大きいことを示していることが判明した。   According to the repair method of the present invention from FIG. 4, it was found that the deteriorated catalyst layer shows a large output current due to the generation of new Pt after repair (regeneration).

本発明の燃料電池触媒の修復方法におけるPt化合物の水溶液を触媒層に供給する際のPtの挙動を原理的に示す概略的構成図である。It is a schematic block diagram which shows in principle the behavior of Pt at the time of supplying the aqueous solution of Pt compound to a catalyst layer in the restoration | repair method of the fuel cell catalyst of this invention. 本発明の燃料電池触媒の修復方法におけるPt化合物の水溶液を触媒層に供給する際のPt成分の付着、Pt成分の還元を示す説明図である。It is explanatory drawing which shows the adhesion of Pt component at the time of supplying the aqueous solution of Pt compound to a catalyst layer in the restoration | repair method of the fuel cell catalyst of this invention, and reduction | restoration of a Pt component. 本発明の燃料電池触媒の修復装置の好ましい一実施の形態を示す概略的構成図である。It is a schematic block diagram which shows one preferable embodiment of the repair apparatus of the fuel cell catalyst of this invention. 実施例の測定結果を示すグラフである。It is a graph which shows the measurement result of an Example. 従来の固体高分子型燃料電池におけるPtのシンタリングと溶出の状態を図解的に示す図である。It is a figure which shows the state of sintering and elution of Pt in the conventional polymer electrolyte fuel cell schematically.

符号の説明Explanation of symbols

30 燃料電池
32 液供給路
34 切り替え弁
36 ポンプ
38 切り替え弁
40 水容器
42 Pt化合物水溶液容器
44 酸性水溶液容器
46 切り替え弁
48 切り替え弁
50 液排出路
30 fuel cell 32 liquid supply path 34 switching valve 36 pump 38 switching valve 40 water container 42 Pt compound aqueous solution container 44 acidic aqueous solution container 46 switching valve 48 switching valve 50 liquid discharge path

Claims (7)

劣化電極側のカーボンブラック担体上にPtイオンを付着させる第1の工程と、該劣化電極に対する反対電極に水素または水素含有ガスを供給し、前記両電極間に電圧を印加してカーボンブラック担体上に付着したPtイオンをPtに還元する第2の工程とを含むことを特徴とする燃料電池触媒の修復方法。   A first step of depositing Pt ions on the carbon black carrier on the deteriorated electrode side, supplying hydrogen or a hydrogen-containing gas to the opposite electrode to the deteriorated electrode, and applying a voltage between the two electrodes to And a second step of reducing Pt ions attached to the Pt to Pt. 触媒層にPt化合物の水溶液を供給し、Pt化合物の水溶液から発生するPtイオンをカーボンブラック担体上に付着させることを特徴とする請求項1に記載の燃料電池触媒の修復方法。   2. The method for repairing a fuel cell catalyst according to claim 1, wherein an aqueous solution of a Pt compound is supplied to the catalyst layer, and Pt ions generated from the aqueous solution of the Pt compound are deposited on the carbon black support. 前記Pt化合物の水溶液が、Pt(NH34Cl2であって、前記PtイオンがPt(NH34 2+であることを特徴とする請求項2に記載の燃料電池触媒の修復方法。 3. The method of repairing a fuel cell catalyst according to claim 2, wherein the aqueous solution of the Pt compound is Pt (NH 3 ) 4 Cl 2 , and the Pt ion is Pt (NH 3 ) 4 2+. . 第1の工程後に、前記劣化電極側の触媒層に隣接する拡散層及び/またはセパレータに水を供給して拡散層及び/またはセパレータをに付着したPtイオンを除去することを特徴とする請求項1乃至請求項3のいずれか1項に記載の燃料電池触媒の修復方法。   The Pt ions attached to the diffusion layer and / or separator are removed by supplying water to the diffusion layer and / or separator adjacent to the catalyst layer on the deteriorated electrode side after the first step. The method for repairing a fuel cell catalyst according to any one of claims 1 to 3. 第2の工程後に劣化電極側の触媒層に酸性水溶液を供給して触媒層およびこれに隣接する高分子電解質膜からPt化合物の水溶液を除去することを特徴とする請求項1乃至請求項3のいずれか1項に記載の燃料電池触媒の修復方法。   The aqueous solution of Pt compound is removed from the catalyst layer and the polymer electrolyte membrane adjacent thereto by supplying an acidic aqueous solution to the catalyst layer on the deteriorated electrode side after the second step. The method for repairing a fuel cell catalyst according to any one of the preceding claims. 燃料電池のカソード電極側に液供給路と液排出路をそれぞれ連結し、液供給路に水、Pt化合物の水溶液、および酸性水溶液のいずれを順次供給するための切り替え手段を備えたことを特徴とする燃料電池触媒の修復装置。   A liquid supply path and a liquid discharge path are connected to the cathode electrode side of the fuel cell, respectively, and switching means for sequentially supplying any of water, an aqueous solution of a Pt compound, and an acidic aqueous solution to the liquid supply path is provided. To repair the fuel cell catalyst. 前記液排出路に燃料電池のカソード側から排出される液を少なくとも水、Pt化合物の水溶液、および酸性水溶液のいずれを戻すための切り替え手段を備えたこと請求項6に記載の燃料電池触媒の修復装置。   The fuel cell catalyst repair according to claim 6, further comprising switching means for returning at least one of water, an aqueous solution of a Pt compound, and an acidic aqueous solution to the liquid discharged from the cathode side of the fuel cell in the liquid discharge path. apparatus.
JP2004090557A 2004-03-25 2004-03-25 Method of restoring fuel cell catalyst and restoring apparatus Pending JP2005276711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090557A JP2005276711A (en) 2004-03-25 2004-03-25 Method of restoring fuel cell catalyst and restoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090557A JP2005276711A (en) 2004-03-25 2004-03-25 Method of restoring fuel cell catalyst and restoring apparatus

Publications (1)

Publication Number Publication Date
JP2005276711A true JP2005276711A (en) 2005-10-06

Family

ID=35176132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090557A Pending JP2005276711A (en) 2004-03-25 2004-03-25 Method of restoring fuel cell catalyst and restoring apparatus

Country Status (1)

Country Link
JP (1) JP2005276711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108451A1 (en) * 2007-03-01 2008-09-12 Toyota Jidosha Kabushiki Kaisha A fuel cell system, electrode catalyst degradation judgment method, and moving body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108451A1 (en) * 2007-03-01 2008-09-12 Toyota Jidosha Kabushiki Kaisha A fuel cell system, electrode catalyst degradation judgment method, and moving body
US8900768B2 (en) 2007-03-01 2014-12-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system, electrode catalyst degradation judgment method, and moving body

Similar Documents

Publication Publication Date Title
US6517962B1 (en) Fuel cell anode structures for voltage reversal tolerance
Cloutier et al. Electrolytic production of hydrogen from aqueous acidic methanol solutions
KR101601378B1 (en) Fuel cell management method
JP6487632B2 (en) Fuel cell performance recovery method using polar substitution
JP2006054165A (en) Polymer fuel electrolyte cell and manufacturing method of polymer electrolyte fuel cell
US9083037B2 (en) Fuel cell including cathode electrode using iron redox couple
CN101171711A (en) Supports for fuel cell catalysts
JP2007287415A (en) Fuel cell
JP2015079729A (en) Performance recovery method of fuel cell stack
JP2008311064A (en) Fuel cell system and activation method of fuel cell
KR101575415B1 (en) Performance recovery method for fuel cell stack
JP4336182B2 (en) Operation method of fuel cell system and fuel cell system
JP7204815B2 (en) Reversible Shunt for Overcharge Protection of Polymer Electrolyte Membrane Fuel Cells
JP2009289681A (en) Method of cleaning fuel cell
CN105392925B (en) Hydrogen reclaimer and operating method
JP2007018858A (en) Fuel cell system
KR20150050289A (en) Method for recovery of fuel cell performance by using electrode reversal
JP2005340022A (en) Aging method and manufacturing method of fuel cell
JP2004172106A (en) Operation method of fuel cell system and fuel cell system
JP2005276711A (en) Method of restoring fuel cell catalyst and restoring apparatus
JPWO2005006477A1 (en) Operation method of fuel cell
JP2017103216A (en) Methods and processes to recover voltage loss due to anode contamination
JP6981883B2 (en) Fuel cell aging method
JP6907923B2 (en) Aging method for polymer electrolyte fuel cells
JP2007335268A (en) Fuel cell system and operation method of fuel cell