JP2005276306A - Polarizing beam splitter, its manufacturing method, and optical pickup device - Google Patents

Polarizing beam splitter, its manufacturing method, and optical pickup device Download PDF

Info

Publication number
JP2005276306A
JP2005276306A JP2004087050A JP2004087050A JP2005276306A JP 2005276306 A JP2005276306 A JP 2005276306A JP 2004087050 A JP2004087050 A JP 2004087050A JP 2004087050 A JP2004087050 A JP 2004087050A JP 2005276306 A JP2005276306 A JP 2005276306A
Authority
JP
Japan
Prior art keywords
beam splitter
optical
film
polarizing beam
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004087050A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kamibayashi
浩行 上林
Takeshi Maro
毅 麿
Yoshiaki Minagawa
良明 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004087050A priority Critical patent/JP2005276306A/en
Publication of JP2005276306A publication Critical patent/JP2005276306A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarizing beam splitter having a film structure capable of reducing a ripple in a transmission bandpass of a P polarization. <P>SOLUTION: This polarizing beam splitter has a multi-layer film (polarizing beam splitter film 4) formed by being alternatively laminated with high refractive films 2 and low refractive films 3 on an optical substrate 1, and it reflects a light of a 1st light source 6 incident to a surface having the multi-layer film from an air face and transmits a light of a 2nd light source 7 incident to an optical substrate surface opposite to the above surface having the multi-layer film. Further, the number of laminated layers N of the polarizing beam splitter film 4 is in the range of 16≤N≤40, and a distribution of a ratio of optical film thickness D/M (M: average thickness of optical films of all laminated layer films, D: thickness of optical film of each layer) is in the range of 0.5≤D/M≤2.5, and an average surface roughness is settled to ≤0.50nm, which is obtained by measuring such measuring points that a distance between the measuring points is ≤100nm with respect to a surface of the side arranging the polarizing beam splitter film 4 of the optical substrate 1 thereon. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、誘電体多層膜からなる偏光ビームスプリッタ及びその製造方法並びに光ピックアップ装置に関する。   The present invention relates to a polarizing beam splitter made of a dielectric multilayer film, a method for manufacturing the same, and an optical pickup device.

偏光ビームスプリッタには、2つの直角プリズムの斜面の間に誘電体多層膜を挟んで立方体とするプリズム型と、誘電体多層膜を平面状の光学基板上に備えたプレート型の2種類が一般的に知られている。これらの偏光ビームスプリッタは誘電体多層膜の干渉を利用して入射光を効率良くP偏光とS偏光に分離することが可能である。また、偏光ビームスプリッタの誘電体多層膜を構成する高屈折率膜と低屈折率膜を組み合わせることによって、使用する波長帯域を変化させることが可能である。   There are two general types of polarizing beam splitters: a prism type in which a dielectric multilayer film is sandwiched between inclined surfaces of two right-angle prisms, and a plate type in which a dielectric multilayer film is provided on a flat optical substrate. Known. These polarizing beam splitters can efficiently separate incident light into P-polarized light and S-polarized light by using interference of the dielectric multilayer film. Further, the wavelength band to be used can be changed by combining a high refractive index film and a low refractive index film constituting the dielectric multilayer film of the polarization beam splitter.

偏光ビームスプリッタは、エッジフィルタやバンドパスフィルタとして使用できるため、光ディスクのピックアップ、投射型表示装置などの光学機器、波長多重技術を用いた通信装置等に利用されている。例えば、プレート型の偏光ビームスプリッタの用途として、特許文献1に開示されている光ピックアップ装置がある。これは光ディスクから反射してきた信号光を所定の入射角度で偏光ビームスプリッタに入射させ、前記信号光の偏光ビームスプリッタを透過した光と反射された光量とを比較することにより、記録された信号を再生するというものである。   Since the polarization beam splitter can be used as an edge filter or a bandpass filter, it is used for optical devices such as optical disk pickups, projection display devices, communication devices using wavelength multiplexing technology, and the like. For example, as an application of a plate-type polarizing beam splitter, there is an optical pickup device disclosed in Patent Document 1. This is because the signal light reflected from the optical disk is incident on the polarization beam splitter at a predetermined incident angle, and the recorded signal is compared by comparing the light transmitted through the polarization beam splitter with the reflected light amount. It is to play.

このような光ピックアップ装置においては、CD用の780nm近傍の波長やDVD用の660nm近傍の波長が用いられてきたが、記録密度の向上のためにピックアップ波長をより短波長としたものが必要となっており、今後、DVDのピックアップ光源に使用される波長660nmよりもさらに短波長である400nm近傍の波長帯域を使用したものが多くなることが予想される。これにともなって、光ピックアップで用いられる偏光ビームスプリッタは、対象とする波長をより短波長にしたものが必要であり、さらに使用できる波長帯域が広いものが望ましい。従って、偏光ビームスプリッタの特性としては、反射帯域と透過帯域に生じるリップルが小さいほど望ましく、透過帯域と反射帯域は広いほど望ましいものとなる。   In such an optical pickup device, a wavelength in the vicinity of 780 nm for CD and a wavelength in the vicinity of 660 nm for DVD have been used. However, in order to improve the recording density, it is necessary to make the pickup wavelength shorter. In the future, it is expected that the number using a wavelength band near 400 nm, which is shorter than the wavelength of 660 nm used for a DVD pickup light source, will increase. Along with this, the polarizing beam splitter used in the optical pickup needs to have a shorter target wavelength, and preferably has a wider usable wavelength band. Therefore, as the characteristics of the polarizing beam splitter, the smaller the ripple generated in the reflection band and the transmission band, the better, and the wider the transmission band and the reflection band, the more desirable.

一般に、偏光ビームスプリッタを構成する光学薄膜は、波長が短くなるにつれて屈折率の変化の割合が大きくなる波長分散特性を有していることに起因して、短波長領域になるにつれてリップルが大きくなって平坦な透過特性が得られにくい傾向にあることが知られている。このため、従来からリップルを低くする手段として、光学薄膜の材料の選択だけでなく、薄膜を積層する光学基板の平均表面粗さを平滑化することが考えられている。
特開平5−266501号公報
In general, the optical thin film constituting the polarizing beam splitter has a wavelength dispersion characteristic in which the rate of change in the refractive index increases as the wavelength becomes shorter, so that the ripple increases as the wavelength becomes shorter. It is known that flat transmission characteristics tend to be difficult to obtain. For this reason, conventionally, as means for reducing the ripple, not only the selection of the material of the optical thin film but also the smoothing of the average surface roughness of the optical substrate on which the thin film is laminated has been considered.
Japanese Patent Laid-Open No. 5-266501

しかしながら、光ピックアップ装置などのように温度変化時におけるレーザー波長の光強度の変化に対する条件が厳しいものに対しては、上述した表面粗度の平滑化だけではリップルの低減が不十分であるという課題があった。   However, the problem that the reduction in ripple is insufficient only by the above-described smoothing of the surface roughness is required for a severe condition such as an optical pickup device that changes the light intensity of the laser wavelength at the time of temperature change. was there.

また、プレート型偏光ビームスプリッタは、プリズム型偏光ビームスプリッタのように偏光ビームスプリッタ膜への光の入射媒質が光学基板となるものではなく、偏光ビームスプリッタ膜への入射媒質は空気となる。このように、光の入射媒質が異なると従来のプリズム型偏光ビームスプリッタ膜と同じ構成の膜を平面状の光学基板に積層しても、その特性はプリズム型偏光ビームスプリッタと同じにはならない。   Further, unlike the prism-type polarizing beam splitter, the plate-type polarizing beam splitter does not have a light incident medium to the polarizing beam splitter film as an optical substrate, and the incident medium to the polarizing beam splitter film is air. As described above, when the light incident medium is different, even if a film having the same configuration as that of the conventional prism-type polarization beam splitter film is laminated on the planar optical substrate, the characteristics are not the same as those of the prism-type polarization beam splitter.

本発明は、上述の課題を解決するためになされたものであり、P偏光の透過帯域のリップルを低減することができる膜構造を持つ偏光ビームスプリッタを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a polarizing beam splitter having a film structure that can reduce ripple in the transmission band of P-polarized light.

本発明にかかる偏光ビームスプリッタは、光学基板上に少なくとも2種類の屈折率の異なる光学薄膜を交互に積層してなる多層膜を有しており、前記多層膜を有する面に空気面から入射する第一の波長の光を反射し、前記多層膜を有する面とは反対の光学基板面に入射する第二の波長の光を透過する偏光ビームスプリッタであって、前記多層膜の積層数Nは16≦N≦40の範囲内であり、前記多層膜を構成する全ての積層膜の光学膜厚平均をM、各層の光学膜厚をDとしたとき、光学膜厚比D/Mの分布は0.5≦D/M≦2.5の範囲内であり、前記光学薄膜を設ける側の表面に対して測定点間距離が100nm以下の測定点を測定することにより得られる平均表面粗さが0.50nm以下であるものである。このように構成することにより、P偏光の透過帯域のリップルを低減することができる。   The polarizing beam splitter according to the present invention has a multilayer film formed by alternately laminating at least two types of optical thin films having different refractive indexes on an optical substrate, and enters the surface having the multilayer film from the air surface. A polarizing beam splitter that reflects light of a first wavelength and transmits light of a second wavelength that is incident on an optical substrate surface opposite to the surface having the multilayer film, wherein the number N of the multilayer films is The distribution of the optical film thickness ratio D / M is 16 ≦ N ≦ 40, where M is the average optical film thickness of all the laminated films constituting the multilayer film, and D is the optical film thickness of each layer. The average surface roughness obtained by measuring the measurement points within the range of 0.5 ≦ D / M ≦ 2.5 and having a distance between measurement points of 100 nm or less with respect to the surface on the side where the optical thin film is provided. It is 0.50 nm or less. With this configuration, it is possible to reduce ripple in the transmission band of P-polarized light.

上述の偏光ビームスプリッタは、前記第一の波長の光の反射光と前記多層膜による面の法線とのなす角、および前記第二の波長の光の透過光と前記多層膜による面の法線とのなす角が共に40度以上60度以下となる状態で使用されることが望ましい。   The polarization beam splitter described above includes an angle formed between the reflected light of the first wavelength light and the normal of the surface by the multilayer film, and the transmitted light of the second wavelength and the surface method by the multilayer film. It is desirable that the angle formed by the line is 40 degrees or more and 60 degrees or less.

また、前記光学基板の裏面に、前記第一の波長の光および前記第二の光の波長の光の反射率が共に略ゼロになる反射防止膜を有するようにしてもよい。これにより、入射した光が光学基板1の裏面で反射されることによって発生する挿入損失の増加を防ぐことができる。   Moreover, you may make it have the antireflection film from which the reflectance of the light of the said 1st wavelength and the light of the said 2nd light becomes substantially zero on the back surface of the said optical board | substrate. Thereby, it is possible to prevent an increase in insertion loss that occurs when incident light is reflected by the back surface of the optical substrate 1.

他方、本発明にかかる光ピックアップ装置は、少なくとも2つの波長の異なる光源と、当該光源のうちの少なくとも1つの光源からの光を反射して、別の少なくとも1つの光源からの光を透過する偏光ビームスプリッタとを有する光ピックアップ装置であって、前記偏光ビームスプリッタは、前記反射光と偏光ビームスプリッタの有するフィルタ面の法線とのなす角、および前記透過光と偏光ビームスプリッタの有するフィルタ面の法線とのなす角が共に40度以上60度以下となるよう配置され、前記偏光ビームスプリッタの有するフィルタ面は、平面状の光学基板上に少なくとも2種類の屈折率の異なる光学薄膜を交互に積層してなる多層膜であり、前記多層膜の積層数Nは16≦N≦40の範囲内であり、前記多層膜を構成する全ての積層膜の光学膜厚平均をM、各層の光学膜厚をDとしたとき、光学膜厚比D/Mの分布は0.5≦D/M≦2.5の範囲内であって、前記光学薄膜を設ける側の表面に対して測定点間距離が100nm以下の測定点を測定することにより得られる平均表面粗さが0.50nm以下であるものである。これにより、2以上の記録方式に対する光ピックアップを行うための2以上の波長の異なる光源を有する光ピックアップ装置において、使用可能な波長帯域を広げることができる。   On the other hand, an optical pickup device according to the present invention includes at least two light sources having different wavelengths and polarized light that reflects light from at least one of the light sources and transmits light from at least one other light source. An optical pickup device having a beam splitter, wherein the polarization beam splitter includes an angle formed by the reflected light and a normal line of a filter surface of the polarization beam splitter, and a filter surface of the transmission light and the polarization beam splitter. The polarizing surfaces of the polarizing beam splitter are alternately arranged with at least two types of optical thin films having different refractive indexes on a planar optical substrate. A multilayer film formed by laminating, and the number N of the multilayer films is in a range of 16 ≦ N ≦ 40, and all of the multilayer films are formed. When the average optical film thickness of the layer film is M and the optical film thickness of each layer is D, the distribution of the optical film thickness ratio D / M is within the range of 0.5 ≦ D / M ≦ 2.5, The average surface roughness obtained by measuring a measurement point having a distance between measurement points of 100 nm or less with respect to the surface on the side where the optical thin film is provided is 0.50 nm or less. Thereby, in an optical pickup device having two or more light sources having different wavelengths for performing optical pickup for two or more recording methods, the usable wavelength band can be expanded.

さらに、本発明にかかる偏光ビームスプリッタの製造方法は、平面状の光学基板の少なくとも片面に対して測定点間距離が100nm以下の測定点を測定することにより得られる平均表面粗さが0.50nm以下となるまで平滑化する第一工程と、前記第一工程で平滑化した光学基板の面上に少なくとも2種類の屈折率の異なる光学薄膜を交互に積層する際に、前記光学薄膜の総積層数Nは16≦N≦40の範囲内となり、全ての積層膜の光学膜厚平均をM、各層の光学膜厚をDとしたとき、光学膜厚比D/Mの分布が0.5≦D/M≦2.5の範囲内となるよう多層膜を積層する第二工程とを含むものである。この方法により、P偏光の透過帯域のリップルを低減した膜構造を有する偏光ビームスプリッタを製造することができる。   Furthermore, the polarizing beam splitter manufacturing method according to the present invention has an average surface roughness of 0.50 nm obtained by measuring a measurement point having a distance between measurement points of 100 nm or less with respect to at least one surface of a planar optical substrate. The first step of smoothing to the following, and the total lamination of the optical thin film when alternately laminating at least two types of optical thin films having different refractive indexes on the surface of the optical substrate smoothed in the first step The number N falls within the range of 16 ≦ N ≦ 40. When the average optical film thickness of all the laminated films is M and the optical film thickness of each layer is D, the distribution of the optical film thickness ratio D / M is 0.5 ≦. And a second step of laminating the multilayer film so as to be within the range of D / M ≦ 2.5. By this method, it is possible to manufacture a polarization beam splitter having a film structure in which the ripple in the transmission band of P-polarized light is reduced.

本発明により、P偏光の透過帯域のリップルを低減することができる膜構造を持つ偏光ビームスプリッタを提供することができる。   According to the present invention, it is possible to provide a polarizing beam splitter having a film structure that can reduce ripple in the transmission band of P-polarized light.

発明の実施の形態1.
図1は本実施の形態にかかる偏光ビームスプリッタ100の断面を示した模式図である。偏光ビームスプリッタ膜4は、平行平面状の光学基板1上に高屈折率膜2と低屈折率膜3が交互に積層されたもので、N層の薄膜を積層することにより、所望の光学特性条件を満足するように各層の膜厚が調整されたものである。なお、図1は本発明を分かり易くするために表した模式図であるため、そのサイズ等は実際と異なったものとしている。
Embodiment 1 of the Invention
FIG. 1 is a schematic diagram showing a cross section of a polarizing beam splitter 100 according to the present embodiment. The polarizing beam splitter film 4 is obtained by alternately laminating a high refractive index film 2 and a low refractive index film 3 on a parallel plane optical substrate 1, and by laminating N thin films, desired optical characteristics are obtained. The film thickness of each layer is adjusted so as to satisfy the conditions. Note that FIG. 1 is a schematic diagram for ease of understanding of the present invention, and therefore the size and the like are different from actual ones.

図1に示すように、平面状の光学基板1の屈折率とその直上に配置される膜の屈折率は、その屈折率差が大きくなるように構成するのが好ましい。なお、図1では平面状の光学基板1の直上に高屈折率膜2が形成され、最終層を低屈折率膜3とした構造になっているが、平面状の光学基板1の直上は低屈折率膜3でも良く、最終層は高屈折率膜2とした構造でも良い。   As shown in FIG. 1, it is preferable that the refractive index of the planar optical substrate 1 and the refractive index of the film disposed immediately above the refractive index difference be large. In FIG. 1, the high refractive index film 2 is formed immediately above the planar optical substrate 1 and the final layer is the low refractive index film 3. However, the structure directly below the planar optical substrate 1 is low. The refractive index film 3 may be used, and the final layer may have a high refractive index film 2.

また、反射防止膜5は、偏光ビームスプリッタ膜4を形成した光学基板1の裏面に高屈折率膜2と低屈折率膜3を交互に複数層積層して構成したものである。この反射防止膜5は、偏光ビームスプリッタ膜4を透過した光が光学基板1の裏面で反射することによって発生する挿入損失の増加を防ぐことができる。この裏面反射が原因で起こる挿入損失が問題にならない場合は、反射防止膜5は設けなくても良い。   The antireflection film 5 is formed by alternately laminating a plurality of high refractive index films 2 and low refractive index films 3 on the back surface of the optical substrate 1 on which the polarizing beam splitter film 4 is formed. The antireflection film 5 can prevent an increase in insertion loss that occurs when light transmitted through the polarizing beam splitter film 4 is reflected by the back surface of the optical substrate 1. When the insertion loss caused by the back surface reflection does not become a problem, the antireflection film 5 may not be provided.

次に、本実施の形態にかかる偏光ビームスプリッタの製造法、各部の材料について説明する。   Next, the manufacturing method of the polarization beam splitter according to the present embodiment and the material of each part will be described.

光学基板1としては、非晶質ガラス、結晶化ガラスもしくは他の光学基板を用いることができる。具体的にはLiNbO、LiTaO、TiO、SrTiO、Al、MgOなどの酸化物単結晶、多結晶基板、CaF、MgFBaF、LiFなどのフッ化物単結晶基板、多結晶基板、NaCl、KBr、KClなどの塩化物、臭化物単結晶、多結晶基板等が適用できる。光学基板1は、透過率が高い方が好ましく、例えば、99.8%以上の透過率を有することが望ましい。 As the optical substrate 1, amorphous glass, crystallized glass, or another optical substrate can be used. Specifically, oxide single crystals such as LiNbO 3 , LiTaO 3 , TiO 2 , SrTiO 3 , Al 2 O 3 and MgO, polycrystalline substrates, fluoride single crystal substrates such as CaF 2 , MgF 2 BaF 2 and LiF, Polycrystalline substrates, chlorides such as NaCl, KBr, KCl, bromide single crystals, polycrystalline substrates, and the like can be applied. The optical substrate 1 preferably has a high transmittance. For example, the optical substrate 1 desirably has a transmittance of 99.8% or more.

光学基板1の作成方法としては種々の方法が挙げられるが、生産性等を考慮すると、例えば研磨による方法がある。研磨による方法には、例えば機械研磨による方法がある。この方法では、ラップ、中間ポリッシュ、最終ポリッシュの順に行って光学基板1の表面を平滑化することができる。   Various methods can be used as a method for producing the optical substrate 1. In consideration of productivity and the like, for example, there is a method by polishing. Examples of the polishing method include mechanical polishing. In this method, the surface of the optical substrate 1 can be smoothed by performing lapping, intermediate polishing, and final polishing in this order.

まずラップの工程では、所定の形状で両面が荒削りの状態のガラス基板に、金属定盤に加重49〜245Nで光学基板1を押し当て、研磨液であるダイヤモンドスラリ(ダイヤモンド砥粒径:1〜10μm)を噴霧するとともに、定盤を10〜100rpmで回転させながら研磨を行う。ラップは、基板全面で荒削り痕がとれ、ダイヤモンドスラリ痕が入ったところで中止する。   First, in the lapping process, the optical substrate 1 is pressed against a glass plate with a predetermined shape and both surfaces roughened against a metal surface plate with a weight of 49 to 245 N, and a diamond slurry (diamond abrasive particle size: 1 to 1) as a polishing liquid is pressed. 10 μm), and polishing is performed while rotating the surface plate at 10 to 100 rpm. The lapping is stopped when a rough cut mark is made on the entire surface of the substrate and a diamond slurry mark has entered.

次に中間ポリッシュは、ラップ後のガラス基板をセラミック定盤に加重49〜245Nで押し当て、研磨液である酸化セリウム液(粒径:0.1μm〜1.0μm)を滴下(滴下量:10〜200ml/h程度)しながら、定盤を回転数10〜100rpmで回転させてポリッシュを行う。ポリッシュ時間は10〜30分である。   Next, the intermediate polish presses the lapped glass substrate against a ceramic surface plate with a load of 49 to 245 N, and drops a cerium oxide solution (particle size: 0.1 μm to 1.0 μm) as a polishing solution (drop amount: 10). Polishing is performed by rotating the surface plate at a rotation speed of 10 to 100 rpm. The polishing time is 10 to 30 minutes.

最後に、誘電体多層膜を形成する面に最終ポリッシュを施す。平板上に発泡ウレタン製のパッドを貼り付けた定盤に加重49〜245Nで中間ポリッシュ済みガラス基板を押し当て、コロイダルシリカ(粒径:0.06〜1.0μm)を含む研磨液を滴下(滴下量:10〜300ml/h程度)しながら、パッド付き定盤を10〜100rpmで回転させて最終ポリッシュを行う。最終ポリッシュは3〜10分程度行う。   Finally, final polishing is performed on the surface on which the dielectric multilayer film is formed. An intermediate polished glass substrate is pressed with a weight of 49 to 245 N on a surface plate with a urethane foam pad on a flat plate, and a polishing liquid containing colloidal silica (particle size: 0.06 to 1.0 μm) is dropped ( The final polishing is performed by rotating the padded platen at 10 to 100 rpm while the dropping amount is about 10 to 300 ml / h. The final polishing is performed for about 3 to 10 minutes.

なお、最終ポリッシュの後に、最終ポリッシュで用いた研磨液よりも粒径が細かい研磨液を用いてさらに研磨するようにしてもよい。   In addition, you may make it further grind | polish using the polishing liquid with a particle size smaller than the polishing liquid used by the last polish after the last polish.

高屈折率膜2の材料としては、Ta、TiO、ZnS、ZnSe、GaP、InP、Si、Ge、SiGe、SiN、SiC、ZrO、NbO、YO、CeO、HfO、ZrO等、およびこれらの混合材から少なくとも一種が選ばれる。また、低屈折率膜3の材料としてはSiO、MgF、AlO、SiO、SiO、MgO等、およびこれらの混合材から少なくとも一種が選ばれる。なお、個々の膜は同種のものを用いることが好ましいが、屈折率が近似した材料であれば、一部を他の材料からなる膜に置換することも可能である。 Examples of the material for the high refractive index film 2 include Ta x O y , TiO x , ZnS, ZnSe, GaP, InP, Si, Ge, SiGe x , SiN x , SiC x , ZrO x , NbO x , YO x , and CeO x. , HfO x , ZrO x , and the like, and mixed materials thereof are selected. Further, SiO x as the low refractive index film 3 materials, MgF 2, AlO x, SiO x C y, SiO x N y, MgO x , etc., and at least one of these admixtures selected. Note that the same kind of film is preferably used for each film, but it is possible to replace a part of the film with a film made of another material as long as the material has an approximate refractive index.

誘電体多層膜フィルタ4は、例えば真空成膜法で作製することができる。真空成膜法には、真空蒸着法、スパッタ法、化学気相成長法、レーザブレイション法など各種成膜法などを用いることができる。真空蒸着法を用いる場合、膜質を改善するため蒸着気流の一部をイオン化するとともに基板側にバイアスを印加するイオンプレーティング法、クラスタイオンビーム法、あるいは、イオン銃を用いて基板にイオンを照射するイオンアシスト蒸着法を用いると有効である。スパッタ法としては、DC反応性スパッタ法、RFスパッタ法、イオンビームスパッタ法などを用いることができる。また、化学的気相法としては、プラズマ重合法、光アシスト気相法、熱分解法、有機金属化学気相法などを用いることができる。なお、個々の薄膜の膜厚は、膜形成時の蒸着時間などを変えることで、所望の膜厚とすることができる。   The dielectric multilayer filter 4 can be manufactured by, for example, a vacuum film forming method. As the vacuum film forming method, various film forming methods such as a vacuum deposition method, a sputtering method, a chemical vapor deposition method, and a laser brazing method can be used. When using a vacuum deposition method, ion deposition is performed by ionizing a part of the deposition air flow and applying a bias to the substrate side in order to improve the film quality, cluster ion beam method, or ion irradiation to the substrate using an ion gun. It is effective to use an ion-assisted deposition method. As the sputtering method, a DC reactive sputtering method, an RF sputtering method, an ion beam sputtering method, or the like can be used. Further, as the chemical vapor phase method, a plasma polymerization method, a light-assisted vapor phase method, a thermal decomposition method, a metal organic chemical vapor phase method, or the like can be used. In addition, the film thickness of each thin film can be made into a desired film thickness by changing the vapor deposition time etc. at the time of film formation.

本実施の形態における光学基板1の表面粗さRaは0.5nm以下であり、好ましくは0.45nm以下であって、下限は特に限定されるものではないが、製造の困難さを考慮すれば0.20nm以上である。   The surface roughness Ra of the optical substrate 1 in the present embodiment is 0.5 nm or less, preferably 0.45 nm or less, and the lower limit is not particularly limited, but considering the difficulty in manufacturing. It is 0.20 nm or more.

なお、上記の表面粗さは、原子間力顕微鏡(AFM)を使い、測定領域を10μm×10μmの正方形領域とし、この領域内を256ポイント×256ポイント走査線で、先端半径が5〜10nmのSi針を用い、タッピングモードで測定し、各走査線で求まる表面形状のプロファイル曲線の最大値と最小値の平均を中心線Lとし、この中心線Lとプロファイル曲線で囲まれる面積を走査線長さで割った値を平均表面粗さRaとしたものである。この例にかかる測定方法によれば、隣接する測定点間の距離は、約39nmとなる。なお、前記タッピングモードでの共振周波数は200〜400Hzであり、走査周波数は0.3Hzである。   In addition, said surface roughness uses an atomic force microscope (AFM), makes a measurement area | region into a square area of 10 micrometers x 10 micrometers, this area is a 256 point x 256 point scanning line, and a tip radius is 5-10 nm. An average of the maximum and minimum values of the profile curve of the surface shape obtained by each scanning line using a Si needle is measured as a center line L, and the area surrounded by the center line L and the profile curve is the scanning line length. The value divided by the thickness is the average surface roughness Ra. According to the measurement method according to this example, the distance between adjacent measurement points is about 39 nm. The resonance frequency in the tapping mode is 200 to 400 Hz, and the scanning frequency is 0.3 Hz.

続いて以下では、本実施の形態にかかる偏光ビームスプリッタ膜4の構造を詳細に説明する。先に説明したように、平面状の光学基板の偏光ビームスプリッタ膜を設ける側の表面の平均表面粗さRaを0.50nm以下として平滑化するだけでは、リップルの低減が不十分であることが明らかとなった。発明者は、このリップルの発生は、偏光ビームスプリッタ膜の膜構造に起因していることを見出した。さらに発明者は、膜の層数、各層の膜厚を検討した結果、膜の積層数をN、設計波長λにおける全ての積層膜の光学膜厚平均をM、各層の光学膜厚をDとしたとき、積層数Nは16≦N≦40とし、D/Mで表される各膜厚の比は0.5≦D/M≦2.5とすることによって、リップルの発生を低減することができることを見出した。なお、ここでの設計波長λとは、入射角0度で分光特性を測定した場合におけるS偏光の反射帯域の中央の波長を意味する。   Next, the structure of the polarizing beam splitter film 4 according to the present embodiment will be described in detail below. As described above, ripples may not be sufficiently reduced by simply smoothing the surface of the planar optical substrate on the side where the polarizing beam splitter film is provided with an average surface roughness Ra of 0.50 nm or less. It became clear. The inventor has found that the occurrence of this ripple is caused by the film structure of the polarizing beam splitter film. Furthermore, as a result of examining the number of layers of the film and the film thickness of each layer, the inventor has determined that the number of stacked films is N, the average optical film thickness of all the stacked films at the design wavelength λ is M, and the optical film thickness of each layer is D. In this case, the number N of stacked layers is set to 16 ≦ N ≦ 40, and the ratio of each film thickness represented by D / M is set to 0.5 ≦ D / M ≦ 2.5, thereby reducing the generation of ripples. I found out that I can. Here, the design wavelength λ means the wavelength at the center of the reflection band of S-polarized light when the spectral characteristic is measured at an incident angle of 0 degree.

検討によれば、積層数Nが16より小さくなると、P偏光の透過帯域とS偏光の反射帯域の帯域幅が狭くなる傾向があるため、偏光ビームスプリッタの特性に十分な帯域幅を得ようとした場合、P偏光の透過帯域とS偏光の反射帯域にリップルを発生させることになる。従って、積層数Nは16以上とするのが良い。また、一般に高次のエッジフィルタは次数が上がるほど透過帯域においてリップルが発生しやすくなることが知られている。積層数Nが40より大きくなると透過帯域において狭い波長間隔に多数の振動したリップルが発生するため積層数Nは40以下にするのが良い。従って、膜の積層数Nは16≦N≦40とするのが良く、好ましくは18≦N≦25である。   According to the study, when the number N of layers is smaller than 16, the bandwidth of the P-polarized transmission band and the S-polarized reflection band tends to be narrowed. Therefore, an attempt is made to obtain a sufficient bandwidth for the characteristics of the polarizing beam splitter. In this case, ripples are generated in the transmission band of P-polarized light and the reflection band of S-polarized light. Accordingly, the number N of stacked layers is preferably 16 or more. In general, it is known that higher-order edge filters tend to generate ripples in the transmission band as the order increases. When the number N of layers is larger than 40, a large number of oscillating ripples are generated at narrow wavelength intervals in the transmission band, and therefore the number N of layers is preferably 40 or less. Therefore, the number N of stacked films should be 16 ≦ N ≦ 40, and preferably 18 ≦ N ≦ 25.

さらに、偏光ビームスプリッタ膜に光学膜厚の比D/Mが0.5より小さい層が含まれると、P偏光の透過特性及びS偏光の反射特性において透過帯域と反射帯域間の傾きが小さくなり、これに起因してリップルが発生することが明らかになった。また、D/Mが0.5より小さい範囲の層が含まれる場合に、偏光ビームスプリッタとして十分な特性を得ようとすると、積層数Nを増やす必要があり、製造コストが増大するためD/M≧0.5にするのが好ましい。   Furthermore, if the polarizing beam splitter film includes a layer having an optical film thickness ratio D / M smaller than 0.5, the inclination between the transmission band and the reflection band is small in the transmission characteristics of P-polarized light and the reflection characteristics of S-polarized light. It was clarified that ripples occurred due to this. In addition, when a layer having a D / M in a range smaller than 0.5 is included, if an attempt is made to obtain sufficient characteristics as a polarizing beam splitter, it is necessary to increase the number of stacked layers N, and the manufacturing cost increases. It is preferable that M ≧ 0.5.

一方、偏光ビームスプリッタ膜に光学膜厚の比D/Mが2.5より大きい層が含まれると、積層数Nを40より大きくした場合と同様に、透過帯域において狭い波長間隔に多数の振動したリップルが発生するため、D/M≦2.5とするのが好ましい。以上のことから、本実施の形態にかかる偏光ビームスプリッタ膜4における各層の光学膜厚の比は、0.5≦D/M≦2.5とするのが良く、好ましくは0.6≦D/M≦2.0である。   On the other hand, when the polarizing beam splitter film includes a layer having an optical film thickness ratio D / M larger than 2.5, a large number of vibrations are formed in a narrow wavelength interval in the transmission band as in the case where the number N of stacked layers is larger than 40. Therefore, it is preferable to satisfy D / M ≦ 2.5. From the above, the ratio of the optical film thickness of each layer in the polarization beam splitter film 4 according to the present embodiment is preferably 0.5 ≦ D / M ≦ 2.5, and preferably 0.6 ≦ D. /M≦2.0.

次に本実施の形態にかかる偏光ビームスプリッタ100によるリップル低減の効果を説明する。なお、以下では具体例を挙げて説明するが、本発明はこれらの具体例に限定されるものではない。なお、λは設計波長、Hは高屈折率膜、Lは低屈折率膜を示す。実施例1、比較例1および比較例2で説明する偏光ビームスプリッタに用いる材料の屈折率には、光屈折率膜H:2.30、低屈折率膜L:1.467、空気:1、平面状の光学基板:1.51を用いた。また、表1乃至表3に使用した層番号は空気との界面側を1として光学基板に向かって昇順につけた。   Next, the effect of ripple reduction by the polarization beam splitter 100 according to the present embodiment will be described. Although specific examples will be described below, the present invention is not limited to these specific examples. Note that λ is a design wavelength, H is a high refractive index film, and L is a low refractive index film. The refractive index of the material used for the polarizing beam splitter described in Example 1, Comparative Example 1 and Comparative Example 2 includes a light refractive index film H: 2.30, a low refractive index film L: 1.467, air: 1, A planar optical substrate: 1.51 was used. In addition, the layer numbers used in Tables 1 to 3 are given in ascending order toward the optical substrate, with the interface side with air set to 1.

(実施例1)
偏光ビームスプリッタ膜を設ける側の表面を測定点間距離が100nm以下の測定点を測定することにより得られた平均表面粗さRaが0.40nmである平面状の光学基板上に屈折率の異なる2種類の光学薄膜(高屈折率膜Hおよび低屈折率膜L)を交互に積層し、波長785nm近傍の帯域においてP偏光を透過し、波長660nm近傍の帯域においてS偏光を反射し、偏光ビームスプリッタ膜の法線と入射光とのなす角が45度である偏光ビームスプリッタの膜設計を行った。光学特性条件は、640〜680nmの波長範囲でS偏光の反射率が97%以上かつ765〜805nmの波長範囲でP偏光の透過率を97%以上とし、設計波長λは675nmとした。
(Example 1)
The refractive index is different on a planar optical substrate having an average surface roughness Ra of 0.40 nm obtained by measuring a measurement point having a distance between measurement points of 100 nm or less on the surface on which the polarizing beam splitter film is provided. Two types of optical thin films (high refractive index film H and low refractive index film L) are alternately laminated, P-polarized light is transmitted in a band near 785 nm, S-polarized light is reflected in a band near 660 nm, and a polarized beam A polarizing beam splitter film was designed in which the angle formed between the normal of the splitter film and incident light was 45 degrees. The optical characteristics were such that the reflectance of S-polarized light was 97% or more in the wavelength range of 640 to 680 nm, the transmittance of P-polarized light was 97% or more in the wavelength range of 765 to 805 nm, and the design wavelength λ was 675 nm.

その結果の一例が、積層数22層で各層の膜厚が表1で定められる偏光ビームスプリッタ膜である。表1での膜厚の値は、λ/4を1として規格化した値を示している。表1に示すように、すべての積層膜の光学膜厚平均をMとし、各層の光学膜厚をDとしたとき、D/Mで表される光学膜厚の比は0.5≦D/M≦2.5の範囲で分布している。このときのS偏光の反射率RsおよびP偏光の透過率Tpのグラフを図2に示す。グラフでは、RsおよびTpは共に百分率で表示しており、S偏光の反射率Rsを太線で示し、P偏光の透過率Tpを細線で示した。   An example of the result is a polarizing beam splitter film in which the number of layers is 22 and the thickness of each layer is defined in Table 1. The value of the film thickness in Table 1 is a value normalized with λ / 4 set to 1. As shown in Table 1, when the average optical film thickness of all the laminated films is M and the optical film thickness of each layer is D, the ratio of the optical film thickness expressed by D / M is 0.5 ≦ D / Distribution is in a range of M ≦ 2.5. A graph of the reflectance Rs of S-polarized light and the transmittance Tp of P-polarized light at this time is shown in FIG. In the graph, Rs and Tp are both expressed as percentages, the reflectance Rs of S-polarized light is indicated by a thick line, and the transmittance Tp of P-polarized light is indicated by a thin line.

Figure 2005276306
Figure 2005276306

(比較例1)
積層数Nを14層とし、各層の光学膜厚の比D/Mが0.5より小さい範囲である層を含む偏光ビームスプリッタ膜の例を示す。なお、光の入射角度は45度であり、設計波長λは685nmとした。その膜構成を表2に示す。表1と同様に、膜厚の値は、λ/4を1として規格化した値を示している。表2に示すようにD/Mが0.5より小さい層が層番号11に存在する。このときのS偏光の反射率RsおよびP偏光の透過率Tpのグラフを図3に示す。グラフでは、RsおよびTpは共に百分率で表示しており、S偏光の反射率Rsを太線で示し、P偏光の透過率Tpを細線で示した。
(Comparative Example 1)
An example of a polarizing beam splitter film including a layer in which the number N of layers is 14 and the ratio D / M of the optical film thickness of each layer is smaller than 0.5 is shown. The incident angle of light was 45 degrees, and the design wavelength λ was 685 nm. The film configuration is shown in Table 2. As in Table 1, the value of the film thickness is a value normalized with λ / 4 set to 1. As shown in Table 2, a layer having a D / M smaller than 0.5 exists in the layer number 11. A graph of the reflectance Rs of S-polarized light and the transmittance Tp of P-polarized light at this time is shown in FIG. In the graph, Rs and Tp are both expressed as percentages, the reflectance Rs of S-polarized light is indicated by a thick line, and the transmittance Tp of P-polarized light is indicated by a thin line.

図2と図3より、実施例1と比較例1のP偏光の透過特性を比較すると、薄膜の積層数Nが16≦N≦40であり、各層のD/Mで表される光学膜厚の比が0.5≦D/M≦2.5の範囲である実施例1の方が明らかにP偏光の透過帯域におけるリップルが低減されており、偏光ビームスプリッタとして良好な光学特性が得られていることが分かる。   2 and FIG. 3, when the transmission characteristics of P-polarized light of Example 1 and Comparative Example 1 are compared, the number N of thin films is 16 ≦ N ≦ 40, and the optical film thickness expressed by D / M of each layer In the first example in which the ratio is 0.5 ≦ D / M ≦ 2.5, the ripple in the transmission band of P-polarized light is clearly reduced, and good optical characteristics as a polarizing beam splitter can be obtained. I understand that

Figure 2005276306
Figure 2005276306

(比較例2)
積層数Nを50層とし、各層の光学膜厚の比D/Mが2.5より大きい範囲である層を含む偏光ビームスプリッタ膜の例を示す。その膜構成を表3に示す。表1と同様に、膜厚の値は、λ/4を1として規格化した値を示している。表3に示すようにD/Mが2.5より大きい層が層番号2に存在する。なお、光の入射角度は45度であり、設計波長は680nmとした。このときのS偏光の反射率RsおよびP偏光の透過率Tpのグラフを図4に示す。グラフでは、RsおよびTpは共に百分率で表示しており、S偏光の反射率Rsを太線で示し、P偏光の透過率Tpを細線で示した。
(Comparative Example 2)
An example of a polarizing beam splitter film including layers in which the number N of stacked layers is 50 and the ratio D / M of the optical film thickness of each layer is larger than 2.5 is shown. The film configuration is shown in Table 3. As in Table 1, the value of the film thickness is a value normalized with λ / 4 set to 1. As shown in Table 3, a layer having a D / M greater than 2.5 exists in layer number 2. The incident angle of light was 45 degrees and the design wavelength was 680 nm. A graph of the reflectance Rs of S-polarized light and the transmittance Tp of P-polarized light at this time is shown in FIG. In the graph, Rs and Tp are both expressed as percentages, the reflectance Rs of S-polarized light is indicated by a thick line, and the transmittance Tp of P-polarized light is indicated by a thin line.

図2と図4より、実施例1と比較例2のS偏光の反射特性及びP偏光の透過特性を比較すると、各層のD/Mで表される光学膜厚の比が0.5≦D/M≦2.5である実施例1の方が明らかにP偏光の透過帯域におけるリップルが低減されており、偏光ビームスプリッタとして良好な光学特性が得られていることが分かる。   2 and FIG. 4, when the S-polarized light reflection characteristics and the P-polarized light transmission characteristics of Example 1 and Comparative Example 2 are compared, the ratio of the optical film thickness expressed by D / M of each layer is 0.5 ≦ D. In Example 1 where /M≦2.5, the ripple in the transmission band of P-polarized light is clearly reduced, and it can be seen that good optical characteristics are obtained as a polarizing beam splitter.

Figure 2005276306
Figure 2005276306

このように、平面状の光学基板の偏光ビームスプリッタ膜を設ける側の表面の平均表面粗さRaを0.50nm以下とするだけでは、リップルの低減が不十分であったが、光学基板上に形成する偏光ビームスプリッタ膜の積層数と各膜厚の比を0.5≦D/M≦2.5の範囲で分布を持った構成とすることにより、透過帯域のリップルの発生を抑制することができる。   As described above, the reduction of ripple was insufficient only by setting the average surface roughness Ra of the surface of the flat optical substrate on the side where the polarizing beam splitter film is provided to 0.50 nm or less. By suppressing the generation of ripple in the transmission band by adopting a configuration in which the ratio of the number of polarizing beam splitter films to be formed and the ratio of each film thickness has a distribution in the range of 0.5 ≦ D / M ≦ 2.5. Can do.

発明の実施の形態2.
続いて、図5に、発明の実施の形態1にかかる偏光ビームスプリッタ100を利用した光ピックアップ装置200の一例を示す。光ピックアップ装置200は、第1の光源6と第2の光源7の2つの光源を有している。例えば、第一の光源6はDVD用の波長660nm近傍のレーザー光を出射する光源であり、第2の光源7は、CD用の波長780nm近傍のレーザー光を出射する光源である。このように、光ピックアップ装置200は、例えばCDとDVDといった2つの記録方式に使用可能な光ピックアップ装置である。
Embodiment 2 of the Invention
Next, FIG. 5 shows an example of an optical pickup device 200 using the polarizing beam splitter 100 according to the first embodiment of the invention. The optical pickup device 200 has two light sources, a first light source 6 and a second light source 7. For example, the first light source 6 is a light source that emits laser light having a wavelength of about 660 nm for DVD, and the second light source 7 is a light source that emits laser light having a wavelength of about 780 nm for CD. As described above, the optical pickup device 200 is an optical pickup device that can be used for two recording methods such as CD and DVD.

図5において、第1の光源6から発生する所定波長の光は、本発明の実施の形態1で説明したプレート型の偏光ピームスプリッタ100で反射し、また、第2の光源7から発生する第一の光源6とは異なる所定波長の光は、同じプレート型の偏光ビームスプリッタ100を透過する。第一の光源6からの反射光および第二の光源7からの透過光は、カップリングレンズ9で平行光束に変換されプリズム状偏光ビームスプリッタ10に入射する。プリズム状偏光ビームスプリッタ10で反射した光は対物レンズ11により集光され、光ディスク12の記録面上にスポットを形成する。そして、光ディスク12で反射した反射光が対物レンズ11により平行光となり、プリズム状偏光ビームスプリッタ10を透過し、集光レンズ13で集光され、光検出器14に到達するようになっている。   In FIG. 5, light of a predetermined wavelength generated from the first light source 6 is reflected by the plate-type polarization beam splitter 100 described in the first embodiment of the present invention, and is generated from the second light source 7. Light having a predetermined wavelength different from that of the one light source 6 passes through the same plate-type polarization beam splitter 100. The reflected light from the first light source 6 and the transmitted light from the second light source 7 are converted into parallel light fluxes by the coupling lens 9 and enter the prism-shaped polarizing beam splitter 10. The light reflected by the prismatic polarization beam splitter 10 is collected by the objective lens 11 and forms a spot on the recording surface of the optical disk 12. Then, the reflected light reflected by the optical disk 12 becomes parallel light by the objective lens 11, passes through the prism-like polarization beam splitter 10, is condensed by the condenser lens 13, and reaches the photodetector 14.

偏光ビームスプリッタ100は、光ピックアップ装置200において、第一の光源6の反射光及び第二の光源7の透過光が、共に偏光ビームスプリッタ膜4の面の法線に対して40度以上60度以下の範囲にあるように配置されている。図6に偏光ビームスプリッタ100の配置を説明するための拡大図を示す。図のように、偏光ビームスプリッタ100で反射された第一の光源6からの光と偏光ビームスプリッタ膜4の面の法線(図6の破線矢印)とがなす角度θは、前記の所定角度で入射するように、偏光ビームスプリッタ100が配置される。同時に、偏光ビームスプリッタ100を透過してフィルタ面から出射する第二の光源6からの光の透過光と、偏光ビームスプリッタ膜4の面の法線(図6の破線矢印)とがなす角度Φが前記の所定角度となるように、偏光ビームスプリッタ100が配置される。   In the polarization beam splitter 100, in the optical pickup device 200, the reflected light of the first light source 6 and the transmitted light of the second light source 7 are both 40 degrees or more and 60 degrees with respect to the normal of the surface of the polarization beam splitter film 4. They are arranged in the following range. FIG. 6 is an enlarged view for explaining the arrangement of the polarization beam splitter 100. As shown in the figure, the angle θ formed by the light from the first light source 6 reflected by the polarizing beam splitter 100 and the normal of the surface of the polarizing beam splitter film 4 (broken arrow in FIG. 6) is the predetermined angle. The polarization beam splitter 100 is disposed so as to be incident at the angle. At the same time, an angle Φ formed by the transmitted light of the second light source 6 that is transmitted through the polarizing beam splitter 100 and is emitted from the filter surface, and the normal line (dashed line arrow in FIG. 6) of the surface of the polarizing beam splitter film 4. The polarizing beam splitter 100 is arranged so that is at the predetermined angle.

なお、上述の例では光ピックアップ装置200の光源が2つの場合を示したが、光源が3以上ある場合には、2以上の偏光ビームスプリッタを用いて、同様に構成すればよい。   In the above example, the case where there are two light sources of the optical pickup device 200 is shown. However, when there are three or more light sources, the same configuration may be made using two or more polarization beam splitters.

このように、P偏光の透過帯域のリップルを低減する膜構造をもつ偏光ビームスプリッタ100を用いることによって、2以上の記録方式に対する光ピックアップを行うための2以上の波長の異なる光源を有する光ピックアップ装置において、使用可能な波長帯域を広げることができる。   Thus, by using the polarization beam splitter 100 having a film structure that reduces the ripple in the transmission band of P-polarized light, an optical pickup having two or more light sources having different wavelengths for performing optical pickup for two or more recording systems. In the apparatus, the usable wavelength band can be expanded.

その他の実施の形態.
本発明の効果は、光学基板上に積層した偏光ビームスプリッタ膜の片側の界面が空気面となる偏光ビームスプリッタに対して生じるものである。したがって、上述した発明の実施の形態1および2では、平面状の光学基板上に偏光ビームスプリッタ膜を形成した場合について説明したが、偏光ビームスプリッタ膜を積層させる光学基板の形状は平面に限られるものではなく、他の任意の形状を持つ光学基板上に生成する場合にも本発明を適用できる。
Other embodiments.
The effect of the present invention occurs with respect to a polarizing beam splitter in which the interface on one side of the polarizing beam splitter film laminated on the optical substrate is an air surface. Therefore, in the first and second embodiments of the invention described above, the case where the polarizing beam splitter film is formed on the planar optical substrate has been described. However, the shape of the optical substrate on which the polarizing beam splitter film is laminated is limited to a plane. However, the present invention can be applied to the case of generating on an optical substrate having any other shape.

発明の実施の形態1における偏光ビームスプリッタを示す断面図である。It is sectional drawing which shows the polarizing beam splitter in Embodiment 1 of invention. 実施例1における偏光ビームスプリッタのS偏光の反射特性およびP偏光の透過特性を示すグラフである。6 is a graph showing S-polarized light reflection characteristics and P-polarized light transmission characteristics of the polarization beam splitter in Example 1. FIG. 比較例1における偏光ビームスプリッタのS偏光の反射特性およびP偏光の透過特性を示すグラフである。5 is a graph showing S-polarized light reflection characteristics and P-polarized light transmission characteristics of the polarizing beam splitter in Comparative Example 1. FIG. 比較例2における偏光ビームスプリッタのS偏光の反射特性およびP偏光の透過特性を示すグラフである。10 is a graph showing S-polarized light reflection characteristics and P-polarized light transmission characteristics of the polarizing beam splitter in Comparative Example 2. 本発明にかかる偏光ビームスプリッタを用いた光ピックアップ装置を示す図である。It is a figure which shows the optical pick-up apparatus using the polarization beam splitter concerning this invention. 光源からの反射光および透過光と、偏光ビームスプリッタとの関係を示す概念図である。It is a conceptual diagram which shows the relationship between the reflected light and transmitted light from a light source, and a polarizing beam splitter.

符号の説明Explanation of symbols

100 偏光ビームスプリッタ
200 光ピックアップ装置
1 光学基板
2 高屈折率膜
3 低屈折率膜
4 偏光ビームスプリッタ膜
5 反射防止膜
6 第一の光源
7 第二の光源
DESCRIPTION OF SYMBOLS 100 Polarizing beam splitter 200 Optical pick-up apparatus 1 Optical substrate 2 High refractive index film 3 Low refractive index film 4 Polarizing beam splitter film 5 Antireflection film 6 First light source 7 Second light source

Claims (5)

光学基板上に少なくとも2種類の屈折率の異なる光学薄膜を交互に積層してなる多層膜を有しており、前記多層膜を有する面に空気面から入射する第一の波長の光を反射し、前記多層膜を有する面とは反対の光学基板面に入射する第二の波長の光を透過する偏光ビームスプリッタであって、
前記多層膜の積層数Nは16≦N≦40の範囲内であり、
前記多層膜を構成する全ての積層膜の光学膜厚平均をM、各層の光学膜厚をDとしたとき、光学膜厚比D/Mの分布は0.5≦D/M≦2.5の範囲内であり、
前記光学基板の前記光学薄膜を設ける側の表面に対して測定点間距離が100nm以下の測定点を測定することにより得られる平均表面粗さが0.50nm以下である偏光ビームスプリッタ。
It has a multilayer film formed by alternately laminating at least two types of optical thin films having different refractive indexes on an optical substrate, and reflects light of the first wavelength incident from the air surface onto the surface having the multilayer film. A polarizing beam splitter that transmits light of a second wavelength incident on an optical substrate surface opposite to the surface having the multilayer film,
The multilayer number N of the multilayer film is in the range of 16 ≦ N ≦ 40,
The distribution of the optical film thickness ratio D / M is 0.5 ≦ D / M ≦ 2.5, where M is the average optical film thickness of all the laminated films constituting the multilayer film and D is the optical film thickness of each layer. Within the range of
A polarizing beam splitter having an average surface roughness of 0.50 nm or less obtained by measuring a measurement point having a distance between measurement points of 100 nm or less with respect to the surface of the optical substrate on which the optical thin film is provided.
前記第一の波長の光の反射光と前記多層膜による面の法線とのなす角、および前記第二の波長の光の透過光と前記多層膜による面の法線とのなす角が共に40度以上60度以下となる状態で使用される請求項1に記載の偏光ビームスプリッタ。   The angle between the reflected light of the first wavelength light and the normal of the surface by the multilayer film, and the angle of the transmitted light of the second wavelength and the normal of the surface by the multilayer film are both The polarizing beam splitter according to claim 1, wherein the polarizing beam splitter is used in a state of 40 degrees or more and 60 degrees or less. 前記光学基板の裏面に、前記第一の波長の光および前記第二の光の波長の光の反射を防止する反射防止膜を有する請求項1又は2に記載の偏光ビームスプリッタ。   The polarizing beam splitter according to claim 1, further comprising an antireflection film that prevents reflection of light having the first wavelength and light having the second light wavelength on a back surface of the optical substrate. 少なくとも2つの波長の異なる光源と、当該光源のうちの少なくとも1つの光源からの光を反射して、別の少なくとも1つの光源からの光を透過する偏光ビームスプリッタとを有する光ピックアップ装置であって、
前記偏光ビームスプリッタは、前記反射光と偏光ビームスプリッタの有するフィルタ面の法線とのなす角、および前記透過光と偏光ビームスプリッタの有するフィルタ面の法線とのなす角が共に40度以上60度以下となるよう配置され、
前記偏光ビームスプリッタの有するフィルタ面は、平面状の光学基板上に少なくとも2種類の屈折率の異なる光学薄膜を交互に積層してなる多層膜であり、
前記多層膜の積層数Nは16≦N≦40の範囲内であり、
前記多層膜を構成する全ての積層膜の光学膜厚平均をM、各層の光学膜厚をDとしたとき、光学膜厚比D/Mの分布は0.5≦D/M≦2.5の範囲内であって、
前記光学基板の前記光学薄膜を設ける側の表面に対して測定点間距離が100nm以下の測定点を測定することにより得られる平均表面粗さが0.50nm以下である光ピックアップ装置。
An optical pickup device comprising: at least two light sources having different wavelengths; and a polarizing beam splitter that reflects light from at least one of the light sources and transmits light from at least one other light source. ,
In the polarizing beam splitter, both the angle formed by the reflected light and the normal line of the filter surface of the polarizing beam splitter and the angle formed by the transmitted light and the normal line of the filter surface of the polarizing beam splitter are both 40 degrees or more and 60 degrees. Arranged to be less than
The filter surface of the polarizing beam splitter is a multilayer film formed by alternately laminating at least two types of optical thin films having different refractive indexes on a planar optical substrate,
The multilayer number N of the multilayer film is in the range of 16 ≦ N ≦ 40,
The distribution of the optical film thickness ratio D / M is 0.5 ≦ D / M ≦ 2.5, where M is the average optical film thickness of all the laminated films constituting the multilayer film and D is the optical film thickness of each layer. Within the range of
An optical pickup device having an average surface roughness of 0.50 nm or less obtained by measuring a measurement point having a distance between measurement points of 100 nm or less with respect to the surface of the optical substrate on which the optical thin film is provided.
平面状の光学基板の少なくとも片面に対して測定点間距離が100nm以下の測定点を測定することにより得られる平均表面粗さが0.50nm以下となるまで平滑化する第一工程と、
前記第一工程で平滑化した光学基板の面上に少なくとも2種類の屈折率の異なる光学薄膜を交互に積層する際に、前記光学薄膜の総積層数Nは16≦N≦40の範囲内となり、全ての積層膜の光学膜厚平均をM、各層の光学膜厚をDとしたとき、光学膜厚比D/Mの分布が0.5≦D/M≦2.5の範囲内となるよう多層膜を積層する第二工程と、
を含む偏光ビームスプリッタの製造方法。
A first step of smoothing until an average surface roughness of 0.50 nm or less obtained by measuring a measurement point having a distance between measurement points of 100 nm or less with respect to at least one surface of a planar optical substrate;
When alternately laminating at least two types of optical thin films having different refractive indexes on the surface of the optical substrate smoothed in the first step, the total number N of the optical thin films is in the range of 16 ≦ N ≦ 40. When the average optical film thickness of all the laminated films is M and the optical film thickness of each layer is D, the distribution of the optical film thickness ratio D / M is in the range of 0.5 ≦ D / M ≦ 2.5. A second step of laminating a multilayer film,
A manufacturing method of a polarization beam splitter including:
JP2004087050A 2004-03-24 2004-03-24 Polarizing beam splitter, its manufacturing method, and optical pickup device Withdrawn JP2005276306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004087050A JP2005276306A (en) 2004-03-24 2004-03-24 Polarizing beam splitter, its manufacturing method, and optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004087050A JP2005276306A (en) 2004-03-24 2004-03-24 Polarizing beam splitter, its manufacturing method, and optical pickup device

Publications (1)

Publication Number Publication Date
JP2005276306A true JP2005276306A (en) 2005-10-06

Family

ID=35175812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004087050A Withdrawn JP2005276306A (en) 2004-03-24 2004-03-24 Polarizing beam splitter, its manufacturing method, and optical pickup device

Country Status (1)

Country Link
JP (1) JP2005276306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100111A (en) * 2009-10-09 2011-05-19 Seiko Epson Corp Optical article, method for manufacturing the optical article, and electronic apparatus
JP2018124571A (en) * 2012-11-20 2018-08-09 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Polarizing plate and liquid crystal display device including the same
JP2020522752A (en) * 2017-06-05 2020-07-30 スリーエム イノベイティブ プロパティズ カンパニー Optical body including multilayer optical film and thin adhesive layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100111A (en) * 2009-10-09 2011-05-19 Seiko Epson Corp Optical article, method for manufacturing the optical article, and electronic apparatus
US9134462B2 (en) 2009-10-09 2015-09-15 Seiko Epson Corporation Optical component having a low-density silicon oxide layer as the outermost layer of an inorganic thin-film, method of manufacturing optical component and electronic apparatus
JP2018124571A (en) * 2012-11-20 2018-08-09 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Polarizing plate and liquid crystal display device including the same
JP2020522752A (en) * 2017-06-05 2020-07-30 スリーエム イノベイティブ プロパティズ カンパニー Optical body including multilayer optical film and thin adhesive layer

Similar Documents

Publication Publication Date Title
US6947215B2 (en) Optical element, optical functional device, polarization conversion device, image display apparatus, and image display system
JP4843617B2 (en) Multilayer wire grid polarizer
JP4688394B2 (en) Embedded wire grid polarizer for the visible spectrum
JP4294264B2 (en) Integrated optical element
JP3288976B2 (en) Polarizer and its manufacturing method
JP4979549B2 (en) Polarization separating element and optical apparatus having the same
JP2001051122A (en) Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture
EP1939655B1 (en) Polarization beam splitter and polarization conversion element
WO2011049144A1 (en) Reflection type wavelength plate and optical head device
JP2008257777A (en) Optical component
WO2004113974A1 (en) Polarizer and polarization separation element
JP2005276306A (en) Polarizing beam splitter, its manufacturing method, and optical pickup device
JP4103454B2 (en) Polarizing filter and polarized light irradiation apparatus using the filter
JP4742630B2 (en) Reflective optical element and optical pickup device
JP5171227B2 (en) Optical isolator using photonic crystal and manufacturing method thereof
JP3493149B2 (en) Polarizer, method of manufacturing the same, and waveguide optical device using the same
EP1276000A2 (en) Polarisation beam splitter and method of producing the same
JP2001083321A (en) Polarizer and method for its production
JP3616349B2 (en) Magneto-optic crystal plate with polarizing element
JP2004347740A (en) Optical bandpass filter, optical communication module using the same, and manufacturing method of optical bandpass filter
JP2016177067A (en) Optical filter and optical device
JP2007212694A (en) Beam splitter
JP2000180789A (en) Optical isolator
JPWO2009107355A1 (en) Self-cloning photonic crystal for ultraviolet light
JP6694008B2 (en) Total reflection type polarizer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605