JP2005276301A - 磁気転写用マスター担体、磁気転写方法および磁気記録媒体 - Google Patents

磁気転写用マスター担体、磁気転写方法および磁気記録媒体 Download PDF

Info

Publication number
JP2005276301A
JP2005276301A JP2004086917A JP2004086917A JP2005276301A JP 2005276301 A JP2005276301 A JP 2005276301A JP 2004086917 A JP2004086917 A JP 2004086917A JP 2004086917 A JP2004086917 A JP 2004086917A JP 2005276301 A JP2005276301 A JP 2005276301A
Authority
JP
Japan
Prior art keywords
magnetic
transfer
master carrier
layer
ferromagnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004086917A
Other languages
English (en)
Inventor
Shoichi Nishikawa
正一 西川
Hideyuki Kubota
秀幸 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004086917A priority Critical patent/JP2005276301A/ja
Publication of JP2005276301A publication Critical patent/JP2005276301A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

【課題】 凹凸パターンを有する基板と該基板上に形成された磁性層とを備えてなるマスター担体において、マスター担体の耐久性を向上させる。
【解決手段】 基板と強磁性層との間に酸化度調整層を設け、強磁性層の積層方向の平均酸素濃度を5at%以下とする。また、強磁性層は、その膜密度ρmagがバルク材質密度ρbulkに対し、0.70<ρmag/ρbulk≦1の関係となるように形成する。
【選択図】 図2

Description

本発明は、転写パターンを有する磁気転写用マスター担体に関し、また、該磁気転写用マスター担体を用い、磁気記録媒体に対して転写パターンに応じた磁化パターンを磁気的に転写する磁気転写方法、および磁気転写により磁化パターンが記録されてなる磁気記録媒体に関するものである。
磁気記録媒体においては一般に、情報量の増加に伴い、多くの情報を記録する大容量で、安価で、かつ、好ましくは短時間で必要な箇所が読み出せる、いわゆる高速アクセスが可能な媒体が望まれている。それらの一例としてハードディスク装置やフレキシブルディスク装置に用いられる高密度磁気記録媒体(磁気ディスク媒体)が知られ、その大容量化を実現するためには、狭いトラック幅を正確に磁気ヘッドが走査し、高いS/N比で信号を再生する、いわゆるトラッキングサーボ技術が大きな役割を担っている。このトラッキングサーボを行うために、ディスク中に、ある間隔でトラッキング用のサーボ信号、アドレス情報信号、再生クロック信号等が、いわゆるプリフォーマットとして記録されている。
このプリフォーマットを正確にかつ効率よく行う方法として、上記のようなサーボ信号等の情報を転写パターンとして有するマスター担体を準備し、このマスター担体の転写パターンを磁気記録媒体へ磁気的に転写する磁気転写方法が特許文献1および2等に開示されている。
より詳細には、磁気ディスク媒体等の磁気記録媒体(スレーブ媒体)に転写すべき情報に対応して形成された凹凸パターンを表面に有するマスター担体の該表面とスレーブ媒体の磁性層とが接触するように密着させた重畳体に転写磁界を印加することにより、マスター担体が担持する情報(例えばサーボ信号)をスレーブ媒体に磁化パターンとして転写するもので、マスター担体とスレーブ媒体との相対的な位置を変化させることなく静的に記録を行うことができ、正確なプリフォーマット記録が可能であり、しかも記録に要する時間も極めて短時間であるという利点を有している。
特開平10−40544号公報 特開平10−269566号公報
磁気転写の際には、マスター担体の転写パターン面とスレーブ媒体の磁気記録面とを密着させ、磁気転写後、両者は剥離される。通常、1枚のマスター担体に対して多数枚のスレーブ媒体への磁気転写がなされるため、1枚のマスター担体に対して、多数枚のスレーブ媒体との密着および剥離が繰り返される。この密着、剥離を繰り返すうちに、磁気転写後のスレーブ媒体において局所的なビット欠落が発生するという問題が生じていることが明らかになってきた。
本発明は上記事情に鑑み、多数枚のスレーブ媒体に対して良好な磁気転写を行うことができる磁気転写用マスター担体および該マスター担体を用いた磁気転写方法を提供することを目的とする。
また、本発明は、磁気転写用マスター担体から良好な転写パターンが磁気転写された磁気記録媒体を提供することを目的とする。
本発明者がスレーブ媒体において局所的なビット欠落が生じた際のマスター表面を観察した結果、スレーブ媒体に発生したビット欠落位置に表面異常が確認された。当該異常箇所に対し元素分析を実施したところ、表面の強磁性層が剥離あるいは酸化状態にあることがわかった。そこで強磁性層積層方向における酸素濃度を調べたところ、全膜厚領域で酸素濃度が高く、強磁性層成膜工程中に該強磁性層内全域に亘って酸素が混入されている可能性が高いことがわかった。
強磁性層中の全域に亘って酸素が存在すると強磁性層の酸化/未酸化部が該強磁性層中全てに混在された状態が発生する。この酸化/未酸化部には内部応力差が発生し、多数枚のスレーブ媒体に対する磁気転写を行うために繰り返される密着と剥離の間にこの強磁性層中の酸化/未酸化部の境界面に亀裂が発生し、強磁性層の剥離が発生しマスター担体の寿命が低下していると推測された。本発明は、以上の知見に基づいてなされたものである。
本発明の磁気転写用マスター担体は、表面に所望の転写パターンに応じた凹凸パターンを有する基板を備えた磁気転写用マスター担体であって、
前記基板上に少なくとも酸化度調整層、強磁性層がこの順に積層形成されており、該強磁性層の平均酸素濃度が5at%以下であることを特徴とするものである。
酸化度調整層は、強磁性層と同一組成の材料から構成されていてもよいし、異なる組成の材料から構成されていてもよいが、強磁性層よりも平均酸素濃度が高い層である。
酸化度調整層は、酸素濃度が5%を超える層であり、該酸化度調整層と強磁性層とが同一の組成で構成されている場合、基板側から積層方向の酸素濃度を測定し、酸素濃度が5%になる直前までの厚さの領域を酸化度調整層とみなす。
また、本発明の磁気転写用マスター担体は、前記強磁性層の膜密度ρmagの、該強磁性層のバルク材質密度ρbulkに対する比ρmag/ρbulkが、0.70<ρmag/ρbulk≦1の関係にあることが望ましい。バルク材質密度は、基本的に磁性層成膜に使用したスパッタターゲット材の密度であり、これは、一般にターゲット納入時に該ターゲットのメーカーより開示されるものである。
膜密度は、例えば、強磁性層成膜時のプロセスガス圧を調整することにより変化させることができる。プロセスガス圧を低くすると膜密度が小さくなる傾向がある。
また、強磁性層の成長粒子径は10nm以下であることが望ましい。結晶粒径は、例えば、強磁性層形成時の基板温度を調整することにより変化させることができる。基板温度を高くすると結晶粒径が大きくなる傾向がある。
さらに、強磁性層上に炭素を主成分とする保護層を備えていることが好ましく、この場合、保護層の平均厚みが3〜20nmの範囲にあることが好ましい。保護層は均一な厚みで形成されていることが望ましいが、稀に極一部非常に薄い部分やほとんど保護層が形成されない部分が生じることがある。しかしながら、このような場合であっても保護層の厚みが3nm未満となる領域が5個/cm2以下であることが望ましい。
ここで、「炭素を主成分とする」とは、炭素を80at%以上含有することをいう。
前記転写パターンとしては、例えば、サーボ信号を担持するものが挙げられる。
本発明の磁気転写方法は、本発明の磁気転写用マスター担体と被転写媒体との重畳体に転写磁界を印加して、マスター担体の転写パターンを被転写媒体の磁気記録面に磁気転写することを特徴とするものである。
本発明の磁気記録媒体は、本発明の磁気転写用マスター担体から磁気転写により前記転写パターンに基づく磁化パターンが記録されたことを特徴とするものである。
本発明の磁気転写用マスター担体は、基板と強磁性層との間に酸化度調整層を設け、強磁性層の積層方向における平均の酸素濃度を5at%以下にすることにより、強磁性層内の酸化/非酸化部の発生を大幅に抑制することができ、該酸化/非酸化部の境界面で生じていた亀裂による欠陥の発生数を抑制することができる。平均酸素濃度を5at%より増加させて強磁性層を全体的に酸化させると、酸化/非酸化部の発生を抑制することができるため欠陥は低減するが、強磁性層の飽和磁化値が低下するため結果として十分な信号品位の転写信号を確保することができなかった。なお、強磁性層内の平均酸素濃度を5%以下とすることにより欠陥の発生数を抑制する効果が向上する。
強磁性層の膜密度ρmagの該強磁性層のバルク材質密度ρbulkに対する比ρmag/ρbulkが、0.70<ρmag/ρbulk≦1であれば、強磁性層中の平均酸素濃度を5at%以下に保つ効果が高い。一方、強磁性層の膜密度(ρmag)のバルク材質密度(ρbulk)に対する比ρmag/ρbulkが、ρmag/ρbulk≦0.70であると、酸素濃度が上昇し易く、耐久性が低下する虞が高い。強磁性層の膜密度が小さい場合、該強磁性層内に存在する結晶粒界間に空気が侵入し易く、そこに空気が含有され、結果として成膜後の磁性層内の酸化が促進され、マスター担体の耐久性が低下すると考えられる。
強磁性層の成長粒子の粒径を10nm以下にすることにより緻密な層を実現することができ、粒子間への空気の侵入を抑制することができる。
また、強磁性層上に炭素を主成分とする保護層を形成することで外界に対して強磁性層に蓋を形成することができるため、強磁性層の剥離や酸化を抑制することができる。
以下、本発明の実施の形態を図面を用いて詳細に説明する。
図1は、本実施形態の磁気転写用マスター担体の表面の一部斜視図を示し、図2は、図1のマスター担体の一部の断面図を示すものである。
本実施形態のマスター担体3は、後述の図4に示すように円盤状に形成されており、その表面にスレーブ媒体である磁気記録媒体に転写すべき情報に応じてトラック方向に配列形成された凹凸からなる転写パターンを有するものである。転写すべき情報としては、例えばサーボ信号が挙げられるが、その他種々のデータを含むものであってもよい。凹凸パターン36の一部パターンは例えば図1に示すようなものである。図1において、矢印Xは円盤状のマスター担体における円周方向(トラック方向)、矢印Yは半径方向を示す。
図2は、図1に示したマスター担体3のII−II断面図、すなわち、面に垂直かつトラック方向Xに平行な面に沿った断面図を示す。
マスター担体3は、凹凸パターンを表面に有する基板31と基板31上に順に形成された酸化度調整層32、強磁性層33、および保護層34を備えてなる。いずれの層も凹凸パターンに沿って全面に亘って配されている。
基板31は非磁性でもよいが、強磁性を有するものが好ましく、中でもNi、もしくはNiを主成分とする合金からなるものが特に好ましい。表面に凹凸パターンを有する基板31の作製は、スタンパー法、フォトリソグラフィー法等を用いて行うことができる。基板の凸部高さ(凹凸パターンの深さ)は、例えば20〜800nmであり、凹凸パターンの凸部の半径方向の長さは50nm〜5μm、円周方向の長さは50nm〜5μmである。
図3(a)は、図2の断面図の一部の拡大図であり、同図(b)は強磁性層中の酸素濃度分布の例を示すものである。
酸化度調整層32は、強磁性層33中における酸素濃度を調整するために設けられる層であり、平均酸素濃度は5at%を超える。酸化度調整層32は、強磁性層33と同一の組成の材料により構成されていてもよいし、異なる組成の材料により構成されていてもよい。この酸化度調整層32の厚みt1は1〜20nmが好ましく、更に好ましいのは、5〜10nmの範囲である。なお、酸化度調整層が厚くなりすぎると基板の凹凸パターンが埋没してしまい、高品位の磁気転写が行えなくなる虞がある。
強磁性層33の磁性材料としては、飽和磁化(Ms)の高いものが好ましく、Co、Co合金(CoNi、CoNiZr、CoNbTaZr等)、Fe、Fe合金(FeCo、FeCoNi、FeNiMo、FeAlSi、FeAl、FeTaN)、Ni、Ni合金(NiFe)が挙げられる。特に好ましいのはFeCo、FeCoNiである。強磁性層32としては、主として軟磁性もしくは半硬質磁性等の保磁力の小さい磁性層が用いられている。
強磁性層33の積層方向における平均酸素濃度は5at%以下である。平均酸素濃度は、強磁性層33の積層方向において複数点で酸素濃度を測定し平均して算出されるものである。同一積層位置での酸素濃度は略同一であるとみなしている。本実施形態のマスター担体においては、強磁性層33中の積層方向における酸素濃度分布は、図3(b)のように酸化度調整層側および表面側の酸素濃度が高く、その間は2〜3at%以下の酸素濃度となっている。平均酸素濃度が5at%以下であれば、一部に(本実施形態では表面側)酸素濃度が5at%を超える部分を含んでいてもよい。なお、酸素濃度分布はこれに限るものではなく、平均酸素濃度が5at%以下であれば、積層方向の中央で酸素濃度が大きくなるような酸素濃度分布であってもよい。なお、磁性層の厚みt2は、50〜500nmが好ましく、さらに好ましくは80〜300nmである。
強磁性層33は図3(a)に示すように、略積層方向に延びて成長した多数の結晶粒33aから構成されており、この結晶粒33aの粒径Dは10nm以下とされている。この強磁性層33の膜密度ρmagの、該強磁性層33を構成する材料のバルク材質密度ρbulkに対する比は、0.70<ρmag/ρbulk≦1の範囲にある。
保護層34は、炭素を主成分とする硬質保護層であり、ダイアモンドライクカーボン(DLC)やスパッタにより形成された炭素などにより構成されている。この保護層の厚みt3は3〜20nmの範囲であることが望ましい。
なお、保護層34が部分的に薄く形成されてしまう場合であっても、保護層34の厚さが3nm未満となる領域が5個/cm2以下であることが望ましい。保護層34の厚さが3nm未満となる領域は、マスター担体表面を酸化処理を施した後、顕微鏡等により観察することにより確認することができる。マスター担体表面に酸化処理を施すと、保護層が3nm未満となる領域ではその下の強磁性層が酸化され、これを目視確認することができるようになるからである。
基板31上への酸化度調整層32および磁性層33の形成は、スパッタリング法の他、磁性材料を真空蒸着法、イオンプレーティング法等の真空成膜手段、メッキ法などを用いて行うことができる。強磁性層中の酸素濃度を制御する方法としては、磁性層成膜時の初期真空度および使用するプロセスガス純度などの調整、あるいは、スパッタリング中のイオンソープションポンプの使用などの手法を用いることができる。スパッタ装置のチャンバー内の初期真空度やプロセスガス純度を高くすれば、チャンバー内の酸素量を低減することができるため磁性層中の酸素濃度を低くすることができる。酸化度調整層32を設けることにより、スパッタ装置のチャンバー内に残留する酸素元素を酸化度調整層内にトラップさせ、強磁性層33形成前のチャンバー内の酸素元素を排除する効果を奏する。
磁性層の膜密度のバルク材質密度に対する比を、0.7<ρmag/ρbulk≦1とする方法としては、磁性層形成時のスパッタ圧を調整する方法が挙げられる。
次に、本発明の磁気転写用マスター担体を用いてスレーブ媒体へ情報を転写する磁気転写方法の実施形態について説明する。
図4は、スレーブ媒体2とマスター担体3、4とを示す斜視図である。スレーブ媒体は、例えば、両面または片面に磁気記録層が形成されたハードディスク、フレキシブルディスク等の円盤状磁気記録媒体である。また、本実施形態においては、円盤状の基板21の両面にそれぞれ面内磁気記録層22を備えた(図6参照)、記録面2b,2cが形成されたものを示している。
また、マスター担体3は上記実施形態に示したものであり、スレーブ媒体2の下側記録面2b用の凹凸パターンとして、サーボ領域35にサーボ信号に応じた凹凸パターンが形成されている。また、マスター担体4は、マスター担体3と同様の層構成からなる、スレーブ媒体2の上側記録面2c用の凹凸パターンが形成されたものである。
図4では、磁気記録媒体2とマスター担体3,4が互いに離間した状態を示しているが、実際の磁気転写は、磁気記録媒体2の記録面2b、2cとマスター担体3,4の転写パターン面とを密着させた状態で行う。
図5は、本発明の磁気転写用マスター担体を用いて磁気転写を行うための磁気転写装置の概略構成を示す斜視図である。磁気転写装置1は、マスター担体3,4とスレーブ媒体2とを密着させて保持する転写ホルダー10および該転写ホルダー10の内部空間のエアを真空吸引し内部を減圧状態として密着力を得る図示しない真空吸引手段からなる密着圧力印加手段と、転写ホルダー10を回転させつつ転写用磁界を印加する磁界印加手段55とを備えてなる。
磁界印加手段55は、転写ホルダー10の両側に配設された電磁石装置50,50を備えてなり、この電磁石装置50の転写ホルダー10の半径方向に延びるギャップ51を有するコア52にコイル53が巻き付けられてなる。両電磁石装置50,50はトラック方向と平行な同一の向きの磁界を発生させるものである。また、磁界印加手段55としては、電磁石装置に代えて永久磁石装置で構成してもよい。垂直記録の場合の磁界印加手段は、転写ホルダー10の両側に配設された、極性の異なる電磁石または永久磁石から構成することができる。すなわち、垂直記録の場合は、トラック面に垂直な方向に転写用磁界を発生させるものである。
また、磁界印加手段55は、転写ホルダー10の開閉動作を許容するように、両側の電磁石装置50,50が接離移動するか、電磁石装置50,50間に転写ホルダー10が挿入されるように電磁石装置50,50またはホルダー10が移動するようになっている。
転写ホルダー10は、相対的に接離移動可能な左側の片側ホルダー11と右側の他側ホルダー12とを備え、その内部に形成される内部空間に、スレーブ媒体2およびマスター担体3を収容して、この内部空間の減圧によりスレーブ媒体2とマスター担体3とを中心位置を合わせた状態で重ね合わせて対峙密着させるものである。
片側ホルダー11の押圧面には、スレーブ媒体2の片面にサーボ信号等の情報を転写する一方のマスター担体3およびスレーブ媒体2を吸着等により保持し、他側ホルダー12の押圧面には、スレーブ媒体2の他面にサーボ信号等の情報を転写する他方のマスター担体4を吸着等により保持する。
片側ホルダー11および他側ホルダー12の背面の中心位置には、それぞれ支持軸が突設され、装置本体に支持され、回転機構に連係されて磁気転写時に回転駆動される。
また、転写ホルダー10の内部空間は、密着時には所定の真空度に減圧されて、スレーブ媒体2とマスター担体3,4との密着力を得るととともに、密着面のエア抜きを行って密着性を高めるとともに、大気開放時および剥離時には圧縮空気の導入が行われる。また、密着力の印加のために、真空吸引に加えて、転写ホルダーを外部から機械的に加圧してもよい。
次に、上記磁気転写装置1による磁気転写方法について説明する。上記磁気転写装置の転写ホルダー10は、一組のマスター担体3,4により複数のスレーブ媒体2に対する磁気転写を行うものであり、まず片側ホルダー11および他側ホルダー12にマスター担体3,4をそれぞれ位置を合わせて保持させておく。そして、片側ホルダー11と他側ホルダー12とを離間した開状態で、予め面内方向または垂直方向の一方に初期磁化したスレーブ媒体2を中心位置を合わせてセットした後、他側ホルダー12を片側ホルダー11に接近移動させ閉状態とする。スレーブ媒体2およびマスター担体3,4を収容した転写ホルダー10の内部空間を真空吸引することにより減圧し、スレーブ媒体2とマスター担体3,4とに均一に密着力を加え密着させる。密着力の印加のために、真空吸引に加えて、転写ホルダーを外部から機械的に加圧してもよい。
その後、転写ホルダー10の両側に電磁石装置50を接近させ、転写ホルダー10を回転させつつ電磁石装置50によって初期磁化とほぼ反対方向に転写用磁界を印加し、マスター担体3の転写パターンに応じた磁化パターンをスレーブ媒体2の磁気記録層に転写記録する。
図6は、面内磁気記録媒体への磁気転写の基本工程を説明するための図であり、図6(a)は磁界を一方向に印加してスレーブ媒体を初期直流磁化する工程、(b)はマスター担体とスレーブ媒体とを密着させて初期直流磁界とは略反対方向に磁界を印加する工程、(c)は磁気転写後のスレーブ媒体の記録再生面の状態をそれぞれ示す図である。なお、図6においてスレーブ媒体2についてはその下面記録面2b側のみを示している。
図6(a)に示すように、予めスレーブ媒体2にトラック方向の一方向の初期直流磁界Hinを印加して磁気記録層22の磁化を初期直流磁化させておく。その後、図6(b)に示すように、このスレーブ媒体2の記録面2bとマスター担体3の転写パターン面とを密着させ、スレーブ媒体2のトラック方向に前記初期直流磁界Hinとは逆方向の転写用磁界Hduを印加する。スレーブ媒体2とマスター担体3の転写パターンの密着した箇所において、転写用磁界Hduは、マスター担体3の凸部に吸い込まれ、この部分に対応するスレーブ媒体2の磁化は反転せずその他の部分の初期磁化が反転する。その結果、図6(c)に示すように、スレーブ媒体2の下側記録面2bの磁気記録層22にはマスター担体3の凹凸パターンに応じた情報(例えばサーボ信号)が磁気的に転写記録される。ここでは、スレーブ媒体2の下側記録面2bへの下側マスター担体3による磁気転写について説明したが、磁気記録媒体2の上側記録面2cについても上側マスター担体4と密着させて同様に磁気転写を行う。なお、磁気記録媒体2の上下記録面2b、2cへの磁気転写は同時になされてもよいし、片面ずつ順次なされてもよい。
なお、初期直流磁界および転写用磁界は、スレーブ媒体の保磁力、マスター担体およびスレーブ媒体の比透磁率等を勘案して定められた値を採用する必要がある。
図6に示して説明した磁気転写の基本工程は、スレーブ媒体が面内記録媒体である場合のものであるが、スレーブ媒体が垂直記録媒体である場合には、初期磁化方向および転写磁界の印加方向を面に垂直な方向とすればよい。なお、垂直記録の場合は、マスター担体の凸部と密着した部分の初期磁化が反転し、その他の部分の初期磁化は反転しない結果として凹凸パターンに応じた磁化パターンが転写される。
スレーブ媒体2としては、ハードディスク、高密度フレキシブルディスクなどの、塗布型磁気記録層あるいは金属薄膜型磁気記録層を備えた円盤状磁気記録媒体を使用することができる。
なお、金属薄膜型磁気記録層を備えた磁気記録媒体の場合、磁性材料として、Co、Co合金(CoPtCr、CoCr、CoPtCrTa、CoPtCrNbTa、CoCrB、CoNi、Co/Pd等)、Fe、Fe合金(FeCo、FePt、FeCoNi)を用いることができる。磁性層としては、磁束密度が大きいこと、面内記録なら面内方向、垂直記録なら垂直方向の磁気異方性を有することが、明瞭な転写を行えるため好ましい。好ましい磁性層厚は10〜500nmであり、さらに好ましくは20〜200nmである。
また、磁性層の下(基板側)には、該磁性層に必要な磁気異方性を持たせるために非磁性の下地層を設けることが好ましい。下地層としては、Cr、CrTi、CoCr、CrTa、CrMo、NiAl、Ru、Pd等を用いることができるが、結晶構造および格子定数が、その上に設けられる磁性層の結晶構造および格子定数と一致するものを選択する必要がある。好ましい非磁性層の厚みは、10〜150nmであり、さらに好ましくは20〜80nmである。
さらに、垂直磁気記録媒体の場合には、磁性層の垂直磁化状態を安定化させ、記録再生時の感度を向上させるために非磁性の下地層の下に軟磁性の裏打ち層を設けてもよい。この裏打ち層としては、NiFe、CoCr、FeTaC、FeAlSi等を用いることができる。好ましい裏打ち層の厚みは、50〜2000nmであり、さらに好ましくは60〜400nmである。
次に、本発明の実施例および比較例の磁気転写用マスター担体について評価を行った結果を説明する。
まず、実施例および比較例のマスター担体およびスレーブ媒体たる磁気記録媒体について説明する。
マスター担体は、基板としてスタンパー作製法を用いて作製した円盤状のNi基板を備えてなるものとした。
8インチSiウエハー上に化学増感型レジストを100nm塗布し、電子線により回転中心から半径方向10mm〜40mmの位置までの半径領域に最内周ビット長0.15μm、トラック幅1.0μm、トラックピッチ1.1μm、溝深さ0.1μmである放射状ラインを描画し、現像することによりレジストパターンを形成する。このレジストパターン上にNi電導層を10nm、基板温度40℃でスパッタにより形成した。この際のスパッタ条件は、Arスパッタ圧0.15Pa(1.07mTorr)、投入電気力2.80W/cm2とした。Ni電導層を形成後にNi電鋳を行う。電鋳は厚みが0.3mmになるまで行った。電鋳後、レジストからNi基板を剥離し、Ni基板表面に対してクリーニングを行った。
Ni基板は、円盤中心から半径方向10〜40mmの範囲に、トラック幅1.0μm、トラックピッチ1.1μm、最内周である半径方向10mm位置でビット長が0.15μm、凸部高さ(凹部溝深さ)0.2μmである凹凸パターン信号を有するものである。
その後、Ni基板上に酸化度調整層(FeCo25at%)を5nm、強磁性層(FeCo25at%)を100nm、スパッタ法により形成した。強磁性層中の酸素濃度は1.3at%、磁性層膜密度は0.85、磁性層結晶粒子サイズは10nmとした。なお、スパッタは、初期真空度は1.33×10-4Pa(1.0×10-6Torr)、基板温度は25℃、Arスパッタ圧は0.13Pa(0.95mTorr)とし、投入電力は3.20W/cm2の条件で行った。
スレーブ媒体としては、真空蒸着装置(芝浦メトロニクス:S-50Sスパッタ装置)において、室温にて1.33×10-5Pa(1.0×10-7Torr)まで減圧した後に、アルゴンを導入して0.4Pa(3.0mTorr)とした条件下で、ガラス板を200℃に加熱し、CrTi:30nm、CoCrPt:30nm、飽和磁化Ms:2.8T(2250Gauss)、保磁力Hc:318kA/m(4000Oe)の磁性層を備えた3.5インチ型の円盤状面内磁気記録媒体を用いた。
実施例1:上述の条件にて作製したマスター担体であり、酸化度調整層の厚み5nm、強磁性層中の平均酸素濃度1.3at%、強磁性層の膜密度とバルク密度の比ρmag/ρbulkが0.85、強磁性層の結晶粒径10nm、保護層なしのマスター担体とした。
なお、マスター担体の強磁性層中の酸素濃度は、以下のようにして求めたものである。
スレーブ媒体との密着・剥離を10000回繰り返した後のマスター担体について平均酸素濃度の測定をμオージェ分光装置を用いて行った。表面よりArイオンによるイオンエッチングを実施(レート0.5mm/min)しながら磁性層、酸化度調整層のそれぞれの構成元素、酸素を同時にモニタリングし、各元素、酸素についてのスペクトル強度から各深さでの酸素の原子パーセント(at%)を算出した。
以下、実施例2〜7および比較例1、2については、上記実施例1のマスター担体と異なる点および異なる作製条件のみを述べる。各マスター担体の酸化度調整層の厚み、強磁性層の平均酸素濃度、強磁性層の膜密度とバルク密度の比ρmag/ρbulk、強磁性層の結晶粒径、保護層の有無は表1に示すとおりである。
実施例2:酸化度調整層を2nmとし、磁性層中の酸素濃度を4.8at%とした。
実施例3:強磁性層形成時のArスパッタ圧を0.75Pa(5.4mTorr)とし、密度比を0.72とし、強磁性層中の酸素濃度を1.2at%とした。
実施例4:強磁性層形成時のArスパッタ圧を1.5Pa(10.8mTorr)とし、密度比を0.69とし、強磁性層中の酸素濃度を1.1at%とした。
実施例5:強磁性層形成時の基板温度を20℃とし、結晶粒径を5nmとした。
実施例6:強磁性層形成時の基板温度を70℃とし、結晶粒径を15nmとした。
実施例7:強磁性層上にDLC硬質保護層を5nm形成した。
比較例1:酸化度調整層を設けず、強磁性層内の酸素濃度を5.1at%とした。
比較例2:酸化度調整層を設けず、強磁性層内の酸素濃度が5.1at%とし、さらに、強磁性層上にDLC硬質保護層を5nm形成した。
マスター担体とスレーブ媒体との耐久性評価は以下の(a)、(b)の方法により行った。
(a)マスター表面欠陥評価方法
上記実施例および比較例の各マスター担体につき、スレーブ媒体との密着圧力を7.4×10-3Pa(7.5kgf/cm2)とし、10000回密着、剥離を繰り返した後、マスター担体表面を微分干渉顕微鏡で480倍の拡大率で1000視野ランダムに観測する。この1000視野中に磁性層の析出物・亀裂箇所(腐食箇所相当)が1箇所以下であれば良好(○)、2〜5箇所であれば可(△)、6箇所以上であれば不良(×)と評価した。
(b)スレーブ記録信号評価方法
スレーブ媒体と10000回の密着、剥離を繰り返した後のマスター担体から磁気転写により磁化パターンが記録されたスレーブ媒体を電磁変換特性測定装置(協同電子製SS-60)に設置し、半径40mm位置でのヘッド(再生ヘッドギャップ0.10μm、再生トラック幅0.35μm、記録ヘッドギャップ0.15μm、記録トラック幅0.51μmであるGMRヘッド)の線速度が10m/secとなるように設定する。
半径40mm位置の周方向の全信号パルスをカウントし、平均振幅(V)を算出する。平均振幅の50%以下の振幅を有するパルス数をカウントする。
平均振幅の50%以下の振幅を有するパルスの数が10個/トラック未満であれば良好(○)、10〜39個であれば可(△)、40個以上であれば不良(×)と評価した。
各実施例および比較例についての観測結果および評価結果を表1に示す。
Figure 2005276301
表1に示すとおり、本発明の実施例1〜7はいずれの評価においても可以上であり、比較例1、2はいずれの評価も不良との結果であった。
酸化度調整層を有し、磁性層の平均酸素濃度が5at%以下であり、膜密度比が0.7より大きく、さらに、結晶粒の粒子径が10nm以下である実施例1〜3および5、6についてはいずれの評価についても良好との結果が得られたが、強磁性層の膜密度比が0.7より小さい実施例4はマスター耐久性およびスレーブ記録信号の評価がいずれも可であり、結晶粒の粒子径が15nmと大きかったものについてはマスター耐久性が可であった。
磁気転写用マスター担体の表面の一部斜視図 図1の磁気転写用マスター担体の断面図 強磁性層中における酸素濃度分布の例を示す図 マスター担体とスレーブ媒体とを示す斜視図 磁気転写装置の概略構成を示す斜視図 面内磁気記録媒体への磁気転写方法の基本工程を示す図
符号の説明
1 磁気転写装置
2 スレーブ媒体
2a スレーブ媒体の基板
2b,2c 磁性層(磁気記録層)
3,4 マスター担体
10 転写ホルダー
31 基板
32 酸化度調整層
33 強磁性層
34 保護層
36 凹凸パターン
37 凸部
38 凹部
50 電磁石装置
55 磁界印加手段

Claims (8)

  1. 表面に所望の転写パターンに応じた凹凸パターンを有する基板を備えた磁気転写用マスター担体であって、
    前記基板上に少なくとも酸化度調整層、強磁性層がこの順に積層形成されており、該強磁性層の平均酸素濃度が5at%以下であることを特徴とする磁気転写用マスター担体。
  2. 前記強磁性層の膜密度ρmagの該強磁性層のバルク材質密度ρbulkに対する比ρmag/ρbulkが、0.70<ρmag/ρbulk≦1の関係にあることを特徴とする請求項1記載の磁気転写用マスター担体。
  3. 前記強磁性層の成長粒子径が10nm以下であることを特徴とする請求項1または2記載の磁気転写用マスター担体。
  4. 前記強磁性層上に炭素を主成分とする保護層を備えていることを特徴とする請求項1から3いずれか1項記載の磁気転写用マスター担体。
  5. 前記保護層の平均厚みが3〜20nmの範囲にあることを特徴とする請求項4記載の磁気転写用マスター担体。
  6. 前記転写パターンがサーボ信号を担持するものであることを特徴とする請求項1から5いずれか1項記載の磁気転写用マスター担体。
  7. 請求項1から6いずれか1項記載の磁気転写用マスター担体と被転写媒体との重畳体に転写磁界を印加して、前記マスター担体の転写パターンを前記被転写媒体の磁気記録面に磁気転写することを特徴とする磁気転写方法。
  8. 請求項1から6いずれか1項記載の磁気転写用マスター担体から磁気転写により前記転写パターンに基づく磁化パターンが記録されたことを特徴とする磁気記録媒体。
JP2004086917A 2004-03-24 2004-03-24 磁気転写用マスター担体、磁気転写方法および磁気記録媒体 Withdrawn JP2005276301A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086917A JP2005276301A (ja) 2004-03-24 2004-03-24 磁気転写用マスター担体、磁気転写方法および磁気記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086917A JP2005276301A (ja) 2004-03-24 2004-03-24 磁気転写用マスター担体、磁気転写方法および磁気記録媒体

Publications (1)

Publication Number Publication Date
JP2005276301A true JP2005276301A (ja) 2005-10-06

Family

ID=35175807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086917A Withdrawn JP2005276301A (ja) 2004-03-24 2004-03-24 磁気転写用マスター担体、磁気転写方法および磁気記録媒体

Country Status (1)

Country Link
JP (1) JP2005276301A (ja)

Similar Documents

Publication Publication Date Title
US6790534B2 (en) Magnetic transfer master medium, magnetic transfer method, and magnetic transfer master medium forming method
EP1256940A2 (en) Master carrier for magnetic transfer
US20050200991A1 (en) Magnetic transfer method and apparatus
KR20030043747A (ko) 자기전사용 마스터 담체 및 자기전사방법
JP2008210512A (ja) 磁気転写用マスター担体の製造方法
US7974028B2 (en) Magnetic transfer master carrier and magnetic transfer method
CN100358011C (zh) 磁复制用主载体
JP2010108587A (ja) 磁気転写用マスター担体の製造方法、磁気転写用マスター担体、及び磁気転写方法
EP2063421A2 (en) Master carrier for magnetic transfer and magnetic recording medium manufactured using the same
JP2005276301A (ja) 磁気転写用マスター担体、磁気転写方法および磁気記録媒体
JP2004348796A (ja) 磁気転写用マスター担体および磁気転写方法
US7301714B2 (en) Method and apparatus for magnetic transfer, and magnetic recording medium
US6909634B2 (en) Magnetic transfer method and magnetic transfer device
JP4044065B2 (ja) 磁気転写用マスター担体、磁気転写方法
US7440207B2 (en) Magnetic-transfer method, magnetic recording medium, and magnetic recording device
JP3986951B2 (ja) 磁気転写用マスター担体および磁気転写方法
US6979524B2 (en) Contact printing of longitudinal magnetic media with perpendicularly applied magnetic field
US7532420B2 (en) Master disk for magnetic transfer, magnetic recording medium and magnetic recording apparatus
JP3999709B2 (ja) 磁気転写用マスター担体および磁気転写方法
JP2005276265A (ja) 磁気転写方法および磁気記録媒体
JP2003173516A (ja) 磁気転写用マスター担体
JP2005011384A (ja) 磁気転写用マスター担体および磁気転写方法
JP2004348853A (ja) 磁気転写用マスター担体および磁気転写方法
JP2005100605A (ja) 磁気転写用マスター担体の製造方法
JP2006236466A (ja) 磁気転写用マスター担体

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605