JP2005276262A - Method and device for inspecting optical laminate, and method and device for manufacturing optical laminate - Google Patents
Method and device for inspecting optical laminate, and method and device for manufacturing optical laminate Download PDFInfo
- Publication number
- JP2005276262A JP2005276262A JP2004084749A JP2004084749A JP2005276262A JP 2005276262 A JP2005276262 A JP 2005276262A JP 2004084749 A JP2004084749 A JP 2004084749A JP 2004084749 A JP2004084749 A JP 2004084749A JP 2005276262 A JP2005276262 A JP 2005276262A
- Authority
- JP
- Japan
- Prior art keywords
- optical laminate
- film thickness
- optical
- inspection
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Manufacturing Optical Record Carriers (AREA)
Abstract
Description
本発明は、基板上に反射層と有機色素を順に積層してなる積層体、あるいは基板上に反射層と有機色素と誘電体を順に積層してなる積層体における色素膜厚および/または誘電体膜厚を検査する光学積層体検査方法およびその装置、ならびに光学積層体製造方法およびその装置に関するものである。 The present invention relates to a laminate thickness obtained by sequentially laminating a reflective layer and an organic dye on a substrate, or a dye film thickness and / or a dielectric in a laminate obtained by sequentially laminating a reflective layer, an organic dye and a dielectric on a substrate. The present invention relates to an optical laminate inspection method and apparatus for inspecting film thickness, and an optical laminate manufacturing method and apparatus thereof.
一般にレーザ光により1回だけ情報の記録が可能な追記型光記録媒体としては、CD−R,DVD+R,DVD−Rなどが知られている。これら追記型光記録媒体の構造は、トラッキング用グルーブを形成した透明なポリカーボネート基板上に有機色素からなる記録層をスピンコートし、その上に金または銀などからなる光反射層をスパッタリングにより堆積し、さらに紫外線硬化樹脂製の保護層を積層したものである。DVD+R,DVD−Rは、厚さ0.6mmの基板を2枚貼り合せた構造を有し、記録容量が多いという特徴を有する。 In general, CD-R, DVD + R, DVD-R, and the like are known as write-once type optical recording media capable of recording information only once with a laser beam. These write-once optical recording media have a structure in which a recording layer made of an organic dye is spin-coated on a transparent polycarbonate substrate on which a tracking groove is formed, and a light reflecting layer made of gold or silver is deposited thereon by sputtering. Further, a protective layer made of an ultraviolet curable resin is laminated. DVD + R and DVD-R have a structure in which two substrates having a thickness of 0.6 mm are bonded together, and have a large recording capacity.
これら追記型光記録媒体の製造過程における有機色素記録膜の膜厚検査方法として、特許文献1には、グルーブによって回折された透過または反射光により膜厚を測定する方法が開示されている。 As a method for inspecting the film thickness of an organic dye recording film in the process of manufacturing these write-once type optical recording media, Patent Document 1 discloses a method for measuring the film thickness with transmitted or reflected light diffracted by a groove.
また、特許文献2には、異なる次数の回折光からランド部膜厚とグルーブ部膜厚をそれぞれ測定し、基板上に色素膜を形成した状態で、透過率,回折光強度を測定することにより色素膜厚を検査することが開示されている。 Patent Document 2 discloses that the land portion film thickness and the groove portion film thickness are measured from diffracted lights of different orders, and the transmittance and diffracted light intensity are measured in a state where a dye film is formed on the substrate. It is disclosed to inspect the pigment film thickness.
また、特許文献3には、色素の特性吸収波長を主成分とする光を検査光として用い、欠陥を反射光により検査する装置が開示されている。 Further, Patent Document 3 discloses an apparatus for inspecting a defect with reflected light using light mainly composed of a characteristic absorption wavelength of a dye as inspection light.
ところで、読み出しのDVD−ROMでは、記録容量を増大させるために、2層の情報記録層を有するものが市販されている。2層の情報記録層は、第1基板と第2基板を紫外線硬化樹脂から形成された透明中間層を挟むことにより貼り合わされており、第1基板の凹凸ピットを形成した内側の面に第1の半透明層が形成された第1の情報層記録層L0と、その上に透明中間層と第2の金属反射層で形成された第2の情報層記録層L1により構成されている。半透明層は誘電体膜または薄い金属膜を用いて形成されている。 By the way, as a read DVD-ROM, one having two information recording layers is commercially available in order to increase the recording capacity. The two information recording layers are bonded to each other by sandwiching a transparent intermediate layer formed of an ultraviolet curable resin between the first substrate and the second substrate, and the first information layer is formed on the inner surface of the first substrate on which the concave and convex pits are formed. The first information layer recording layer L0 on which the semitransparent layer is formed, and the second information layer recording layer L1 formed on the transparent intermediate layer and the second metal reflection layer thereon. The translucent layer is formed using a dielectric film or a thin metal film.
再生光であるレーザ光を、それぞれ第1の情報記録層または第2の情報記録層上に集光するように絞り、情報記録層からの反射光を検出することにより、それぞれの情報記録層の信号を再生することができる。2つの情報記録層から信号を読み取るため、最大8.5GB程度の記憶容量が得られる。 A laser beam that is reproduction light is focused so as to be condensed on the first information recording layer or the second information recording layer, respectively, and reflected light from the information recording layer is detected. The signal can be reproduced. Since signals are read from the two information recording layers, a maximum storage capacity of about 8.5 GB can be obtained.
近年、2つの記録層を有し、かつ2層型DVD−ROMと再生互換性があるタイプの光記録媒体の開発が進んでおり、このタイプの光記録媒体として、グルーブを形成した透明基板上に有機色素記録層を形成し、その上に半透明な反射層を形成し、さらに紫外線硬化樹脂を塗布した第1の基板とグルーブを形成した基板上に、全反射層を形成した上に有機色素記録層を形成し、透明無機薄膜を形成した第2の基板を接着剤を介して貼り合せて製作するものが実用化されつつある(特許文献4,特許文献5参照)。
しかし、前記のように記録層と半透明な反射層を、それぞれの基板に形成して貼り合せて光記録媒体を作製する場合には、第2基板の全反射膜は光を透過しないため、全反射膜上に形成した色素膜厚および色素の上に形成した誘電体膜の膜厚を、透過光で測定することは不可能であるという問題があった。 However, when an optical recording medium is manufactured by forming and bonding a recording layer and a translucent reflective layer on each substrate as described above, the total reflection film of the second substrate does not transmit light. There is a problem that it is impossible to measure the film thickness of the dye formed on the total reflection film and the film thickness of the dielectric film formed on the dye with transmitted light.
本発明は前記従来技術の問題を解決するためになされたものであって、本発明の目的は、光学積層体の色素と誘電体からなる第2(記録/再生光からみて奥側)記録層の状態を簡便に検査することができる光学積層体検査方法,およびその方法を採用した光学積層体製造方法、ならびに光学積層体検査装置、及びその装置を採用した光学積層体製造装置を提供することにある。 The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a second (back side as viewed from recording / reproducing light) recording layer comprising a dye and a dielectric of an optical laminate. An optical laminate inspection method capable of simply inspecting the state of an optical laminate, an optical laminate production method employing the method, an optical laminate inspection apparatus, and an optical laminate production apparatus employing the device It is in.
前記目的を達成するため、本発明に係る光学積層体検査方法および光学積層体検査装置は、基板上に反射層と有機色素を順に積層してなる積層体の反射光強度を測定し、色素膜厚を検査することを特徴とする。 In order to achieve the above object, an optical laminate inspection method and an optical laminate inspection apparatus according to the present invention measure the reflected light intensity of a laminate formed by sequentially laminating a reflective layer and an organic dye on a substrate, and a dye film It is characterized by inspecting the thickness.
また、本発明に係る光学積層体検査方法および光学積層体検査装置は、基板上に反射層と有機色素と誘電体を順に積層してなる積層体の反射光強度を測定し、誘電体膜厚を検査することを特徴とする。 The optical laminate inspection method and the optical laminate inspection apparatus according to the present invention measure the reflected light intensity of a laminate formed by sequentially laminating a reflective layer, an organic dye, and a dielectric on a substrate, and the dielectric film thickness. It is characterized by inspecting.
また、本発明に係る光学積層体検査方法および光学積層体検査装置は、特定の波長の反射光強度を測定し、膜厚を検査することを特徴とする。 The optical laminate inspection method and optical laminate inspection apparatus according to the present invention are characterized by measuring the reflected light intensity of a specific wavelength and inspecting the film thickness.
また、本発明に係る光学積層体検査方法および光学積層体検査装置は、特定の波長の発光ダイオードから出射した光の反射光強度を測定し、膜厚を検査することを特徴とする。 The optical laminate inspection method and the optical laminate inspection apparatus according to the present invention are characterized by measuring the reflected light intensity of light emitted from a light emitting diode having a specific wavelength and inspecting the film thickness.
また、本発明に係る光学積層体検査方法および光学積層体検査装置は、光を光学積層体に入射し、前記光学積層体で反射された後の光を分光手段で分光した特定波長の反射光強度を測定し、膜厚を検査することを特徴とする。 Further, the optical laminate inspection method and the optical laminate inspection apparatus according to the present invention provide a reflected light having a specific wavelength obtained by allowing light to enter the optical laminate and the light reflected by the optical laminate to be dispersed by a spectroscopic unit. It is characterized by measuring the strength and inspecting the film thickness.
また、本発明に係る光学積層体検査方法および光学積層体検査装置は、前記分光手段としてプリズムを用いることを特徴とする。 The optical laminate inspection method and optical laminate inspection apparatus according to the present invention are characterized in that a prism is used as the spectroscopic means.
また、本発明に係る光学積層体検査方法および光学積層体検査装置は、前記分光手段として回折格子を用いることを特徴とする。 The optical laminate inspection method and optical laminate inspection apparatus according to the present invention are characterized in that a diffraction grating is used as the spectroscopic means.
また、本発明に係る光学積層体検査方法および光学積層体検査装置は、光学フィルタによって波長選択した光を光学積層体に入射し、光学積層体の反射光強度を測定し、膜厚を検査することを特徴とする。 Also, the optical laminate inspection method and the optical laminate inspection apparatus according to the present invention inject light having a wavelength selected by the optical filter into the optical laminate, measure the reflected light intensity of the optical laminate, and inspect the film thickness. It is characterized by that.
また、本発明に係る光学積層体検査方法および光学積層体検査装置は、光積層体に対して斜めから入射して、全反射した反射光強度を測定し、膜厚を検査することを特徴とする。 Further, the optical laminate inspection method and the optical laminate inspection apparatus according to the present invention are characterized in that the incident light is obliquely incident on the optical laminate, the reflected light intensity that is totally reflected is measured, and the film thickness is inspected. To do.
また、本発明に係る光学積層体製造方法および光学積層体製造装置は、前記検査結果から得られた色素膜厚および/または誘電体膜厚の情報を受けて、膜厚を制御することを特徴とする。 Further, the optical laminate manufacturing method and the optical laminate manufacturing apparatus according to the present invention are characterized by receiving information on the dye film thickness and / or the dielectric film thickness obtained from the inspection result and controlling the film thickness. And
本発明によれば、膜厚を透過光で測定することは不可能である光学積層体の構成であっても、光学積層体の反射率スペクトルまたは特定の波長の反射光強度を測定することにより、非常に精度の高い膜厚検査を行うことができる。 According to the present invention, by measuring the reflectance spectrum of the optical laminate or the intensity of reflected light at a specific wavelength, even if the optical laminate has a configuration in which it is impossible to measure the film thickness with transmitted light. Therefore, it is possible to perform a highly accurate film thickness inspection.
以下、本発明の実施の形態を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の光学積層体検査方法および検査装置を説明するため、2層追記型光記録媒体の製造システムにおける第2基板の検査処理に適用した本発明の実施形態1を示す概略構成図である。 FIG. 1 is a schematic diagram showing a first embodiment of the present invention applied to a second substrate inspection process in a two-layer write-once optical recording medium manufacturing system in order to explain the optical laminate inspection method and inspection apparatus of the present invention. FIG.
図1において、発光ダイオードからなる光源1から出射した光(矢印にて示す)は、集光レンズ2を通過し平行光となった後、ビームスプリッタ3を通って、約50%の強度の光が光学積層体4の第2基板に入射する。ビームスプリッタ3で分割された残りの光は、入射光フォトセンサ5でモニタして入射光強度を測定する。また、2層追記型光記録媒体である光学積層体4の第2基板の表面で反射した光は、再びビームスプリッタ3を通って反射光フォトセンサ6で受光され反射光強度を測定する。このときフォトセンサ5,6に光が入射する前の光路に、プリズムまたは回折格子などの分光手段7,8を配置することによって特定波長に分光することが考えられる。 In FIG. 1, light emitted from a light source 1 made of a light emitting diode (indicated by an arrow) passes through a condenser lens 2 to become parallel light, and then passes through a beam splitter 3 and has a light intensity of about 50%. Is incident on the second substrate of the optical laminate 4. The remaining light divided by the beam splitter 3 is monitored by the incident light photosensor 5 to measure the incident light intensity. The light reflected by the surface of the second substrate of the optical layered body 4 which is a two-layer write-once optical recording medium is again received by the reflected light photosensor 6 through the beam splitter 3 and the reflected light intensity is measured. At this time, it is conceivable to disperse light to a specific wavelength by disposing spectral means 7 and 8 such as prisms or diffraction gratings in the optical path before the light enters the photosensors 5 and 6.
検査部9では、入射光フォトセンサ5における入射光強度と反射光フォトセンサ6の反射光強度とを比較することにより、光源1の発光ダイオードの発光波長での反射率を求める。 In the inspection unit 9, the reflectance at the light emission wavelength of the light emitting diode of the light source 1 is obtained by comparing the incident light intensity in the incident light photosensor 5 with the reflected light intensity in the reflected light photosensor 6.
前記光学積層体4である2層追記型光記録媒体は、深さ20〜200nm,0.74μmピッチのトラッキンググルーブを形成したディスク基板上にAg,Al,Auなどの金属およびCu,Pd,Pt,Zn,In,Mg,Ti,V,Taを0.1〜3wt%添加した合金からなる全反射をスパッタし、さらに膜の光吸収スペクトルの最大吸収波長が580nm〜620nmにあり、DVD用レーザ光波長(約650nm)にて所望の光学特性が得やすい色素化合物として、テトラアザポルフィラジン色素,シアニン色素,アゾ色素,スクアリリウム色素などの有機色素を塗布した基板(1)、または、さらに色素,半透過反射膜を形成した第1基板と貼り合せるための接着剤により前記基板(1)に形成した、色素が溶出しないための透明誘電体を形成した基板(2)である。 The two-layer write-once type optical recording medium, which is the optical layered body 4, is made of a metal such as Ag, Al, Au and Cu, Pd, Pt on a disk substrate on which tracking grooves having a depth of 20 to 200 nm and a pitch of 0.74 μm are formed. , Zn, In, Mg, Ti, V, Ta, and a total reflection made of an alloy to which 0.1 to 3 wt% is added is sputtered, and the maximum absorption wavelength of the light absorption spectrum of the film is 580 nm to 620 nm. A substrate (1) coated with an organic dye such as a tetraazaporphyrazine dye, a cyanine dye, an azo dye, a squarylium dye as a dye compound that easily obtains desired optical properties at a light wavelength (about 650 nm), or a dye, The transparent substrate is formed on the substrate (1) with an adhesive for bonding to the first substrate on which the semi-transmissive reflective film is formed so as not to elute the dye. A substrate formed with a dielectric (2).
透明誘電体は、色素を接着剤から保護するために、色素に対する密着性がよく緻密な薄膜であればよいが、酸化ケイ素,酸化アルミニウム,酸化亜鉛,酸化チタン等の酸化物,窒化シリコン,窒化アルミニウムなどの窒化物,硫化亜鉛,硫化ゲルマニウム,硫化モリブデンなどの硫化物,フッ化マグネシウム,フッ化セシウム,フッ化バリウムなどのフッ化物、およびこれらの混合物を用いることができる。 The transparent dielectric may be a dense thin film with good adhesion to the dye to protect the dye from the adhesive. However, the oxide such as silicon oxide, aluminum oxide, zinc oxide, titanium oxide, silicon nitride, nitride A nitride such as aluminum, a sulfide such as zinc sulfide, germanium sulfide, and molybdenum sulfide, a fluoride such as magnesium fluoride, cesium fluoride, and barium fluoride, and a mixture thereof can be used.
次に、本実施形態における検査部9における測定原理を具体的に説明する。 Next, the measurement principle in the inspection unit 9 in this embodiment will be specifically described.
ここで光学積層体4の吸光度および反射率は、ステアグ社製のETA−RTを用いて分光反射率を測定した。 Here, as for the absorbance and reflectance of the optical layered body 4, the spectral reflectance was measured using ETA-RT manufactured by Steag.
Ag全反射膜は、可視光領域では高い反射率を示すが、短波長ではやや低く、長波長ほど高い反射率スペクトルとなっている。このようなAg反射膜を、光学積層体4のような等ピッチの溝を有するプラスチック基板上に形成した場合、溝による散乱に起因した反射率の低下が見られる。 The Ag total reflection film shows a high reflectance in the visible light region, but is slightly lower at a short wavelength and has a higher reflectance spectrum at a longer wavelength. When such an Ag reflective film is formed on a plastic substrate having grooves with an equal pitch, such as the optical laminate 4, a decrease in reflectance due to scattering by the grooves is observed.
図2は0.74μmピッチ,深さ30nm,幅0.25μmの溝を形成したポリカーボネート基板に、Agを140nm形成した基板におけるAg反射膜側から垂直入射/垂直反射した光の分光反射スペクトルである。この場合、750nm付近に溝の散乱により反射率が5〜6%下がる現象が見られる。 FIG. 2 is a spectral reflection spectrum of light that is vertically incident / reflected from the Ag reflecting film side of a substrate on which 140 nm of Ag is formed on a polycarbonate substrate on which grooves having a 0.74 μm pitch, a depth of 30 nm, and a width of 0.25 μm are formed. . In this case, a phenomenon in which the reflectance is reduced by 5 to 6% due to the scattering of the groove is observed near 750 nm.
前記基板上にスクワリリウム色素記録層をスピンコート法により塗布するが、通常の光記録媒体の製造時に用いられるように、前記基板に直接塗布した場合の吸光度スペクトルにおいて波長606nmの最大吸収波長λmaxをパラメータとして膜厚を変化させると、図3に示すように変化するスペクトルが得られた。同じ条件で前記Ag反射膜付き基板上に色素を塗布し、90℃15分アニール後の反射スペクトルを測定したところ、図4に示すように、図2において反射率低下見られた750nm付近で、色素膜厚により光路長が変化するために反射率低下が生じる波長がシフトした。したがって700〜800nmでの最低反射率波長を測定するか、740nmでの反射率を測定することによってAg反射膜上での色素膜厚を光学的に測定することができる。 A squarylium dye recording layer is applied on the substrate by a spin coating method, and the maximum absorption wavelength λmax having a wavelength of 606 nm in the absorbance spectrum when directly applied to the substrate is used as a parameter as used in the production of a normal optical recording medium. When the film thickness was changed, a spectrum changing as shown in FIG. 3 was obtained. Under the same conditions, a pigment was applied on the substrate with the Ag reflecting film, and the reflection spectrum after annealing at 90 ° C. for 15 minutes was measured. As shown in FIG. 4, in the vicinity of 750 nm where the reflectance was reduced in FIG. Since the optical path length varies depending on the dye film thickness, the wavelength at which the reflectivity decreases is shifted. Accordingly, the dye film thickness on the Ag reflective film can be optically measured by measuring the minimum reflectance wavelength at 700 to 800 nm or by measuring the reflectance at 740 nm.
次に、色素上に透明誘電体を形成した場合、屈折率が1.6程度以下の低屈折率薄膜の場合には、反射スペクトルは透明誘電体における薄膜形成前後でほとんど変わらないが、1.8以上の高屈折率薄膜を形成した場合には、反射スペクトルが大きく変化する。 Next, when a transparent dielectric is formed on the dye, the reflection spectrum is almost the same before and after the formation of the thin film on the transparent dielectric in the case of a low refractive index thin film having a refractive index of about 1.6 or less. When a high refractive index thin film of 8 or more is formed, the reflection spectrum changes greatly.
前記色素上に屈折率2.1程度の透明誘電体薄膜を形成した場合、透明誘電体の薄膜の膜厚を変化させると、色素と透明誘電体薄膜との干渉によって、図5に示すように、反射スペクトルの変化が見られた。これから明らかなように、490nm付近または660nm付近の反射率ピーク波長または反射率を測定することにより、透明誘電体の薄膜の膜厚を光学的に測定することができる。 When a transparent dielectric thin film having a refractive index of about 2.1 is formed on the dye, when the film thickness of the transparent dielectric thin film is changed, as shown in FIG. A change in the reflection spectrum was observed. As is clear from this, the film thickness of the transparent dielectric thin film can be optically measured by measuring the reflectance peak wavelength or reflectance near 490 nm or 660 nm.
以上のような光学積層体の反射光スペクトルによる色素膜厚、誘電体膜厚の測定方法は、色素材料,誘電体材料によらず一般的なものに用いることが可能であり、測定対象物に応じて最適な波長を適宜選択するだけでよい。 The method for measuring the dye film thickness and dielectric film thickness based on the reflected light spectrum of the optical layered body as described above can be used for general materials regardless of the dye material and dielectric material. It is only necessary to select an optimum wavelength accordingly.
さらに図6に示すように、前記方法および装置11によって得られた、色素塗布後の測定結果を、光学積層体の製造装置を構成するスピナー装置12にフィードバックして、振り切り回転数または振り切り時間を調整するCPU(中央演算処理ユニット)などからなる制御部13を具備することにより、色素膜厚変動が非常に少ない色素膜記録膜を得ることができる。
Further, as shown in FIG. 6, the measurement result after applying the dye obtained by the method and the
また、誘電体膜スパッタリング後の測定結果を、光学積層体の製造装置を構成するスパッタリング装置にフィードバックすることにより、誘電体/色素膜厚変動が非常に少ない色素膜記録膜を得ることができる。このようにして作製した光記録媒体は未記録,記録後品質がきわめて安定したものになる。 Also, by feeding back the measurement result after dielectric film sputtering to a sputtering apparatus constituting the optical laminate manufacturing apparatus, a dye film recording film with very little dielectric / dye film thickness variation can be obtained. The optical recording medium produced in this way is unrecorded and has a very stable quality after recording.
また、本実施形態において、ランプのような可視光波長を主に含むものを使用することが可能である。 Moreover, in this embodiment, it is possible to use what mainly contains visible light wavelengths like a lamp | ramp.
また、図7に示す本発明の光学積層体検査装置の実施形態2における概略構成図のように、測定波長および帯域幅が既に決定されている場合には、所望の波長を透過するバンドパスフィルタ15を使用したり、光源として発光ダイオードを用いた方が、装置コストを格段に下げることが可能である。なお、以下の説明において、図1にて説明した部材に対応する部材には、同一符号を付して詳しい説明は省略する。 In addition, as shown in the schematic configuration diagram of the optical laminate inspection apparatus according to the second embodiment of the present invention shown in FIG. 7, when the measurement wavelength and the bandwidth are already determined, the bandpass filter transmits the desired wavelength. The use of 15 or the use of a light emitting diode as the light source can significantly reduce the device cost. In the following description, members corresponding to those described with reference to FIG.
さらに、図8に示す本発明の光学積層体検査装置の実施形態3における概略構成図のように、発光ダイオード1と拡散光学系を用いた斜め入射でも同様の検査が可能である。 Furthermore, as in the schematic configuration diagram in Embodiment 3 of the optical laminate inspection apparatus of the present invention shown in FIG. 8, the same inspection is possible even with oblique incidence using the light-emitting diode 1 and the diffusion optical system.
以下、本発明について実施例にてより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
(実施例1)
直径120mm,厚さ0.60mmのポリカーボネート基板の表面上に、深さ約30nm,溝幅約0.25μm,トラックピッチ0.74μmの案内溝凸凹パターンを有する基板を用意し、Unaxis社製スパッタリング装置(製品名BigSprinter)でArをスパッタリングガスとして、スパッタ圧力6.0×10−3torr、DCスパッタリングパワー3.5kWの条件で、Ag0.98/Cu0.02を約140nmの厚さに設けて反射層を形成した。次に反射層上にスクアリリウム色素化合物をλmaxでの吸収光度が1.02,1.06,1.12,1.16の膜厚となるように、スピンコート製膜した。
(Example 1)
A substrate having a guide groove uneven pattern having a depth of about 30 nm, a groove width of about 0.25 μm, and a track pitch of 0.74 μm is prepared on the surface of a polycarbonate substrate having a diameter of 120 mm and a thickness of 0.60 mm. (Product name: BigSpringer) Reflecting Ar0.98 / Cu0.02 in a thickness of about 140 nm under the conditions of sputtering gas 6.0 × 10 −3 torr and DC sputtering power 3.5 kW using Ar as a sputtering gas. A layer was formed. Next, the squarylium dye compound was spin-coated on the reflective layer so that the absorption light intensity at λmax was 1.02, 1.06, 1.12 and 1.16.
そして、波長740nmにて、実施例1の前記基板の色素面反射率をETA−RTで測定した結果、図9のような非常に相関が高い結果が得られた。 And as a result of measuring the pigment | dye surface reflectance of the said board | substrate of Example 1 by ETA-RT at wavelength 740nm, the result with a very high correlation like FIG. 9 was obtained.
(実施例2)
さらに、実施例1で作製した色素付き基板上にUnaxis社製スパッタリング装置(製品名BigSprinter)でArをスパッタガスとして、スパッタ圧力4.0×10−3torr,RFスパッタリングパワー4.0kWの条件で、スパッタ法によりZnS(80%)/SiO2(20%)を120,130,140,150nmの厚さに誘電体を設けた。
(Example 2)
Furthermore, Ar was used as a sputtering gas on the dyed substrate prepared in Example 1 using a sputtering apparatus (product name: BigSpinter) under the conditions of sputtering pressure 4.0 × 10 −3 torr and RF sputtering power 4.0 kW. Then, a dielectric was provided with a thickness of 120, 130, 140, and 150 nm of ZnS (80%) / SiO 2 (20%) by sputtering.
そして、波長500nmにて、実施例2の前記基板の誘電体膜面反射率を前記同様に測定した結果、図10のような相関が高い結果が得られた。 And as a result of measuring the dielectric film surface reflectance of the said board | substrate of Example 2 similarly to the above in wavelength 500nm, the result with a high correlation like FIG. 10 was obtained.
本発明は、基板上に反射層と有機色素を順に積層してなる積層体、あるいは基板上に反射層と有機色素と誘電体を順に積層してなる積層体構造のCD−R/RW,DVD−ROM,DVD+R/RW,DVD−R/RW,DVD−RAMなどの2層追記型光記録媒体における色素および/または誘電体の膜厚の検査に適用され、特に膜厚を透過光で測定することが不可能な光学積層体に実施して有効である。 The present invention is a CD-R / RW, DVD having a laminated structure in which a reflective layer and an organic dye are sequentially laminated on a substrate, or a laminated structure in which a reflective layer, an organic dye and a dielectric are laminated in order on a substrate. -Applied to inspection of the film thickness of a dye and / or dielectric in a two-layer write-once optical recording medium such as ROM, DVD + R / RW, DVD-R / RW, DVD-RAM, etc., and in particular, the film thickness is measured by transmitted light. It is effective when applied to an optical laminate that is impossible.
1 光源
2 集光レンズ
3 ビームスプリッタ
4 光学積層体
5 入射光フォトセンサ
6 反射光フォトセンサ
7,8 分光手段
9 検査部
11 検査装置
12 製造装置
13 制御部
15 バンドパスフィルタ
DESCRIPTION OF SYMBOLS 1 Light source 2 Condensing lens 3 Beam splitter 4 Optical laminated body 5 Incident light photosensor 6 Reflected light photosensor 7, 8 Spectroscopic means 9
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004084749A JP2005276262A (en) | 2004-03-23 | 2004-03-23 | Method and device for inspecting optical laminate, and method and device for manufacturing optical laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004084749A JP2005276262A (en) | 2004-03-23 | 2004-03-23 | Method and device for inspecting optical laminate, and method and device for manufacturing optical laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005276262A true JP2005276262A (en) | 2005-10-06 |
Family
ID=35175779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004084749A Pending JP2005276262A (en) | 2004-03-23 | 2004-03-23 | Method and device for inspecting optical laminate, and method and device for manufacturing optical laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005276262A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH109829A (en) * | 1996-06-26 | 1998-01-16 | Matsushita Electric Ind Co Ltd | Measuring method of film thickness of multilayer thin film and method and equipment for manufacturing optical information recording medium which use the method |
JPH1186350A (en) * | 1997-09-03 | 1999-03-30 | Ricoh Co Ltd | Method for inspecting optical recording medium |
JP2000187888A (en) * | 1998-12-22 | 2000-07-04 | Toshiba Emi Ltd | Production of laminated disk and apparatus therefor |
JP2001165627A (en) * | 1999-12-13 | 2001-06-22 | Ebara Corp | Film thickness measuring method and film thickness measuring device |
JP2001221617A (en) * | 1999-11-30 | 2001-08-17 | Nikon Corp | Method of measuring step, method of manufacturing stamper, stamper, method of manufacturing optical disk, optical disk, method of manufacturing semiconductor device, semiconductor device, and step measuring instrument |
JP2002141274A (en) * | 2000-11-06 | 2002-05-17 | Tokyo Electron Ltd | Measuring apparatus for film thickness and its method |
JP2003224108A (en) * | 2002-01-30 | 2003-08-08 | Hitachi Electronics Eng Co Ltd | Method for detecting end point of treatment in substrate treatment device |
JP2003272247A (en) * | 2002-03-20 | 2003-09-26 | Hitachi Maxell Ltd | Manufacturing method of optical recording medium, quality management method, and film thickness measurement method |
JP2004061371A (en) * | 2002-07-30 | 2004-02-26 | Nikon Corp | Defect inspection device and defect inspection method |
-
2004
- 2004-03-23 JP JP2004084749A patent/JP2005276262A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH109829A (en) * | 1996-06-26 | 1998-01-16 | Matsushita Electric Ind Co Ltd | Measuring method of film thickness of multilayer thin film and method and equipment for manufacturing optical information recording medium which use the method |
JPH1186350A (en) * | 1997-09-03 | 1999-03-30 | Ricoh Co Ltd | Method for inspecting optical recording medium |
JP2000187888A (en) * | 1998-12-22 | 2000-07-04 | Toshiba Emi Ltd | Production of laminated disk and apparatus therefor |
JP2001221617A (en) * | 1999-11-30 | 2001-08-17 | Nikon Corp | Method of measuring step, method of manufacturing stamper, stamper, method of manufacturing optical disk, optical disk, method of manufacturing semiconductor device, semiconductor device, and step measuring instrument |
JP2001165627A (en) * | 1999-12-13 | 2001-06-22 | Ebara Corp | Film thickness measuring method and film thickness measuring device |
JP2002141274A (en) * | 2000-11-06 | 2002-05-17 | Tokyo Electron Ltd | Measuring apparatus for film thickness and its method |
JP2003224108A (en) * | 2002-01-30 | 2003-08-08 | Hitachi Electronics Eng Co Ltd | Method for detecting end point of treatment in substrate treatment device |
JP2003272247A (en) * | 2002-03-20 | 2003-09-26 | Hitachi Maxell Ltd | Manufacturing method of optical recording medium, quality management method, and film thickness measurement method |
JP2004061371A (en) * | 2002-07-30 | 2004-02-26 | Nikon Corp | Defect inspection device and defect inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6822937B2 (en) | Optical information medium | |
JP4712798B2 (en) | Information recording medium and optical information recording / reproducing apparatus | |
KR100946223B1 (en) | Optical data storgae medium and method using such medium | |
US6603733B2 (en) | Optical information medium | |
EP1626400A1 (en) | Optical recording medium | |
US20060187806A1 (en) | Optical information carrier comprising thermochromic or photochromic material | |
KR20030094049A (en) | Optical recording and playback method, and optical recording media | |
NL1009126A1 (en) | Optical disc. | |
JP2006313077A (en) | Method of inspecting optical laminate, method of manufacturing optical laminate, device for inspecting optical laminate, and device for manufacturing optical laminate | |
KR100915664B1 (en) | Optical data storage medium for write once recording | |
JP2005276262A (en) | Method and device for inspecting optical laminate, and method and device for manufacturing optical laminate | |
JP2001101709A (en) | Optical recording medium, optical recording medium producing method and optical recording method | |
KR20040094896A (en) | Optical data storage medium and use of such medium | |
KR20050057253A (en) | Multi-stack optical information carrier | |
US7457229B2 (en) | Optical recording medium | |
EP1568021B1 (en) | Method for making a recordable optical disc, optical disc and writeable layer obtained by said method | |
KR20060120021A (en) | Dual-stack optical data storage medium for write once recording | |
JP2005025836A (en) | Optical recording medium | |
JP4498056B2 (en) | Optical information recording medium and optical information recording / reproducing method | |
JP2008159207A (en) | Optical recording medium and optical recording/reproducing apparatus | |
JPH09288846A (en) | Information recording medium and its reproducing method | |
JP5205521B2 (en) | Dye for optical information recording medium and optical information recording medium using the same | |
JP2004062976A (en) | Optical disk, optical disk reproducing device, and optical disk reproducing method | |
JP2005108344A (en) | Optical recording medium and manufacturing method of optical recording medium | |
JP2003173576A (en) | Translucent reflecting layer for optical information recording medium, optical information recording medium, and sputtering target for translucent reflecting layer of optical information recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060721 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070806 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080205 |