JP2003173576A - Translucent reflecting layer for optical information recording medium, optical information recording medium, and sputtering target for translucent reflecting layer of optical information recording medium - Google Patents

Translucent reflecting layer for optical information recording medium, optical information recording medium, and sputtering target for translucent reflecting layer of optical information recording medium

Info

Publication number
JP2003173576A
JP2003173576A JP2001370449A JP2001370449A JP2003173576A JP 2003173576 A JP2003173576 A JP 2003173576A JP 2001370449 A JP2001370449 A JP 2001370449A JP 2001370449 A JP2001370449 A JP 2001370449A JP 2003173576 A JP2003173576 A JP 2003173576A
Authority
JP
Japan
Prior art keywords
recording medium
information recording
optical information
reflective layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001370449A
Other languages
Japanese (ja)
Other versions
JP4132800B2 (en
Inventor
Junichi Nakai
淳一 中井
Hideo Fujii
秀夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001370449A priority Critical patent/JP4132800B2/en
Publication of JP2003173576A publication Critical patent/JP2003173576A/en
Application granted granted Critical
Publication of JP4132800B2 publication Critical patent/JP4132800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an translucent reflecting layer for an optical information recording medium, the layer having the transmittance and the reflectance required as a translucent reflecting layer of an optical information recording medium and having favorable chemical stability such as corrosion resistance, aggregation resistance or the like, and to provide an optical information recording medium and a sputtering target for the translucent reflecting layer to be used for an optical information recording medium. <P>SOLUTION: The translucent reflecting layer for an optical information recording medium comprises an Al-based alloy containing at least one kind of element selected from a group composed of Ti, Ta and Cr by 0.2 to 3.0 at.% in total and has excellent durability. The optical information recording medium has the translucent reflecting layer for an information recording medium and the sputtering target for the translucent reflecting layer of an optical information recording medium comprises the above Ag alloy. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐久性に優れた光
情報記録媒体用の半透明反射層、光情報記録媒体、及び
光情報記録媒体の半透明反射層用スパッタリングターゲ
ットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semi-transparent reflective layer for an optical information recording medium having excellent durability, an optical information recording medium, and a sputtering target for the semi-transparent reflective layer of the optical information recording medium.

【0002】[0002]

【従来の技術】光ディスクには幾つかの種類があるが、
記録再生原理の観点からすれば、読み出し専用ディス
ク、書き換え型(相変化型)ディスク、及び追記型
ディスクの三種類に大別される。
2. Description of the Related Art There are several types of optical disks,
From the viewpoint of the recording / reproducing principle, they are roughly classified into three types: read-only discs, rewritable (phase change) discs, and write-once discs.

【0003】このうちの読み出し専用ディスクは、基
本的に、ポリカーボネート基体等の透明基体上に、A
g,Al,Au等を母材とする反射層、および紫外線硬
化樹脂等の保護層が積層してなるものである。上記読み
出し専用ディスクは、透明プラスチック基体上に設けら
れた凹凸のピットにより記録データを形成し、ディスク
に照射されたレーザー光の位相差や反射差を検出するこ
とによりデータの再生を行うものである。
Of these, the read-only disk basically consists of a transparent substrate such as a polycarbonate substrate and an A
A reflective layer having g, Al, Au or the like as a base material and a protective layer such as an ultraviolet curable resin are laminated. The above-mentioned read-only disc is for reproducing data by forming recording data by the concave and convex pits provided on the transparent plastic substrate and detecting the phase difference and the reflection difference of the laser light applied to the disc. .

【0004】次に、上記の書き換え型(相変化型)の
光ディスクは、レーザー光のパワーと照射時間をコント
ロールし、記録層に結晶相と非晶質相の2相状態を形成
することによりデータを記録し、両相の反射率変化をレ
ーザーで検出することによりデータの検出(再生)を行
うものである。この記録再生方式では繰返し記録・再生
が可能であり、通常、数千回から数十万回程度、繰返し
記録することができる。上記書き換え型の光ディスクの
基本構造は図2に例示される様に、透明プラスチック基
体1に、誘電体層7、記録層8、誘電体層7、反射層
4、及び紫外線硬化樹脂保護層5の各種薄膜層が積層し
てなるものであり、かかる方式を採用する光ディスクと
しては、CD−RW、DVD−RAM、DVD−RW、
DVD−RW等が挙げられる。
Next, in the above-mentioned rewritable (phase change type) optical disk, the power of the laser beam and the irradiation time are controlled to form a two-phase state of a crystalline phase and an amorphous phase in the recording layer so that data is recorded. Is recorded, and data is detected (reproduced) by detecting a change in reflectance of both phases with a laser. With this recording / reproducing system, repetitive recording / reproducing is possible, and normally, repetitive recording can be performed several thousand to several hundred thousand times. As shown in FIG. 2, the basic structure of the rewritable optical disc includes a transparent plastic substrate 1, a dielectric layer 7, a recording layer 8, a dielectric layer 7, a reflective layer 4, and an ultraviolet curable resin protective layer 5. An optical disc which is formed by laminating various thin film layers and includes such a system as a CD-RW, a DVD-RAM, a DVD-RW,
DVD-RW etc. are mentioned.

【0005】また、上記の追記型光ディスクは、レー
ザー光のパワーにより記録層(有機色素層)の色素を発
熱・変質させ、グルーブ(基板に予め刻まれている溝)
を変形させることによりデータを記録し、変質箇所の反
射率と未変質箇所の反射率との差を検出することにより
データの検出(再生)を行うものである。図3に、追記
型光ディスクの基本構造を例示する。図中、1は透明プ
ラスチック基体、6は有機色素層、4は反射層、5は紫
外線硬化樹脂保護層である。この記録再生方式では、一
度記録されたデーターが書換えられないこと(一回限り
の記録と繰返し再生)が特徴であり、かかる方式を採用
する光ディスクとしては、CD−R、DVD−R等が挙
げられる。
In the above-mentioned write-once type optical disk, the dye of the recording layer (organic dye layer) is heated and deteriorated by the power of the laser beam to form a groove (a groove preliminarily formed on the substrate).
The data is recorded by deforming, and the data is detected (reproduced) by detecting the difference between the reflectance of the altered portion and the reflectance of the unaltered portion. FIG. 3 illustrates the basic structure of the write-once optical disc. In the figure, 1 is a transparent plastic substrate, 6 is an organic dye layer, 4 is a reflective layer, and 5 is an ultraviolet curable resin protective layer. This recording / reproducing system is characterized in that once recorded data cannot be rewritten (one-time recording and repetitive reproduction), examples of optical disks adopting such a system include CD-R and DVD-R. To be

【0006】以下、代表例として上記の読み出し専用
ディスクを用いて従来技術を説明する。図1に示す如く
光ディスクが単板で構成されている場合、機械的強度が
十分得られず、変形し易いという欠点がある。また近
年、光ディスクに積載するデータ量は動画に代表される
大容量のデジタルデータの使用に伴って増大する傾向に
あり、ディスク記録容量の増大が求められている。係る
問題を解決する手段として張り合せ型ディスクが提案さ
れている。張り合せ型ディスクとしては、例えば図4
(図中、41,46は透明基体、42,47はピットに
よって形成された情報面、43,48は反射層、44,
49は保護層、45は接着層)に示されるが、この様な
構成とすることによって、ディスクの機械的強度を向上
させることができ、しかもディスク記録容量も倍増させ
ることができる。しかしながら情報面42,47に記録
されている情報を再生するには夫々透明基体41,46
を介してレーザ光を入射させなければならず、光ヘッド
(レーザ発射手段及び反射レーザ検出手段)が片側にし
か備えられていない装置では、情報面42から情報面4
7へ連続して情報を再生することができず、ディスクを
必要に応じて裏返さなければならず、ディスク容量倍増
のメリットが活かし切れず、再生連続性が問題となる。
The prior art will be described below using the above-mentioned read-only disk as a typical example. When the optical disc is composed of a single plate as shown in FIG. 1, there is a drawback that sufficient mechanical strength is not obtained and the optical disc is easily deformed. Further, in recent years, the amount of data loaded on an optical disc tends to increase with the use of large-capacity digital data represented by moving images, and an increase in the disc recording capacity is required. A laminated disk has been proposed as a means for solving such a problem. An example of the laminated disk is shown in FIG.
(In the figure, 41 and 46 are transparent substrates, 42 and 47 are information surfaces formed by pits, 43 and 48 are reflective layers, 44 and
Numeral 49 is a protective layer and numeral 45 is an adhesive layer). With such a structure, the mechanical strength of the disc can be improved and the recording capacity of the disc can be doubled. However, in order to reproduce the information recorded on the information surfaces 42 and 47, the transparent substrates 41 and 46 are used, respectively.
In the device in which the laser light must be incident via the optical head and the optical head (laser emitting means and reflected laser detecting means) is provided on only one side, the information surface 42 to the information surface 4
No information can be continuously reproduced to No. 7, the disc must be turned over as necessary, the advantage of doubling the disc capacity cannot be fully utilized, and reproduction continuity becomes a problem.

【0007】そこで片側からのレーザ入射によって情報
面42,47の情報を読み出すことができるディスクと
して、図5(図中41は透明基体、42,47は情報
面、48は反射層、49は保護層、50は半透明反射
層,45は接着層)に示す様な構成を有する積層型ディ
スクが提案されている。この様な構成にすることによっ
て図4に示すディスクと同等の機械的強度とディスク容
量を有しつつ、しかも片側面(透明基体41側)からの
レーザ入射によって異なる情報面42,47に記録され
た情報を連続再生できる。尚、この様な積層型ディスク
において透明基体41側からレーザを入射して情報面4
7の情報を再生する場合、情報面47に入射レーザが絞
られている(レーザ径が小さいということである)。こ
の際、入射レーザの一部は半透明反射層50によって反
射されるが、この半透明反射層50で反射されたレーザ
の線径は大きいため、情報面42の情報が誤再生される
ことがなく、また反射層48による反射レーザと混同す
ることもないので、情報面47の情報が正確に再生され
る。また情報面42の情報を再生する場合、情報面42
に入射レーザが絞られている。この際、入射レーザの一
部は半透明反射層50を透過して反射層48によって反
射されるが、この反射層48で反射されたレーザの線径
は大きいため、情報面47の情報が誤再生されることが
なく、情報面42の情報が正確に再生される。
Therefore, as a disk in which the information on the information surfaces 42 and 47 can be read by the laser incident from one side, FIG. 5 (in the drawing, 41 is a transparent substrate, 42 and 47 are information surfaces, 48 is a reflective layer, and 49 is a protective layer). Layers, 50 is a semitransparent reflective layer, and 45 is an adhesive layer) have been proposed as a laminated disc having a structure as shown. With such a structure, the disk has the same mechanical strength and disk capacity as the disk shown in FIG. 4, and is recorded on different information surfaces 42 and 47 by the laser incident from one side surface (transparent substrate 41 side). The information can be continuously reproduced. In addition, in such a laminated disc, the laser beam is incident from the transparent substrate 41 side to make the information surface 4
When reproducing the information of No. 7, the incident laser is focused on the information surface 47 (which means that the laser diameter is small). At this time, a part of the incident laser is reflected by the semitransparent reflective layer 50, but since the line diameter of the laser reflected by the semitransparent reflective layer 50 is large, the information on the information surface 42 may be erroneously reproduced. Since it is not confused with the reflection laser by the reflection layer 48, the information on the information surface 47 is reproduced accurately. When reproducing the information on the information surface 42, the information surface 42
The incident laser is focused on. At this time, a part of the incident laser passes through the semitransparent reflection layer 50 and is reflected by the reflection layer 48. However, since the line diameter of the laser reflected by the reflection layer 48 is large, the information on the information surface 47 is erroneous. The information on the information surface 42 is accurately reproduced without being reproduced.

【0008】ところで上記の様に情報面47の情報を再
生するには半透明反射層50は入射レーザに対して十分
な透過性を有していなければならないが、情報面42の
情報を再生するには、半透明反射層50が入射レーザに
対して十分な反射性を有していなければならない。この
様な条件を満たす半透明反射層としては従来から純Au
あるいはAu基合金が用いられている。これらAu系半
透明反射層は耐食性,耐凝集性等の化学的安定性に優
れ、しかも反射率と透過率のバランスもよいという特性
を有しているため常用されているが、Auは高価である
ため製造コストが高く、実用性に欠ける。またAu系半
透明反射層は次世代規格として研究開発が進められてい
る青色レーザ(波長405nm程度)に対する反射率、
透過率が大幅に低下するという問題があるため、青色レ
ーザでは使用できないという制限がある。したがって低
コストで、しかも青色レーザに対しても半透明反射層と
して機能する材料が求められている。
By the way, in order to reproduce the information on the information surface 47 as described above, the semitransparent reflection layer 50 must have sufficient transparency to the incident laser, but the information on the information surface 42 is reproduced. In addition, the semitransparent reflective layer 50 must have sufficient reflectivity for the incident laser. As a semi-transparent reflective layer satisfying such a condition, pure Au has hitherto been used.
Alternatively, an Au-based alloy is used. These Au-based semi-transparent reflective layers are commonly used because they have excellent chemical stability such as corrosion resistance and cohesion resistance, and have a good balance between reflectance and transmittance, but Au is expensive. Therefore, the manufacturing cost is high and it is not practical. The Au-based semi-transparent reflective layer has a reflectance for a blue laser (wavelength of about 405 nm), which is being researched and developed as a next-generation standard.
There is a limitation that it cannot be used with a blue laser because of the problem that the transmittance is significantly reduced. Therefore, there is a demand for a material that is low in cost and that also functions as a semitransparent reflection layer for blue lasers.

【0009】本発明者らは上記問題を解決すべく種々の
材料を用いて半透明反射層を形成して夫々の特性を調べ
た結果以下のことがわかった。純Agをスパッタリング
して形成した半透明反射層は、原子空孔等の多くの欠陥
を含み、Agが拡散して容易に凝集する為、環境試験の
条件下ではAg結晶粒径の増大が起り易くなる。また基
体との密着性も十分でないため、時間の経過と共に膜が
劣化し、記録保持性が十分でなく長期安定性という観点
からは好ましくない。また純Ag半透明反射層は、熱伝
導や変化、応力状態、膜強度、界面性状の変化を伴うの
で望ましくない。更にAgを主成分とする合金では、実
用波長域の400〜480nmでは充分優れた高反射率
を示すものの、耐食性及び記録特性の経時変化では、A
u系反射層よりも劣るという欠点がある。
The present inventors have found the following as a result of investigating the respective characteristics by forming a semitransparent reflective layer using various materials in order to solve the above problems. The semitransparent reflective layer formed by sputtering pure Ag contains many defects such as atomic vacancies, and Ag diffuses and easily aggregates. Therefore, the Ag crystal grain size increases under the environmental test conditions. It will be easier. Further, since the adhesion to the substrate is not sufficient, the film deteriorates with the lapse of time, the record retention is insufficient, and it is not preferable from the viewpoint of long-term stability. Further, the pure Ag semi-transparent reflective layer is not preferable because it is accompanied by heat conduction and change, stress state, film strength, and interface property change. Further, although the alloy containing Ag as a main component exhibits a sufficiently high reflectance in the practical wavelength range of 400 to 480 nm, the corrosion resistance and the recording characteristics change with time.
It has the drawback of being inferior to the u-based reflective layer.

【0010】純CuまたはCuを主成分とする合金は安
価であるが、耐食性(特に耐酸化性)に劣る他、Au系
と同様、青色レーザーに対する反射率が低いという欠点
を抱えている。その結果、ディスクの信頼性低下を招く
恐れがある。
Although pure Cu or an alloy containing Cu as a main component is inexpensive, it is inferior in corrosion resistance (particularly oxidation resistance) and has a drawback that it has a low reflectance for a blue laser as in the case of Au. As a result, the reliability of the disk may decrease.

【0011】純Al半透明反射層は、化学的安定性に劣
る他、熱伝導率が低いという欠点も抱え、ディスクの構
造や設計に制約が生じるという不具合があった。従って
半透明反射層に要求される諸特性を具備させることは困
難である。以上の様にこれら材料は何れも半透明反射層
として要求される諸特性を満たすことは困難であった。
The pure Al semi-transparent reflection layer has a drawback that it has poor chemical stability and has a low thermal conductivity, which limits the structure and design of the disk. Therefore, it is difficult to provide the semi-transparent reflective layer with the required properties. As described above, it is difficult for any of these materials to satisfy various properties required for the semitransparent reflective layer.

【0012】半透明反射層がレーザーに対する透過性が
十分でないと、入射したレーザは基体61から半透明反
射層50を通過する際に入射レーザーの強度が減衰して
しまい、十分な強度で情報面47にレーザーを照射する
ことができず、その結果、反射層48からの反射レーザ
ーを十分な強度で受光することができず、情報面47か
ら得られる情報信号振幅が不足する。このように積層型
ディスクの場合、情報面47の再生には半透明反射層の
透過性に依存する。また透過性を上げると逆に情報面4
2の再生に必要な反射光強度が得られなくなることがあ
る。しかも半透明反射層には反射性,透過性に加えて、
光情報記録媒体に要求される長期保存性を考慮すると、
半透明反射層が耐食性などの化学的安定性にも優れてい
なければ情報再生することができなくなり、ディスクの
信頼性は維持できない。
If the semitransparent reflective layer does not have sufficient laser transparency, the intensity of the incident laser will be attenuated when passing through the semitransparent reflective layer 50 from the substrate 61, and the information surface will have sufficient intensity. 47 cannot be irradiated with laser, and as a result, the reflected laser from the reflective layer 48 cannot be received with sufficient intensity, and the information signal amplitude obtained from the information surface 47 becomes insufficient. As described above, in the case of the laminated disc, the reproduction of the information surface 47 depends on the transmissivity of the semitransparent reflection layer. If the transparency is increased, the information surface 4
In some cases, the reflected light intensity necessary for reproducing No. 2 may not be obtained. Moreover, in addition to the reflective and transmissive properties of the semitransparent reflective layer,
Considering the long-term storability required for optical information recording media,
If the semi-transparent reflective layer does not have excellent chemical stability such as corrosion resistance, information cannot be reproduced, and the reliability of the disc cannot be maintained.

【0013】この様に光ディスク用半透明反射層には、
信頼性の高い媒体を得るべく、反射率と透過性を有し、
化学的安定性(特に耐酸化性)、基板等に対する密着
性、構造安定性、記録特性の安定性、低コスト等の諸特
性を満たすことが要求されているにもかかわらず、これ
らの要求特性全てを満足する半透明反射層は未だ提供さ
れていない。
As described above, the semi-transparent reflective layer for an optical disc includes
In order to obtain a highly reliable medium, it has reflectivity and transparency,
These required characteristics are required even though it is required to satisfy various characteristics such as chemical stability (especially oxidation resistance), adhesion to substrate, structural stability, recording characteristic stability, and low cost. A semitransparent reflective layer that satisfies all requirements has not been provided yet.

【0014】[0014]

【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたものであり、その目的は、半透明反射層と
して要求される透過率と反射率を有すると共に、耐食性
及び耐凝集性等の化学的安定性も良好な光情報記録媒体
用半透明反射層、光情報記録媒体、及び光情報記録媒体
に用いる半透明反射層用スパッタリングターゲットを提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to have a transmittance and a reflectance required for a semitransparent reflective layer, as well as corrosion resistance and cohesion resistance. Another object of the present invention is to provide a semitransparent reflective layer for an optical information recording medium having good chemical stability, an optical information recording medium, and a sputtering target for a semitransparent reflective layer used in the optical information recording medium.

【0015】[0015]

【課題を解決するための手段】上記課題を解決し得た本
発明とは、Ti,Ta,及びCrよりなる群から選ばれ
る少なくとも1種の元素を合計で0.2〜3.0%(原
子%の意味、以下同じ)含有するAl基合金で構成され
ていることに要旨を有する耐久性に優れた光情報記録媒
体用の半透明反射層である。
Means for Solving the Problems According to the present invention capable of solving the above problems, a total of at least one element selected from the group consisting of Ti, Ta, and Cr is 0.2 to 3.0% ( A semi-transparent reflective layer for an optical information recording medium, which is excellent in durability and has the gist of being composed of an Al-based alloy containing (atomic%, the same hereinafter).

【0016】また上記光情報記録媒体用の半透明反射層
を備えた光情報記録媒体、及び上記Ag基合金で構成さ
れた光情報記録媒体の半透明反射層用スパッタリングタ
ーゲットも本発明の範囲内に包含される。
Further, an optical information recording medium provided with a semitransparent reflective layer for the optical information recording medium, and a sputtering target for the semitransparent reflective layer of the optical information recording medium composed of the Ag-based alloy are also within the scope of the present invention. Included in.

【0017】[0017]

【発明の実施の形態】本発明者らは、光情報記録媒体用
の半透明反射層に要求される諸特性のうち、特に耐食
性,耐凝集性に優れ、且つ入射レーザーに対する透過
性,反射性に優れた材料を提供するという観点から鋭意
検討してきた。本発明における耐久性向上の指標として
は、具体的に、ディスク基板(ポリカーボネート基板
等)及びディスクを構成する他の材料に対する密着性
(以下、「基板等に対する密着性」で代表させる場合が
ある)を向上させることにより半透明反射層の耐久性が
高められる場合と、半透明反射層の拡散が抑制される
結果、構造安定性に優れ、最終的に耐久性が高められる
場合の両方を掲げ、かかる観点から実験を行った。
BEST MODE FOR CARRYING OUT THE INVENTION Among the various properties required for a semitransparent reflection layer for an optical information recording medium, the present inventors have particularly excellent corrosion resistance and anti-aggregation property, as well as transmission and reflection properties with respect to an incident laser. We have conducted intensive studies from the viewpoint of providing excellent materials. As an index of durability improvement in the present invention, specifically, adhesion to a disc substrate (polycarbonate substrate or the like) and other materials constituting the disc (hereinafter, may be represented by "adhesion to substrate or the like"). By improving the durability of the semi-transparent reflective layer by improving the, and as a result of suppressing the diffusion of the semi-transparent reflective layer, excellent structural stability, and finally the durability is raised, An experiment was conducted from this viewpoint.

【0018】尚、本発明における「耐久性」とは、半透
明反射層が長時間に渡って耐食性,耐凝集性に優れた特
性を示すことをいう。
The term "durability" in the present invention means that the semitransparent reflective layer exhibits excellent corrosion resistance and aggregation resistance over a long period of time.

【0019】本発明者らは、種々の元素を用いて作製し
た合金スパッタリングターゲットを用い、スパッタリン
グ法により種々の成分組成からなる合金層を基体に形成
し、半透明反射層としての特性を評価した。その結果、
所定量のTi,Ta及びCrよりなる群から選択される
少なくとも1種の元素を含有するAl基合金層は極めて
優れた耐凝集性,耐食性を有すると共に、反射性及び透
過性にも優れていることを見出した。また青色レーザに
対する実用性の観点(反射性など)から検討した結果、
Cu−Al合金層はAg基合金層と同じく青色レーザに
対する吸収が大きく実用性がないことを見出すととも
に、上記元素(Ti,Ta,Cr)を含有するAl基合
金膜は優れていることを見出した。
The inventors of the present invention evaluated the characteristics as a semi-transparent reflective layer by forming alloy layers having various component compositions on a substrate by a sputtering method using an alloy sputtering target produced by using various elements. . as a result,
The Al-based alloy layer containing at least one element selected from the group consisting of predetermined amounts of Ti, Ta and Cr has extremely excellent cohesion resistance and corrosion resistance, and also has excellent reflectivity and transmittance. I found that. In addition, as a result of examination from the viewpoint of practicality (reflectivity, etc.) for blue lasers,
It was found that the Cu-Al alloy layer has a large absorption to a blue laser and is not practical as the Ag-based alloy layer, and that the Al-based alloy film containing the above elements (Ti, Ta, Cr) is excellent. It was

【0020】以下、本発明の光情報記録媒体用の半透明
反射層を図5に例示される積層型再生専用光情報記録媒
体を参照にしながら説明する。もちろん、本発明の半透
明反射層が適用可能な積層型光情報記録媒体は図示例に
限定される趣旨ではない。
The semitransparent reflective layer for an optical information recording medium of the present invention will be described below with reference to the laminated read-only optical information recording medium illustrated in FIG. Of course, the laminated optical information recording medium to which the semitransparent reflective layer of the present invention is applicable is not limited to the illustrated example.

【0021】本発明に係る積層型光情報記録媒体(以
下、光ディスクということがある)とは、図5に例示さ
れる様に基板41の一方の表面に情報信号が形成された
情報面42を有し、該情報面42上に半透明反射層5
0,接着層45,情報面47,反射層48,保護層47
が順次形成されてなるものである。本発明の光ディスク
に記録された情報(例えば情報面42)を再生する場
合、基板41側から再生する情報面(情報面42)にレ
ーザの焦点を合わせて入射すれば、他の情報面(情報面
47)の情報が誤再生されることなく、正確に情報信号
を再生することができる。また積層型ディスクとするこ
とで単層型ディスクよりも機械的強度が高く、且つ情報
容量も増大させることができる。
The laminated optical information recording medium (hereinafter sometimes referred to as an optical disk) according to the present invention comprises an information surface 42 having an information signal formed on one surface of a substrate 41 as illustrated in FIG. And a semitransparent reflection layer 5 on the information surface 42
0, adhesive layer 45, information surface 47, reflective layer 48, protective layer 47
Are sequentially formed. When reproducing the information (for example, the information surface 42) recorded on the optical disk of the present invention, if the laser is focused on the information surface (information surface 42) to be reproduced from the substrate 41 side, the other information surface (information The information signal can be accurately reproduced without erroneously reproducing the information on the surface 47). Further, by using the laminated disc, the mechanical strength is higher than that of the single-layer disc, and the information capacity can be increased.

【0022】基板41としては任意の材料を用いること
ができ、入射レーザに対する透過性を有し、且つレーザ
に対して影響(屈折,遮断など)を与えない材料であれ
ば特に限定されない。この様な特性を有する材料として
は、アクリル系樹脂(例えばポリカーボネート等)など
のプラスチック基板やガラス基板等の透明性を有する材
料が例示される。基板の厚みは機械的強度,入射レー
ザ,反射レーザ等に影響を与えない程度であれば特に限
定されない。例えば通常、400〜800mmとするこ
とが望ましい。基板41の表面(積層面側)には情報信
号を記録したピットと呼ばれる微細な凹凸が形成されて
いる(情報面42)が、トラッキング用のグルーブ等が
形成されていてもよく、また情報面42に形成されるピ
ットは入射するレーザ波長に応じたサイズにするなど必
要な情報信号が再生できる様に形成すればよく、具体的
な形状等については特に限定されない。
The substrate 41 may be made of any material, and is not particularly limited as long as it is transparent to the incident laser and does not affect the laser (refraction, blocking, etc.). As a material having such characteristics, a transparent material such as a plastic substrate such as an acrylic resin (for example, polycarbonate) or a glass substrate is exemplified. The thickness of the substrate is not particularly limited as long as it does not affect the mechanical strength, incident laser, reflected laser, or the like. For example, normally, it is desirable to set it to 400 to 800 mm. Although fine irregularities called pits for recording information signals are formed on the surface (lamination surface side) of the substrate 41 (information surface 42), a groove for tracking or the like may be formed. The pit formed at 42 may be formed so that a necessary information signal can be reproduced, for example, by having a size according to the incident laser wavelength, and the specific shape is not particularly limited.

【0023】情報面42上には半透明反射層50が形成
されている。本発明の半透明反射層50はTi,Ta,
及びCrよりなる群から選ばれる少なくとも1種の元素
を合計で0.2〜3.0%含有するAl基合金で構成さ
れている。Ti,Ta,及びCrよりなる群から選ばれ
る少なくとも1種の元素を0.2%以上含有させてなる
Al基合金を用いた本発明の半透明反射層50は、耐凝
集性,耐久性に優れ、しかもレーザに対する反射率及び
透過率に優れた特性を有する。また上記添加元素(即ち
Ti,Ta,Cr)が0.5%以上含有されていれば、
基体41と半透明反射層50との密着性がより高まり、
また耐食性,耐凝集性も高まるので望ましい。但し、上
記元素の合計添加量が3.0%を超えると、逆に反射
率、耐食性、耐凝集性等が劣化してしまい本発明で要求
される耐久性や諸機能を発揮できない。また青色レーザ
に対する反射率,透過率のバランスを考慮すると上限を
好ましくは2.0%とすることが望ましい。尚、上記含
有量が0.2%未満の場合(純Al含む)、十分な耐食
性が得られず、腐食による白斑が生じ、半透明反射層と
して要求される耐久性や反射率,透過率を満足し得な
い。尚、これらの元素は単独で使用しても良いし、二種
以上を併用しても構わない。
A semitransparent reflection layer 50 is formed on the information surface 42. The semitransparent reflective layer 50 of the present invention is made of Ti, Ta,
And an Al-based alloy containing 0.2 to 3.0% in total of at least one element selected from the group consisting of Cr and Cr. The translucent reflective layer 50 of the present invention using an Al-based alloy containing 0.2% or more of at least one element selected from the group consisting of Ti, Ta, and Cr has excellent cohesion resistance and durability. It has excellent characteristics such as excellent reflectance and transmittance for laser. Further, if the above-mentioned additional elements (that is, Ti, Ta, Cr) are contained by 0.5% or more,
The adhesion between the base 41 and the semitransparent reflective layer 50 is further enhanced,
It is also desirable because it improves corrosion resistance and cohesion resistance. However, if the total addition amount of the above elements exceeds 3.0%, on the contrary, the reflectance, corrosion resistance, cohesion resistance, etc. are deteriorated and the durability and various functions required by the present invention cannot be exhibited. Further, considering the balance between the reflectance and the transmittance for the blue laser, the upper limit is preferably 2.0%. When the content is less than 0.2% (including pure Al), sufficient corrosion resistance cannot be obtained, and white spots due to corrosion occur, and durability, reflectance, and transmittance required for the semitransparent reflective layer are reduced. I'm not satisfied. Incidentally, these elements may be used alone or in combination of two or more kinds.

【0024】本発明に係る半透明反射層に望まれる効率
は、一般的なDVDで使用される波長650nmにおい
て、入射レーザ強度を100%とした場合に、好ましく
は70%以上、より好ましくは80%以上であることが
推奨される。また波長405nm(青色レーザ)の場合
の効率は好ましくは70%以上、より好ましくは80%
以上であることが推奨される。
The desired efficiency of the semitransparent reflective layer according to the present invention is preferably 70% or more, more preferably 80, when the incident laser intensity is 100% at a wavelength of 650 nm used in a general DVD. % Or more is recommended. The efficiency at a wavelength of 405 nm (blue laser) is preferably 70% or more, more preferably 80%.
The above is recommended.

【0025】半透明反射層の厚みは要求される特性に応
じて適宜決定すればよいが、5nm未満であると反射率
が劣化するだけでなく、凝集し易くなり、半透明搬送自
体が劣化することがあるので好ましくない。逆に20n
m以上であると透過率が減少するだけでなく、光吸収率
が上昇して反射率も減少することがあるので、5nm〜
20nmの範囲内とすることが望ましい。
The thickness of the semitransparent reflection layer may be appropriately determined according to the required characteristics, but if it is less than 5 nm, not only the reflectance is deteriorated but also agglomeration is easily caused and the semitransparent transport itself is deteriorated. It is not preferable because it may occur. On the contrary, 20n
If it is m or more, not only the transmittance decreases but also the light absorption rate may increase and the reflectance may decrease.
It is desirable to set it within the range of 20 nm.

【0026】本発明の半透明反射層は、上記成分を含有
し、残部Alであるが、更に上記光学特性(反射率,透
過率)や化学的安定性を損なわない範囲で、上記成分以
外の他の成分を添加しても良い。例えば硬度向上等の特
性付与を目的として、Pd,Pt等の貴金属や遷移元素
(前述したものを除く)を積極的に添加しても良い。ま
た、O2,N2等のガス成分や、溶解原料である上記Al
基合金に予め含まれている不純物が含まれていても構わ
ない。またレーザに対する吸収を増大させる元素、例え
ばAg,Cuなどは青色レーザに対する吸収が大きく、
反射率などの点で実用性がないので好ましくない。
The semitransparent reflective layer of the present invention contains the above-mentioned components, and the balance is Al, but other than the above-mentioned components as long as the optical characteristics (reflectance, transmittance) and chemical stability are not impaired. Other components may be added. For example, a noble metal such as Pd or Pt or a transition element (excluding those mentioned above) may be positively added for the purpose of imparting characteristics such as hardness improvement. Further, gas components such as O 2 and N 2 and the above-mentioned Al which is a melting raw material.
The base alloy may contain impurities that are contained in advance. In addition, elements that increase absorption for laser, such as Ag and Cu, have large absorption for blue laser,
It is not preferable because it is not practical in terms of reflectance and the like.

【0027】半透明反射層50の上には接着層45が形
成されている。接着層としては、レーザを透過でき、且
つレーザに屈折など影響を与えない材料であれば特に限
定されない。この様な材料としては例えば、紫外線硬化
樹脂,アクリル系樹脂などの透明性を有する材料が挙げ
られるが、これらの中でも、紫外線硬化樹脂を半透明反
射層50上にスピンコート法等によって塗布した後、紫
外線照射したものが推奨される。
An adhesive layer 45 is formed on the semitransparent reflective layer 50. The adhesive layer is not particularly limited as long as it is a material that can transmit a laser and does not affect the laser such as refraction. Examples of such a material include materials having transparency such as an ultraviolet curable resin and an acrylic resin. Among these, after the ultraviolet curable resin is applied on the semitransparent reflective layer 50 by a spin coating method or the like, UV irradiation is recommended.

【0028】この接着剤層45の一方の表面(半透明反
射層50と逆側)には情報面47が形成されている。更
に情報面47の上には反射層48が形成されている。こ
の反射層48の材料としては、Al,Au,Ag及びこ
れらの元素の単独あるいは他の元素と複合させたものが
例示され、複合系としてはAl−Ti,Ag−Ti,A
g−Cu系合金などが挙げられるが、合金の成分組成や
添加量を適切に調整して反射率の減少を許容可能範囲内
に制御し、且つ密着性、構造安定性などの耐久性を始め
とする諸特性を高水準で達成し得る材料を用いればよ
い。これらの中でも高い反射特性及び耐食性を維持しつ
つ、更に優れた密着効果及びコストの観点からAg基合
金が好ましい。また、この反射層は、反射率の観点から
は厚さ50〜150nmの薄膜とすることが望まれる
が、要求される条件に応じて任意の厚さとすることがで
きる。
An information surface 47 is formed on one surface of the adhesive layer 45 (opposite to the semitransparent reflective layer 50). Further, a reflective layer 48 is formed on the information surface 47. Examples of the material of the reflective layer 48 include Al, Au, Ag, and a combination of these elements alone or with other elements. Examples of the composite system include Al-Ti, Ag-Ti, A.
Examples include g-Cu alloys, etc., but the decrease in reflectance is controlled within an acceptable range by appropriately adjusting the component composition and addition amount of the alloy, and durability such as adhesion and structural stability is started. A material that can achieve the various characteristics described below at a high level may be used. Among these, Ag-based alloys are preferable from the viewpoints of further excellent adhesion effect and cost while maintaining high reflection characteristics and corrosion resistance. Further, the reflective layer is preferably a thin film having a thickness of 50 to 150 nm from the viewpoint of reflectance, but may have an arbitrary thickness depending on the required conditions.

【0029】尚、レーザー波長が405nm程度の所謂
青色レーザーである場合、反射層がAu等のレーザー反
射率が悪い材料で形成されているとディスクとしての機
能が低下するのでAu系合金は望ましくないことがあ
る。
In the case of a so-called blue laser having a laser wavelength of about 405 nm, if the reflective layer is made of a material having a poor laser reflectance such as Au, the function as a disk is deteriorated, so that an Au-based alloy is not desirable. Sometimes.

【0030】また反射層48上には保護層49が形成さ
れている。この保護層49は、反射層48や情報面47
等を保護するとともに、湿気等による腐食,劣化等を防
止する機能を有する。保護層49の材料としては特に限
定されず、上記目的を達するものであれば特に限定され
ないが、紫外線硬化樹脂などが望ましく、例えば反射層
48に紫外線硬化樹脂を塗布した後に紫外線を照射して
硬化さたものでもよい。また帯電防止剤など目的に応じ
て添加してもよく、例えば公知の帯電防止剤を混入させ
て保護層を形成することによってディスクへの埃等の吸
着を防ぐことができる。
A protective layer 49 is formed on the reflective layer 48. The protective layer 49 serves as the reflective layer 48 and the information surface 47.
It also has the function of protecting against corrosion and deterioration due to moisture. The material of the protective layer 49 is not particularly limited and is not particularly limited as long as it achieves the above purpose, but an ultraviolet curable resin or the like is desirable. For example, after coating the reflective layer 48 with an ultraviolet curable resin, it is irradiated with ultraviolet rays and cured. It can be a fish. Further, an antistatic agent or the like may be added according to the purpose. For example, a known antistatic agent may be mixed to form a protective layer to prevent dust and the like from adhering to the disk.

【0031】尚、本発明の積層型ディスクは基板41側
からレーザを入射して積層した情報面の情報を再生する
ので、保護層49はレーザに対する透過性を有していな
くてもよい。したがって保護層49には色素等の着色原
料を混入することもでき、或いは保護層上に他の層を積
層させてもよい。
Since the laminated disk of the present invention reproduces the information on the laminated information surface by irradiating the laser from the substrate 41 side, the protective layer 49 does not need to be transparent to the laser. Therefore, a coloring material such as a dye may be mixed in the protective layer 49, or another layer may be laminated on the protective layer.

【0032】本発明の半透明反射層50はスパッタリン
グ法により形成されたものであることが推奨される。ス
パッタリング法により形成された半透明反射層では、ス
パッタリング法固有の気相急冷によって非平衡固溶が可
能になる為、その他の薄膜形成法でAl基合金層を形成
した場合に比べ、合金元素(Ti,Ta,Cr)がAl
マトリックス中に均一に存在し、その結果、耐食性や密
着性が著しく向上するからである。
It is recommended that the semitransparent reflective layer 50 of the present invention is formed by a sputtering method. In the semi-transparent reflective layer formed by the sputtering method, non-equilibrium solid solution is possible due to vapor-phase quenching peculiar to the sputtering method. Therefore, compared with the case where the Al-based alloy layer is formed by another thin film forming method, the alloy element ( Ti, Ta, Cr) is Al
This is because they are uniformly present in the matrix, and as a result, the corrosion resistance and the adhesion are remarkably improved.

【0033】また、スパッタリングの際には、スパッタ
リングターゲット材として、溶解・鋳造法で作製したA
l基合金(以下、「溶製Al基合金ターゲット材」とい
う)を使用することが好ましい。かかる溶製Al基合金
ターゲット材は組織的に均一であり、また、スパッタ率
及び出射角度が均一な為、成分組成が均一なAl基合金
層(半透明反射層)が安定して得られる結果、より高性
能の光ディスクが製作されるからである。尚、上記溶製
Al基合金ターゲット材の酸素含有量を100ppm以
下に制御すれば、半透明反射層形成速度を一定に保持し
易くなり、該半透明反射層の酸素量も低くなる為、当該
半透明反射層の反射率及び耐食性(特に耐硫化性)を著
しく高めることが可能になる。上記スパッタリング法と
してはイオンビームスパッタ法、DCスパッタ法、RF
スパッタ法等が例示されるが、特に限定されない。
During sputtering, as a sputtering target material, A prepared by the melting / casting method was used.
It is preferable to use an l-based alloy (hereinafter, referred to as “molten Al-based alloy target material”). Since such a melted Al-based alloy target material is structurally uniform and the sputtering rate and the emission angle are uniform, an Al-based alloy layer (semi-transparent reflection layer) having a uniform composition is stably obtained. This is because a higher performance optical disc is manufactured. Incidentally, if the oxygen content of the molten Al-based alloy target material is controlled to 100 ppm or less, the semitransparent reflective layer forming rate is easily maintained constant, and the oxygen content of the semitransparent reflective layer is also reduced. It is possible to remarkably enhance the reflectance and corrosion resistance (particularly sulfidation resistance) of the semitransparent reflective layer. As the sputtering method, an ion beam sputtering method, a DC sputtering method, an RF
Examples of the sputtering method include, but are not particularly limited to.

【0034】以上、光ディスクが再生専用である場合を
例示して本発明の半透明反射層及び該半透明反射層を用
いた光ディスクについて説明したが、本発明に係る半透
明反射層は耐久性,耐凝集性などの化学的特性に優れ、
しかも反射率,透過率にも優れているので耐久性に優れ
た特性を発揮する。したがって本発明の半透明反射層を
用いた積層型ディスクであれば、他層の構造,性質等に
ついては特に限定されず、用途に応じて適宜組合せて用
いることができる。例えば情報面47側に相変化材料や
光時期材料などの公知の記録材料を用いて記録層,誘電
体層,有機色素層などを設けて、積層された書き換え型
(相変化型)ディスク、及び追記型ディスクとすること
もできる。
The translucent reflective layer of the present invention and the optical disc using the translucent reflective layer of the present invention have been described above by exemplifying the case where the optical disc is for reproduction only. Excellent chemical properties such as anti-aggregation,
Moreover, since it has excellent reflectance and transmittance, it exhibits excellent durability. Therefore, as long as it is a laminated disc using the semitransparent reflective layer of the present invention, the structure and properties of the other layers are not particularly limited, and they can be appropriately combined and used according to the application. For example, a rewritable (phase change type) disc in which a recording layer, a dielectric layer, an organic dye layer and the like are provided on the information surface 47 side by using a known recording material such as a phase change material or an optical timing material, and It can also be a write-once disc.

【0035】以下実施例に基づいて本発明を詳述する。
ただし、下記実施例は本発明を制限するものではなく、
前・後記の趣旨を逸脱しない範囲で変更実施することは
全て本発明の技術範囲に包含される。
The present invention will be described in detail below based on examples.
However, the following examples do not limit the present invention,
All changes and modifications made without departing from the spirits of the preceding and the following are included in the technical scope of the present invention.

【0036】[0036]

【実施例】実施例1 以下に示す方法によって製造された積層型光ディスク
(尚、図5と類似の構造を有する。)を用いて各種試験
を行なった。情報信号が記録されたスタンパを用いて射
出成形法により、片面に該情報信号の設けられた厚み
0.6mmを有する基板41を作成した。基板41の材
料はポリカーボネートを用いた。基板41を射出成形し
た後、この基板41上に半透明反射層50形成した。半
透明反射層50には表1に示す合金を用いて情報信号面
上にDCマグネトロンスパッタ装置により層厚8nmと
なるように成膜した。また基板41と同様に作成した基
板49上の情報面(尚、情報面47は基板49片面に形
成されている)にJIS Al6061合金を合金ター
ゲットとして該情報面47上にDCマグネトロンスパッ
タ装置を用いて反射層48を形成した後、半透明反射相
50と反射層48がUV硬化樹脂45を介して対向する
様に張り合せ、積層型光ディスクを得た。
EXAMPLES Example 1 Various tests were conducted using a laminated optical disk manufactured by the method described below (having a structure similar to that shown in FIG. 5). A substrate 41 having a thickness of 0.6 mm and provided with the information signal on one side was prepared by an injection molding method using a stamper on which the information signal was recorded. Polycarbonate was used as the material of the substrate 41. After the substrate 41 was injection molded, the semitransparent reflective layer 50 was formed on the substrate 41. The semi-transparent reflection layer 50 was formed by using the alloy shown in Table 1 on the information signal surface by a DC magnetron sputtering device so as to have a layer thickness of 8 nm. In addition, a DC magnetron sputtering device was used on the information surface 47 on the information surface (the information surface 47 was formed on one surface of the substrate 49) of the substrate 49, which was created in the same manner as the substrate 41, using JIS Al6061 alloy as an alloy target. After the reflective layer 48 was formed by the above method, the semi-transparent reflective phase 50 and the reflective layer 48 were laminated so as to face each other with the UV curable resin 45 interposed therebetween to obtain a laminated optical disc.

【0037】得られた各光ディスクに環境試験を行な
い、環境試験前後の腐食状態とレーザ効率(反射率,透
過率,吸光率)の変化について検討を行なった。環境試
験は温度80°、湿度90%を有する環境下に48Hr
静置し、半透明反射層50の耐食性(耐酸化性)を以下
の基準にて判断した。 ○:肉眼及び光学顕微鏡(×200)で濁点が認められ
ない。 △:肉眼では濁点が認められないが、光学顕微鏡では濁
点が認められる。 ×:肉眼で濁点が認められる。
An environmental test was conducted on each of the obtained optical disks, and the corrosion state and changes in laser efficiency (reflectance, transmittance, absorptance) before and after the environmental test were examined. The environmental test is 48 hours in an environment with a temperature of 80 ° and a humidity of 90%.
After standing still, the corrosion resistance (oxidation resistance) of the semitransparent reflective layer 50 was judged according to the following criteria. ◯: No cloud point is observed with the naked eye or an optical microscope (× 200). Δ: No cloudiness is observed with the naked eye, but cloudiness is observed with an optical microscope. X: A dull point is observed with the naked eye.

【0038】また各光ディスクの上記環境試験前後のレ
ーザ効率を調べるために、レーザ照射手段と集光手段を
備えた光ヘッドと基板41とが対向するように載置し
た。
In order to examine the laser efficiency of each optical disk before and after the environmental test, the optical head equipped with the laser irradiation means and the focusing means and the substrate 41 were placed so as to face each other.

【0039】表1に波長650nm及び405nmのレ
ーザを用いた場合の夫々のレーザ効率を示す。尚、反射
率(分光反射率)、光吸収率、透過率は、情報面50に
入射したレーザ強度を100%としたときの値である。
反射率,光吸収率,透過率の測定方法は以下に示す通り
である。
Table 1 shows the respective laser efficiencies when the lasers having the wavelengths of 650 nm and 405 nm are used. The reflectance (spectral reflectance), the light absorptance, and the transmittance are values when the intensity of the laser incident on the information surface 50 is 100%.
The methods for measuring reflectance, light absorption and transmittance are as follows.

【0040】入射レーザの反射率及び透過率は、スペク
トロスコピックエリプソメーター(SenTech社
製:SE850)によって測定した。
The reflectance and transmittance of the incident laser were measured with a spectroscopic ellipsometer (SE850 manufactured by SenTech).

【0041】光吸収率は入射レーザ強度100%から
[反射率と透過率]を除した値である。
The light absorptance is a value obtained by dividing the [reflectance and transmittance] from the incident laser intensity of 100%.

【0042】[0042]

【表1】 [Table 1]

【0043】表1に示されている様にTi,Ta,Cr
を適量含むAl基合金(No.4〜9)を用いた半透明
反射層50は反射率の減少量が少なく、また耐食性に優
れていることが分かる。しかも半透明反射層が高透過率
を有しているので情報面47に十分な強度のレーザを入
射させることができ、情報面42,47の情報を正確に
再生でき、優れた再生特性を有すると共に、耐久性にも
優れている。
As shown in Table 1, Ti, Ta, Cr
It can be seen that the semitransparent reflective layer 50 using the Al-based alloy (Nos. 4 to 9) containing an appropriate amount of S has a small decrease in reflectance and is excellent in corrosion resistance. Moreover, since the semitransparent reflection layer has a high transmittance, a laser having a sufficient intensity can be incident on the information surface 47, information on the information surfaces 42 and 47 can be accurately reproduced, and excellent reproduction characteristics are provided. At the same time, it has excellent durability.

【0044】純Al,純Ag,純Au(No.1〜3)
を用いた半透明反射層は腐食による白斑が生じ、また反
射率の減少が著しい。また半透明反射膜層の透過率が低
すぎるため、情報面47に十分な強度のレーザを入射で
きない。また反射率も小さいため、十分な反射光が得ら
れず、情報面42,47の情報の再生ができず、耐久性
に劣る。
Pure Al, pure Ag, pure Au (No. 1-3)
The semi-transparent reflective layer using is produced with white spots due to corrosion, and the reflectance is significantly reduced. Further, the transmissivity of the semitransparent reflection film layer is too low, so that a laser having a sufficient intensity cannot be incident on the information surface 47. Further, since the reflectance is small, sufficient reflected light cannot be obtained, the information on the information surfaces 42 and 47 cannot be reproduced, and the durability is poor.

【0045】実施例2 各元素添加量と反射率との相関関係を調べた。実施例1
と同様の方法により種々のAl基合金層(半透明反射
層)を形成した試料を作成した後、波長650nmの範
囲におけるレーザ効率を測定した。その結果を表2に示
す。
Example 2 The correlation between the amount of each element added and the reflectance was investigated. Example 1
Samples on which various Al-based alloy layers (semi-transparent reflection layers) were formed were prepared by the same method as above, and the laser efficiency in the wavelength range of 650 nm was measured. The results are shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【発明の効果】以上説明したとおり本発明に係る半透明
反射層は高透過率を有しているため情報面47に十分な
強度のレーザを入射させることができ、しかも反射率も
高いので十分な強度の反射光が得られる。したがって情
報面42,47の再生特性にも優れている。また耐食性
や耐凝集性にも優れており、極めて高い耐久性を有して
いる。更に半透明反射層を上記の様に構成することでA
u系半透明反射層に比べて低コストである。
As described above, since the semitransparent reflective layer according to the present invention has a high transmittance, a laser having a sufficient intensity can be made incident on the information surface 47, and the reflectance is also high, which is sufficient. Reflected light with various intensities can be obtained. Therefore, the reproduction characteristics of the information surfaces 42 and 47 are also excellent. It also has excellent corrosion resistance and cohesion resistance, and has extremely high durability. Further, by constructing the semitransparent reflective layer as described above, A
The cost is lower than that of the u-based semitransparent reflective layer.

【0048】本発明のスパッタリングターゲットは、上
記半透明反射層をスパッタリングにより形成するときに
好適に使用され、形成される半透明反射層の成分組成が
安定しやすくなるというメリットの他、密着性,構造安
定性,反射特性,耐食性などの諸特性にも優れた半透明
反射層が効率よく得られる。
The sputtering target of the present invention is preferably used when the semitransparent reflective layer is formed by sputtering, and has the advantage that the composition of the semitransparent reflective layer to be formed is easily stabilized and, in addition, the adhesiveness, A semi-transparent reflective layer with excellent structural stability, reflection characteristics, and corrosion resistance can be efficiently obtained.

【0049】本発明の半透明反射層は優れた反射率と透
過率とを有し、且つ優れた耐食性と耐凝集性を有してい
るので、CD−ROM、DVD−ROM等の光情報記録
媒体に好適に用いられる。
Since the semitransparent reflective layer of the present invention has excellent reflectance and transmittance, and also has excellent corrosion resistance and anti-aggregation property, it can record optical information such as CD-ROM and DVD-ROM. It is preferably used as a medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】 読込み専用光ディスクの基本構造を示す模式
図である。
FIG. 1 is a schematic diagram showing the basic structure of a read-only optical disc.

【図2】 追記型光ディスクの基本構造を示す模式図で
ある。
FIG. 2 is a schematic diagram showing the basic structure of a write-once optical disc.

【図3】 書換え型光ディスクの基本構造を示す模式図
である。
FIG. 3 is a schematic diagram showing a basic structure of a rewritable optical disc.

【図4】 張合せ型光ディスクの基本構造を示す模式図
である。
FIG. 4 is a schematic diagram showing a basic structure of a bonded optical disc.

【図5】 積層型光ディスク(読込み専用)の基本構造
を示す模式図である。
FIG. 5 is a schematic diagram showing the basic structure of a laminated optical disc (read-only).

【符号の説明】[Explanation of symbols]

1 透明プラスチック基体 2 半透明反射層 3 接着層 4 反射層 5 紫外線硬化樹脂保護層 6 有機色素層 7 誘電体層 8 記録層 41,46 透明基体 42,47 情報面 43,48 反射層 44,49 保護層 45 接着層 50 半透明反射層 1 Transparent plastic substrate 2 Semi-transparent reflective layer 3 adhesive layer 4 Reflective layer 5 UV curable resin protective layer 6 Organic dye layer 7 Dielectric layer 8 recording layers 41,46 transparent substrate 42,47 Information side 43,48 reflective layer 44,49 Protective layer 45 Adhesive layer 50 Semi-transparent reflective layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ti,Ta,及びCrよりなる群から選
ばれる少なくとも1種の元素を合計で0.2〜3.0%
(原子%の意味、以下同じ)含有するAl基合金で構成
されていることを特徴とする耐久性に優れた光情報記録
媒体用の半透明反射層。
1. A total of 0.2 to 3.0% of at least one element selected from the group consisting of Ti, Ta, and Cr.
A semi-transparent reflective layer for an optical information recording medium, which is excellent in durability and is composed of an Al-based alloy contained (meaning atomic%, the same applies hereinafter).
【請求項2】 請求項1に記載のAl基合金で構成され
ていることを特徴とする光情報記録媒体の半透明反射層
用スパッタリングターゲット。
2. A sputtering target for a semitransparent reflective layer of an optical information recording medium, comprising the Al-based alloy according to claim 1.
【請求項3】 請求項1に記載のAl基合金で構成され
ている半透明反射層を備えた光情報記録媒体。
3. An optical information recording medium provided with a semitransparent reflection layer composed of the Al-based alloy according to claim 1.
JP2001370449A 2001-12-04 2001-12-04 Translucent reflective layer and optical information recording medium for optical information recording medium Expired - Fee Related JP4132800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370449A JP4132800B2 (en) 2001-12-04 2001-12-04 Translucent reflective layer and optical information recording medium for optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370449A JP4132800B2 (en) 2001-12-04 2001-12-04 Translucent reflective layer and optical information recording medium for optical information recording medium

Publications (2)

Publication Number Publication Date
JP2003173576A true JP2003173576A (en) 2003-06-20
JP4132800B2 JP4132800B2 (en) 2008-08-13

Family

ID=19179673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370449A Expired - Fee Related JP4132800B2 (en) 2001-12-04 2001-12-04 Translucent reflective layer and optical information recording medium for optical information recording medium

Country Status (1)

Country Link
JP (1) JP4132800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030004A1 (en) * 2008-09-11 2010-03-18 株式会社神戸製鋼所 Read-only optical information recording medium, and sputtering target for forming reflecting film for the optical information recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030004A1 (en) * 2008-09-11 2010-03-18 株式会社神戸製鋼所 Read-only optical information recording medium, and sputtering target for forming reflecting film for the optical information recording medium
JP2010067320A (en) * 2008-09-11 2010-03-25 Kobe Steel Ltd Read-only optical information recording medium and sputtering target for forming reflecting film for the optical information recording medium
US8470426B2 (en) 2008-09-11 2013-06-25 Kobe Steel, Ltd. Read-only optical information recording medium and sputtering target for depositing reflective film for the optical information recording medium

Also Published As

Publication number Publication date
JP4132800B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
KR100445083B1 (en) Reflection layer or semi-transparent reflection layer for use in optical information recording medium, optical information recording medium and sputtering target for use in the optical information recording medium
JP3365762B2 (en) Reflective layer or translucent reflective layer for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
US7695790B2 (en) Silver alloy reflective film, sputtering target therefor, and optical information recording medium using the same
JP4377861B2 (en) Ag alloy reflecting film for optical information recording medium, optical information recording medium, and Ag alloy sputtering target for forming Ag alloy reflecting film for optical information recording medium
KR100799842B1 (en) Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
JPH0765414A (en) Information recording medium
JP2004039147A (en) Optical recording medium and optical recording method
WO2005024799A1 (en) Optical recording medium, manufacturing method thereof, method for recording data on optical recording medium, and data reproduction method
JP2004158145A (en) Optical recording medium
TW200405324A (en) Optical recording medium and method for optically recording data in the same
EP1403860B1 (en) High-density readable only optical disk
JP2007504593A (en) Silver alloy for optical data storage device and optical medium containing the same
JP4540687B2 (en) Read-only optical information recording medium
JP4132800B2 (en) Translucent reflective layer and optical information recording medium for optical information recording medium
JP2005302264A (en) Phase transition type optical information recording medium and two layered phase transition type optical information recording medium
WO2005101394A1 (en) 2-layer type optical recording medium and recording/reproducing method therefor, and optical recording/reproducing device
JPH1112734A (en) Thin metallic film, and optical recording medium using same
JP2004171631A (en) Optical recording medium
JP4140726B2 (en) Optical information recording medium
JP2001067732A (en) Optical recording medium
JP3997296B2 (en) Optical recording medium manufacturing method, quality control method, film thickness measuring method
KR20060120021A (en) Dual-stack optical data storage medium for write once recording
JP2008018607A (en) Write-once type optical recording medium
JP4299756B2 (en) Optical information recording medium
JP4322719B2 (en) Optical information recording medium, method for producing the same, and sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees