JP2005274552A - Dispensing method and dispensing apparatus, and liquefaction determining apparatus - Google Patents

Dispensing method and dispensing apparatus, and liquefaction determining apparatus Download PDF

Info

Publication number
JP2005274552A
JP2005274552A JP2004246135A JP2004246135A JP2005274552A JP 2005274552 A JP2005274552 A JP 2005274552A JP 2004246135 A JP2004246135 A JP 2004246135A JP 2004246135 A JP2004246135 A JP 2004246135A JP 2005274552 A JP2005274552 A JP 2005274552A
Authority
JP
Japan
Prior art keywords
liquefaction
component
sorting
fractionation
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004246135A
Other languages
Japanese (ja)
Other versions
JP4559799B2 (en
Inventor
Mutsumi Sato
睦 佐藤
Hiroyuki Terajima
弘之 寺島
Masayoshi Ohira
真義 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GL Science Inc
Original Assignee
GL Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GL Science Inc filed Critical GL Science Inc
Priority to JP2004246135A priority Critical patent/JP4559799B2/en
Publication of JP2005274552A publication Critical patent/JP2005274552A/en
Application granted granted Critical
Publication of JP4559799B2 publication Critical patent/JP4559799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispensing method, a dispensing apparatus and a liquefaction determining apparatus suitable for dispensing of a sample such as foods and fragrant materials, preventing a contamination of the sample separated by chromatograph, surely implementing the dispensing of the target sample, visually confirming actual liquefaction timing of the separated sample, accurately and surely confirming timing of the dispensing, preventing a delay of the dispensing due to information from the chromatogram only, reliably achieving the dispensing, improving the accuracy and reliability for a visual confirmation, and rationally detecting an introduction and a liquefaction state of the gas sample. <P>SOLUTION: In the dispensing method, a target dispensing component in a sample component separated by a column is introduced into the dispensing apparatus 3, then introduced into predetermined collection pipes 42-48, and the liquefaction and dispensing are implemented. The liquefaction state of the dispensing component introduced into the collection pipe 42-48 is confirmed or detected during the dispensing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば食品や香料等の試料の分取に好適で、クロマトグラフで分離された試料のコンタミネ−ションを防止し、目的の試料を確実に分取するとともに、分離された試料の実際の液化時期を目視で確認し、分取のタイミングを正確かつ確実に確認し、クロマトグラムからの情報のみによる分取の遅れを防止し、信頼性の高い分取を実現するとともに、前記目視確認の正確性と信頼性を向上でき、しかも気体試料の導入ないし液化状態を合理的に検出し得る、分取方法および分取装置並びに液化判定装置に関する。   The present invention is suitable for, for example, the separation of samples such as foods and fragrances, prevents contamination of the chromatographically separated sample, reliably separates the target sample, and actually separates the sample. Visually check the liquefaction time of the sample, accurately and reliably check the timing of sorting, prevent delays in sorting due to only the information from the chromatogram, realize highly reliable sorting, and check the visual The present invention relates to a fractionation method, a fractionation device, and a liquefaction determination device that can improve the accuracy and reliability of the gas sample and can reasonably detect the introduction or liquefaction state of a gas sample.

一般に試料中の各成分を取り出して構造を調べたり、別の目的に使用したりする際、ガスクロマトグラフ(GC)分取装置または液体クロマトグラフ(LC)分取装置が使用されている。
このうち、LC分取装置は、送液ポンプと試料注入器、分離カラムと検出器、分取装置と記録計等を備え(例えば、特許文献1)、GC分取装置は、前記送液ポンプの代わりに、キャリアガスボンベを使用していて、前記GCまたはLCで試料成分を分離し、その溶出流体をピ−ク毎に或いは保持値の間隔毎に取り出し、これを各回収容器に取り分けるようにしている。
In general, a gas chromatograph (GC) fractionator or a liquid chromatograph (LC) fractionator is used to take out each component in a sample and examine its structure or use it for another purpose.
Among these, the LC fractionation device includes a liquid feed pump and a sample injector, a separation column and a detector, a fractionation device, a recorder, and the like (for example, Patent Document 1), and the GC fractionation device includes the liquid feed pump. Instead of using a carrier gas cylinder, the sample components are separated by the GC or LC, and the eluted fluid is taken out at every peak or every holding value interval and separated into each collection container. ing.

前記GC分取装置は、食品や香料等の分野で大量分取に適し、また大量の溶離溶媒を要するLC分取装置に比べ、試料やキャリアガスが無機ガスであるため、使用上および環境対策上からも好ましい特徴がある。   The GC preparative device is suitable for large-scale preparative use in the field of foods and fragrances, and the sample and carrier gas are inorganic gases compared to the LC preparative device requiring a large amount of elution solvent. There are also preferable features from above.

このようなGCまたはLC分取装置は、目的の試料成分を分取する際、前述のように検出器で目的の試料成分のピ−クを検出後、そのピ−ク成分が分取装置の電磁弁に到達した際、電磁弁を開弁し、目的成分を分取するようにしている。
しかし、前記ピ−ク成分が検出器から分取装置の電磁弁に到達するまでに、当該部分の配管容量と流速に関係する遅れ時間が存在し、特にこの傾向は高沸点成分に顕著になる。
そこで、前記遅れ時間を見込んで電磁弁を操作する必要があるが、前記遅れ時間を正確に算出し電磁弁を操作することは実際上難しく、その開弁時期のタイミングに正確性を欠いて、分取の信頼性が低下するという問題がある。
When such a GC or LC sorting device sorts a target sample component, the peak component of the target sample component is detected by the detector as described above, and then the peak component is detected by the sorting device. When the electromagnetic valve is reached, the electromagnetic valve is opened to collect the target component.
However, there is a delay time related to the pipe capacity and flow velocity of the part before the peak component reaches the solenoid valve of the sorting device from the detector, and this tendency is particularly noticeable for the high boiling point component. .
Therefore, it is necessary to operate the solenoid valve in anticipation of the delay time, but it is actually difficult to calculate the delay time accurately and operate the solenoid valve, and the timing of the valve opening timing is inaccurate, There is a problem that the reliability of sorting is lowered.

このような問題を解決するものとして、分取装置の動作を制御するシステムコントロ−ラを設け、該システムコントロ−ラに検出器から分取装置までの配管容量を入力するだけで、目的の分取成分のピ−クが検出された際、前記コントロ−ラに設定された情報を基に、前記目的成分のピ−ク開始部分が分取装置の電磁弁に到達する時期を自動的に算出し、この算出時期に電磁弁を開弁して分取するようにしたものがある(例えば、特許文献1)   In order to solve such problems, a system controller for controlling the operation of the sorting apparatus is provided, and the target volume can be obtained simply by inputting the pipe capacity from the detector to the sorting apparatus to the system controller. When the peak of the sample component is detected, the time when the peak start portion of the target component reaches the solenoid valve of the sorting device is automatically calculated based on the information set in the controller. However, there is one in which the solenoid valve is opened and sorted at this calculation time (for example, Patent Document 1).

しかし、前記の装置は高価な上に、システムコントロ−ラに入力する配管容量の正確性を得難く、しかもピ−ク成分が検出器から電磁弁に到達する時期は、分取環境や分取成分、例えば高沸点成分や低沸点成分によって相違するため、前記配管容量とシステムコントロ−ラに設定された流速プログラムだけで、電磁弁を画一的に操作する手法には限界があり、分取の正確性ないし信頼性に不安があった。   However, the above-mentioned apparatus is expensive and it is difficult to obtain the accuracy of the piping capacity input to the system controller. Moreover, the time when the peak component reaches the solenoid valve from the detector is determined depending on the sorting environment and the sorting. Since there are differences depending on the components, for example, high-boiling components and low-boiling components, there is a limit to the method of operating the solenoid valve uniformly with only the pipe capacity and the flow rate program set in the system controller. I was worried about the accuracy or reliability.

一方、GC分取装置では分離カラムから溶出した目的の成分を液化して分取しており、この液化時期に前記分取装置の電磁弁を開弁し、目的成分を分取させることが必要になる このような方法に利用できる液化識別手段として、光学的透明体と、光源と、光学的透明体からの反射光を受光する光検出器とを備え、検出信号から液体の屈折率を判定することによって、被検体の液体の有無や種類、濃度等を検知するようにしたものがある(例えば、特許文献2)。   On the other hand, in the GC fractionator, the target component eluted from the separation column is liquefied and fractionated, and it is necessary to open the solenoid valve of the fractionator at this liquefaction time to separate the target component. As a liquefaction identification means that can be used in such a method, an optically transparent body, a light source, and a photodetector that receives reflected light from the optically transparent body are provided, and the refractive index of the liquid is determined from the detection signal. By doing this, there is one that detects the presence / absence, type, concentration, etc. of the liquid of the subject (for example, Patent Document 2).

しかし、前記液体識別装置は、プリズム等の特別な光学機器を要するとともに、装置の製造上のバラツキや温度、外力等による変動、液体の屈折率の温度による変化、光源のレベル変動等によって、識別の信頼性が低下するという問題があった。   However, the liquid identification device requires special optical equipment such as a prism, and the liquid identification device is identified due to variations in manufacturing of the device, variations due to temperature, external force, etc., changes in the refractive index of the liquid due to temperature, variations in the light source level, etc. There was a problem that the reliability of the system deteriorated.

ところで、分取装置において、分離カラムから溶出した目的成分を複数の容器に分取する場合は、分離カラムと複数の容器との間に分岐管を設け、該分岐管の下流側から、流体を流したくない流路に不活性ガス等のガス圧(背圧)をかける加圧手段を設け、例えば試薬液溜の液を分取する際、一方の廃液容器に不活性ガスを送り込み、該容器に連通する分岐管に背圧をかけた後、試薬液溜の液を分岐管に導き、該液を背圧のかからない試薬流路を経由して他方の回収容器に収容し、前記薬液のコンタミネ−ションを防止するようにしている(例えば、特許文献3)。   By the way, in the fractionation device, when the target component eluted from the separation column is separated into a plurality of containers, a branch pipe is provided between the separation column and the plurality of containers, and a fluid is supplied from the downstream side of the branch pipe. A pressurizing means for applying a gas pressure (back pressure) of an inert gas or the like is provided in a flow channel that is not desired to flow. For example, when separating the liquid in the reagent liquid reservoir, the inert gas is fed into one waste liquid container, and the container After applying back pressure to the branch pipe communicating with the liquid, the liquid in the reagent solution reservoir is guided to the branch pipe, and the liquid is stored in the other recovery container via the reagent flow path where no back pressure is applied. -Is prevented (for example, Patent Document 3).

しかし、前記装置は、流体を流したくない流路の一方側、例えば下流側から背圧をかけて、薬液のコンタミネ−ションを防止しているが、その上流側には特別な手段を施していないため、この上流側経路からのコンタミネ−ションの流入の惧れがある。
しかも、前記不活性ガスは、廃液容器を経て回収容器へ送り込まれるため、不活性ガスが汚染し、これが回収容器の薬液に接触するため、回収した薬液が不活性ガスによって汚染され、分取の信頼性が得られないという問題があった。
However, although the apparatus applies back pressure from one side, for example, the downstream side of the flow path where the fluid is not desired to flow, to prevent contamination of the chemical solution, a special means is provided on the upstream side. Therefore, there is a risk of contamination flowing in from this upstream path.
In addition, since the inert gas is sent to the recovery container through the waste liquid container, the inert gas is contaminated and comes into contact with the chemical liquid in the recovery container, so that the recovered chemical liquid is contaminated by the inert gas, There was a problem that reliability could not be obtained.

特開平5−302918号公報JP-A-5-302918 実開昭60−29271号公報Japanese Utility Model Publication No. 60-29271 特開平6−138128号公報JP-A-6-138128

本発明はこのような問題を解決し、例えば食品や香料等の試料の分取に好適で、クロマトグラフで分離された試料のコンタミネ−ションを防止し、目的の試料を確実に分取するとともに、分離された試料の実際の液化時期を目視で確認し、分取のタイミングを正確かつ確実に確認し、クロマトグラムからの情報のみによる分取の遅れを防止し、信頼性の高い分取を実現するとともに、前記目視確認の正確性と信頼性を向上でき、しかも気体試料の液化状態を合理的に検出し得る、分取方法および分取装置並びに液化判定装置を提供することを目的とする。   The present invention solves such a problem, and is suitable for, for example, the separation of samples such as foods and fragrances, prevents contamination of the sample separated by chromatography, and reliably separates the target sample. , The actual liquefaction time of the separated sample is visually confirmed, the timing of fractionation is confirmed accurately and reliably, the delay in fractionation due to only the information from the chromatogram is prevented, and reliable fractionation is achieved. An object of the present invention is to provide a fractionation method, a fractionation device, and a liquefaction determination device that can be realized, improve the accuracy and reliability of the visual confirmation, and can reasonably detect the liquefaction state of a gas sample. .

請求項1の発明は、カラムで分離した試料成分中の目的の分取成分を分取装置に導入し、前記目的の分取成分を所定の捕集管に導入して液化し分取する分取方法において、前記捕集管に導入した分取成分の液化状態を確認または検出して分取するようにし、クロマトグラム情報のみで画一的に分取のタイミングを決めることで、分取のタイミングが遅れ易かった従来の問題を解消し、実際の液化状態の下で正確に分取し、その信頼性を得られるようにしている。
請求項2の発明は、前記分取成分の液化状態を目視で確認し、または液化検出センサで検出するようにして、正確かつ簡便に液化状態を確認し得るようにしている。
請求項3の発明は、前記捕集管に導入した分取成分を断熱膨張させて液化させ、簡単な手段で確実かつ容易に液化させるようにしている。
According to the first aspect of the present invention, a target fraction component in a sample component separated by a column is introduced into a fractionation device, and the target fraction component is introduced into a predetermined collection tube to be liquefied and fractionated. In the collection method, the liquefaction state of the preparative component introduced into the collection tube is confirmed or detected, and the fractionation is performed by determining the fractionation timing uniformly only by chromatogram information. The conventional problem that the timing was apt to be delayed is solved, and the sample is accurately sorted under the actual liquefied condition to obtain its reliability.
In the invention of claim 2, the liquefaction state of the preparative component is visually confirmed or detected by a liquefaction detection sensor so that the liquefaction state can be confirmed accurately and easily.
According to a third aspect of the present invention, the preparative component introduced into the collection tube is adiabatically expanded and liquefied, and is liquefied surely and easily by simple means.

請求項4の発明は、前記捕集管に導入した分取成分の液化終了を確認または検出後、次期分取成分の捕集流路を開放し、次期分取成分を所定の捕集管に導入させるようにして、現状の分取を停止し、次期分取成分の分取に切り換えて、そのコンタミネ−ションを防止し得るようにしている。
請求項5の発明は、前記捕集管の上流側から所定圧のキャリアガスを導入し、捕集管の上流側をキャリアガスで恰も施栓するようにして、コンタミネ−ションを防止するようにしている。しかも、その際新鮮なキャリアガスを導入することで、キャリアガスによる分取試料の汚染を防止し、分取の信頼性を向上するようにしている。
請求項6の発明は、前記捕集管の上流側から所定圧のキャリアガスを導入するとともに捕集管の下流側から所定圧のキャリアガスを導入し、捕集管の上下流側部を恰も施栓するようにして、コンタミネ−ションを確実に防止するようにしている。
In the invention of claim 4, after confirming or detecting the completion of liquefaction of the preparative component introduced into the collection tube, the collection channel for the next preparative component is opened, and the next preparative component is placed in a predetermined collection tube. In this way, the current fractionation is stopped and switched to the fractionation of the next fractionation component so that contamination can be prevented.
According to a fifth aspect of the present invention, contamination is prevented by introducing a carrier gas having a predetermined pressure from the upstream side of the collection tube and plugging the upstream side of the collection tube with a carrier gas. Yes. In addition, by introducing fresh carrier gas at that time, contamination of the sample to be collected by the carrier gas is prevented, and the reliability of the sorting is improved.
The invention of claim 6 introduces a carrier gas of a predetermined pressure from the upstream side of the collection tube and introduces a carrier gas of a predetermined pressure from the downstream side of the collection tube. By plugging, contamination is surely prevented.

請求項7の発明は、前記液化検出センサが、捕集管の液化部における反射光を検出可能なホトセンサ、または捕集管の液化部における温度変化を電気的信号として検出可能な測温センサであり、分取成分または分取条件に応じて最適な液化検出センサを選択し得るようにしている。 請求項8の発明は、カラムで分離した試料成分中の目的の分取成分をキャリアガスを介して導入し、該分取成分を液化し、かつその液化成分を採取可能な捕集管を備えた分取装置において、前記捕集管の少なくとも一箇所にスロ−ト部を有する液化部を設け、該スロ−ト部を移動する分取成分を断熱可能にして、簡単な構造で分取成分の液化を促し、分取の合理化とその能率向上を図るようにしている。 請求項9の発明は、液化部を外部から透視可能にして、分取成分の液化状態を外部から目視で容易に確認し得るようにしている。   According to a seventh aspect of the present invention, the liquefaction detection sensor is a photosensor capable of detecting reflected light in the liquefaction part of the collection tube, or a temperature measurement sensor capable of detecting a temperature change in the liquefaction part of the collection tube as an electrical signal. Yes, an optimum liquefaction detection sensor can be selected according to the fractionation component or the fractionation conditions. The invention of claim 8 is provided with a collection tube capable of introducing a target fractionated component in a sample component separated by a column through a carrier gas, liquefying the fractionated component, and collecting the liquefied component. In this sorter, a liquefaction part having a slot is provided in at least one place of the collection tube, and the sorter component that moves through the slot can be insulated, so that the sorter can be separated with a simple structure. Liquefaction is promoted to streamline sorting and improve efficiency. According to the ninth aspect of the present invention, the liquefaction portion can be seen through from the outside so that the liquefied state of the preparative component can be easily confirmed visually from the outside.

請求項10の発明は、前記液化部に臨ませて覗き窓または覗きスペ−スを設け、液化状態の目視観察を実現し得るようにしている。
請求項11の発明は、前記スロ−ト部にモノリス構造の液化検出片を設け、該液化検出片が液化した分取成分を保持した際、変色可能にし、液化検出片の変色の有無によって、前記液化状態を容易に確認し得るようにしている。しかも、前記モノリス構造の液化検出片内部の数μmから40μmのスル−ポアによって、断熱膨張の効果を高め、かつ表面積を増大させて、捕集効率を上げるようにしている。
請求項12の発明は、前記液化部の近接位置に光源または液化検出センサを設置し、分取成分の液化状態の確認を容易かつ確実に行なえるようにしている。
請求項13の発明は、前記液化検出センサが、捕集管の液化部における反射光を検出可能なホトセンサ、または捕集管の液化部における温度変化を電気的信号として検出可能な測温センサとして、分取成分または分取条件に応じて最適な液化検出センサを選択し得るようにしている。
In a tenth aspect of the present invention, a viewing window or a viewing space is provided facing the liquefying section so that visual observation of the liquefied state can be realized.
The invention of claim 11 is provided with a monolithic liquefaction detection piece in the slot portion, and when the liquefied detection piece holds a liquefied fractionated component, it can be discolored, and depending on whether the liquefaction detection piece is discolored, The liquefied state can be easily confirmed. Moreover, the efficiency of adiabatic expansion is increased and the surface area is increased by the through-holes of several μm to 40 μm inside the monolithic liquefaction detection piece, thereby increasing the collection efficiency.
According to a twelfth aspect of the present invention, a light source or a liquefaction detection sensor is installed in the vicinity of the liquefaction unit so that the liquefaction state of the preparative component can be easily and reliably confirmed.
According to a thirteenth aspect of the present invention, the liquefaction detection sensor is a photosensor capable of detecting reflected light in the liquefaction portion of the collection tube, or a temperature measurement sensor capable of detecting a temperature change in the liquefaction portion of the collection tube as an electrical signal. An optimum liquefaction detection sensor can be selected in accordance with the fractionation component or the fractionation conditions.

請求項14の発明は、前記ホトセンサは、液化検出片に光を照射可能な発光器と、前記液化検出片からの反射光を検出可能な受光器とを備え、前記受光器の検出信号により分取成分導入下の液化検出片の反射率を演算し、該演算した反射率を介し前記分取成分の液化検出時、次期分取成分の流路を開放し分取可能にして、分取成分の液化検出を正確かつ自動的に行なえるとともに、これを従来のFID等の検出器の代わりに用いることで、分取の自動化と分取装置の低廉化を図るようにしている。
請求項15の発明は、前記測温センサは、測温部の温度変化を電気信号として検出可能に設け、該検出信号を入力可能な演算器を設け、該演算器により分取成分の液化状態を検出し、該検出信号を介し次期分取成分の流路を開放し、分取可能にして、分取成分の液化状態を正確かつ確実に検出し、その検出信号を正確かつ容易に利用できるようにしている
According to a fourteenth aspect of the present invention, the photosensor includes a light emitter capable of irradiating light to the liquefaction detection piece, and a light receiver capable of detecting reflected light from the liquefaction detection piece, and is separated by a detection signal of the light receiver. Calculate the reflectivity of the liquefaction detection piece under the preparative component introduction, and when the liquefaction of the preparative component is detected via the calculated reflectivity, the flow path of the next preparative component is opened to enable the preparative component. The liquefaction detection can be accurately and automatically performed, and it can be used in place of a conventional detector such as FID to automate sorting and reduce the cost of the sorting apparatus.
According to a fifteenth aspect of the present invention, the temperature measuring sensor is provided so as to be able to detect a temperature change of the temperature measuring section as an electric signal, and is provided with an arithmetic unit capable of inputting the detection signal. The flow of the next fractionation component is opened via the detection signal, enabling the fractionation, and the liquefaction state of the fractionation component can be accurately and reliably detected, and the detection signal can be used accurately and easily. Like

請求項16の発明は、前記液化検出信号を介し、分取成分の流路に介挿した開閉弁を開閉可能に設け、前記流路を正確かつ確実に開放し、分取の正確性を図るようにしている。 請求項17の発明は、前記覗き窓の内側に中低温オ−ブンを設け、前記覗き窓の外側にデフロッサ−ファンを配置し、前記覗き窓の外面に送風可能にして、覗き窓の曇りを解消し得るようにしている。
請求項18の発明は、前記分取成分の略液化終了時期を目視確認後、前記開閉弁を開弁可能にし、捕集管の流路における分取成分の残留を実際に確認し、コンタミネ−ションの発生を確実に防止し得るようにしている。
請求項19の発明は、前記開閉弁の開弁時に前記光源を点灯可能にし、液化状態の確認を容易に行なえるようにしている。
According to a sixteenth aspect of the present invention, an open / close valve inserted in the flow path of the preparative component can be opened and closed via the liquefaction detection signal, and the flow path is opened accurately and surely to improve the accuracy of sorting. I am doing so. According to a seventeenth aspect of the present invention, a mid-low temperature oven is provided inside the viewing window, a defroster fan is disposed outside the viewing window, and air can be blown to the outer surface of the viewing window, thereby clouding the viewing window. It can be solved.
In the invention of claim 18, after the visual confirmation of the liquefaction completion time of the fractionated component, the on-off valve can be opened, the residue of the fractionated component remaining in the flow path of the collecting pipe is actually confirmed, To prevent the occurrence of accidents.
According to a nineteenth aspect of the present invention, the light source can be turned on when the on-off valve is opened so that the liquefied state can be easily confirmed.

請求項20の発明は、前記捕集管の上流側から所定圧のキャリアガスを導入可能にし、捕集管の上流側をキャリアガスで恰も施栓するようにして、コンタミネ−ションを防止するようにしている。しかも、その際新鮮なキャリアガスを導入することで、キャリアガスによる分取試料の汚染を防止し、分取の信頼性を向上するようにしている。
請求項21の発明は、前記捕集管の上流側から所定圧のキャリアガスを導入可能にするとともに、捕集管の下流側から所定圧のキャリアガスを導入可能にし、捕集管の上下流側部を恰も施栓するようにして、コンタミネ−ションを確実に防止するようにしている。
According to a twentieth aspect of the present invention, it is possible to introduce a carrier gas having a predetermined pressure from the upstream side of the collecting pipe, and to prevent contamination by upstreamly plugging the upstream side of the collecting pipe with the carrier gas. ing. In addition, by introducing fresh carrier gas at that time, contamination of the sample to be collected by the carrier gas is prevented, and the reliability of the sorting is improved.
The invention of claim 21 enables introduction of a carrier gas of a predetermined pressure from the upstream side of the collection tube, and introduction of a carrier gas of a predetermined pressure from the downstream side of the collection tube. The side is also plugged so that contamination is reliably prevented.

請求項22の発明は、気体試料を導入可能な導管を垂直に配置し、該導管の少なくとも一箇所にスロ−ト部を有する液化部を設け、該スロ−ト部を移動する気体試料を断熱膨張可能に設け、前記液化部に臨ませて液化検出センサを配置し、簡単な構成で気体試料を確実に液化するとともに、その液化状態を確実に検出し得るようにしている。 請求項23の発明は、前記スロ−ト部にモノリス構造の液化検出片を設け、気体試料の液化を更に促すとともに、液化判定の正確性を向上するようにしている。
請求項24の発明は、前記液化部を外部から透視可能に設けて、目視による液化状態を確認可能にしている。 請求項25の発明は、前記液化検出センサが、捕集管の液化部における反射光を検出可能なホトセンサ、または捕集管の液化部における温度変化を電気的信号として検出可能な測温センサとして、分取成分または分取条件に応じて最適な液化検出センサを選択し得るようにしている。 請求項26の発明は、前記測温センサを前記液化検出片の直下に配置し、液化した液滴と確実に接触し、液化状態を確実に検出し得るようにしている。
According to the invention of claim 22, a conduit capable of introducing a gas sample is arranged vertically, a liquefying portion having a slot portion is provided at at least one location of the conduit, and the gas sample moving through the slot portion is insulated. A liquefaction detection sensor is arranged facing the liquefaction section so as to be inflatable, and the gas sample can be reliably liquefied with a simple configuration, and the liquefaction state can be reliably detected. According to a twenty-third aspect of the present invention, a liquefaction detection piece having a monolith structure is provided in the slot portion to further promote liquefaction of the gas sample and improve accuracy of liquefaction determination.
According to a twenty-fourth aspect of the present invention, the liquefying portion is provided so as to be seen through from the outside so that the liquefied state can be confirmed visually. According to a twenty-fifth aspect of the present invention, the liquefaction detection sensor is a photosensor capable of detecting reflected light in the liquefaction part of the collection tube, or a temperature measurement sensor capable of detecting a temperature change in the liquefaction part of the collection tube as an electrical signal. An optimum liquefaction detection sensor can be selected in accordance with the fractionation component or the fractionation conditions. According to a twenty-sixth aspect of the present invention, the temperature measuring sensor is disposed immediately below the liquefaction detection piece so as to reliably come into contact with the liquefied liquid droplet so that the liquefaction state can be reliably detected.

請求項1の発明は、前記捕集管に導入した分取成分の液化状態を確認または検出して分取するようにしたから、クロマトグラム情報のみで画一的に分取のタイミングを決めることで、分取のタイミングが遅れがちだった従来の問題を解消し、実際の液化状態の下で正確に分取でき、その信頼性を得ることができる。
請求項2の発明は、前記分取成分の液化状態を目視で確認し、または液化検出センサで検出するようにしたから、正確かつ簡便に液化状態を確認することができる。
請求項3の発明は、前記捕集管に導入した分取成分を断熱膨張させて液化させるから、簡単な手段で確実かつ容易に液化させることができる。
In the invention of claim 1, since the liquefaction state of the preparative component introduced into the collection tube is confirmed or detected, the fractionation is uniformly determined only by chromatogram information. Thus, it is possible to solve the conventional problem that the timing of sorting tends to be delayed, to accurately sort under actual liquefied conditions, and to obtain the reliability thereof.
In the invention of claim 2, since the liquefaction state of the fractionated component is visually confirmed or detected by a liquefaction detection sensor, the liquefaction state can be confirmed accurately and simply.
In the invention of claim 3, since the fractionated component introduced into the collecting tube is adiabatically expanded and liquefied, it can be liquefied surely and easily by a simple means.

請求項4の発明は、前記捕集管に導入した分取成分の液化終了を確認または検出後、次期分取成分の捕集流路を開放し、次期分取成分を所定の捕集管に導入させるようにしたから、現状の分取を停止し、次期分取成分の分取に切り換えて、そのコンタミネ−ションを防止することができる。 請求項5の発明は、前記捕集管の上流側から所定圧のキャリアガスを導入するようにしたから、捕集管の上流側をキャリアガスで施栓するようにして、コンタミネ−ションを防止することができる。しかも、その際新鮮なキャリアガスを導入することで、キャリアガスによる分取試料の汚染を防止し、分取の信頼性を向上することができる。
請求項6の発明は、前記捕集管の上流側から所定圧のキャリアガスを導入するとともに、捕集管の下流側から所定圧のキャリアガスを導入するようにしたから、捕集管の上下流側部を施栓するようにして、コンタミネ−ションを確実に防止することができる。
In the invention of claim 4, after confirming or detecting the completion of liquefaction of the preparative component introduced into the collection tube, the collection channel for the next preparative component is opened, and the next preparative component is placed in a predetermined collection tube. Since it is introduced, it is possible to stop the current fractionation and switch to the fractionation of the next fractionation component to prevent its contamination. In the invention of claim 5, since the carrier gas having a predetermined pressure is introduced from the upstream side of the collection tube, contamination is prevented by plugging the upstream side of the collection tube with the carrier gas. be able to. In addition, by introducing a fresh carrier gas at that time, contamination of the sample to be collected by the carrier gas can be prevented, and the reliability of the sorting can be improved.
According to the sixth aspect of the present invention, since the carrier gas having a predetermined pressure is introduced from the upstream side of the collection tube and the carrier gas having a predetermined pressure is introduced from the downstream side of the collection tube, Contamination can be reliably prevented by plugging the downstream side portion.

請求項7の発明は、前記液化検出センサが、捕集管の液化部における反射光を検出可能なホトセンサ、または捕集管の液化部における温度変化を電気的信号として検出可能な測温センサであるから、分取成分または分取条件に応じて最適な液化検出センサを選択することができる。 請求項8の発明は、捕集管の少なくとも一箇所にスロ−ト部を有する液化部を設け、該スロ−ト部を移動する分取成分を断熱可能にしたから、簡単な構造で分取成分の液化を促し、分取の合理化とその能率向上を図ることができる。 請求項9の発明は、液化部を外部から透視可能にしたから、分取成分の液化状態を外部から目視で容易に確認することができる。   According to a seventh aspect of the present invention, the liquefaction detection sensor is a photosensor capable of detecting reflected light in the liquefaction part of the collection tube, or a temperature measurement sensor capable of detecting a temperature change in the liquefaction part of the collection tube as an electrical signal. Therefore, an optimal liquefaction detection sensor can be selected according to the fractionation component or the fractionation conditions. In the invention of claim 8, since a liquefying portion having a slot portion is provided in at least one place of the collecting tube, and the fractionation component moving through the slot portion can be insulated, it is possible to sort with a simple structure. It is possible to promote liquefaction of components, rationalize sorting and improve efficiency. According to the ninth aspect of the present invention, since the liquefying portion can be seen through from the outside, the liquefied state of the fractionated component can be easily confirmed from the outside visually.

請求項10の発明は、前記液化部に臨ませて覗き窓または覗きスペ−スを設けたから、液化状態の目視観察を実現することができる。
請求項11の発明は、前記スロ−ト部にモノリス構造の液化検出片を設け、該液化検出片が液化した分取成分を保持した際、変色可能にしたから、液化検出片の変色の有無によって、前記液化状態を容易に確認することができる。しかも、前記モノリス構造の液化検出片内部の数μmから40μmのスル−ポアによって、断熱膨張の効果を高め、かつ表面積を増大させて、捕集効率を上げることができる。
請求項12の発明は、前記液化部の近接位置に光源または液化検出センサを設置したから、分取成分の液化状態の確認を容易かつ確実に行なうことができる。
請求項13の発明は、前記液化検出センサが、捕集管の液化部における反射光を検出可能なホトセンサ、または捕集管の液化部における温度変化を電気的信号として検出可能な測温センサとしたから、分取成分または分取条件に応じて最適な液化検出センサを選択することができる。
According to the tenth aspect of the present invention, the observation window or the observation space is provided so as to face the liquefaction portion, so that visual observation of the liquefied state can be realized.
According to the eleventh aspect of the present invention, since the liquefaction detection piece having a monolith structure is provided in the slot portion, and the liquefaction detection piece holds the liquefied preparative component, it is possible to change the color. Thus, the liquefied state can be easily confirmed. Moreover, the efficiency of adiabatic expansion can be increased and the surface area can be increased by the through-holes of several μm to 40 μm inside the monolithic liquefaction detection piece, thereby increasing the collection efficiency.
In the twelfth aspect of the present invention, since the light source or the liquefaction detection sensor is installed in the vicinity of the liquefaction unit, the liquefaction state of the fractionated component can be easily and reliably confirmed.
According to a thirteenth aspect of the present invention, the liquefaction detection sensor is a photosensor capable of detecting reflected light in the liquefaction part of the collection tube, or a temperature measurement sensor capable of detecting a temperature change in the liquefaction part of the collection tube as an electrical signal; Therefore, an optimal liquefaction detection sensor can be selected according to the fractionation component or the fractionation conditions.

請求項14の発明は、前記ホトセンサは、液化検出片に光を照射可能な発光器と、前記液化検出片からの反射光を検出可能な受光器とを備え、前記受光器の検出信号により分取成分導入下の液化検出片の反射率を演算し、該演算した反射率を介し前記分取成分の液化検出時、次期分取成分の流路を開放し分取可能にしたから、分取成分の液化検出を正確かつ自動的に行なえるとともに、これを従来のFID等の検出器の代わりに用いることで、分取の自動化と分取装置の低廉化を図ることができる。
請求項15の発明は、前記測温センサは、測温部の温度変化を電気信号として検出可能に設け、該検出信号を入力可能な演算器を設け、該演算器により分取成分の液化状態を検出し、該検出信号を介し次期分取成分の流路を開放し、分取可能にしたから、分取成分の液化状態を正確かつ確実に検出し、その検出信号を正確かつ容易に利用することができる 請求項16の発明は、前記液化検出信号を介し、分取成分の流路に介挿した開閉弁を開閉可能に設けたから、前記流路を正確かつ確実に開放し、分取の正確性を図ることができる。
According to a fourteenth aspect of the present invention, the photosensor includes a light emitter capable of irradiating light to the liquefaction detection piece, and a light receiver capable of detecting reflected light from the liquefaction detection piece, and is separated by a detection signal of the light receiver. Since the reflectance of the liquefaction detection piece under the preparative component introduction is calculated, and when the liquefaction of the preparative component is detected via the calculated reflectivity, the flow of the next preparative component is opened to enable the preparative separation. While component liquefaction can be detected accurately and automatically, it can be used in place of a conventional detector such as an FID to automate sorting and reduce the cost of a sorting apparatus.
According to a fifteenth aspect of the present invention, the temperature measuring sensor is provided so as to be able to detect a temperature change of the temperature measuring section as an electric signal, and is provided with an arithmetic unit capable of inputting the detection signal. Since the flow of the next fractionation component is opened via the detection signal, and the fractionation is possible, the liquefaction state of the fractionation component is accurately and reliably detected, and the detection signal is used accurately and easily. In the invention of claim 16, since the on-off valve inserted in the flow path of the preparative component can be opened and closed via the liquefaction detection signal, the flow path is opened accurately and surely, Accuracy can be achieved.

請求項17の発明は、前記覗き窓の内側に中低温オ−ブンを設け、前記覗き窓の外側にデフロッサ−ファンを配置し、前記覗き窓の外面に送風可能にしたから、覗き窓の曇りを解消することができる。
請求項18の発明は、前記分取成分の略液化終了時期を目視確認後、前記開閉弁を開弁可能にしたから、捕集管の流路における分取成分の残留を実際に確認し、コンタミネ−ションの発生を確実に防止することができる。
請求項19の発明は、前記開閉弁の開弁時に前記光源を点灯可能にしたから、液化状態の確認を容易に行なうことができる。
In the invention of claim 17, a mid-low temperature oven is provided inside the viewing window, a defroster fan is disposed outside the viewing window, and air can be blown to the outer surface of the viewing window. Can be eliminated.
Since the invention according to claim 18 allows the opening / closing valve to be opened after visually confirming the end of liquefaction of the preparative component, the residual of the preparative component in the flow path of the collecting pipe is actually confirmed, It is possible to reliably prevent the occurrence of contamination.
According to the nineteenth aspect of the present invention, since the light source can be turned on when the on-off valve is opened, the liquefied state can be easily confirmed.

請求項20の発明は、前記捕集管の上流側から所定圧のキャリアガスを導入可能にしたから、捕集管の上流側をキャリアガスで恰も施栓するようにして、コンタミネ−ションを防止することができる。しかも、その際新鮮なキャリアガスを導入することで、キャリアガスによる分取試料の汚染を防止し、分取の信頼性を向上することができる。
請求項21の発明は、前記捕集管の上流側から所定圧のキャリアガスを導入可能にするとともに、捕集管の下流側から所定圧のキャリアガスを導入可能にしたから、捕集管の上下流側部を恰も施栓するようにして、コンタミネ−ションを確実に防止することができる
According to the invention of claim 20, since the carrier gas having a predetermined pressure can be introduced from the upstream side of the collection tube, contamination is prevented by sealing the upstream side of the collection tube with carrier gas. be able to. In addition, by introducing a fresh carrier gas at that time, contamination of the sample to be collected by the carrier gas can be prevented, and the reliability of the sorting can be improved.
The invention of claim 21 enables introduction of a carrier gas of a predetermined pressure from the upstream side of the collection tube and introduction of a carrier gas of a predetermined pressure from the downstream side of the collection tube. Contamination can be surely prevented by plugging the upstream and downstream sides.

請求項22の発明は、気体試料を導入可能な導管を垂直に配置し、該導管の少なくとも一箇所にスロ−ト部を有する液化部を設け、該スロ−ト部を移動する気体試料を断熱膨張可能に設け、前記液化部に臨ませて液化検出センサを配置したから、簡単な構成で気体試料を確実に液化できるとともに、その液化状態を確実に検出することができる。 請求項23の発明は、前記スロ−ト部にモノリス構造の液化検出片を設けたから、気体試料の液化を更に促せるとともに、液化判定の正確性を向上することができる。
請求項24の発明は、前記液化部を外部から透視可能に設けたから、目視による液化状態を確認することができる。
According to the invention of claim 22, a conduit capable of introducing a gas sample is arranged vertically, a liquefying portion having a slot portion is provided at at least one location of the conduit, and the gas sample moving through the slot portion is insulated. Since the liquefaction detection sensor is disposed facing the liquefaction portion so as to be expandable, the gas sample can be reliably liquefied with a simple configuration, and the liquefaction state can be reliably detected. In the invention of claim 23, since the liquefaction detection piece having the monolith structure is provided in the slot portion, it is possible to further promote the liquefaction of the gas sample and improve the accuracy of the liquefaction determination.
In the invention of claim 24, since the liquefying portion is provided so as to be seen through from the outside, the liquefied state by visual observation can be confirmed.

請求項25の発明は、前記液化検出センサが、捕集管の液化部における反射光を検出可能なホトセンサ、または捕集管の液化部における温度変化を電気的信号として検出可能な測温センサとしたから、分取成分または分取条件に応じて最適な液化検出センサを選択することができる。 請求項26の発明は、前記測温センサを前記液化検出片の直下に配置したから、液化した液滴と確実に接触し、液化状態を確実に検出することができる。   According to a twenty-fifth aspect of the present invention, the liquefaction detection sensor is a photosensor capable of detecting reflected light in the liquefaction part of the collection tube, or a temperature measurement sensor capable of detecting a temperature change in the liquefaction part of the collection tube as an electrical signal; Therefore, an optimal liquefaction detection sensor can be selected according to the fractionation component or the fractionation conditions. In the twenty-sixth aspect of the present invention, since the temperature sensor is disposed directly below the liquefaction detection piece, the liquefied liquid droplet can be reliably contacted and the liquefied state can be reliably detected.

以下、本発明を食品や香料等の試料の分取に好適な分取方法およびGC分取装置に適用した図示の実施形態について説明すると、図1乃至図10において1はGCで、キャリアガスボンベと試料注入器、分離カラムと検出器、記録計(何れも図示略)等を備え、前記分離カラムに溶出した試料成分を、トランスファ−ライン2を介して分取装置3に導入している。
実施形態では前記検出器としてFID(水素炎イオン検出器)を用い、これを分離カラムの後に配置している。
前記分取装置3は作業テ−ブル4上に設置され、前記分取装置3の近接位置にパ−ソナルコンピュ−タ5が設置され、その表示器6に前記記録計で表示される試料成分のクロマトグラムと同様なクロマトグラム7をモニタリング可能にしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an illustrated embodiment in which the present invention is applied to a sorting method and a GC sorting apparatus suitable for sorting samples such as foods and fragrances will be described. In FIGS. 1 to 10, 1 is a GC, and a carrier gas cylinder A sample injector, a separation column and detector, a recorder (not shown) and the like are provided, and the sample components eluted in the separation column are introduced into the fractionation device 3 via the transfer line 2.
In the embodiment, an FID (hydrogen flame ion detector) is used as the detector, and this is arranged after the separation column.
The sorting device 3 is installed on a work table 4, a personal computer 5 is installed at a position close to the sorting device 3, and sample components displayed on the display 6 by the recorder. The chromatogram 7 similar to the chromatogram can be monitored.

前記分取装置3は略縦長の箱形に形成され、その前面の中高部にドア8がハンドル9を介して前方へ開放可能にされ、内部に収容した後述の捕集管を出し入れ可能にしており、該ドア8の中央にガラス板またはアクリル樹脂板製の覗き窓である横長矩形の幅広な透視窓10が設けられている。
前記分取装置3の中間および上部の内側に、前記ドア8で閉塞される中低温オ−ブン11と、その直上の高温オ−ブン12とが区画形成され、これらの間に断熱スペ−ス21が介在している。
The sorting device 3 is formed in a substantially vertically long box shape, and a door 8 can be opened forward through a handle 9 at a middle high portion of the front surface thereof, so that a collecting tube described later can be taken in and out. In the center of the door 8, a wide rectangular window 10 that is a viewing window made of a glass plate or an acrylic resin plate is provided.
A medium / low temperature oven 11 closed by the door 8 and a high temperature oven 12 immediately above the compartment are formed in the middle and upper part of the sorting device 3, and a heat insulating space is formed therebetween. 21 is interposed.

このうち中低温オ−ブン11の背部に冷却手段として、ペルチェ素子付き冷却ファン13が設けられ、内部を最低0℃まで、若しくは液体窒素等の冷媒を導入することによって、より低温に冷却可能にしている。また、前記高温オ−ブン12内の下部にヒ−タ14が設けられ、内部を最高300℃まで加熱可能にしている。   Among them, a cooling fan 13 with a Peltier element is provided as a cooling means on the back of the medium / low temperature oven 11, and the interior can be cooled to a minimum of 0 ° C. or by introducing a refrigerant such as liquid nitrogen to a lower temperature. ing. In addition, a heater 14 is provided in the lower part of the high-temperature oven 12 so that the inside can be heated up to 300 ° C.

前記中低温オ−ブン11の下方は前方に突出形成され、その突出部の上端で、前記透視窓10の直下にデフロッサ−ファン15が設けられ、室内空気である温風を前記透視窓10に向けて送風可能にしている。
図中、16は前記突出部の中間部に設けた複数の分画切替スイッチで、後述する捕集流路若しくは電磁弁の数量分配置され、該切替スイッチ16を押圧操作することにより、対応する電磁弁を開弁し該当する捕集流路を切り換え可能にしている。
A lower portion of the medium / low temperature oven 11 is formed to project forward, and a defroster fan 15 is provided at an upper end of the projecting portion directly below the see-through window 10, so that warm air as room air is supplied to the see-through window 10. The air can be directed.
In the figure, reference numeral 16 denotes a plurality of fraction change-over switches provided in the middle part of the projecting portion, which are arranged in the number corresponding to the number of collection flow paths or solenoid valves, which will be described later, and correspond by pressing the change-over switch 16. The solenoid valve is opened so that the corresponding collecting flow path can be switched.

その際、前記スイッチ16の押圧時間(時期)を分取装置3内部の記録装置(図示略)に記録可能にしていて、同一試料の次期分取時、前記記録した切替スイッチ16の操作時間を基に、各捕集流路を自動的に切り換え、分取の自動化を実現可能にしている。
17はヘッドプレスガス用圧力計、18はバックプレスガス用圧力計、19は調圧計、20は分取装置3の底部に設けた脚である。
At that time, the pressing time (time) of the switch 16 can be recorded in a recording device (not shown) inside the sorting device 3, and the recorded operation time of the change-over switch 16 is recorded at the next sorting of the same sample. Based on this, each collection channel is automatically switched to enable automated sorting.
17 is a pressure gauge for head press gas, 18 is a pressure gauge for back press gas, 19 is a pressure gauge, and 20 is a leg provided at the bottom of the fractionation device 3.

前記高温オ−ブン12に複数の流路を分岐可能な二つのマニホルド22,23が設けられ、このうちマニホルド22は14方マニホルドに構成され、マニホルド23は7方マニホルドに構成されている。
前記マニホルド22は、トランスファ−ライン2に連通する7つの成分出口ポ−トP1〜P7と、前記マニホルド23に連通する7つのガス注入ポ−トPa〜Pgを備え、これらの各ポ−トは互いに一対ずつマニホルド22の周面に近接して配置され、かつ互いに連通して配置されている。
Two manifolds 22 and 23 capable of branching a plurality of flow paths are provided in the high-temperature oven 12, and the manifold 22 is configured as a 14-way manifold, and the manifold 23 is configured as a 7-way manifold.
The manifold 22 includes seven component outlet ports P 1 to P 7 communicating with the transfer line 2 and seven gas injection ports Pa to Pg communicating with the manifold 23. The pairs are arranged in close proximity to the peripheral surface of the manifold 22 and are in communication with each other.

また、前記マニホルド23はキャリアガスであるヘッドプレスガス源、実施形態では不活性ガスであるヘリウムガスまたは窒素ガス(ボンベ)に連通する6つのガスポ−トPg1〜Pg6を有し、これら各ポ−トPg1〜Pg6と前記ガス注入ポ−トPa〜Pgとの間に、プレスガス分配管24〜30が接続されている。
図中、31はマニホルド23に一端を接続し、他端をヘッドプレスガス源に接続したヘッドプレスガス導管で、該管31に調圧器32と圧力計33が介挿されている。
Also, the manifold 23 head pressing gas source as a carrier gas, in the embodiment helium gas or nitrogen gas (cylinder) communicates six Gasupo an inert gas - has DOO Pg 1 ~Pg 6, each of these Press gas distribution pipes 24 to 30 are connected between the ports Pg 1 to Pg 6 and the gas injection ports Pa to Pg.
In the figure, 31 is a head press gas conduit having one end connected to a manifold 23 and the other end connected to a head press gas source. A pressure regulator 32 and a pressure gauge 33 are inserted into the pipe 31.

前記成分出口ポ−トP1〜P7に連結管34〜40の一端が接続され、この他端が接続ジョイント41に接続されていて、該接続ジョイント41に分取容器として、透明なガラス管製の捕集管42〜48が接続されている。この場合、接続ジョイント41を三方弁で構成し、この一方にポ−トから前記ヘッドガスを導入することも可能である。
前記捕集管42〜48は前記中低温オ−ブン11内に収容され、これは同形な略し字またはU字形状に形成され、その他端部が略U字形状に折曲され、その折曲部42a〜48aの端部に排出管49が接続されている。
One end of the connecting pipes 34 to 40 is connected to the component outlet ports P 1 to P 7 , and the other end is connected to the connection joint 41, and a transparent glass tube is used as a sorting container for the connection joint 41. The collection pipes 42-48 made from are connected. In this case, the connection joint 41 can be constituted by a three-way valve, and the head gas can be introduced from one port to the other.
The collecting tubes 42 to 48 are accommodated in the medium / low temperature oven 11, which is formed in the same abbreviation or U shape, and the other end is bent into a substantially U shape. A discharge pipe 49 is connected to the ends of the portions 42a to 48a.

前記透視窓10の上部に位置する捕集管42〜48の内部に、液化部であるスロ−ト部50が成形され、該管42〜48内の貫通孔51を局部的に縮径しており、この縮径部51aに略白色の液化検出片52が取り付けられている。
前記液化検出片52は、モノリス構造の石英ガラス材によって略円錐台形状に形成され、その内部に軸方向に沿って数μm〜40μmのスル−ポア53が多数形成されている。
A slot portion 50 as a liquefying portion is formed inside the collecting tubes 42 to 48 positioned at the upper part of the see-through window 10, and the through holes 51 in the tubes 42 to 48 are locally reduced in diameter. A substantially white liquefaction detection piece 52 is attached to the reduced diameter portion 51a.
The liquefaction detection piece 52 is formed in a substantially truncated cone shape by a monolithic quartz glass material, and a large number of through-holes 53 of several μm to 40 μm are formed in the inside thereof.

前記各排出管49の下流側にフィルタ54を介して、開閉弁である三方電磁弁55〜61が接続され、その各常開ポ−ト62にバックプレスガス導管63に連通する連結管64が接続され、前記ヘッドプレスガスと同様なキャリアガスであるヘリウムガスまたは窒素ガスを前記捕集管42〜48の下流側端部に圧送可能にしている。   Three-way solenoid valves 55 to 61, which are on-off valves, are connected to the downstream side of the respective discharge pipes 49 through filters 54, and connecting pipes 64 communicating with the back press gas pipes 63 are connected to the respective normally open ports 62. Helium gas or nitrogen gas, which is connected and is the same carrier gas as the head press gas, can be pumped to the downstream ends of the collection tubes 42 to 48.

前記電磁弁55〜61は、自動および前記分画切替スイッチ16を介して手動操作可能にされ、実施形態では手動操作可能に設定されていて、目的の気化成分が捕集管42〜48に導かれて前記スロ−ト部50を通過し、断熱膨張して液化した状態を目視観察し、その液化終了後、次期分取予定成分の流路に対応する電磁弁55〜61を開弁するようにしている。   The solenoid valves 55 to 61 are automatically and manually operable via the fraction changeover switch 16. In the embodiment, the solenoid valves 55 to 61 are set to be manually operable, and the target vaporized components are guided to the collection tubes 42 to 48. After passing through the slot 50, the state of adiabatic expansion and liquefaction is visually observed, and after completion of the liquefaction, the solenoid valves 55 to 61 corresponding to the flow path of the next component to be collected are opened. I have to.

そして、所定の電磁弁55〜61を開弁し、対応する排出管49の下流側を開放し、該排出管49に接続した所定の捕集管42〜48と、対応する連結管34〜40との管路を導通し、マニホルド22に導入された次期分取予定成分を連結管34〜40から捕集管42〜48へ導き、前記スロ−ト部50を通過して液化した液体成分65を、捕集管42〜48に採取可能にしている。   Then, the predetermined solenoid valves 55 to 61 are opened, the downstream side of the corresponding discharge pipe 49 is opened, the predetermined collection pipes 42 to 48 connected to the discharge pipe 49, and the corresponding connection pipes 34 to 40. And the next component to be collected introduced into the manifold 22 is led from the connecting pipes 34 to 40 to the collecting pipes 42 to 48, and the liquid component 65 liquefied through the slot 50. Can be collected in the collection tubes 42 to 48.

図中、66は前記電磁弁55〜61の常閉ポ−トで、該常閉ポ−ト67に出口管67が接続され、該管67がマスフロ−センサ68を介挿した排出管69に接続され、該排出管69を介して前記ヘッドおよびバックプレスガスと、GC1から導入されたキャリアガスを外部へ排出可能にしている。
前記バックプレスガス導管63はヘッドプレス導管31のガス源に連通し、該導管63に調圧器70と圧力計71、リリ−フ弁である三方電磁弁72とが介挿されている。
In the figure, reference numeral 66 denotes a normally closed port of the electromagnetic valves 55 to 61. An outlet pipe 67 is connected to the normally closed port 67, and the pipe 67 is connected to a discharge pipe 69 having a mass flow sensor 68 interposed therebetween. The head and the back press gas and the carrier gas introduced from the GC 1 can be discharged to the outside through the discharge pipe 69.
The back press gas conduit 63 communicates with the gas source of the head press conduit 31, and a pressure regulator 70, a pressure gauge 71, and a three-way electromagnetic valve 72 as a relief valve are inserted in the conduit 63.

この他、図中73はGC1と分取装置3との間に配管したトランスファ−ライン2の外側を断熱材等で被覆したラインヒ−タ、74は各捕集管42〜48と排出管49との間に介挿した活性炭等のトラップ、75はマニホルド、76は電源、77は配線基板、78は作業者の目である。   In addition, 73 in the figure is a line heater in which the outside of the transfer line 2 piped between the GC 1 and the sorting device 3 is covered with a heat insulating material, etc., 74 is a collection pipe 42 to 48 and a discharge pipe 49. A trap made of activated carbon or the like interposed between them, 75 is a manifold, 76 is a power source, 77 is a wiring board, and 78 is an operator's eyes.

このように構成した分取方法および分取装置並びに液化判定装置は、分取容器として分取成分数分の複数の捕集管42〜48を要し、該捕集管42〜48の作製に際しては透明なガラス管を略し字形状またはU字形状に形成し、その直管側の所定位置にスロ−ト部50を成形し、その縮径部51aに液化検出片52を取り付ける。液化検出片52はモノリス構造で略白色の石英ガラス材を円錐台形状に形成し、これを縮径部51aに嵌合する。   The fractionation method, the fractionation device, and the liquefaction determination device configured as described above require a plurality of collection tubes 42 to 48 corresponding to the number of fractionation components as a fractionation container, and the production of the collection tubes 42 to 48 is performed. A transparent glass tube is formed in an abbreviated letter shape or U shape, a slot portion 50 is formed at a predetermined position on the straight tube side, and a liquefaction detection piece 52 is attached to the reduced diameter portion 51a. The liquefaction detection piece 52 has a monolithic structure and is formed of a substantially white quartz glass material in the shape of a truncated cone, and is fitted to the reduced diameter portion 51a.

そして、前記作製した捕集管42〜48を、ドア10を開放して中低温オ−ブン11内に設置し、その直管側端部を接続ジョイント41に差し込み、その上端部を断熱スペ−ス21に位置付け、また前記スロ−ト部50を透視窓10から透視可能に位置付け、更に捕集管42〜48の折曲側の一端に排出管49を接続し、該排出管49の他端に電磁弁55〜61を接続する。
電磁弁55〜61は、その常開ポ−ト62に連結管64の一端を接続し、該連結管64の他端をバックプレスガス導管63に接続し、また各常閉ポ−ト66に出口管67の一端を接続し、その他端を排出管69に接続する。
The produced collection tubes 42 to 48 are installed in the medium / low temperature oven 11 with the door 10 opened, the straight tube side end portion is inserted into the connection joint 41, and the upper end portion thereof is insulated. The slot 50 is positioned so that the slot 50 can be seen through the see-through window 10, and a discharge pipe 49 is connected to one end of the collecting pipes 42 to 48 on the folding side, and the other end of the discharge pipe 49 is connected. The solenoid valves 55 to 61 are connected to the.
The solenoid valves 55 to 61 have one end of a connecting pipe 64 connected to the normally open port 62, the other end of the connecting pipe 64 connected to a back press gas conduit 63, and each normally closed port 66. One end of the outlet pipe 67 is connected, and the other end is connected to the discharge pipe 69.

一方、高温オ−ブン12内にマニホルド22,23を設置し、マニホルド22にGC1から導出したトランスファ−ライン2を接続し、マニホルド23にヘッドプレスガス導管31を接続する。
そして、マニホルド22の成分出口ポ−トP1〜P7に連結管34〜40の一端を接続し、その他端を接続ジョイント41に接続し、またガス注入ポ−トPa〜Pgに連結管24〜30の一端を接続し、その他端をマニホルド23のガスポ−トPg1〜Pg6に接続する
On the other hand, the manifolds 22 and 23 are installed in the high-temperature oven 12, the transfer line 2 derived from the GC 1 is connected to the manifold 22, and the head press gas conduit 31 is connected to the manifold 23.
One end of the connecting pipes 34 to 40 is connected to the component outlet ports P 1 to P 7 of the manifold 22, the other end is connected to the connecting joint 41, and the connecting pipe 24 is connected to the gas injection ports Pa to Pg. ˜30 are connected to one end and the other end is connected to the gas ports Pg 1 to Pg 6 of the manifold 23.

こうして製作した分取装置3は縦長の箱形に形成され、これをGC1の近接位置に設置した作業テ−ブル4上に載置して使用する。
また、分取装置3に近接してパ−ソナルコンピュ−タ5を設置し、その表示器6にGC1の記録計に表示されるクロマトグラムとともに、同様なクロマトグラム7をモニタリングさせる。
The sorting device 3 manufactured in this way is formed in a vertically long box shape, and this is placed on the work table 4 installed in the proximity of the GC 1 and used.
In addition, a personal computer 5 is installed in the vicinity of the sorting device 3, and the same chromatogram 7 is monitored on the display 6 together with the chromatogram displayed on the recorder of GC1.

前記分取装置3は、その使用に際して、高温オ−ブン12と中低温オ−ブン11とを分取試料に応じて所定温度に設定し、また分取予定成分分の捕集管42〜48を用意し、これを中低温オ−ブン11の所定位置に取り付ける。
この後、ヘッドプレスおよびバックプレスガス、実施形態ではヘリウムガスを共通のガス源からヘッドプレスガス導管31とバックプレスガス導管63に送り込む。
In use, the sorting device 3 sets the high temperature oven 12 and the medium / low temperature oven 11 to a predetermined temperature according to the sample to be collected, and also collects the collecting tubes 42 to 48 for the components to be sorted. Is prepared and attached to a predetermined position of the medium / low temperature oven 11.
Thereafter, the head press and the back press gas, in the embodiment, helium gas, are fed into the head press gas conduit 31 and the back press gas conduit 63 from a common gas source.

このうち、前記ヘッドプレスガスは、ヘッドプレスガス導管31からマニホルド23に送り込まれ、そのガスポ−トPg1〜Pg6から連結管24〜30に分かれて、マニホルド22のガス注入ポ−トPa〜Pgに導かれ、該ポ−トPa〜Pgから各成分通路と合流して、成分出口ポ−トP1〜P7から連結管34〜40へ送り出され、接続ジョイント41を経て捕集管42〜48の一端部に移動する。 Of these, the head press gas is fed into the manifold 23 from the head press gas conduit 31 and is divided into gas pipes Pg 1 to Pg 6 into connecting pipes 24 to 30, and gas injection ports Pa to the manifold 22. It is led to Pg, merges with each component passage from the ports Pa to Pg, is sent out from the component outlet ports P 1 to P 7 to the connecting pipes 34 to 40, and is connected to the collecting pipe 42 through the connection joint 41. Move to one end of ~ 48.

一方、前記バックプレスガスは、バックプレスガス導管63から連結管64を経て電磁弁55〜61に導かれ、該電磁弁55〜61から排出管49に送り出されて、捕集管42〜48の他端部に移動する。
したがって、捕集管42〜48は、その両端部にないし全域にヘッドプレスガスとバックプレスガスの圧力を受け、一種の施栓状態に置かれる。
On the other hand, the back press gas is led from the back press gas conduit 63 through the connecting pipe 64 to the electromagnetic valves 55 to 61, sent from the electromagnetic valves 55 to 61 to the discharge pipe 49, and collected in the collecting pipes 42 to 48. Move to the other end.
Therefore, the collection pipes 42 to 48 receive a pressure of the head press gas and the back press gas at both ends or the entire area thereof and are placed in a kind of plugged state.

このような状況の下でGC1にキャリアガスを送り込み、このキャリアガス中に試料導入部から、分取試料として例えば香料または食品の気体または液体試料を注入し、これをキャリアガスと一緒に分離カラムへ導入する。
前記試料成分は分離カラムで成分毎に分離され、これが気化しキャリアガスを介して移動して検出器に導かれ、該検出器で検出され、その検出信号によって記録計にクロマトグラムが表示され、このクロマトグラムがパ−ソナルコンピュ−タ5の表示器6にモニタリングされる。
Under such circumstances, the carrier gas is fed into the GC 1 and, for example, a perfume or food gas or liquid sample is injected into the carrier gas from the sample introduction portion as a preparative sample, and this is separated into the separation column together with the carrier gas. To introduce.
The sample components are separated for each component by a separation column, and this is vaporized and moved through a carrier gas, guided to a detector, detected by the detector, and a chromatogram is displayed on a recorder by the detection signal, This chromatogram is monitored on the display 6 of the personal computer 5.

前記気化した試料成分は、GC1から成分毎に分離された状態を維持してトランスファ−ライン2を移動し、分取装置3のマニホルド22に導かれる。
このうち、分取目的成分中、最も保持時間の短い成分のピ−クが前記クロマトグラムで確認されると、この確認時点で前記低沸点成分の分取経路に対応して予め設定して置いた電磁弁、例えば電磁弁55を手動で開弁する。
The vaporized sample components are transferred to the manifold 22 of the sorting device 3 while moving through the transfer line 2 while being separated from the GC 1 for each component.
Among these, when the peak of the component having the shortest retention time among the components to be collected is confirmed in the chromatogram, it is set in advance corresponding to the sorting route of the low boiling point component at the time of confirmation. A solenoid valve such as the solenoid valve 55 is manually opened.

このようにすると、電磁弁55と排出管49、捕集管42と連結管34および出口ポ−トP1の経路のみが開放され、GC1からのキャリアガスが、前記ヘッドプレスガスとバックプレスガスと共に捕集管42に導入される。したがって、前記低沸点成分が他の分取経路に流入し得ないから、前記成分が他の分取経路に流入する、いわゆるコンタミネ−ションを未然に防止する。 In this way, the discharge pipe 49 and solenoid valve 55, connecting tube 34 and the outlet port and the collection tube 42 - only path DOO P 1 is opened, the carrier gas from GC1 is, the head pressing gas and the back press Gas At the same time, it is introduced into the collecting tube 42. Therefore, since the low boiling point component cannot flow into another sorting path, so-called contamination in which the component flows into another sorting path is prevented in advance.

そこで、前記保持時間の短い成分がトランスファ−ライン2を移動して、マニホルド22に導かれると、前記成分がキャリアガスと一緒に出口ポ−トP1から連結管34に送り出され、これが接続ジョイント41を経て捕集管42の上端部に移動する。 Therefore, a short component of the retention time transfer - to move the line 2 and is guided to the manifold 22, the component outlet port together with a carrier gas - fed from preparative P 1 to the connecting pipe 34, which is connected joint It moves to the upper end part of the collection pipe 42 through 41.

作業者は電磁弁55の開弁操作後、断熱スペ−ス21および透視窓10の内側に位置する捕集管42の上端部と、中高部を目視観察する。
この場合、前記低沸点成分は、高温オ−ブン12を通過後の捕集管42の上端部では、未だ気化状態で液化の兆候はないから、スロ−ト部50の位置する中高部を目視観察すれば良い。
After the opening operation of the electromagnetic valve 55, the operator visually observes the upper end portion and the middle / high portion of the heat insulating space 21 and the collection tube 42 located inside the see-through window 10.
In this case, since the low boiling point component is still in a vaporized state and there is no sign of liquefaction at the upper end portion of the collection tube 42 after passing through the high-temperature oven 12, the middle and high portions where the slot portion 50 is located are visually observed. Observe.

前記気化状態の低沸点成分が捕集管42の上端部から下方へ移動し、中低温オ−ブン11へ移動すると次第に冷却され、更にスロ−ト部50の縮径部51aを通過すると、低沸点成分が断熱膨張して液化される。この液化状態はスロ−ト部50周辺の液滴の有無を観察することで確認される。
例えば、前記成分が中沸点の場合は、液滴がスロ−ト部50ないし直上位置に集まって現われ、前記成分が低沸点の場合は、液滴がスロ−ト部50の直下に現われ、何れの場合も容易かつ明瞭に目視観察できる。
When the low boiling point component in the vaporized state moves downward from the upper end portion of the collection tube 42 and moves to the medium / low temperature oven 11, it gradually cools, and further passes through the reduced diameter portion 51a of the slot portion 50. Boiling components are liquefied by adiabatic expansion. This liquefaction state is confirmed by observing the presence or absence of liquid droplets around the slot 50.
For example, when the component has a medium boiling point, the droplets gather and appear at a position directly above the slot 50, and when the component has a low boiling point, the droplet appears immediately below the slot 50. In this case, visual observation can be performed easily and clearly.

しかも、この実施形態では、前記スロ−ト部50にモノリス構造の乳白色ないし灰色の液化検出片52を取り付けているから、当該部を前記気化状態の低沸点成分が移動すると、前記成分が微細なスル−ポア53を移動し、前記断熱膨張が増進され液化が促進される   In addition, in this embodiment, since the milky white or gray liquefaction detection piece 52 having a monolith structure is attached to the slot portion 50, when the low boiling point component in the vaporized state moves through the portion, the component becomes fine. The through-hole 53 is moved, the adiabatic expansion is enhanced, and liquefaction is promoted.

そして、前記液化によって、その液滴が液化検出片52に接触すると、液化検出片52が乳白色ないし灰色から半透明または透明に変化する。したがって、作業者は液化検出片52の前記変化を目視観察し確認することで、前述のスロ−ト部50における液滴の有無の観察よりも、容易かつ正確に液化状態を観察できる。   And when the droplet contacts the liquefaction detection piece 52 by the liquefaction, the liquefaction detection piece 52 changes from milky white to gray to translucent or transparent. Therefore, the operator can observe the liquefaction state more easily and more accurately than by observing the presence or absence of liquid droplets in the above-described slot portion 50 by visually observing and confirming the change of the liquefaction detection piece 52.

こうして液化した低沸点成分の液滴は、捕集管42の内壁に沿って流下し、折曲部42aの底部に滞留して、液化成分65が捕集される。この状況は図7のようである。
このようにして低沸点成分の液化状態を観察し、液化開始後、前記液滴の発生が停止し、または液化検出片52の透明または半透明色が消失し、代わりに当初の乳白色を観測したところで、前記液化状態の終了ないし停止を確認し、次期分取成分である次低沸点成分または高沸点成分の分取経路に対応する電磁弁、例えば電磁弁56を対応する前記スイッチ16を操作して開弁する。
The low-boiling component liquid droplets thus liquefied flow down along the inner wall of the collection tube 42 and stay at the bottom of the bent portion 42a, and the liquefied component 65 is collected. This situation is as shown in FIG.
In this way, the liquefaction state of the low-boiling component was observed, and after the start of liquefaction, the generation of the liquid droplets stopped, or the transparent or translucent color of the liquefaction detection piece 52 disappeared, and the original milky white color was observed instead. By the way, the end or stop of the liquefied state is confirmed, and the switch 16 corresponding to the solenoid valve, for example, the solenoid valve 56 corresponding to the sorting path of the next low-boiling component or the high-boiling component, which is the next sorting component, is operated. Open the valve.

このようにすると、前記出口ポ−トP1の経路が遮断され、代わりに電磁弁56と排出管49、捕集管43と連結管35および出口ポ−トP2の経路のみが開放され、GC1からのキャリアガスが、前記ヘッドプレスガスとバックプレスガスと共に捕集管43に導入される。したがって、前記低沸点成分が他の分取経路に流入し得ないから、前記成分が他の分取経路に流入する、いわゆるコンタミネ−ションを未然に防止する。 In this way, the path of the outlet port P 1 is blocked, and instead, only the paths of the electromagnetic valve 56 and the discharge pipe 49, the collection pipe 43 and the connecting pipe 35, and the outlet port P 2 are opened. Carrier gas from GC1 is introduced into the collection tube 43 together with the head press gas and the back press gas. Therefore, since the low boiling point component cannot flow into another sorting path, so-called contamination in which the component flows into another sorting path is prevented in advance.

そこで、前記次低沸点成分がトランスファ−ライン2を移動して、マニホルド22に導かれると、前記次低沸点成分がキャリアガスと一緒に出口ポ−トP2から連結管35に送り出され、これが接続ジョイント41を経て捕集管43の上端部に移動する。 Therefore, the next low-boiling components transfer - to move the line 2 and is guided to the manifold 22, the next low-boiling component outlet port together with a carrier gas - fed to the connecting pipe 35 from the preparative P 2, which is It moves to the upper end of the collection tube 43 via the connection joint 41.

作業者は電磁弁56の開弁操作後、透視窓10の内側に位置する捕集管43の中高部を目視観察し、次成分の液化状態を、スロ−ト部50周辺の液滴の有無を観察することで確認する。
実施形態の場合は、液化検出片52の透明若しくは半透明の変化を観察することで、前記確認を容易かつ正確にしている。
After opening the solenoid valve 56, the operator visually observes the middle and high portions of the collection tube 43 located inside the fluoroscopic window 10 to determine the liquefaction state of the next component in the presence or absence of liquid droplets around the slot 50. Confirm by observing.
In the case of the embodiment, the confirmation is made easy and accurate by observing a transparent or translucent change of the liquefaction detection piece 52.

こうして液化した次成分の液滴は、捕集管43の内壁に沿って流下し、折曲部43aの底部に滞留して液体成分65が捕集される。
この後、前記次成分の液化状態を観察し、液化開始後、前記液滴の発生が停止し、または液化検出片52の透明または半透明色が消失し、代わりに当初の乳白色を観測したところで、前記液化状態の終了ないし停止を確認し、次期分取成分である、例えば高沸点成分の分取経路に対応する電磁弁、例えば電磁弁57を手動で開弁する。
The liquid droplet of the next component thus liquefied flows down along the inner wall of the collection tube 43 and stays at the bottom of the bent portion 43a, and the liquid component 65 is collected.
Thereafter, the liquefaction state of the next component was observed, and after the start of liquefaction, the generation of the droplets stopped, or the transparent or translucent color of the liquefaction detection piece 52 disappeared, and instead the original milky white was observed instead. After confirming the end or stop of the liquefied state, an electromagnetic valve, for example, an electromagnetic valve 57 corresponding to a fractionation path of the next fractionation component, for example, a high boiling point component, is manually opened.

このようにすると、電磁弁57と排出管49、捕集管44と連結管36および出口ポ−トP3の経路のみが開放され、GC1からのキャリアガスが、前記ヘッドプレスガスとバックプレスガスと共に捕集管44に導入される。したがって、前記低沸点成分が他の分取経路に流入し得ないから、前記成分が他の分取経路に流入する、いわゆるコンタミネ−ションを未然に防止する。 In this way, the solenoid valve 57 and the discharge pipe 49, connecting pipe 36 and the outlet port and the collection tube 44 - only path DOO P 3 is opened, the carrier gas from GC1 is, the head pressing gas and the back press Gas At the same time, it is introduced into the collecting tube 44. Therefore, since the low boiling point component cannot flow into another sorting path, so-called contamination in which the component flows into another sorting path is prevented in advance.

そこで、前記高沸点成分がトランスファ−ライン2を移動して、マニホルド22に導かれると、前記高沸点成分がキャリアガスと一緒に出口ポ−トP3から連結管36に送り出され、これが接続ジョイント41を経て捕集管44の上端部に移動する。 Therefore, the high-boiling components transfer - to move the line 2 and is guided to the manifold 22, the high-boiling components exit port along with a carrier gas - fed to the connecting pipe 36 from the preparative P 3, which is connected joint It moves to the upper end part of the collection tube 44 through 41.

作業者は電磁弁57の開弁操作後、断熱スペ−ス21の内側に位置する捕集管44の上端部を目視観察し、高沸点成分の液化状態を確認する。
この場合、高沸点成分は一般に沸点以下の温度で直ぐに液化するから、中低温オ−ブン11内に位置するスロ−ト部50では既に液化しており、スロ−ト部50における観察は不要になる。
After the opening operation of the electromagnetic valve 57, the operator visually observes the upper end portion of the collecting tube 44 located inside the heat insulating space 21, and confirms the liquefied state of the high boiling point component.
In this case, since the high boiling point component generally liquefies immediately at a temperature below the boiling point, it is already liquefied in the slot portion 50 located in the medium / low temperature oven 11, and observation in the slot portion 50 is unnecessary. Become.

そこで、前記気化状態の高沸点成分が連結管36から、接続ジョイント41を経て捕集管44の上端部に移動すると、捕集管44が断熱スペ−ス21の空気に接触して冷却され液化する。この液化状態は、捕集管44内の液滴の有無を観察することで確認される。   Therefore, when the high boiling point component in the vaporized state moves from the connecting pipe 36 to the upper end portion of the collecting pipe 44 through the connection joint 41, the collecting pipe 44 comes into contact with the air in the heat insulating space 21 and is cooled and liquefied. To do. This liquefied state is confirmed by observing the presence or absence of droplets in the collection tube 44.

こうして液化した高沸点成分の液滴は、捕集管44の内壁に沿って流下し、液化検出片52およびスロ−ト部50を通過し、折曲部42aの底部に滞留して液体成分65を捕集する。   The liquid droplets of the high boiling point component thus liquefied flow down along the inner wall of the collection tube 44, pass through the liquefaction detection piece 52 and the slot portion 50, and stay at the bottom of the bent portion 42a to stay in the liquid component 65. To collect.

こうして、前記高沸点成分の液化状態を観察し、液化開始後、前記液滴の発生が停止したところで、前記液化状態の終了ないし停止を確認し、次期分取成分である次高沸点成分の分取経路に対応する電磁弁、例えば電磁弁57を前記スイッチ16を操作して開弁する   Thus, the liquefaction state of the high-boiling component is observed, and after the start of liquefaction, when the generation of the liquid droplets is stopped, the end or stop of the liquefaction state is confirmed, and the next high-boiling component, which is the next fractionation component, is separated. The solenoid valve corresponding to the intake path, for example, the solenoid valve 57 is opened by operating the switch 16.

以下、分離順に所定の試料成分を液化して捕集管42〜48に採取し、かつGC1の試料成分の分離を終えたところで、前記分取を終了し、ドア10を開けて捕集管42〜48を取り出し、捕集した各液体試料65を回収する。   Hereinafter, when the predetermined sample components are liquefied and collected in the collection tubes 42 to 48 in the order of separation, and the sample components of the GC 1 are separated, the sorting is finished, the door 10 is opened, and the collection tube 42 is opened. -48 are taken out and each collected liquid sample 65 is collected.

このように、本発明は分取成分の液化状態を目視観察し、その液化状態の終了を確認して電磁弁を操作し、当該成分の分取を終了し、代わりに次期分取成分の分取に切り換えるようにしたから、当該分取成分を無駄なく分取でき、また異種成分の混入を防止して、コンタミネ−ションのない正確な分取を行なえる。
しかも、分取成分の実際の液化状態を液化開始から終了に亘って目視観察し、確認して分取を行なうようにしたから、分取の時期に遅速の惧れがなく、正確な分取を行なえる。
したがって、従来のようにクロマトグラム情報のみによる分取時期の決定による不合理を解消し、合理的かつ信頼性の高い分取を行なえる。特にこの効果は、分取成分の液化時期が、沸点が高くなるにつれて遅れてくる高沸点成分の分取に有効である。
In this way, the present invention visually observes the liquefied state of the preparative component, confirms the end of the liquefied state, operates the solenoid valve, ends the preparative of the component, and instead separates the next preparative component. Therefore, the fractionated components can be sorted without waste, and the mixing of different components can be prevented, so that accurate fractionation without contamination can be performed.
In addition, the actual liquefaction state of the preparative components was visually observed from the start to the end of the liquefaction, and the sample was collected for confirmation. Can be done.
Accordingly, it is possible to eliminate the unreasonableness caused by the determination of the sorting time based only on the chromatogram information as in the prior art, and to perform the sorting with reasonable and high reliability. In particular, this effect is effective for fractionation of high-boiling components in which the liquefaction time of the fractionated components is delayed as the boiling point increases.

また、次期分取成分の導入される時間が、現分取成分の導入時期と近い場合は、両方の分取成分が混在している時間があるので、現分取成分を捕集後、液化の終了を確認しないまま、所定の廃液用捕集管へ混在している時間だけ捕集流路を切り替え、開放し導入することもできる。
そして、前記混在時間終了後、次期分取成分の捕集流路を開放することにより、両成分のコンタミネ−ションを防止することができる。
In addition, if the time for introducing the next preparative component is close to the time of introduction of the current preparative component, there is a time when both preparative components are mixed. Without confirming the end of the collection, the collection flow path can be switched, opened, and introduced only for the time mixed in the predetermined waste liquid collection pipe.
Then, after the mixing time is over, the collection flow path for the next fractionation component is opened, so that contamination of both components can be prevented.

一方、分取時は中低温オーブン11が約0℃近く冷却され、透視窓10の表面に空気中の水分が凝縮して結露が発生し、内部に収容した捕集管42〜48が見辛くなり、前記液化状態の観察が困難になる惧れがある。
このようなとき、デフロッサ−ファン15を駆動し、室内空気(温風)を透視窓10に吹き付けることによって、透視窓10を加温し結露を解消して、所期の透明状態を回復し所期の観察が可能になる。
On the other hand, at the time of fractionation, the medium / low temperature oven 11 is cooled to about 0 ° C., moisture in the air condenses on the surface of the viewing window 10 and condensation occurs, and it is difficult to see the collection tubes 42 to 48 housed inside. Therefore, it may be difficult to observe the liquefied state.
In such a case, the defroster fan 15 is driven, and indoor air (warm air) is blown onto the fluoroscopic window 10 to heat the fluoroscopic window 10 to eliminate condensation and restore the intended transparent state. Observation of the period becomes possible.

図10は本発明の実験結果を示し、本発明によるコンタミネ−ション防止効果を示している。
すなわち、図10は、原液21μLを分取装置3に導入し、この後各捕集管42〜48を5mLのアセトンで溶媒脱着させ、1mLへ再濃縮し、個々に1μL注入したクロマトグラムを比較したもので、同図(a)は原液のクロマトグラムを示し、同図(b)は分取後の個々のクロマトグラムを示している。
これらのクロマトグラムを比較すると、同図(b)は各ピ−クが鋭くきれいに分散し、異種成分の混入ないし重なりがなく、コンタミネ−ションのないことを示している。
FIG. 10 shows the experimental results of the present invention and shows the contamination prevention effect of the present invention.
That is, FIG. 10 shows a comparison of chromatograms in which 21 μL of the stock solution was introduced into the preparative device 3, each of the collection tubes 42 to 48 was desorbed with 5 mL of acetone, reconcentrated to 1 mL, and individually injected with 1 μL. The figure (a) shows the chromatogram of stock solution, and the figure (b) shows each chromatogram after fractionation.
Comparing these chromatograms, FIG. 5B shows that each peak is sharply and neatly dispersed, there is no mixing or overlapping of different components, and there is no contamination.

図11乃至図21は本発明の他の実施形態を示し、前述の実施形態と対応する構成部分に同一の符号を用いている。
このうち、図11および図12は本発明の第2の実施形態を示し、この実施形態は分取装置3に設置した捕集管42〜48のスロ−ト部50と上端部の背後に、緑若しくは黄色または青色のLED等の光源79,80を取り付け、これら各光源79,80を前記電磁弁55〜61のON操作に連動して、対応する捕集管の光源79,80を点灯させ、液滴または液化検出片52の変化状況を見易くし、液化状態の目視観察を容易に行なえるようにしている。
11 to 21 show other embodiments of the present invention, and the same reference numerals are used for the components corresponding to those of the above-described embodiments.
Among these, FIG.11 and FIG.12 shows the 2nd Embodiment of this invention, This embodiment is behind the slot part 50 and the upper end part of the collection pipes 42-48 installed in the fractionation apparatus 3. Light sources 79 and 80 such as green, yellow or blue LEDs are attached, and the light sources 79 and 80 of the corresponding collecting tubes are turned on in conjunction with the ON operation of the electromagnetic valves 55 to 61. The change state of the droplet or the liquefaction detection piece 52 is made easy to see and the liquefaction state can be easily visually observed.

例えば、光源79,80として緑のLEDを点灯すると、低沸点側のスロ−ト部50では液滴が透明になるので確認し易くなり、また液化検出片52は常時は白色で、液滴に接触するとLEDの緑光が透過して、メロンシャ−ベットのようになり確認し易くなる。高沸点側の光源80も同様で、液滴の確認が容易になる。   For example, when a green LED is turned on as the light sources 79 and 80, the droplet becomes transparent in the low boiling point side slot portion 50, so that it is easy to confirm, and the liquefaction detection piece 52 is always white, When contacted, the green light of the LED is transmitted and becomes like a melon sherbet, making it easy to check. The same applies to the light source 80 on the high boiling point side, and the confirmation of the droplets becomes easy.

図13乃至図16は本発明の第3の実施形態を示し、この実施形態は前記液化検出片52を液化検出センサとして実施したものである。
すなわち、前記液化検出片52は石英ガラス製のモノリス構造であり、通常は白色を呈し、液体と接触(保持)すると透明または半透明に変化する。
そこで、その透過光若しくは反射光、または透過率若しくは反射率を検知することにより、液体の保持の有無または反射光の透過した部材の物性を検出させるようにしたものである。
FIGS. 13 to 16 show a third embodiment of the present invention, in which the liquefaction detection piece 52 is implemented as a liquefaction detection sensor.
That is, the liquefaction detection piece 52 has a monolithic structure made of quartz glass, usually exhibits a white color, and changes to transparent or translucent when it contacts (holds) the liquid.
Therefore, by detecting the transmitted light or reflected light, or the transmittance or reflectance, the presence / absence of liquid retention or the physical property of the member through which the reflected light is transmitted is detected.

このうち、図13は試料気体を導入可能な導管である、例えば前記捕集管42のスロ−ト部50に、棒状または鼓形状の前記モノリス構造の液化検出片52を嵌め込み、一方、捕集管42の近接位置に、例えば赤色光を照射可能な液化検出センサであるホトセンサを構成する発光器81と、その反射光を受光可能な受光器82とを配置し、該受光器82の受光信号をGC1または分取装置3に内臓したパ−ソナルコンピュ−タ等の演算器83に入力可能にする。   Among these, FIG. 13 is a conduit into which a sample gas can be introduced. For example, the monolithic liquefaction detection piece 52 having a rod shape or a drum shape is fitted into the slot portion 50 of the collection tube 42, while the collection gas is collected. For example, a light emitter 81 that constitutes a photosensor that is a liquefaction detection sensor capable of emitting red light and a light receiver 82 that can receive the reflected light are disposed at a position close to the tube 42, and a light reception signal of the light receiver 82 is disposed. Can be input to the calculator 83 such as a personal computer incorporated in the GC 1 or the sorting device 3.

前記演算器83は、前記受光信号の入力を条件に、キャリアガスが導入または通過しているときの情報を基に反射率を演算し、その演算した反射率の信号をモノリスセンサ−信号として、前記GC1の記録計またはパ−ソナルコンピュ−タ5に入力可能にし、これを検出器として或いはモニタリングとして利用可能にする。この場合、反射光がキャリアガス等の気体を通過した場合は、反射媒体にキャリアガスが通過している場合の反射率を基準にして、その基準反射率よりも反射率が上がり、液体を透過した場合は反射率が下がることが確認された。   The calculator 83 calculates the reflectance based on information when the carrier gas is introduced or passed on the condition that the received light signal is input, and uses the calculated reflectance signal as a monolith sensor signal. The GC1 recorder or personal computer 5 can be input and used as a detector or monitoring. In this case, when the reflected light passes through a gas such as a carrier gas, the reflectivity is higher than the reference reflectivity when the carrier gas passes through the reflection medium, and the liquid is transmitted. In this case, it was confirmed that the reflectance decreased.

発明者は前記知見を基に、実際にモノリスセンサ−信号とクロマトグラム(クロマトデ−タ)との整合性を検討したところ、図15のような結果を得られた。
すなわち、試料成分としてアセトン、ヘキサン、ヘプタン、オクタン、ノナン、リモネンを使用し、それらをそれぞれ1μLずつGC1のパックドカラムに全量注入し、分取部のスプリットを5:30の条件で分取し、前記カラムで分離した成分をFIDで検出し、その検出信号に基いて、図15のようなクロマトグラムを得た。
一方、分取装置3において、対応する捕集管42〜48のスロ−ト部50に赤色光を照射し、その反射光を刻々と演算器83に入力し、その反射率を演算して、その演算した反射率を前記記録計に入力し、これをモノリスセンサ−信号として前記クロマトデ−タにプロットした。
The inventor actually examined the consistency between the monolith sensor signal and the chromatogram (chromatographic data) based on the above findings, and obtained the results shown in FIG.
That is, acetone, hexane, heptane, octane, nonane, and limonene were used as sample components, and 1 μL of each was injected into a packed column of GC1, and the split of the fractionation part was fractionated at 5:30, Components separated by the column were detected by FID, and a chromatogram as shown in FIG. 15 was obtained based on the detection signal.
On the other hand, in the sorting device 3, the red light is irradiated to the slot portions 50 of the corresponding collecting tubes 42 to 48, the reflected light is input to the calculator 83 every moment, the reflectance is calculated, The calculated reflectance was input to the recorder and plotted on the chromatograph as a monolith sensor signal.

そこで、前記図15を検証すると、各試料のピ−ク幅の略中央位置で、モノリスセンサ−信号が+側に突出した明確なピ−クを形成している。
この場合、前記実験ではスプリット比が5:30で、試料成分の量が非常に少量であるため、最も液化し易いリモネンのピ−クのみに液化が認められ、中央位置で一側に突出が見られた。また、どの成分もモノリスセンサ−信号がクロマトグラムのピ−ク位置に符合して現われることが確認された。
したがって、この場合には前記スロ−ト部50にキャリアガス等の気体試料が導入され若しくは通過したことが示唆され確認できるから、この後の分取等の分析開始が告知可能になり、また前記モノリスセンサ−信号を基に分析機器等を作動することによって、従来のFID等の検出器に代わって、分析システムの合理化と自動化を構築することが可能になる。
Therefore, when FIG. 15 is verified, a clear peak in which the monolith sensor signal protrudes to the + side is formed at a substantially central position of the peak width of each sample.
In this case, since the split ratio was 5:30 in the above experiment and the amount of the sample component was very small, liquefaction was observed only in the limonene peak that was most liable to liquefy, and the protrusion protruded to one side at the central position. It was seen. It was also confirmed that the monolith sensor signal appeared for every component at the peak position of the chromatogram.
Therefore, in this case, since it is suggested and confirmed that a gas sample such as a carrier gas has been introduced into or passed through the slot 50, it is possible to notify the start of analysis such as subsequent fractionation. By operating an analytical instrument or the like based on the monolith sensor signal, it becomes possible to construct rationalization and automation of the analytical system in place of the conventional detector such as FID.

前記図15は換言すれば、クロマトグラムの代わりに、前記モノリスセンサ−信号を目安に分取が可能であることが示唆される。
すなわち、前記モノリスセンサ−信号をモニタリングし、その突起部位置で前述の電磁弁を開弁すれば、前述の実施形態で目的成分の分取が可能になり、そのようにモノリスセンサ−信号を利用することによって、モノリスセンサ−信号が従来の検出器と同等に機能し、前記検出器を省略できることを示唆している。
In other words, FIG. 15 suggests that fractionation is possible based on the monolith sensor signal instead of the chromatogram.
That is, if the monolith sensor signal is monitored and the electromagnetic valve is opened at the position of the protrusion, the target component can be sorted in the embodiment described above, and the monolith sensor signal is used as such. This suggests that the monolith sensor signal functions equivalently to a conventional detector and that the detector can be omitted.

一方、図16は図15と同一の試料を用い、その試料の量を10μLに増量した以外は、同一の条件で実験した結果を示している。
この場合は、図15に比べ試料の量を増量しているから、分取部で液化され、これがクロマトグラムのピ−ク幅の略中央位置で−側に突出して現われ、前述したモノリスセンサ−信号の特徴を証明している。したがって、前記モノリスセンサ−信号を基に従来のクロマトグラム情報若しくは検出器の代わりに、分取時期を決定し分取可能になる。
On the other hand, FIG. 16 shows the results of an experiment conducted under the same conditions except that the same sample as FIG. 15 was used and the amount of the sample was increased to 10 μL.
In this case, since the amount of the sample is increased as compared with FIG. 15, it is liquefied at the fractionation portion, and this appears to protrude toward the minus side at a substantially central position of the peak width of the chromatogram. Prove the characteristics of the signal. Therefore, instead of the conventional chromatogram information or detector based on the monolith sensor signal, it is possible to determine the fractionation time and to sort.

また、図14は図13の応用形態で、捕集管42のスロ−ト部50を挟んで赤色光を照射可能な発光器81と、その透過光を受光可能な受光器82とを配置し、該受光器82の受光信号をGC1または分取装置3に内臓したパ−ソナルコンピュ−タ等の演算器83に入力可能にする。
前記演算器83は、前記受光信号の入力を条件に、予め記憶した情報を基に透過光の光量を演算し、その演算した光量の信号をモノリスセンサ−信号として、前記GC1の記録計またはパ−ソナルコンピュ−タ5に入力可能にし、分取部における分取成分の液化の有無を判別可能にし、分取の当否や液化時間を正確に確認可能にしている。
FIG. 14 shows an application form of FIG. 13 in which a light emitter 81 capable of emitting red light and a light receiver 82 capable of receiving the transmitted light are arranged with the slot 50 of the collection tube 42 interposed therebetween. The received light signal of the light receiver 82 can be input to the computing unit 83 such as a personal computer built in the GC 1 or the sorting device 3.
The computing unit 83 computes the amount of transmitted light based on information stored in advance on the condition that the received light signal is input, and uses the computed light amount signal as a monolith sensor signal to record the GC1 recorder or parameter. -It is possible to input to the sonal computer 5 to determine whether the fractionation component has been liquefied in the fractionation unit, and to accurately confirm whether or not the fractionation has been performed and the liquefaction time.

図17および図18は本発明の第4の実施形態を示し、この実施形態は捕集管84の他の実施形態を示している。すなわち、捕集管84を前述のようにし字形状またはU字形状に形成する代わりに、略直管状に形成し、該捕集管84の下端部側を大容量の貯留管85に収容し、該貯留管85の上端部にレデュ−シングユニオン86を取り付けている。
このうち、図17では三方のレデュ−シングユニオン86を使用し、該ユニオン86に捕集管84を支持し、側部に排出管49の一端を取り付けている。
また、図18では通常のレデュ−シングユニオン86を使用し、該ユニオン86の同軸上に排出管49の一端を取り付けている。
何れの場合も貯留管85に大量の廃液を貯留可能にし、大容量のパックドカラムに対応可能にしている。
17 and 18 show a fourth embodiment of the present invention, which shows another embodiment of the collection tube 84. That is, instead of forming the collection tube 84 in the shape of a letter or U as described above, it is formed in a substantially straight tube shape, and the lower end side of the collection tube 84 is accommodated in a large-capacity storage tube 85, A reducing union 86 is attached to the upper end of the storage pipe 85.
Of these, in FIG. 17, three reducing unions 86 are used, the collection pipe 84 is supported by the unions 86, and one end of the discharge pipe 49 is attached to the side.
In FIG. 18, a normal reducing union 86 is used, and one end of the discharge pipe 49 is attached on the same axis of the union 86.
In any case, a large amount of waste liquid can be stored in the storage pipe 85, and can be used for a large capacity packed column.

図19乃至図21は本発明の第5の実施形態を示し、この実施形態は前述の第4の実施形態を応用し、透視窓10の内側に略直管状の捕集管84を配置し、該管84の上部にスロ−ト部50を形成し、該スロ−ト部50にモノリス構造の液化検出片52を配置し、該検出片52の直下に測温センサ87を配置している。 この場合、液化検出片52を省略し、スロ−ト部50の直下に測温センサ87を配置することも可能であり、そのようにすることで構成の簡潔化を図れる。 実施形態では前記測温センサ87として、温度変化を電気的変化量、この場合は電気抵抗率の変化として検出可能で、比抵抗が大きく、その変化が大きいサ−ミスタ素子を用い、その導線88を捕集管84の下端から引き出し、これをレデュ−シングユニオン86のナット側から導出し、該導出部で前記導線88を適宜手段で固定している。   FIGS. 19 to 21 show a fifth embodiment of the present invention, which applies the above-described fourth embodiment, and arranges a substantially straight collecting tube 84 inside the fluoroscopic window 10, A slot 50 is formed on the top of the tube 84, a monolithic liquefaction detection piece 52 is arranged in the slot 50, and a temperature measuring sensor 87 is arranged directly under the detection piece 52. In this case, the liquefaction detection piece 52 can be omitted, and the temperature measuring sensor 87 can be disposed immediately below the slot portion 50. By doing so, the configuration can be simplified. In the embodiment, as the temperature sensor 87, a thermistor element that can detect a change in temperature as an electric change amount, in this case, as a change in electric resistivity, has a large specific resistance, and has a large change is used. Is drawn out from the lower end of the collecting tube 84, is led out from the nut side of the reducing union 86, and the lead wire 88 is fixed by appropriate means at the lead-out portion.

そして、前記測温センサ87の信号を演算器83に入力し、該演算器83は前記信号入力を条件に予め記憶された演算情報を基に分取成分の液化状態の有無を判断し、その液化状態の判定ないし検出信号を所定の電磁弁55〜61に出力可能にしている。 前記電磁弁55〜61は前記信号によって開弁し、対応する分取経路に介挿した捕集管にキャリアガスを導入して、所定の分取成分を導入可能にしている。 したがって、前述の液化状態の目視確認に比べ、液化状態の確認を自動的かつ正確に行なえ、電磁弁55〜61の開閉を自動制御して、省力化と分析コストの低減並びに遠隔制御の実現を図れるとともに、前述のような光源79,80を省略でき、その分製作費の低減を図れる。 更に、前記演算器83は分取成分の到達を検知し、その到達時間を記憶回路に記録する このようにすることで、例えば連続して分取する場合、前記記録された時間の変動を検知することによって、毎回の分取の信憑性を判断する指標となり、またその到達時間を基にして目的成分の分画時間の補正に用いることができる。   And the signal of the said temperature measurement sensor 87 is input into the calculator 83, and this calculator 83 judges the presence or absence of the liquefaction state of the preparative component based on the calculation information stored in advance on the condition of the signal input, The determination or detection signal of the liquefied state can be output to the predetermined solenoid valves 55 to 61. The electromagnetic valves 55 to 61 are opened by the signal, and a carrier gas is introduced into a collecting tube inserted in a corresponding sorting path so that a predetermined sorting component can be introduced. Therefore, compared to the visual confirmation of the liquefaction state described above, the liquefaction state can be confirmed automatically and accurately, and the opening and closing of the solenoid valves 55 to 61 is automatically controlled to save labor, reduce analysis costs, and realize remote control. In addition, the light sources 79 and 80 as described above can be omitted, and the manufacturing cost can be reduced accordingly. Further, the computing unit 83 detects the arrival of the sorting component and records the arrival time in the storage circuit. By doing so, for example, when continuously sorting, the fluctuation of the recorded time is detected. By doing so, it becomes an index for judging the credibility of each sorting, and can be used for correcting the fractionation time of the target component based on the arrival time.

前記実施形態において、分取成分である気化状態の低沸点成分がスロ−ト部50へ移動し、液化検出片52のスル−ポア53を通過すると、断熱膨張が促進されて液化され、液化直後にサ−ミスタ素子87に接触する。 この場合、前記分取成分は気体からの液化直後で発熱しているため、サ−ミスタ素子87の温度が上がり、サ−ミスタ素子87の電気抵抗率が下がってピークが形成される。この後、再気化が起こる場合もあり、気化時にサ−ミスタ素子87の表面の熱を奪われることにより、サ−ミスタ素子の電気抵抗率が上がり、前記とは逆極性のピークが形成される
そして、この抵抗率を電圧に変換しピークを形成する電気回路によって、ピーク極性も切り替えられるようにしてある。なお、液滴が直接触れない場合も同じ周囲温度を測温しているので同じ結果が得られる。
また、この場合、液滴に直接触れず、液化検出片52に対応する捕集管84の外面にサーミスタ素子87を貼り付けることによっても、変化幅は小さいが同じピークが得られると考えられる。したがって、前記ピークによって、前記液化状態が検出可能になる。
この液化状況は、前述のように液化検出片52の外観的な変化によっても目視確認できる。
In the above-described embodiment, when the low boiling point component in the vaporized state, which is a preparative component, moves to the slot portion 50 and passes through the through-hole 53 of the liquefaction detection piece 52, adiabatic expansion is promoted and liquefied, immediately after liquefaction. In contact with the thermistor element 87. In this case, since the fractionated component generates heat immediately after being liquefied from the gas, the temperature of the thermistor element 87 is increased, and the electrical resistivity of the thermistor element 87 is decreased to form a peak. Thereafter, re-vaporization may occur, and the heat of the surface of the thermistor element 87 is deprived during vaporization, so that the electrical resistivity of the thermistor element is increased and a peak having the opposite polarity to the above is formed. The peak polarity can be switched by an electric circuit that converts the resistivity into a voltage to form a peak. Even when the droplet does not touch directly, the same result is obtained because the same ambient temperature is measured.
Further, in this case, it is considered that the same peak can be obtained even if the thermistor element 87 is attached to the outer surface of the collection tube 84 corresponding to the liquefaction detection piece 52 without touching the droplet directly, although the change width is small. Therefore, the liquefaction state can be detected by the peak.
This liquefaction state can be visually confirmed by an external change of the liquefaction detection piece 52 as described above.

そこで、発明者は、試料成分としてヘキサン1μLを使用し、これをパックドカラムに注入し、該カラムで分離した成分をFIDで検出し、その検出信号に基いてクロマトグラム(図示略)をモニタリングデ−タとして作成した。 一方、捕集管84のスロ−ト部50に測温センサ87を図19のように配置して、前記測温センサ87であるサ−ミスタ素子の電気抵抗率の変化に伴う電位差を測定し、この電位差の変化を分析時間と連関させて分布したところ、図20のような実験デ−タを得た。   Therefore, the inventor uses 1 μL of hexane as a sample component, injects it into a packed column, detects the component separated by the column by FID, and monitors the chromatogram (not shown) based on the detection signal. -Created as data. On the other hand, a temperature sensor 87 is arranged in the slot 50 of the collecting tube 84 as shown in FIG. 19 to measure a potential difference accompanying a change in the electrical resistivity of the thermistor element which is the temperature sensor 87. When the change in potential difference was distributed in association with the analysis time, experimental data as shown in FIG. 20 was obtained.

前記実験デ−タ中、そのピ−ク立ち上がり位置(a)で電位差が急激に上昇しているが、これはサ−ミスタ素子87の電気抵抗率が急速に低下し、サ−ミスタ素子87の温度が急速に上昇したと考えられる。
そして、その原因として、分取成分がスロ−ト部50および液化検出片52を移動して断熱膨張され、かつこれが液化して、その液滴がサ−ミスタ素子87に接触した際、前記分取成分が液化に伴ない放出した熱を吸収したことによる、と考えられる。
したがって、前記ピ−ク立ち上がり位置(a)で分取成分が液化したと推定されるから、前記位置(a)によって分取成分の液化状態が検出可能であることが確認された。
In the experimental data, the potential difference suddenly increases at the peak rising position (a). This is because the electrical resistivity of the thermistor element 87 rapidly decreases and the thermistor element 87 It is thought that the temperature rose rapidly.
As a cause thereof, when the sorting component moves through the slot 50 and the liquefaction detection piece 52 and is adiabatically expanded, and when this component is liquefied and the droplet comes into contact with the thermistor element 87, This is thought to be due to the absorption of the heat released during the liquefaction.
Therefore, since the preparative component is estimated to have been liquefied at the peak rising position (a), it was confirmed that the liquefied state of the preparative component can be detected by the position (a).

なお、前記液化後は再気化が起こり、サ−ミスタ素子87の表面が熱を奪われ温度が下降するため、電気抵抗率が上がって、導線88の端子間電圧が低下し、前記ピ−クが逆転する。この状況は図21のようで、図中のピ−ク立ち下がり位置(b)で前記再気化状態が検出される。この傾向は、分取成分の導入量が多い程、顕著に表われることが確認された。   After the liquefaction, re-vaporization occurs, the surface of the thermistor element 87 is deprived of heat and the temperature is lowered, so that the electrical resistivity is increased and the voltage between the terminals of the conductive wire 88 is lowered. Is reversed. This situation is as shown in FIG. 21, and the re-vaporization state is detected at the peak falling position (b) in the figure. It was confirmed that this tendency appears more remarkably as the amount of the preparative component introduced is larger.

このように前記第5の実施形態は、前記FIDによるモニタリング後、分取(分画)時間を決定し、また前記測温センサ87によって、前記ピ−クおよびその到達時間だけを毎回確認することで、前記分取の信憑性と信頼性を高めた指標を得られる。 したがって、前記クロマトグラムの代わりに、前記測温センサ信号を利用した分取が可能になり、FIDを省略した分析システムの構築を促せることとなる。 一方、GCを利用して分析および分画を行なう場合、何らかの理由で分取時間がずれる場合がある。特に自動分画する場合、目的の試料をうまく分画できない事態が起こるが、前記測温センサ信号によるピ−ク到達時間を基に、分画時間を自動的に補正することによって、確実な分画が可能になる。   As described above, in the fifth embodiment, after the monitoring by the FID, the fractionation (fractionation) time is determined, and only the peak and its arrival time are confirmed by the temperature measuring sensor 87 each time. Thus, it is possible to obtain an index that improves the reliability and reliability of the sorting. Therefore, instead of the chromatogram, the temperature sensor signal can be used for sorting, and the construction of an analysis system that omits the FID can be promoted. On the other hand, when performing analysis and fractionation using GC, the sorting time may be shifted for some reason. In particular, when performing automatic fractionation, there is a situation where the target sample cannot be fractionated well. However, by automatically correcting the fractionation time based on the peak arrival time based on the temperature sensor signal, reliable fractionation can be achieved. It becomes possible to draw.

なお、第5の実施形態の測温センサ87は、温度変化を電気的変化量として電気抵抗率の変化を検出可能にしたものを用いているが、この他に電気的変化量として、熱起電力を検出可能にしたものを用いることも可能である。   Note that the temperature measuring sensor 87 of the fifth embodiment uses a sensor that can detect a change in electrical resistivity by using a temperature change as an electrical change amount. It is also possible to use one that can detect electric power.

このように、本発明は、例えば食品や香料等の試料の分取に好適で、クロマトグラフで分離された試料のコンタミネ−ションを防止し、目的の試料を確実に分取するとともに、分離された試料の実際の液化時期を目視で確認し、分取のタイミングを正確かつ確実に確認し、クロマトグラムからの情報のみによる分取の遅れを防止し、信頼性の高い分取を実現するとともに、前記目視確認の正確性と信頼性を向上でき、しかも気体試料の導入ないし液化状態を合理的に検出し得、分取方法および分取装置並びに液化判定装置に好適である。   As described above, the present invention is suitable for the separation of samples such as foods and fragrances, prevents contamination of the sample separated by the chromatograph, reliably separates the target sample and separates it. The actual liquefaction time of the collected sample is visually confirmed, the timing of the sorting is confirmed accurately and reliably, the delay in sorting due to only the information from the chromatogram is prevented, and a highly reliable sorting is achieved. The accuracy and reliability of the visual confirmation can be improved, and the introduction or liquefaction state of the gas sample can be reasonably detected, which is suitable for a fractionation method, a fractionation device, and a liquefaction determination device.

本発明の分取装置とモニタリング用パ−ソナルコンピュ−タの設置状況を示す正面図である。It is a front view which shows the installation condition of the fractionation apparatus of this invention, and the personal computer for monitoring. 図1に示す分取装置の右側面図である。It is a right view of the sorting apparatus shown in FIG. 図1に示す分取装置内部の配管状況を拡大して示す正面図である。It is a front view which expands and shows the piping condition inside the fractionation apparatus shown in FIG. 図2の要部を拡大して示す部分断面図で、デフロッサ−ファンの配置状況を示している。It is the fragmentary sectional view which expands and shows the principal part of FIG. 2, and has shown the arrangement | positioning condition of a defroster fan. 図1に示す分取装置に適用したキャリヤ−ガス導管およびマニホルド、捕集管等の配管状況を拡大して示す配管図である。It is a piping diagram which expands and shows piping conditions, such as a carrier gas conduit | pipe, a manifold, a collection pipe | tube, etc. which were applied to the fractionation apparatus shown in FIG. 図5の要部を示す配管図である。It is a piping diagram which shows the principal part of FIG.

本発明の分取装置に適用した捕集管と液化判定装置の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the collection pipe applied to the fractionation apparatus of this invention, and a liquefaction determination apparatus. 図7の要部のスロ−ト部を拡大して示す断面図である。It is sectional drawing which expands and shows the slot part of the principal part of FIG. 図8のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 本発明の分取装置によるコンタミネ−ション防止効果の実験図で、(a)は原液のクロマトグラムを示し、(b)は本発明装置による同試料のクロマトグラムを示している。It is an experiment figure of the contamination prevention effect by the fractionation apparatus of this invention, (a) shows the chromatogram of stock solution, (b) has shown the chromatogram of the sample by this invention apparatus.

本発明の第2の実施形態に適用した液化判定装置の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the liquefaction determination apparatus applied to the 2nd Embodiment of this invention. 図11の要部のスロ−ト部を拡大して示す断面図である。It is sectional drawing which expands and shows the slot part of the principal part of FIG. 本発明の第3の実施形態に適用した液化判定装置の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the liquefaction determination apparatus applied to the 3rd Embodiment of this invention. 本発明の第3の実施形態に適用した液化判定装置の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the liquefaction determination apparatus applied to the 3rd Embodiment of this invention.

本発明の第3の実施形態に適用した液化判定装置の実験図で、モノリスセンサ−信号とクロマトグラムとのタイミングの整合性を示している。It is an experimental view of the liquefaction determination apparatus applied to the third embodiment of the present invention, and shows the consistency of timing between the monolith sensor signal and the chromatogram. 本発明の第3の実施形態に適用した液化判定装置の実験図で、モノリスセンサ−信号とクロマトグラムとのタイミングの整合性を示し、図15よりも試料を増量して実験している。FIG. 6 is an experimental diagram of a liquefaction determination apparatus applied to the third embodiment of the present invention, showing the consistency of the timing of a monolith sensor signal and a chromatogram, and performing experiments by increasing the amount of the sample as compared with FIG. 本発明の第4の実施形態に適用した捕集管の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the collection pipe | tube applied to the 4th Embodiment of this invention. 本発明の第4の実施形態に適用した捕集管の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the collection pipe | tube applied to the 4th Embodiment of this invention.

本発明の第5の実施形態の要部を示す断面図で、捕集管のスロ−ト部に測温センサを配置し、その電気信号を基に分取成分の液化状態を判定し、その液化判定信号によって捕集管の経路に介挿した電磁弁を開閉制御可能にしている。It is sectional drawing which shows the principal part of the 5th Embodiment of this invention, arrange | positions the temperature sensor in the slot part of a collection pipe, determines the liquefaction state of a preparative component based on the electrical signal, The solenoid valve inserted in the path of the collection tube can be controlled to open and close by the liquefaction determination signal. 本発明の第5の実施形態に適用した測温センサによる電気信号(電気抵抗率ないし検出電圧)を示す実験デ−タである。It is an experimental data which shows the electric signal (electrical resistivity thru | or detection voltage) by the temperature sensor applied to the 5th Embodiment of this invention. 本発明の第5の実施形態に適用した測温センサによる電気信号(電気抵抗率ないし検出電圧)を示す別の実験デ−タである。It is another experimental data which shows the electrical signal (electrical resistivity or detection voltage) by the temperature sensor applied to the 5th Embodiment of this invention.

符号の説明Explanation of symbols

3 分取装置
10 覗き窓
11 中低温オ−ブン
15 デフロッサ−ファン
21 覗きスペ−ス(断熱スペ−ス)
42〜48 捕集管、導管
3 Sorting device 10 Peeping window 11 Medium / low temperature oven 15 Defroster fan 21 Peeping space (insulation space)
42-48 collection tube, conduit

50 スロ−ト部(液化部)
52 液化検出片
55〜64 開閉弁(電磁弁)
79,80 光源(LED)
81 ホトセンサ/液化検出センサ(発光器)
82 ホトセンサ/液化検出センサ(受光器)
83 演算器
87 液化検出センサ(測温センサ)
50 Slot part (liquefaction part)
52 Liquefaction detection piece 55-64 Open / close valve (solenoid valve)
79,80 Light source (LED)
81 Photosensor / Liquefaction detection sensor (light emitter)
82 Photosensor / Liquefaction detection sensor (receiver)
83 Calculator 87 Liquefaction detection sensor (temperature sensor)

Claims (26)

カラムで分離した試料成分中の目的の分取成分を分取装置に導入し、前記目的の分取成分を所定の捕集管に導入して液化し分取する分取方法において、前記捕集管に導入した分取成分の液化状態を確認または検出して分取することを特徴とする分取方法。   In the fractionation method in which a target fractional component in a sample component separated by a column is introduced into a fractionation device, and the target fractional component is introduced into a predetermined collection tube to be liquefied and fractionated, A sorting method characterized by confirming or detecting a liquefied state of a sorting component introduced into a pipe and sorting. 前記分取成分の液化状態を、目視で確認し、または液化検出センサで検出する請求項1記載の分取方法。   The fractionation method according to claim 1, wherein the liquefaction state of the fractionation component is visually confirmed or detected by a liquefaction detection sensor. 前記捕集管に導入した分取成分を断熱膨張させて液化させる請求項1記載の分取方法。   The fractionation method according to claim 1, wherein the fractionation component introduced into the collection tube is liquefied by adiabatic expansion. 前記捕集管に導入した分取成分の液化終了を確認または検出後、次期分取成分の捕集流路を開放し、次期分取成分を所定の捕集管に導入させる請求項1記載の分取方法。   2. After confirming or detecting the end of liquefaction of the preparative component introduced into the collection tube, the collection channel for the next preparative component is opened, and the next preparative component is introduced into the predetermined collection tube. Sorting method. 前記捕集管の上流側から所定圧のキャリアガスを導入する請求項1記載の分取方法。   The sorting method according to claim 1, wherein a carrier gas having a predetermined pressure is introduced from an upstream side of the collection pipe. 前記捕集管の上流側から所定圧のキャリアガスを導入するとともに、前記捕集管の下流側から所定圧のキャリアガスを導入する請求項5記載の分取方法。   The sorting method according to claim 5, wherein a carrier gas having a predetermined pressure is introduced from an upstream side of the collection pipe, and a carrier gas having a predetermined pressure is introduced from a downstream side of the collection pipe. 前記液化検出センサが、捕集管内の液化部における反射光を検出可能なホトセンサ、または捕集管内の液化部における温度変化を電気的信号として検出可能な測温センサである請求項2記載の分取方法。   3. The sensor according to claim 2, wherein the liquefaction detection sensor is a photosensor capable of detecting reflected light in the liquefaction part in the collection tube, or a temperature measurement sensor capable of detecting a temperature change in the liquefaction part in the collection tube as an electrical signal. How to take. カラムで分離した試料成分中の目的の分取成分をキャリアガスを介して導入し、該分取成分を液化し、かつその液化成分を採取可能な捕集管を備えた分取装置において、前記捕集管の少なくとも一箇所にスロ−ト部を有する液化部を設け、該スロ−ト部を移動する分取成分を断熱膨張可能にしたことを特徴とする分取装置。   In a fractionation apparatus provided with a collection tube capable of introducing a target fraction component in a sample component separated by a column through a carrier gas, liquefying the fraction component, and collecting the liquefied component, A sorting apparatus comprising a liquefying section having a slot at at least one location of a collecting tube, and a sorting component moving through the slot capable of adiabatic expansion. 前記液化部を外部から透視可能にした請求項8記載の分取装置。   The sorting apparatus according to claim 8, wherein the liquefaction portion can be seen through from the outside. 前記液化部に臨ませて覗き窓または覗きスペ−スを設けた請求項8記載の分取装置。   9. The sorting apparatus according to claim 8, wherein a viewing window or a viewing space is provided facing the liquefying section. 前記スロ−ト部にモノリス構造の液化検出片を設け、該液化検出片が液化した分取成分を保持した際、変色可能にした請求項8記載の分取装置。   9. The sorting apparatus according to claim 8, wherein a liquefaction detection piece having a monolith structure is provided in the slot portion, and the discoloration is enabled when the liquefaction detection piece holds a liquefied fractionation component. 前記液化部の近接位置に、光源または液化検出センサを設置した請求項8記載の分取装置。   The sorting apparatus according to claim 8, wherein a light source or a liquefaction detection sensor is installed in a proximity position of the liquefaction unit. 前記液化検出センサが、捕集管内の液化部における反射光を検出可能なホトセンサ、または捕集管内の液化部における温度変化を電気的信号として検出可能な測温センサである請求項12記載の分取装置。   13. The component according to claim 12, wherein the liquefaction detection sensor is a photosensor capable of detecting reflected light in the liquefaction part in the collection tube or a temperature measurement sensor capable of detecting a temperature change in the liquefaction part in the collection tube as an electrical signal. Taking device. 前記ホトセンサは、液化検出片に光を照射可能な発光器と、前記液化検出片からの反射光を検出可能な受光器とを備え、前記受光器の検出信号により分取成分導入下の液化検出片の反射率を演算し、該演算した反射率を介し前記分取成分の液化状態を検出可能にし、該検出信号を介し次期分取成分の流路を開放し、分取可能にした請求項13記載の分取装置。   The photosensor includes a light emitter capable of irradiating light to the liquefaction detection piece and a light receiver capable of detecting reflected light from the liquefaction detection piece, and liquefaction detection under the preparative component introduced by the detection signal of the light receiver. A reflectance of a piece is calculated, the liquefied state of the sorting component can be detected via the calculated reflectance, and the flow path of the next sorting component is opened via the detection signal, thereby enabling sorting. 13. The sorting apparatus according to 13. 前記測温センサは、測温部の温度変化を電気的信号として検出可能に設け、該検出信号を入力可能な演算器を設け、該演算器により分取成分の液化状態を検出し、該検出信号を介し次期分取成分の流路を開放し、分取可能にした請求項13記載の分取装置。   The temperature measuring sensor is provided so that a temperature change of the temperature measuring section can be detected as an electrical signal, and an arithmetic unit capable of inputting the detection signal is provided, and the arithmetic unit detects a liquefied state of the preparative component, and the detection 14. The sorting apparatus according to claim 13, wherein the next sorting component flow path is opened via a signal to enable sorting. 前記液化検出信号を介し、分取成分の流路に介挿した開閉弁を開閉可能に設けた請求項14または請求項15記載の分取装置。   The sorting device according to claim 14 or 15, wherein an on-off valve inserted in the flow path of the sorting component is provided so as to be openable and closable via the liquefaction detection signal. 前記覗き窓の内側に中低温オ−ブンを設け、前記覗き窓の外側にデフロッサ−ファンを配置し、前記覗き窓の外面に送風可能にした請求項10記載の分取装置。   11. The sorting apparatus according to claim 10, wherein a medium / low temperature oven is provided inside the viewing window, a defroster fan is disposed outside the viewing window, and air can be blown to the outer surface of the viewing window. 前記分取成分の略液化終了時期を目視確認後、前記開閉弁を開弁可能にした請求項8記載の分取装置。   The sorting device according to claim 8, wherein the on-off valve can be opened after visually confirming a time when the sorting component is substantially liquefied. 前記開閉弁の開弁時に前記光源を点灯可能にした請求項12記載の分取装置。   The sorting device according to claim 12, wherein the light source can be turned on when the on-off valve is opened. 前記捕集管の上流側から所定圧のキャリアガスを導入可能にした請求項8記載の分取装置。   The sorting apparatus according to claim 8, wherein a carrier gas having a predetermined pressure can be introduced from an upstream side of the collection pipe. 前記捕集管の上流側から所定圧のキャリアガスを導入可能にするとともに、前記捕集管の下流側から所定圧のキャリアガスを導入可能にした請求項20記載の分取装置。   21. The sorting apparatus according to claim 20, wherein a carrier gas having a predetermined pressure can be introduced from an upstream side of the collection pipe, and a carrier gas having a predetermined pressure can be introduced from a downstream side of the collection pipe. 気体試料を導入可能な導管を垂直に配置し、該導管の少なくとも一箇所にスロ−ト部を有する液化部を設け、該スロ−ト部を移動する気体試料を断熱膨張可能に設け、前記液化部に臨ませて液化検出センサを配置したことを特徴とする液化判定装置。   A conduit capable of introducing a gas sample is arranged vertically, a liquefying portion having a slot portion is provided at at least one location of the conduit, and a gas sample moving through the slot portion is provided so as to be capable of adiabatic expansion. A liquefaction determination device, wherein a liquefaction detection sensor is arranged facing a part. 前記スロ−ト部にモノリス構造の液化検出片を設けた請求項22記載の液化判定装置。   The liquefaction determination device according to claim 22, wherein a liquefaction detection piece having a monolith structure is provided in the slot portion. 前記液化部を外部から透視可能に設けた請求項22記載の液化判定装置。   The liquefaction determination device according to claim 22, wherein the liquefaction unit is provided so as to be seen through from the outside. 前記液化検出センサが、前記液化部における反射光を検出可能なホトセンサ、または前記液化部における温度変化を電気的信号として検出可能な測温センサである請求項22載の液化判定装置。 The liquefied detection sensor, detectable photosensor or the liquefied portion liquefaction determining apparatus according to claim 22 Symbol mounting a detectable temperature measuring sensor as an electric signal the temperature change in the reflected light in the liquefaction unit. 前記測温センサを前記液化検出片の直下に配置した請求項22または請求項25記載の液化判定装置。
The liquefaction determination device according to claim 22 or 25, wherein the temperature measuring sensor is arranged immediately below the liquefaction detection piece.
JP2004246135A 2004-02-26 2004-08-26 Sorting method, sorting device, and liquefaction determination device Expired - Lifetime JP4559799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246135A JP4559799B2 (en) 2004-02-26 2004-08-26 Sorting method, sorting device, and liquefaction determination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004052559 2004-02-26
JP2004246135A JP4559799B2 (en) 2004-02-26 2004-08-26 Sorting method, sorting device, and liquefaction determination device

Publications (2)

Publication Number Publication Date
JP2005274552A true JP2005274552A (en) 2005-10-06
JP4559799B2 JP4559799B2 (en) 2010-10-13

Family

ID=35174362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246135A Expired - Lifetime JP4559799B2 (en) 2004-02-26 2004-08-26 Sorting method, sorting device, and liquefaction determination device

Country Status (1)

Country Link
JP (1) JP4559799B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202508A (en) * 2013-04-02 2014-10-27 株式会社島津製作所 Column unit and gas chromatography equipment therewith

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029271U (en) * 1983-08-03 1985-02-27 日本電気株式会社 oil detection sensor
JPS63317762A (en) * 1987-06-22 1988-12-26 Japan Tobacco Inc Apparatus for separately picking component for analysis
JPH01237434A (en) * 1987-10-13 1989-09-21 L'air Liquide Method of detecting gas condensing in trace from compressed gas
JPH04172240A (en) * 1990-11-05 1992-06-19 Eiwa Kasei Kogyo Kk Decomposition temperature measuring apparatus
JPH05302918A (en) * 1992-04-27 1993-11-16 Shimadzu Corp Fructionator for high performance liquid chromatograph
JPH06138128A (en) * 1992-10-29 1994-05-20 Shimadzu Corp Preparative isolation apparatus
JPH06180308A (en) * 1992-12-15 1994-06-28 Shimadzu Corp Preparative chromatograph
JPH0989862A (en) * 1995-09-20 1997-04-04 T Hasegawa Co Ltd Gas chromatograph for dispensation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029271U (en) * 1983-08-03 1985-02-27 日本電気株式会社 oil detection sensor
JPS63317762A (en) * 1987-06-22 1988-12-26 Japan Tobacco Inc Apparatus for separately picking component for analysis
JPH01237434A (en) * 1987-10-13 1989-09-21 L'air Liquide Method of detecting gas condensing in trace from compressed gas
JPH04172240A (en) * 1990-11-05 1992-06-19 Eiwa Kasei Kogyo Kk Decomposition temperature measuring apparatus
JPH05302918A (en) * 1992-04-27 1993-11-16 Shimadzu Corp Fructionator for high performance liquid chromatograph
JPH06138128A (en) * 1992-10-29 1994-05-20 Shimadzu Corp Preparative isolation apparatus
JPH06180308A (en) * 1992-12-15 1994-06-28 Shimadzu Corp Preparative chromatograph
JPH0989862A (en) * 1995-09-20 1997-04-04 T Hasegawa Co Ltd Gas chromatograph for dispensation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202508A (en) * 2013-04-02 2014-10-27 株式会社島津製作所 Column unit and gas chromatography equipment therewith

Also Published As

Publication number Publication date
JP4559799B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
US6649129B1 (en) Method and apparatus for concentrating a VOC sample
US5983703A (en) Analytical engine for gas chromatograph
CN203870078U (en) Gas chromatography separating system
US6042634A (en) Moisture extractor system for gas sampling
CN105158053A (en) Concentrator and analysis system for volatile organic compounds and usage method of analysis system
CN101300486A (en) Modular gas chromatograph
CN201130174Y (en) Gas chromatograph system
CN204831891U (en) Concentrated appearance and analytic system to volatile organic compounds
CN105651910A (en) Enrichment-thermal desorption-chromatography separating unit
CN106370764B (en) A kind of recharging type sulfur hexafluoride decomposition product chromatography on-line detector
CN104764848A (en) Gas chromatograph for gas analysis in production field
CN206450641U (en) A kind of detector of sulfur hexafluoride decomposition product
CN102359989A (en) Multifunctional catalyst reaction evaluation and characterization device and application thereof
CN111398495A (en) Novel trace and ultra-trace impurity component online chromatographic enrichment and analysis device
CN102590419B (en) Device used for analyzing mixed gas in expansion tank of power transformer and based on gas chromatographic technology
JP4559799B2 (en) Sorting method, sorting device, and liquefaction determination device
CN202305489U (en) Chromatographic instrument for detecting failure of SF6 electric equipment
US5489535A (en) Chlorine quality monitoring system and method
CN105738548A (en) Portable full-automatic dielectric oil dissolved gas analytical equipment
CN112461458A (en) Helium concentration detection control device for helium mass spectrometer leak detection test system
CN205749410U (en) A kind of gas chromatograph
CN208313912U (en) A kind of particulate organic matter on-line preconcentration resolver
CN207601025U (en) A kind of enriching apparatus that trace impurity in hydrogen is measured applied to gas chromatography
CN105424852A (en) Process gas chromatograph
CN104458974A (en) Pretreatment device and method for determining trace hydrogen phosphide employing gas chromatography method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R150 Certificate of patent or registration of utility model

Ref document number: 4559799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250