JP2005274519A - Method and apparatus for measuring water quality - Google Patents

Method and apparatus for measuring water quality Download PDF

Info

Publication number
JP2005274519A
JP2005274519A JP2004091992A JP2004091992A JP2005274519A JP 2005274519 A JP2005274519 A JP 2005274519A JP 2004091992 A JP2004091992 A JP 2004091992A JP 2004091992 A JP2004091992 A JP 2004091992A JP 2005274519 A JP2005274519 A JP 2005274519A
Authority
JP
Japan
Prior art keywords
water quality
liquid
measured
pipe
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004091992A
Other languages
Japanese (ja)
Inventor
Toshio Morita
利夫 森田
Masashi Fujita
雅司 藤田
Shinichi Ohashi
伸一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2004091992A priority Critical patent/JP2005274519A/en
Publication of JP2005274519A publication Critical patent/JP2005274519A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring water quality, which enable detection accuracy to be improved significantly, by eliminating phenomena of drop formation and their dropping occurring at an end opening section of a drain pipe for measurement, suppressing flow rate/pressure variations caused by the phenomena and making detection noise lowered. <P>SOLUTION: In the method and the apparatus for measuring water quality, a measurement of the quality of liquid to be measured is carried out under such conditions that the end section of the pipe is submerged in liquid in a container, whose liquid level is maintained at a fixed height, when the liquid to be measured is drained via the pipe, after being introduced into a water quality detecting means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水質測定方法および装置に関し、とくに、流動状態にある被測定液を検出手段にて水質測定を行う系において、被測定液の流量変化や温度変化等により検出感度が影響を受ける場合に、その影響を最小限に抑えて高精度の測定が可能となる水質測定方法および装置に関する。   The present invention relates to a water quality measurement method and apparatus, and in particular, in a system in which a measurement liquid in a flowing state is measured by a detection means, when the detection sensitivity is affected by the flow rate change or temperature change of the measurement liquid. In particular, the present invention relates to a water quality measurement method and apparatus capable of highly accurate measurement while minimizing the influence thereof.

水溶液等の被測定液の水質特性、例えば電気伝導度を測定する場合、被測定液をセンサー部(検出手段部)へ送液ポンプなどを用いて移送(サンプリング)し、センサー部に被測定液を接しめて、電気伝導度を検出している。しかし、送液ポンプの作動による脈流に伴って流量や圧力が変動し、それが途中に設けられた恒温槽等の温度コントロールに影響を及ぼし、温度変動が生じて電気伝導度の微小な変化が生じ、微小変化(ノイズ)が発生してそのノイズの大きさが電気伝導度検出の精度の限界となったり、電気伝導度の微小変化測定の限界となっている。   When measuring the water quality characteristics of a liquid to be measured, such as an aqueous solution, for example, electrical conductivity, the liquid to be measured is transferred (sampled) to the sensor unit (detection means unit) using a liquid feed pump, etc. The electrical conductivity is detected. However, the flow rate and pressure fluctuate with the pulsating flow due to the operation of the liquid pump, which affects the temperature control of the thermostat etc. provided on the way, and the temperature fluctuation causes a minute change in electrical conductivity. As a result, a minute change (noise) occurs and the magnitude of the noise becomes the limit of the accuracy of detecting the electrical conductivity or the limit of the measurement of the minute change of the electrical conductivity.

通常このような測定系においては、被測定液の送液は一定流量で通水可能なポンプや一定流量に流量調整可能な流量制御手段を使用している。しかし、測定時にサンプリングされる被測定液の流量は、通常、数mL毎分程度と僅かであり、また、被測定液が流れる配管内径は1 mmφ以下と小さく、前述のような微小な流量や圧力の変動を小さく抑えることは難しい。また、一般に、このような測定系においては、検出手段を通過した水質検出後の被測定液は、上記配管から大気開放または大気圧開放の状態にて排出される(例えば、特許文献1、特許文献2に示されている測定系の排出機構参照)。すなわち、水質検出後の被測定液の排液時に、配管末端部が排液槽や排液溝に対して大気開放または大気圧開放の状態とされている。   Usually, in such a measurement system, a liquid to be measured is fed using a pump capable of passing water at a constant flow rate or a flow rate control means capable of adjusting the flow rate to a constant flow rate. However, the flow rate of the measured liquid sampled at the time of measurement is usually a few milliliters per minute, and the inner diameter of the pipe through which the measured liquid flows is as small as 1 mmφ or less. It is difficult to keep pressure fluctuations small. In general, in such a measurement system, the liquid to be measured after water quality detection that has passed through the detection means is discharged from the pipe in an open state to the atmosphere or an atmospheric pressure (for example, Patent Document 1, Patent). (Refer to the discharge mechanism of the measurement system shown in Document 2.) That is, at the time of draining the liquid to be measured after the water quality is detected, the pipe end is opened to the atmosphere or to the atmospheric pressure with respect to the drain tank or drain groove.

ところが、このように完全に大気開放または大気圧開放の状態のまま排出されると、排液配管末端部からの排液は、配管末端開放部で、ある一定の大きさの液滴を形成した後、滴下し、滴下後に再度同様の状態を繰り返す。この際に、液滴形成、滴下の現象により、測定系内に微小な流量・圧力変動が起こり、それに起因して検出ノイズが生じる。この検出ノイズは繰り返し、ほぼ連続的に生じることになるので、結局、このノイズ以下の微小な特性値、および特性値の微小変化を検出することが難しくなり、検出精度の限界となっている。
特許第2737920号公報 特開平5−93717号公報
However, when the liquid is discharged in a state where the atmosphere is completely opened to the atmosphere or atmospheric pressure in this way, the drainage from the drainage pipe end forms droplets of a certain size at the pipe end opening. Then, it is dropped and the same state is repeated again after the dropping. At this time, due to the phenomenon of droplet formation and dripping, minute flow rate and pressure fluctuations occur in the measurement system, resulting in detection noise. Since this detection noise occurs repeatedly and almost continuously, eventually it becomes difficult to detect a minute characteristic value below this noise and a minute change in the characteristic value, which limits the detection accuracy.
Japanese Patent No. 2737920 Japanese Patent Laid-Open No. 5-93717

そこで本発明の課題は、測定用の排液配管末端開放部で生じていた液滴形成、滴下の現象を無くし、それに起因して発生していた流量・圧力変動を抑えて、検出ノイズを極めて小さく抑えることができるようにし、検出精度の大幅な向上を可能にする水質測定方法および装置を提供することにある。   Therefore, the object of the present invention is to eliminate the phenomenon of droplet formation and dripping that has occurred at the end of the drainage pipe for measurement, and suppress the fluctuations in flow rate and pressure that have occurred due to this phenomenon, thereby greatly reducing detection noise. It is an object of the present invention to provide a water quality measurement method and apparatus that can be kept small and can greatly improve detection accuracy.

上記課題を解決するために、本発明に係る水質測定方法は、被測定液を、水質検出手段に導入した後配管を介して排出する水質測定系において、前記配管の末端部を、液面が一定の高さに保たれるように容器内に収容された液の液面下に水没させた状態にて、前記被測定液の水質を測定することを特徴とする方法からなる。   In order to solve the above-described problems, a water quality measurement method according to the present invention provides a water quality measurement system in which a liquid to be measured is introduced into a water quality detection unit and then discharged through a pipe. The method comprises measuring the water quality of the liquid to be measured in a state of being submerged under the surface of the liquid contained in the container so as to be maintained at a constant height.

また、本発明に係る水質測定方法は、被測定液を、水質検出手段に導入した後配管を介して排出する水質測定系において、前記配管の末端部を、液面が一定の高さに保たれるように液が収容された容器の前記液面下の位置に接続した状態にて、前記被測定液の水質を測定することを特徴とする方法からなる。   The water quality measurement method according to the present invention is a water quality measurement system in which a liquid to be measured is introduced into a water quality detection means and then discharged through a pipe, and the end of the pipe is kept at a constant level. The method comprises measuring the water quality of the liquid to be measured in a state where it is connected to a position below the liquid level of the container in which the liquid is stored.

すなわち、これらの方法においては、排出配管末端部をある一定の液面高さに調整された容器内に水没させるか、液面以下の容器位置に排液配管を接続することにより、排液が必ず容器に収容されている液中に排出されるようにし、従来配管末端部で生じていた液滴形成、滴下の現象を意図的に無くし、配管内の脈流を抑えて流れを安定化させることができる。これによって、液滴形成、滴下の現象に伴って発生していた流量・圧力変動を抑えて、検出ノイズを極めて小さく抑えることができるようになり、検出精度の大幅な向上をはかることができる。   That is, in these methods, the drain pipe is submerged in a container adjusted to a certain liquid level height, or the drain pipe is connected to a container position below the liquid level to discharge the drain. Be sure to discharge into the liquid contained in the container, intentionally eliminate the phenomenon of droplet formation and dripping that has conventionally occurred at the end of the pipe, and stabilize the flow by suppressing the pulsating flow in the pipe be able to. As a result, fluctuations in flow rate and pressure that have occurred due to the phenomenon of droplet formation and dripping can be suppressed, so that detection noise can be suppressed to an extremely low level, and detection accuracy can be greatly improved.

上記液面を一定の高さに保つには、例えば、容器に液を供給し、容器内に収容される液を常時オーバーフローさせるようにすることにより、収容された液の表面張力により液面が変動することを防止しつつ、常時安定して液面を所定の一定高さに保つことができるようになる。   In order to keep the liquid level at a certain height, for example, by supplying the liquid to the container and constantly overflowing the liquid stored in the container, the liquid level is increased by the surface tension of the stored liquid. While preventing the fluctuation, the liquid level can be maintained at a predetermined constant height stably at all times.

さらに、本発明に係る水質測定方法は、被測定液を、水質検出手段に導入した後配管を介して排出する水質測定系において、前記配管の末端部を、該末端部から排出された被測定液を排出直後に流下させる物体面に接触または近接させた状態にて、前記被測定液の水質を測定することを特徴とする方法からなる。   Furthermore, the water quality measurement method according to the present invention is a water quality measurement system in which a liquid to be measured is introduced into the water quality detection means and then discharged through the pipe. In the water quality measurement system, the end of the pipe is measured from the end. The method comprises measuring the water quality of the liquid to be measured in a state where the liquid is in contact with or close to the object surface that flows down immediately after the liquid is discharged.

すなわち、この方法においては、配管末端部から排出された被測定液を排出直後に液滴を形成させることなく物体面に沿わせて流下させるようにしたものであり、それによって液滴形成、滴下の現象に伴って発生していた流量・圧力変動を抑えて、検出ノイズを極めて小さく抑えることができるようになり、検出精度の大幅な向上をはかることができる。排出直後の被測定液を流下させる物体面としては特に限定されず、板の板面やパイプの内面等を適用できる。   That is, in this method, the liquid to be measured discharged from the end of the pipe is allowed to flow along the object surface without forming a droplet immediately after being discharged, thereby forming and dropping the droplet. This makes it possible to suppress fluctuations in flow rate and pressure that have been caused by this phenomenon, and to suppress detection noise to an extremely small level, thereby greatly improving detection accuracy. The object surface on which the liquid to be measured immediately after discharge is not particularly limited, and a plate surface of a plate, an inner surface of a pipe, or the like can be applied.

上記のような本発明に係る水質測定方法においては、上記水質検出手段としては特に限定されないが、最終出力として連続的な電気信号を出力する水質検出手段を用いた系に本発明はとくに有効である。つまり、電気信号として出力される検出信号におけるノイズを極めて小さく抑えることができるので、検出すべき特性値を、極めて微小な絶対値まで、および、極めて小さな変化分まで、ノイズが乗っていない状態にて高精度で測定できるようになる。このような本発明の適用が好適な、代表的な水質検出手段として、電気伝導度検出手段を挙げることができる。   In the water quality measurement method according to the present invention as described above, the water quality detection means is not particularly limited, but the present invention is particularly effective for a system using a water quality detection means that outputs a continuous electric signal as a final output. is there. In other words, noise in the detection signal output as an electrical signal can be suppressed to a very small level, so that the characteristic value to be detected can be kept to a very small absolute value and to a very small change without noise. Measurement with high accuracy. As a typical water quality detection means suitable for application of the present invention, an electrical conductivity detection means can be mentioned.

本発明に係る水質測定装置は、サンプリングされた被測定液の水質を検出する水質検出手段と、水質検出後の被測定液を排出する配管を備えた排出機構を有する水質測定装置において、前記排出機構における配管の末端部が、液面が一定の高さに保たれるように容器内に収容された液の液面下に水没されていることを特徴とするものからなる。   The water quality measuring device according to the present invention is a water quality measuring device having a water quality detecting means for detecting the water quality of the sampled liquid to be measured and a discharge mechanism having a pipe for discharging the liquid to be measured after water quality detection. The end of the pipe in the mechanism is submerged under the liquid level of the liquid stored in the container so that the liquid level is maintained at a constant height.

また、本発明に係る水質測定装置は、サンプリングされた被測定液の水質を検出する水質検出手段と、水質検出後の被測定液を排出する配管を備えた排出機構を有する水質測定装置において、前記排出機構における配管の末端部が、液面が一定の高さに保たれるように液が収容された容器の前記液面下の位置に接続されていることを特徴とするものからなる。   Further, the water quality measuring device according to the present invention is a water quality measuring device having a water quality detecting means for detecting the water quality of the sampled liquid to be measured and a discharge mechanism having a pipe for discharging the liquid to be measured after the water quality is detected. The end of the pipe in the discharge mechanism is connected to a position below the liquid level of the container in which the liquid is stored so that the liquid level is maintained at a constant height.

これら水質測定装置においては、上記容器に、液を供給し該容器内に収容される液を常時オーバーフローさせる液供給手段が付設されていることが好ましい。常時オーバーフローさせることにより、常時安定して液面を所定の一定高さに保つことができる。   In these water quality measuring devices, it is preferable that liquid supply means for supplying the liquid and always overflowing the liquid stored in the container is attached to the container. By always overflowing, the liquid level can be constantly kept at a predetermined constant height.

さらに、本発明に係る水質測定装置は、サンプリングされた被測定液の水質を検出する水質検出手段と、水質検出後の被測定液を排出する配管を備えた排出機構を有する水質測定装置において、前記排出機構における配管の末端部が、該末端部から排出された被測定液を排出直後に流下させる物体面に接触または近接されていることを特徴とするものからなる。   Furthermore, the water quality measuring device according to the present invention is a water quality measuring device having a water quality detecting means for detecting the water quality of the sampled liquid to be measured and a discharge mechanism having a pipe for discharging the liquid to be measured after water quality detection. The end of the pipe in the discharge mechanism is in contact with or close to the object surface that allows the liquid to be measured discharged from the end to flow down immediately after discharge.

これら本発明に係る水質測定装置は、最終出力として連続的な電気信号を出力する水質検出手段を備えた系に効果的なものである。そのような水質検出手段として、例えば、電気伝導度検出手段を挙げることができる。   These water quality measuring apparatuses according to the present invention are effective for a system including a water quality detecting means for outputting a continuous electric signal as a final output. As such a water quality detection means, an electrical conductivity detection means can be mentioned, for example.

本発明に係る水質測定方法および装置によれば、測定用の排液配管末端開放部で生じていた液滴形成、滴下の現象の発生を無くし、それに起因して発生していた流量・圧力変動を抑えて、検出ノイズを極めて小さく抑えることができるようにしたので、微小な特性値の検出やその微小変動の検出が可能になり、検出精度を大幅に向上することができる。   According to the water quality measuring method and apparatus according to the present invention, the occurrence of droplet formation and dripping that has occurred at the end of the drainage pipe for measurement is eliminated, and the flow rate and pressure fluctuations that have occurred due to this phenomenon are eliminated. Since the detection noise can be suppressed to an extremely small level, detection of minute characteristic values and detection of minute fluctuations are possible, and detection accuracy can be greatly improved.

以下に、本発明の望ましい実施の形態について、図面を参照しながら説明する。
本発明においては、前述したように、測定用の排液配管末端開放部で生じていた液滴形成、滴下の現象の発生を無くするように構成される。例えば、図1に本発明の一実施態様に係る水質測定装置の概略構成を示すように、サンプリング配管1を介してサンプリングされた被測定液の水質を検出する水質検出手段2と、水質検出後の被測定液を排出する配管3を備えた排出機構を有する水質測定装置において、前記排出機構における配管3の末端部が、液面4が一定の高さに保たれるように容器5内に収容された液の液面下に水没されている。容器5の液面は容器5の上部からオーバーフローされるようになっているが、オーバーフロー量が少ないと容器上部で表面張力により液面4が容器上端面よりも上昇する。その後、表面張力が限界に達すると容器上部から液体がオーバーフローし液面が低下するように液面が変動する。この変動を抑えるため、容器に液供給ライン6を介して液を供給し、容器5内に収容される液を常時オーバーフローさせるようにしており、これによって、収容された液の表面張力により液面が変動することを防止しつつ、常時安定して液面を所定の一定高さに保つようにしている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
As described above, the present invention is configured to eliminate the occurrence of the droplet formation and dripping phenomenon that has occurred in the end portion of the drainage pipe for measurement. For example, as shown in the schematic configuration of the water quality measuring apparatus according to one embodiment of the present invention in FIG. 1, the water quality detecting means 2 for detecting the water quality of the sample liquid sampled through the sampling pipe 1, and after the water quality detection In the water quality measuring apparatus having the discharge mechanism having the pipe 3 for discharging the liquid to be measured, the end portion of the pipe 3 in the discharge mechanism is placed in the container 5 so that the liquid level 4 is maintained at a constant height. It is submerged under the surface of the contained liquid. The liquid level of the container 5 overflows from the upper part of the container 5, but if the amount of overflow is small, the liquid level 4 rises from the upper end surface of the container due to surface tension at the upper part of the container. Thereafter, when the surface tension reaches the limit, the liquid level fluctuates so that the liquid overflows from the upper part of the container and the liquid level decreases. In order to suppress this fluctuation, the liquid is supplied to the container via the liquid supply line 6 so that the liquid stored in the container 5 is always overflowed, so that the liquid level is increased by the surface tension of the stored liquid. The liquid level is constantly maintained stably at a predetermined constant height while preventing fluctuations.

図2は別の実施態様に係る水質測定装置の概略構成を示しており、本実施態様では、図1に示した態様に比べ、水質検出後の被測定液を排出する配管7の末端部が、容器5の液面下の位置に接続されており、水質検出後の被測定液が常時容器5内の液面下に導入されるように構成されている。その他の構成は、実質的に図1に示した構成と同じである。   FIG. 2 shows a schematic configuration of a water quality measuring apparatus according to another embodiment. In this embodiment, the end portion of the pipe 7 for discharging the liquid to be measured after water quality detection is compared with the mode shown in FIG. The liquid to be measured is connected to a position below the liquid level of the container 5 so that the liquid to be measured after water quality detection is always introduced below the liquid level in the container 5. The other configuration is substantially the same as the configuration shown in FIG.

さらに本発明では、水質検出後の被測定液を排出する配管の末端部が、該末端部から排出された被測定液を排出直後に流下させる物体面に接触または近接されている構成とすることもできる。たとえば、図3(A)に示すように、物体面として板11の板面を用い、これに対して水質検出後の被測定液を排出する配管12の末端部を接触または近接させる構成や、図3(B)に示すように、物体面としてパイプ13の内面を用い、これに対して水質検出後の被測定液を排出する配管12の末端部を接触または近接させる構成を採用することができる。このような構成においても、配管12の末端部から排出直後の液は、液滴を形成することなく、板11の板面やパイプ13の内面をつたって流下することができる。   Furthermore, in the present invention, the end portion of the pipe for discharging the liquid to be measured after water quality detection is configured to be in contact with or close to the object surface that allows the liquid to be measured discharged from the end portion to flow down immediately after discharge. You can also. For example, as shown in FIG. 3 (A), the plate surface of the plate 11 is used as the object surface, and the end portion of the pipe 12 that discharges the liquid to be measured after water quality detection is contacted or brought close to this, As shown in FIG. 3B, it is possible to employ a configuration in which the inner surface of the pipe 13 is used as the object surface, and the end portion of the pipe 12 that discharges the liquid to be measured after detecting the water quality is brought into contact with or close to the object surface. it can. Even in such a configuration, the liquid immediately after being discharged from the end of the pipe 12 can flow down through the plate surface of the plate 11 and the inner surface of the pipe 13 without forming droplets.

図4は、比較のために示した従来構造であり、水質検出後の被測定液を排出する配管21の末端部から排出された液は、図4(A)に示すように、まず配管21の出口で液滴22を成長させ、ある程度液滴22が成長すると、図4(B)に示すように、液滴22が落下する。この液滴形成、滴下の現象の発生により、前述の如く配管21内に微小な流量、圧力変動が発生し、それによってノイズが発生して測定の精度が低下する。図1〜図3に示した本発明に係る構成では、このような液滴形成、滴下の現象が発生しないので、ノイズの発生が抑えられて測定の精度が向上する。   FIG. 4 shows a conventional structure shown for comparison. As shown in FIG. 4 (A), the liquid discharged from the end of the pipe 21 for discharging the liquid to be measured after water quality detection is first pipe 21. When the droplet 22 is grown at the outlet of the liquid crystal and the droplet 22 grows to some extent, the droplet 22 falls as shown in FIG. Due to the occurrence of the droplet formation and dripping phenomenon, a minute flow rate and pressure fluctuation are generated in the pipe 21 as described above, thereby generating noise and reducing measurement accuracy. In the configuration according to the present invention shown in FIGS. 1 to 3, such a phenomenon of droplet formation and dropping does not occur, so that noise generation is suppressed and measurement accuracy is improved.

以下に、実施例、比較例に基づいて本発明を説明する。
実施例1
イオンクロマトグラフィーによる陰イオン成分の分析装置において、図1に示した水質測定系に準じて、検出器(導電率計)以降の配管末端部を液体で満たしたポリ容器内に水没させた。この際、常時ポリ容器上面より液体がオーバーフローするように適量の液体を常時流し込み、液面を一定に保った。測定時の分析時間と検出電気伝導度の関係を図5に示す。
Below, this invention is demonstrated based on an Example and a comparative example.
Example 1
In the anion component analyzer by ion chromatography, the end of the pipe after the detector (conductivity meter) was submerged in a plastic container filled with liquid according to the water quality measurement system shown in FIG. At this time, an appropriate amount of liquid was always poured so that the liquid always overflowed from the upper surface of the plastic container, and the liquid level was kept constant. FIG. 5 shows the relationship between the analysis time at the time of measurement and the detected electrical conductivity.

比較例1
イオンクロマトグラフィーによる陰イオン成分の分析装置において、図4に示したように検出器(導電率計)以降の配管末端部を大気中に放置し、配管端部から排出される液体は水滴形成、滴下を繰り返す状態として測定を行った。測定時の分析時間と検出電気伝導度の関係を図6に示す。
Comparative Example 1
In the anion component analyzer by ion chromatography, the pipe end after the detector (conductivity meter) is left in the atmosphere as shown in FIG. 4, and the liquid discharged from the pipe end forms water droplets. The measurement was performed in a state where the dropping was repeated. FIG. 6 shows the relationship between the analysis time during measurement and the detected electrical conductivity.

また、図7に実施例1の測定初期電気導電度をゼロとした場合の、図5の電気伝導度の拡大トレンドを示し、図8に比較例1の測定初期電気導電度をゼロとした場合、図6のの電気伝導度の拡大トレンドを示す。図7では図8に比べ、周期的な電気伝導度の変化量が小さく、約1/3以下に低減されている。比較例1の周期ノイズは検出器以降の配管末端部における水滴形成、滴下の周期に同期していると思われる。この結果、検出器以降の配管末端部における水滴形成、滴下の現象が発生しないようにした実施例1のような形態を採ることにより、測定時のノイズは比較例1の1/3以下に低減し、測定におけるS/N比(シグナル/ノイズ比)を向上させ、測定感度を3倍以上向上させることができ、測定精度を大幅に向上できることが分かる。   FIG. 7 shows an enlarged trend of the electrical conductivity of FIG. 5 when the measurement initial electrical conductivity of Example 1 is zero, and FIG. 8 shows the case where the measurement initial electrical conductivity of Comparative Example 1 is zero. The expansion trend of the electrical conductivity of FIG. 6 is shown. In FIG. 7, the amount of change in the periodic electrical conductivity is small compared to FIG. 8, and is reduced to about 1/3 or less. The periodic noise of Comparative Example 1 seems to be synchronized with the period of water droplet formation and dripping at the pipe end after the detector. As a result, the noise at the time of measurement is reduced to 1/3 or less of the comparative example 1 by adopting the form as in Example 1 in which the phenomenon of water droplet formation and dripping does not occur at the end of the pipe after the detector. It can be seen that the S / N ratio (signal / noise ratio) in the measurement can be improved, the measurement sensitivity can be improved by 3 times or more, and the measurement accuracy can be greatly improved.

本発明に係る水質測定方法および装置は、従来、被測定液の水質特性を検出するに際し、検出後の被測定液を配管末端部から液滴形成、滴下させていたあらゆる測定系に適用可能であり、とくに、最終検出出力がノイズを拾った電気信号として出力されていた測定系に好適なものである。   The water quality measurement method and apparatus according to the present invention can be applied to any measurement system in which, when detecting the water quality characteristics of the liquid to be measured, the liquid to be measured after detection has been formed and dropped from the end of the pipe. In particular, it is suitable for a measurement system in which the final detection output is output as an electric signal picking up noise.

本発明の一実施態様に係る水質測定装置の概略構成図である。It is a schematic block diagram of the water quality measuring apparatus which concerns on one embodiment of this invention. 本発明の別の実施態様に係る水質測定装置の概略構成図である。It is a schematic block diagram of the water quality measuring apparatus which concerns on another embodiment of this invention. 本発明のさらに別の実施態様に係る水質測定装置の概略構成図である。It is a schematic block diagram of the water quality measuring apparatus which concerns on another embodiment of this invention. 従来の配管末端部における液滴形成、滴下の様子を示す説明図である。It is explanatory drawing which shows the mode of the droplet formation in the conventional piping terminal part, and a dripping. 実施例1における電気伝導度測定結果を示すグラフである。3 is a graph showing the results of electrical conductivity measurement in Example 1. 比較例1における電気伝導度測定結果を示すグラフである。10 is a graph showing the results of electrical conductivity measurement in Comparative Example 1. 図5の測定結果を部分的に拡大して示したグラフである。It is the graph which expanded and showed the measurement result of FIG. 図6の測定結果を部分的に拡大して示したグラフである。It is the graph which expanded and showed the measurement result of FIG. 6 partially.

符号の説明Explanation of symbols

1 サンプリング配管
2 水質検出手段
3、7、12、21 排出機構における配管
4 液面
5 容器
6 液供給ライン
11 板
13 パイプ
22 液滴
DESCRIPTION OF SYMBOLS 1 Sampling piping 2 Water quality detection means 3, 7, 12, 21 Piping in discharge mechanism 4 Liquid level 5 Container 6 Liquid supply line 11 Plate 13 Pipe 22 Droplet

Claims (12)

被測定液を、水質検出手段に導入した後配管を介して排出する水質測定系において、前記配管の末端部を、液面が一定の高さに保たれるように容器内に収容された液の液面下に水没させた状態にて、前記被測定液の水質を測定することを特徴とする水質測定方法。   In a water quality measurement system in which the liquid to be measured is introduced into the water quality detection means and then discharged through the pipe, the liquid contained in the container so that the liquid surface is maintained at a constant height at the end of the pipe. And measuring the water quality of the liquid to be measured in a state of being submerged under the surface of the liquid. 被測定液を、水質検出手段に導入した後配管を介して排出する水質測定系において、前記配管の末端部を、液面が一定の高さに保たれるように液が収容された容器の前記液面下の位置に接続した状態にて、前記被測定液の水質を測定することを特徴とする水質測定方法。   In a water quality measurement system in which the liquid to be measured is introduced into the water quality detection means and then discharged through the pipe, the end of the pipe is placed in a container containing the liquid so that the liquid level is maintained at a constant height. A water quality measurement method comprising measuring the water quality of the liquid to be measured in a state of being connected to a position below the liquid surface. 被測定液を、水質検出手段に導入した後配管を介して排出する水質測定系において、前記配管の末端部を、該末端部から排出された被測定液を排出直後に流下させる物体面に接触または近接させた状態にて、前記被測定液の水質を測定することを特徴とする水質測定方法。   In the water quality measurement system in which the liquid to be measured is introduced into the water quality detection means and then discharged through the pipe, the end of the pipe contacts the object surface that causes the liquid to be measured discharged from the end to flow down immediately after discharge. Alternatively, a water quality measuring method, wherein the water quality of the liquid to be measured is measured in a state of being close to each other. 前記容器に液を供給し、前記容器内に収容される液を常時オーバーフローさせることにより、前記液面を一定の高さに保つ、請求項1または2の水質測定方法。   The water quality measuring method according to claim 1 or 2, wherein the liquid level is maintained at a constant height by supplying a liquid to the container and constantly overflowing the liquid contained in the container. 前記水質検出手段が、最終出力として連続的な電気信号を出力するものからなる、請求項1〜4のいずれかに記載の水質測定方法。   The water quality measuring method according to any one of claims 1 to 4, wherein the water quality detecting means outputs a continuous electric signal as a final output. 前記水質検出手段が、電気伝導度検出手段からなる、請求項1〜5のいずれかに記載の水質測定方法。   The water quality measurement method according to claim 1, wherein the water quality detection means comprises electrical conductivity detection means. サンプリングされた被測定液の水質を検出する水質検出手段と、水質検出後の被測定液を排出する配管を備えた排出機構を有する水質測定装置において、前記排出機構における配管の末端部が、液面が一定の高さに保たれるように容器内に収容された液の液面下に水没されていることを特徴とする水質測定装置。   In a water quality measuring device having a water quality detection means for detecting the quality of the sampled liquid to be measured and a discharge mechanism having a pipe for discharging the liquid to be measured after water quality detection, the end of the pipe in the discharge mechanism is a liquid A water quality measuring apparatus, wherein the surface is submerged under the surface of the liquid contained in the container so that the surface is maintained at a constant height. サンプリングされた被測定液の水質を検出する水質検出手段と、水質検出後の被測定液を排出する配管を備えた排出機構を有する水質測定装置において、前記排出機構における配管の末端部が、液面が一定の高さに保たれるように液が収容された容器の前記液面下の位置に接続されていることを特徴とする水質測定装置。   In a water quality measuring device having a water quality detection means for detecting the quality of the sampled liquid to be measured and a discharge mechanism having a pipe for discharging the liquid to be measured after water quality detection, the end of the pipe in the discharge mechanism is a liquid A water quality measuring device, wherein the water quality measuring device is connected to a position below the liquid surface of a container in which the liquid is stored so that the surface is maintained at a constant height. サンプリングされた被測定液の水質を検出する水質検出手段と、水質検出後の被測定液を排出する配管を備えた排出機構を有する水質測定装置において、前記排出機構における配管の末端部が、該末端部から排出された被測定液を排出直後に流下させる物体面に接触または近接されていることを特徴とする水質測定装置。   In the water quality measuring device having a water quality detecting means for detecting the water quality of the sampled liquid to be measured and a discharge mechanism having a pipe for discharging the liquid to be measured after the water quality is detected, the end of the pipe in the discharge mechanism is An apparatus for measuring water quality, characterized in that it is in contact with or close to an object surface that allows the liquid to be measured discharged from the end portion to flow down immediately after discharge. 前記容器に、液を供給し該容器内に収容される液を常時オーバーフローさせる液供給手段が付設されている、請求項7または8の水質測定装置。   The water quality measuring device according to claim 7 or 8, further comprising a liquid supply means for supplying the liquid to the container and constantly overflowing the liquid stored in the container. 前記水質検出手段が、最終出力として連続的な電気信号を出力するものからなる、請求項7〜10のいずれかに記載の水質測定装置。   The water quality measuring device according to any one of claims 7 to 10, wherein the water quality detecting means is configured to output a continuous electric signal as a final output. 前記水質検出手段が、電気伝導度検出手段からなる、請求項7〜11のいずれかに記載の水質測定装置。   The water quality measuring device according to any one of claims 7 to 11, wherein the water quality detecting means comprises electric conductivity detecting means.
JP2004091992A 2004-03-26 2004-03-26 Method and apparatus for measuring water quality Pending JP2005274519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004091992A JP2005274519A (en) 2004-03-26 2004-03-26 Method and apparatus for measuring water quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004091992A JP2005274519A (en) 2004-03-26 2004-03-26 Method and apparatus for measuring water quality

Publications (1)

Publication Number Publication Date
JP2005274519A true JP2005274519A (en) 2005-10-06

Family

ID=35174334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004091992A Pending JP2005274519A (en) 2004-03-26 2004-03-26 Method and apparatus for measuring water quality

Country Status (1)

Country Link
JP (1) JP2005274519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209156A (en) * 2007-02-23 2008-09-11 Tosoh Corp Change preventing method for ri back pressure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229924A (en) * 1996-02-20 1997-09-05 Anima Denshi Kk Water quality monitoring device using aquatic organism
JP2003139764A (en) * 2001-10-31 2003-05-14 Animakkusu:Kk Water quality detector using fish

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229924A (en) * 1996-02-20 1997-09-05 Anima Denshi Kk Water quality monitoring device using aquatic organism
JP2003139764A (en) * 2001-10-31 2003-05-14 Animakkusu:Kk Water quality detector using fish

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209156A (en) * 2007-02-23 2008-09-11 Tosoh Corp Change preventing method for ri back pressure

Similar Documents

Publication Publication Date Title
JP2006071340A (en) Method of measuring concentration of dissolved gas in liquid, measuring device, and manufacture device of nitrogen gas-dissolved water
US7040138B2 (en) Method and device for the monitoring of gases
EP0882974A1 (en) Device and procedure for determining the level and the density of a liquid in a tub, by means of a single bubble plunger tube
JP5272429B2 (en) Water quality measuring device
JP2022163196A (en) Ph measurement device and ph measurement method
JP2005274519A (en) Method and apparatus for measuring water quality
US20160341645A1 (en) Inline multiphase densitometer
KR20140011267A (en) Equipment for diagnosing blockage of lead pipe and method for diagnosing blockage of lead pipe
KR20210057743A (en) Analysis of dissolved gases in the insulating medium of high voltage devices
US20090088485A1 (en) Method for controlling foaming in a process
JP5475076B2 (en) Residual chlorine meter with water level change detection function
JP2008177386A (en) Cleaning apparatus
JP2011069801A (en) Measuring device of amount of bubble within liquid by measurement of volume change rate
US7190639B2 (en) Method and apparatus for measuring fluid viscosity using electric conductance
KR20160066996A (en) Liquid hold up metering apparatus and method in pipe
JP2003035648A (en) Method for measuring surface tension and interface tension
JP6656164B2 (en) Liquid analyzer, liquid analysis system
US10844712B2 (en) Devices and methods for measuring analyte concentration
JP2966544B2 (en) Alcohol concentration measurement device
JP4645827B2 (en) Carbon dioxide-dissolved water evaluation method and carbon dioxide-dissolved water sample water sampling device
JP2000065710A (en) Method and device for measuring concentration of gas dissolved in liquid
JP5978123B2 (en) Cleaning quality control system using electromagnetic flow meter and cleaning quality control method
JP3878859B2 (en) Flow stabilization unit and analyzer in front of it
JPH05115799A (en) Ion-exchange resin abnormality detecting apparatus
US20170059524A1 (en) Bhf solution concentration measurement device and bhf solution concentration measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070123

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091225

A02 Decision of refusal

Effective date: 20100507

Free format text: JAPANESE INTERMEDIATE CODE: A02