JP2005274102A - Selector valve opening/closing method and refrigerant flow control valve - Google Patents

Selector valve opening/closing method and refrigerant flow control valve Download PDF

Info

Publication number
JP2005274102A
JP2005274102A JP2004091697A JP2004091697A JP2005274102A JP 2005274102 A JP2005274102 A JP 2005274102A JP 2004091697 A JP2004091697 A JP 2004091697A JP 2004091697 A JP2004091697 A JP 2004091697A JP 2005274102 A JP2005274102 A JP 2005274102A
Authority
JP
Japan
Prior art keywords
valve
port
pressure
refrigerant
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004091697A
Other languages
Japanese (ja)
Inventor
Mitsuaki Noda
光昭 野田
Hiroshi Ito
浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2004091697A priority Critical patent/JP2005274102A/en
Publication of JP2005274102A publication Critical patent/JP2005274102A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact refrigerant flow control valve capable of reducing pressure loss of refrigerant. <P>SOLUTION: A selector valve 13 is arranged inside a valvae chamber 1a of a valve main body 1 freely to slide upward and downward. The selector valve 13 is seated/separated on/from a main valve seat 16 by a pressure difference between the pressure of a space P formed over the selector valve 13 and the pressure of a first port 11 or a second port 12. A variable throttle part is structured of a variable throttle hole 28 and a needle 26a of a needle valve 26. A stepping motor 70 is structured of a coil 25, a rotor 23 and a shaft 24. The stepping motor 70 is driven to control the variable throttle part and to control the pressure difference. The stepping motor 70 is formed compact. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、開弁状態と冷媒の膨張を行うための絞り状態とを切換え制御する冷媒流量制御弁に関し、特に空気調和機におけるドライ運転用のドライ制御弁に好適な切換弁開閉方法及び冷媒流量制御弁に関する。   TECHNICAL FIELD The present invention relates to a refrigerant flow control valve that switches between a valve open state and a throttle state for refrigerant expansion, and more particularly to a switching valve opening / closing method and a refrigerant flow rate suitable for a dry control valve for dry operation in an air conditioner. It relates to a control valve.

従来、空気調和機でドライ運転(除湿モード)を行うために二分割された室内熱交換器の間に介在させて冷媒を絞るドライ制御弁がある。このドライ制御弁はドライ運転時には冷媒を絞る(冷媒の流れを制御する)絞り状態とされ、通常の冷房/暖房運転時には二分割された室内熱交換器を一つの室内熱交換器として機能させるために冷媒の流れを絞らない開弁状態とされる。そして、特開2001−310540号公報(除湿用絞り弁)、特開2003−90650号公報(流量制御装置)に開示されているように、この絞り状態と開弁状態とを切り換える切り換え弁の駆動には電磁ソレノイドを使用したり、ステッピングモータを使用したりしている。
特開2001−310540号公報 特開2003−90650号公報
2. Description of the Related Art Conventionally, there is a dry control valve that squeezes refrigerant by interposing it between indoor heat exchangers that are divided into two parts in order to perform dry operation (dehumidification mode) with an air conditioner. This dry control valve is in a throttled state for controlling the refrigerant (controlling the flow of the refrigerant) during dry operation, and in order to make the indoor heat exchanger divided into two during normal cooling / heating operation function as one indoor heat exchanger. Thus, the valve is opened without restricting the flow of the refrigerant. Then, as disclosed in Japanese Patent Laid-Open No. 2001-310540 (dehumidifying throttle valve) and Japanese Patent Laid-Open No. 2003-90650 (flow rate control device), a switching valve that switches between the throttled state and the valve-opened state is driven. For example, an electromagnetic solenoid or a stepping motor is used.
JP 2001-310540 A JP 2003-90650 A

しかし、特開2001−310540号公報の除湿用絞り弁や、特開2003−90650号公報の流量制御装置では、電磁ソレノイドのステッピングモータ駆動力で直接切り換え弁を駆動するようにしているので、駆動力を弱くすると切り換え弁を大きくすることが困難であり、弁座口径を大きくすることができない。このため、冷媒の動圧損失や乱れ損失による圧力損失が大きくなるという問題がある。また、駆動力を大きくする電磁ソレノイドやステッピングモータが大きくなって、ドライ制御弁(冷媒流量制御弁)全体が大型化するという問題がある。   However, in the dehumidifying throttle valve disclosed in Japanese Patent Laid-Open No. 2001-310540 and the flow rate control device disclosed in Japanese Patent Laid-Open No. 2003-90650, the switching valve is directly driven by the stepping motor driving force of the electromagnetic solenoid. If the force is weakened, it is difficult to increase the switching valve, and the valve seat diameter cannot be increased. For this reason, there is a problem that the pressure loss due to the dynamic pressure loss and turbulence loss of the refrigerant increases. Further, there is a problem that the electromagnetic solenoid and the stepping motor that increase the driving force are increased, and the entire dry control valve (refrigerant flow control valve) is increased in size.

本発明は、冷媒の圧力損失を低減する小形の冷媒流量制御弁を提供することを課題とする。   This invention makes it a subject to provide the small refrigerant | coolant flow control valve which reduces the pressure loss of a refrigerant | coolant.

請求項1の切換弁開閉方法は、切換弁を駆動して、2つのポート間を均圧して冷媒を通す開弁状態と、冷媒の膨張を行うための絞り状態とを切換え制御する方法であって、冷媒流量制御を行う可変絞り弁を用いて、圧力制御空間の圧力を制御して、切換弁の開閉を行うことを特徴とする。   The switching valve opening and closing method according to claim 1 is a method for switching and controlling a valve opening state in which the switching valve is driven to equalize the pressure between the two ports and the refrigerant is allowed to pass through, and a throttle state for expanding the refrigerant. The switching valve is opened and closed by controlling the pressure in the pressure control space using a variable throttle valve that controls the refrigerant flow rate.

請求項1の切換弁開閉方法によれば、該方法で用いる可変絞り弁は開閉する開口部の面積が小さくてよいので、可変絞り弁に加わる差圧抗力も小さく、可変絞り弁を駆動するモータも小さなものでよい。また、切換弁の駆動が可変絞り弁によるパイロット駆動なので、弁座径を大きくしても駆動力を増大させる必要がない。したがって、冷媒の圧力損失を低減した形の冷媒流量制御弁を得ることができる。   According to the switching valve opening / closing method of claim 1, since the variable throttle valve used in the method may have a small opening / closing area, the differential pressure resistance applied to the variable throttle valve is small, and the motor for driving the variable throttle valve Can be small. Further, since the switching valve is driven by a pilot valve using a variable throttle valve, it is not necessary to increase the driving force even if the valve seat diameter is increased. Therefore, a refrigerant flow control valve having a reduced pressure loss of the refrigerant can be obtained.

請求項2の冷媒流量制御弁は、切換弁を駆動して、2つのポート間を均圧して冷媒を通す開弁状態と、冷媒の膨張を行うための絞り状態とを切換え制御する冷媒流量制御弁であって、第1ポートと第2ポートとが形成された弁室と、該弁室内に配設され、前記第2ポート側に形成された弁座に着座して該第2ポートと前記第1ポートとを遮蔽し、該弁座から離間して該第2ポートと該第1ポートとを導通する切換弁と、該切換弁に形成され、該切換弁により前記弁座と反対側に隔成される圧力制御空間と前記第1ポートとの間で冷媒の流れを絞る固定絞り部と、前記圧力制御空間に導通可能に配設されるとともに導管により前記第2ポートと連通され、絞り弁により該圧力制御空間と該導管との間で冷媒の流れを可変に絞る可変絞り部と、前記絞り弁を駆動して該可変絞り部の絞り量を制御するモータとを備え、前記可変絞り部の絞り量により前記圧力制御空間の圧力を制御し、該圧力制御空間と前記第1ポートとの差圧、該圧力制御空間と前記第2ポートとの差圧を制御して、前記切換弁の着座/離間を切換えるようにしたことを特徴とする。   The refrigerant flow rate control valve according to claim 2 is a refrigerant flow rate control for switching and controlling a valve open state in which the switching valve is driven to equalize the pressure between the two ports and allow the refrigerant to pass therethrough and a throttle state for expanding the refrigerant. A valve chamber in which a first port and a second port are formed; a valve chamber disposed in the valve chamber and seated on a valve seat formed on the second port side; A switching valve which shields the first port and is spaced from the valve seat and conducts the second port and the first port; and is formed in the switching valve, and is formed on the opposite side of the valve seat by the switching valve. A fixed restrictor for restricting the flow of the refrigerant between the pressure control space and the first port; and a constriction that is arranged to be able to conduct to the pressure control space and communicated with the second port by a conduit; A variable throttle portion that variably throttles the flow of refrigerant between the pressure control space and the conduit by means of a valve; A motor that controls the throttle amount of the variable throttle unit by driving a throttle valve, and controls the pressure of the pressure control space by the throttle amount of the variable throttle unit, and the pressure control space and the first port The seating / separation of the switching valve is switched by controlling the differential pressure and the differential pressure between the pressure control space and the second port.

請求項2の冷媒流量制御弁によれば、可変絞り部の上下に作用する圧力は切換弁の動作に必要な小さな差圧でよく、また、可変絞り部の開口面積も小さくてよく、絞り弁に加わる差圧抗力も小さいので、絞り弁を駆動するモータも小さなものでよい。また、切換弁の駆動が可変絞り部によるパイロット駆動なので、弁座径を大きくしても駆動力を増大させる必要がない。したがって、冷媒の圧力損失を低減した形の冷媒流量制御弁を得ることができる。   According to the refrigerant flow control valve of the second aspect, the pressure acting above and below the variable throttle portion may be a small differential pressure necessary for the operation of the switching valve, and the opening area of the variable throttle portion may be small. Since the differential pressure resistance applied to the valve is small, the motor for driving the throttle valve may be small. Further, since the switching valve is driven by the pilot by the variable restrictor, it is not necessary to increase the driving force even if the valve seat diameter is increased. Therefore, a refrigerant flow control valve having a reduced pressure loss of the refrigerant can be obtained.

請求項3の冷媒流量制御弁は、請求項2の構成を備え、前記絞り部の前記圧力制御空間側と前記導管側とに静音フィルタを備えたことを特徴とする。   According to a third aspect of the present invention, there is provided a refrigerant flow rate control valve having the configuration according to the second aspect, wherein a silent filter is provided on the pressure control space side and the conduit side of the throttle portion.

請求項3の冷媒流量制御弁によれば、請求項2と同様な作用効果が得られるとともに、静音フィルタにより絞り部の冷媒通過音を低減できる。   According to the refrigerant flow control valve of the third aspect, the same effect as that of the second aspect can be obtained, and the noise passing through the throttle portion can be reduced by the silent filter.

請求項4の冷媒流量制御弁は、請求項2または3の構成を備え、前記導管を、前記弁室を構成する本体ケース内に形成したことを特徴とする。   According to a fourth aspect of the present invention, there is provided a refrigerant flow control valve having the configuration of the second or third aspect, wherein the conduit is formed in a main body case constituting the valve chamber.

請求項4の冷媒流量制御弁によれば、請求項2または3と同様な作用効果が得られるとともに、可変絞り部と第2ポートとを連通する導管がケース外にないので小型化することができる。   According to the refrigerant flow control valve of the fourth aspect, the same effect as that of the second or third aspect can be obtained, and the conduit that communicates the variable throttle portion and the second port is not outside the case, so that the size can be reduced. it can.

請求項5の冷媒流量制御弁は、請求項2、3または4の構成を備え、前記第1ポートに連通される継手管と、前記第2ポートに連通される継手管とを、それぞれ2本としたことを特徴とする。   A refrigerant flow control valve according to a fifth aspect includes the configuration according to the second, third, or fourth aspect, and includes two joint pipes that communicate with the first port and two joint pipes that communicate with the second port. It is characterized by that.

請求項5の冷媒流量制御弁によれば、請求項2、3または4と同様な作用効果が得られるとともに、室内熱交換器において圧力損失を小さくできるとともに、室内機の省スペース、省コストを図ることができる。   According to the refrigerant flow control valve of the fifth aspect, the same effect as that of the second, third or fourth aspect can be obtained, the pressure loss can be reduced in the indoor heat exchanger, and the space and cost of the indoor unit can be reduced. Can be planned.

請求項1の切換弁開閉方法によれば、冷媒の圧力損失を低減した小形の冷媒流量制御弁を得ることができる。   According to the switching valve opening and closing method of the first aspect, it is possible to obtain a small refrigerant flow control valve with reduced refrigerant pressure loss.

請求項2の冷媒流量制御弁によれば、請求項1と同様な効果が得られる。   According to the refrigerant flow control valve of the second aspect, the same effect as that of the first aspect can be obtained.

請求項3の冷媒流量制御弁によれば、請求項2と同様な効果が得られるとともに、絞り部の冷媒通過音を低減できる。   According to the refrigerant flow control valve of the third aspect, the same effect as in the second aspect can be obtained, and the refrigerant passing sound of the throttle portion can be reduced.

請求項4の冷媒流量制御弁によれば、請求項2または3と同様な効果が得られるとともに、該冷媒流量制御弁を小型化することができる。   According to the refrigerant flow control valve of the fourth aspect, the same effect as that of the second or third aspect can be obtained, and the refrigerant flow control valve can be downsized.

請求項5の冷媒流量制御弁によれば、請求項2、3または4と同様な効果が得られるとともに、室内熱交換器において圧力損失を小さくでき、さらに室内機の省スペース、省コストを図ることができる。   According to the refrigerant flow control valve of the fifth aspect, the same effect as that of the second, third, or fourth aspect can be obtained, the pressure loss can be reduced in the indoor heat exchanger, and the space and cost of the indoor unit can be reduced. be able to.

次に、本発明の冷媒流量制御弁の実施形態を図面を参照して説明する。図1は実施形態の冷媒流量制御弁の構造と該冷媒流量制御弁を適用した空気調和機の要部を示す図であり、図1は除湿運転時の状態を示している。図2(A) は図1のA−A矢視図(底面図)、図2(B) は図1のC−C矢視断面図である。なお、図1は図2(A) 及び図2(B) のB−B矢視断面を示している。   Next, an embodiment of the refrigerant flow control valve of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a structure of a refrigerant flow control valve according to an embodiment and a main part of an air conditioner to which the refrigerant flow control valve is applied. FIG. 1 shows a state during a dehumidifying operation. 2A is a cross-sectional view taken along the line AA in FIG. 1 (bottom view), and FIG. 2B is a cross-sectional view taken along the line CC in FIG. FIG. 1 shows a cross section taken along line BB in FIGS. 2 (A) and 2 (B).

図中10は実施形態の冷媒流量制御弁としてのドライ制御弁、20は室内ユニットに搭載された室内熱交換器、30は絞り装置、40は室外ユニットに搭載された室外熱交換器、50は四方弁を構成する例えばロータリ式の流路切換弁、60は圧縮機である。室内熱交換器20は絞り装置30側に接続された第1熱交換器20Aと流路切換弁50側に接続された第2熱交換器20Bとで構成され、ドライ制御弁10はこの第1熱交換器20Aと第2熱交換器20Bとの間に接続されている。そして、ドライ制御弁10、第1熱交換器20A、第2熱交換器20B、絞り装置30、室外熱交換器40、流路切換弁50、及び圧縮機60は、それぞれ導管によって図示のように接続され、ヒートポンプ式の冷凍サイクル100を構成している。   In the figure, 10 is a dry control valve as a refrigerant flow rate control valve of the embodiment, 20 is an indoor heat exchanger mounted on the indoor unit, 30 is an expansion device, 40 is an outdoor heat exchanger mounted on the outdoor unit, and 50 is For example, a rotary flow path switching valve constituting the four-way valve, 60 is a compressor. The indoor heat exchanger 20 includes a first heat exchanger 20A connected to the expansion device 30 side and a second heat exchanger 20B connected to the flow path switching valve 50 side, and the dry control valve 10 is the first heat exchanger 20B. It is connected between the heat exchanger 20A and the second heat exchanger 20B. Then, the dry control valve 10, the first heat exchanger 20A, the second heat exchanger 20B, the expansion device 30, the outdoor heat exchanger 40, the flow path switching valve 50, and the compressor 60 are respectively connected by conduits as illustrated. It is connected and constitutes a heat pump refrigeration cycle 100.

冷凍サイクル100の流路は流路切換弁50により「冷房モード」および「暖房モード」の2通りの流路に切り換えられる。冷房モードでは、図1に実線の矢印で示すように、圧縮機60で圧縮された冷媒は流路切換弁50から室外熱交換器40に流入され、絞り装置30及び第1熱交換器20Aを介して流出された冷媒液は、ドライ制御弁10を介して第2熱交換器20Bに流入され、第2熱交換器20Bから流路切換弁50を介して圧縮機60に流入される。暖房モードでは、図1に破線の矢印で示すように、圧縮機60で圧縮された冷媒は流路切換弁50から第2熱交換器20Bに流入され、ドライ制御弁10、第1熱交換器20A、絞り装置30、室外熱交換器40、流路切換弁50、そして、圧縮機60の順に循環される。   The flow path of the refrigeration cycle 100 is switched to two flow paths of “cooling mode” and “heating mode” by the flow path switching valve 50. In the cooling mode, as indicated by solid line arrows in FIG. 1, the refrigerant compressed by the compressor 60 flows into the outdoor heat exchanger 40 from the flow path switching valve 50, and passes through the expansion device 30 and the first heat exchanger 20A. Through the dry control valve 10, the refrigerant liquid that has flowed out flows into the second heat exchanger 20B, and flows from the second heat exchanger 20B into the compressor 60 through the flow path switching valve 50. In the heating mode, as indicated by the dashed arrows in FIG. 1, the refrigerant compressed by the compressor 60 flows into the second heat exchanger 20B from the flow path switching valve 50, and the dry control valve 10 and the first heat exchanger. 20A, the expansion device 30, the outdoor heat exchanger 40, the flow path switching valve 50, and the compressor 60 are circulated in this order.

ドライ制御弁10は、除湿運転以外の運転モードのときは開弁状態とされ、第1熱交換器20Aと第2熱交換器20Bとが実質的に一体となって室内熱交換機20の機能を果たす。これにより、暖房運転時には、室内熱交換器20は凝縮器として機能し、室外熱交換器40は蒸発器として機能し、室内の暖房がなされる。また、冷房運転時には、室外熱交換器40が凝縮器として機能し、室内熱交換器20が蒸発器として機能し、室内の冷房がなされる。   The dry control valve 10 is opened during the operation mode other than the dehumidifying operation, and the function of the indoor heat exchanger 20 is substantially integrated with the first heat exchanger 20A and the second heat exchanger 20B. Fulfill. Thereby, at the time of heating operation, the indoor heat exchanger 20 functions as a condenser, the outdoor heat exchanger 40 functions as an evaporator, and the room is heated. During the cooling operation, the outdoor heat exchanger 40 functions as a condenser, and the indoor heat exchanger 20 functions as an evaporator, thereby cooling the room.

一方、除湿運転時には、ドライ制御弁10は図1の絞り状態とされ、冷媒を絞る機能を果たす。この時の流路モードが冷房モードであれば、上流側(高圧側)の第1熱交換器20Aが凝縮器として機能し、下流側(低圧側)の第2熱交換器20Bが蒸発器として機能する。すなわち、凝縮器による加熱と、蒸発器による冷却・除湿により、室内の温度を下げずに湿度を下げることができる。なお、暖房モード時は(暖房ドライ湿運転)第1熱交換器20Aと第2熱交換器20Bの機能が逆になるだけである。   On the other hand, during the dehumidifying operation, the dry control valve 10 is in the throttled state shown in FIG. 1 and functions to throttle the refrigerant. If the flow path mode at this time is the cooling mode, the first heat exchanger 20A on the upstream side (high pressure side) functions as a condenser, and the second heat exchanger 20B on the downstream side (low pressure side) functions as an evaporator. Function. That is, the humidity can be lowered without lowering the room temperature by heating with the condenser and cooling / dehumidifying with the evaporator. In the heating mode (heating and wet operation), the functions of the first heat exchanger 20A and the second heat exchanger 20B are only reversed.

次にドライ制御弁10の構造及び動作について説明する。ドライ制御弁10は弁本体1と駆動部2を備え、弁本体1には円筒中空の弁室1aが形成され、弁室1aにはその側面に開口する第1ポート11と下面に開口する第2ポート12が形成され、第2ポート12の弁室1a側端部には主弁座1bが形成されている。第1ポート11には第1熱交換器20Aに接続される2本の第1継手管3,3が接続され、第2ポート12には第2熱交換器20Bに接続される2本の第2継手管4,4が接続される。   Next, the structure and operation of the dry control valve 10 will be described. The dry control valve 10 includes a valve main body 1 and a drive unit 2. The valve main body 1 is formed with a cylindrical hollow valve chamber 1 a, and the valve chamber 1 a has a first port 11 opened on a side surface thereof and a first port 11 opened on a lower surface thereof. Two ports 12 are formed, and a main valve seat 1b is formed at the end of the second port 12 on the valve chamber 1a side. Two first joint pipes 3, 3 connected to the first heat exchanger 20A are connected to the first port 11, and two second joint pipes connected to the second heat exchanger 20B are connected to the second port 12. Two joint pipes 4 and 4 are connected.

弁室1a内には切換弁13が摺動自在に配設され、この弁室1aの上端には静音フィルタ14aを収容するとともに開口14bが形成されたフィルタケース14が配設されている。切換弁13は空間P(圧力制御空間)を形成する上部円筒部13Aと、その下部の小径部13Bとで構成され、上部円筒部13A内に配設されたバネ16がフィルタケース14の周囲に当接され、このバネ16によって切換弁13は主弁座1b側に付勢されている。また、切換弁13の小径部13Bの下端周縁部はテーパ面13aとされ、切換弁13が着座時にテーパ面13aが主弁座1bに当接する。また、小径部13Bには水平な第1の固定絞り13bと、該固定絞り13bから上部円筒部13A内の空間Pに通じる第2の固定絞り13cとが形成されている。   A switching valve 13 is slidably disposed in the valve chamber 1a, and a filter case 14 is disposed at the upper end of the valve chamber 1a. The filter case 14 accommodates a silent filter 14a and has an opening 14b. The switching valve 13 includes an upper cylindrical portion 13A that forms a space P (pressure control space) and a small-diameter portion 13B below the upper cylindrical portion 13A. A spring 16 disposed in the upper cylindrical portion 13A is provided around the filter case 14. The switching valve 13 is urged by the spring 16 toward the main valve seat 1b. Further, the peripheral edge of the lower end of the small diameter portion 13B of the switching valve 13 is a tapered surface 13a, and the tapered surface 13a contacts the main valve seat 1b when the switching valve 13 is seated. The small diameter portion 13B is formed with a horizontal first fixed aperture 13b and a second fixed aperture 13c that leads from the fixed aperture 13b to the space P in the upper cylindrical portion 13A.

駆動部2は、弁本体1に固着された下ケース2Aと該下ケース2Aの上端を封止する略円筒状の上ケース2Bとを備えている。下ケース2A及び上ケース2B内には軸受部材21が配設されている。この軸受け部材21は、下ケース2Aの下端面2aとの間に静音フィルタ22を介装させて、下ケース2Aの上部内周面において固着されている。そして、下ケース2A内において、軸受け部材21及び静音フィルタ22の外周に空間K(圧力制御空間)が形成されている。下ケース2Aの下端面2aの一部には開口2bが形成され、弁本体1の内部には上記開口2bと第2ポート12とを導通する導管15が形成ている。これにより、第2ポート12と空間Kとは導通される。   The drive unit 2 includes a lower case 2A fixed to the valve body 1 and a substantially cylindrical upper case 2B that seals the upper end of the lower case 2A. A bearing member 21 is disposed in the lower case 2A and the upper case 2B. The bearing member 21 is fixed to the upper inner peripheral surface of the lower case 2A with a noise filter 22 interposed between the lower case 2A and the lower end surface 2a. In the lower case 2 </ b> A, a space K (pressure control space) is formed on the outer periphery of the bearing member 21 and the silent filter 22. An opening 2 b is formed in a part of the lower end surface 2 a of the lower case 2 A, and a conduit 15 that connects the opening 2 b and the second port 12 is formed inside the valve body 1. As a result, the second port 12 and the space K are electrically connected.

上ケース2Aの内部には、マグネット製のロータ23が配設され、このロータ23は雄ネジ24aを有するシャフト24に取付られ、シャフト24は、軸受け部材21の中央に形成された雌ネジ部21aに雄ネジ24aを螺合させて、該軸受け部材21で軸支されている。そして、上ケース2Bの外周には駆動コイル25が配設されており、このコイル25、ロータ23及びシャフト24によりステッピングモータ70が構成されている。また、シャフト24の上端には円筒形の回転ストッパ31が回転自在に軸支されるとともに、上ケース2Bの内側一箇所に固定ストッパ32が垂下されている。図2(B) に示したように、回転ストッパ31は外周部の1箇所の内側と外側に縦の突起31a,31bが形成されている。ロータ23の外周部の一箇所の内側に縦の突起23aが形成されており、このロータ23の突起23aは回転ストッパ31の外側の突起31bに当接し、回転ストッパ31の内側の突起31aは固定ストッパ32に当接する構成になっている。したがって、ロータ23は図2(B) の状態からは反時計回りに略2回転して止まる。すなわち、ロータ23は正逆方向にそれぞれ略2回転の範囲で回動が可能となる。   Inside the upper case 2A, a rotor 23 made of magnet is disposed. The rotor 23 is attached to a shaft 24 having a male screw 24a. The shaft 24 is a female screw portion 21a formed at the center of the bearing member 21. A male screw 24 a is screwed onto the shaft and is supported by the bearing member 21. A drive coil 25 is disposed on the outer periphery of the upper case 2 </ b> B, and the coil 25, the rotor 23, and the shaft 24 constitute a stepping motor 70. A cylindrical rotary stopper 31 is rotatably supported at the upper end of the shaft 24, and a fixed stopper 32 is suspended at one place inside the upper case 2B. As shown in FIG. 2 (B), the rotation stopper 31 is formed with vertical protrusions 31a and 31b on one inside and outside of the outer peripheral portion. A vertical protrusion 23a is formed on one inner side of the outer peripheral portion of the rotor 23. The protrusion 23a of the rotor 23 abuts on the protrusion 31b on the outer side of the rotation stopper 31, and the protrusion 31a on the inner side of the rotation stopper 31 is fixed. It is configured to abut against the stopper 32. Therefore, the rotor 23 stops approximately two counterclockwise rotations from the state of FIG. That is, the rotor 23 can be rotated in the range of approximately two rotations in the forward and reverse directions.

軸受け部材21の雌ネジ部21aの下部には円筒状のシリンダ部21bが形成され、このシリンダ部21b内に「絞り弁」としてのニードル弁26が配設されている。ニードル弁26は下端部にニードル26aを有するとともに、その上部は円筒部とされその内部にバネ27が配設されている。また、円筒部内にはリング状のストッパ26bが配設されている。一方、シャフト24の下部には括れ部24bが形成されており、この括れ部24bとストッパ26bを介して、シャフト24とニードル弁26が連結されている。また、ニードル弁26のニードル26aは、下ケース2Aの中央に形成された可変絞り孔28内に挿入される。   A cylindrical cylinder portion 21b is formed below the female screw portion 21a of the bearing member 21, and a needle valve 26 as a “throttle valve” is disposed in the cylinder portion 21b. The needle valve 26 has a needle 26a at a lower end portion, and an upper portion thereof is a cylindrical portion, and a spring 27 is disposed therein. A ring-shaped stopper 26b is disposed in the cylindrical portion. On the other hand, a constricted portion 24b is formed at the lower portion of the shaft 24, and the shaft 24 and the needle valve 26 are connected via the constricted portion 24b and a stopper 26b. The needle 26a of the needle valve 26 is inserted into a variable throttle hole 28 formed in the center of the lower case 2A.

以上の構成により、ドライ制御弁10は次のように動作する。ステッピングモータ70を駆動することにより、その回転方向に応じてシャフト24及びニードル弁26が昇降し、ニードル26aと可変絞り孔28が開閉される。詳細には、図1の状態ではニードル26aは可変絞り孔28を閉じているが、この状態からシャフト24が上昇する場合、初めはバネ27の付勢力によりニードル弁26は可変絞り孔28を閉じた状態を維持する。シャフト24が上昇して括れ部24bの下端がストッパ26bの位置に達するとニードル弁26はシャフト24と伴に上昇し、ニードル24aが可変絞り孔28から離れる。そして、この位置からのステッピングモータ70の回転角度を制御することによりニードル26aと可変絞り孔28との間隙を調整することができ、間隙を通過する冷媒の量を制御することができる。このように、ニードル弁26と可変絞り孔28は「可変絞り部」を構成している。   With the above configuration, the dry control valve 10 operates as follows. By driving the stepping motor 70, the shaft 24 and the needle valve 26 are moved up and down according to the rotation direction, and the needle 26a and the variable throttle hole 28 are opened and closed. Specifically, in the state of FIG. 1, the needle 26 a closes the variable throttle hole 28, but when the shaft 24 rises from this state, the needle valve 26 initially closes the variable throttle hole 28 by the biasing force of the spring 27. Maintain the state. When the shaft 24 rises and the lower end of the constricted portion 24b reaches the position of the stopper 26b, the needle valve 26 rises together with the shaft 24, and the needle 24a moves away from the variable throttle hole 28. The gap between the needle 26a and the variable throttle hole 28 can be adjusted by controlling the rotation angle of the stepping motor 70 from this position, and the amount of refrigerant passing through the gap can be controlled. Thus, the needle valve 26 and the variable throttle hole 28 constitute a “variable throttle portion”.

ここで、ステッピングモータ70の回転範囲は、前述のようにロータ23の略2回転の範囲であり、図2(B) の状態で可変絞り孔28が全閉となり、図2(B) において反時計回りに回って、可変絞り孔28が次第に開となる。そして、この略2回転の範囲のうち、図2(B) の位置から途中までの所定の範囲において冷媒の流量制御を行う。それ以外の範囲は空間Pと空間Kとを均圧する全開あるいは全開に近い制御範囲である。なお、この可変絞り孔28が全開の状態も、請求項の実施形態として、可変絞り部の絞り量により圧力制御空間(空間Pと空間K)の圧力を制御していることにはかわりはない。   Here, the rotation range of the stepping motor 70 is the range of approximately two rotations of the rotor 23 as described above, and the variable throttle hole 28 is fully closed in the state of FIG. 2 (B). By turning clockwise, the variable throttle hole 28 is gradually opened. Then, the flow rate control of the refrigerant is performed within a predetermined range from the position shown in FIG. The other range is a fully open range in which the space P and the space K are equalized or a control range close to fully open. Note that the state in which the variable throttle hole 28 is fully opened is not changed in that the pressure in the pressure control space (space P and space K) is controlled by the throttle amount of the variable throttle portion as an embodiment of the claims. .

また、切換弁13は弁本体1の弁室1a内で昇降可能であるが、後述のように、空間Pの圧力、第1ポート11の圧力、第2ポート12の圧力、及びバネ16のバネ力に応じて、切換弁13は主弁座1bに対して着座または離座し、着座すると絞り状態となり、離座すると開弁状態となる。   Further, the switching valve 13 can be moved up and down in the valve chamber 1a of the valve body 1. As will be described later, the pressure of the space P, the pressure of the first port 11, the pressure of the second port 12, and the spring of the spring 16 are used. In response to the force, the switching valve 13 is seated or separated from the main valve seat 1b.

図1の状態では、第1継手管3が高圧側で第2継手管4が低圧側となり、冷房除湿運転を行おうとしている。そして、冷媒は第1継手管3からドライ制御弁10に流入して第2継手管4から流出する。可変絞り孔28(可変絞り部)は閉じているので、切換弁13は主弁座1bに着座している。可変絞り孔28を開いていくと、冷媒は、固定絞り13b,13c→空間P→静音フィルタ14a→可変絞り孔28→静音フィルタ22→空間K→導管15→第2継手管4と流れて、冷房ドライ運転となる。このとき、可変絞り孔28とニードル26aとの間隙を調整して、ドライ流量制御が可能である。   In the state of FIG. 1, the first joint pipe 3 is on the high pressure side and the second joint pipe 4 is on the low pressure side, and the cooling and dehumidifying operation is about to be performed. Then, the refrigerant flows from the first joint pipe 3 into the dry control valve 10 and flows out from the second joint pipe 4. Since the variable throttle hole 28 (variable throttle portion) is closed, the switching valve 13 is seated on the main valve seat 1b. As the variable throttle hole 28 is opened, the refrigerant flows through the fixed throttles 13b, 13c → space P → silent filter 14a → variable throttle hole 28 → silent filter 22 → space K → conduit 15 → second joint pipe 4; Cooling dry operation. At this time, it is possible to control the dry flow rate by adjusting the gap between the variable throttle hole 28 and the needle 26a.

冷房運転に戻すときは可変絞り孔28を全開にする。これにより、空間Pの圧力が第2継手管4の圧力(低圧)に近くなって、第1ポート11側(高圧)の圧力と空間Pの圧力の差圧により、切換弁13は主弁座1bから離座し、開弁状態となる。冷房から除湿運転にするにときは、再度、可変絞り孔28を一旦閉じる。これにより、固定絞り13b,13cを介して空間Pの圧力が高圧となり、バネ16の付勢力により切換弁13が主弁座1bに着座し、絞り状態となる。   When returning to the cooling operation, the variable throttle hole 28 is fully opened. As a result, the pressure in the space P becomes close to the pressure (low pressure) of the second joint pipe 4, and the switching valve 13 is moved to the main valve seat by the differential pressure between the pressure on the first port 11 side (high pressure) and the pressure in the space P. It leaves from 1b and it will be in a valve opening state. When switching from cooling to dehumidifying operation, the variable throttle hole 28 is once closed again. As a result, the pressure in the space P becomes high via the fixed throttles 13b and 13c, and the switching valve 13 is seated on the main valve seat 1b by the urging force of the spring 16, and the throttle state is established.

暖房運転と暖房除湿運転の切換は次のようにする。暖房モードでは、流路切換弁50により冷凍サイクル100の流路が逆になるので、第1継手管3が低圧側で第2継手管4が高圧側になる。したがって、可変絞り部の制御が逆になる。可変絞り孔28を全開にすると、空間Pのの圧力が第2継手管4の圧力(高圧)に近くなって切換弁13は主弁座1bに着座し、絞り状態となる。したがって、冷媒は、第2継手管4→導管15→空間K→静音フィルタ22→可変絞り孔28→静音フィルタ14a→空間P→固定絞り13c,13b→第1継手管3と流れて、暖房除湿運転となる、この場合も可変絞り部によって流量制御が可能である。   Switching between heating operation and heating dehumidification operation is performed as follows. In the heating mode, the flow path switching valve 50 reverses the flow path of the refrigeration cycle 100, so that the first joint pipe 3 is on the low pressure side and the second joint pipe 4 is on the high pressure side. Therefore, the control of the variable aperture section is reversed. When the variable throttle hole 28 is fully opened, the pressure in the space P becomes close to the pressure (high pressure) in the second joint pipe 4, and the switching valve 13 is seated on the main valve seat 1b and is in the throttle state. Accordingly, the refrigerant flows through the second joint pipe 4 → conduit 15 → space K → silent filter 22 → variable throttle hole 28 → silent filter 14a → space P → fixed throttles 13c and 13b → first joint pipe 3 to heat and dehumidify. In this case as well, the flow rate can be controlled by the variable throttle.

暖房運転にに戻すには可変絞り孔28を閉じる。これにより、空間Pの圧力が第1継手管3の圧力(低圧)に近くなって、第2ポート12側(高圧)の圧力と空間Pの圧力の差圧により、切換弁13は主弁座1bから離座し、開弁状態となる。   To return to the heating operation, the variable throttle hole 28 is closed. As a result, the pressure in the space P becomes close to the pressure (low pressure) of the first joint pipe 3, and the switching valve 13 is moved to the main valve seat by the differential pressure between the pressure on the second port 12 side (high pressure) and the pressure in the space P. It leaves from 1b and it will be in a valve opening state.

このように、可変絞り孔28の上下に作用する圧力は切換弁の動作に必要な小さな差圧でよく、また可変絞り孔28の断面積が小さいので、ニードル弁26に働く差圧抗力は小さい。したがって、ステッピングモータ70は小さなモータでよい。また、切換弁13が可変絞り部によるパイロット駆動なので主弁座1bの径を大きくしても、駆動力を増大させる必要がない。したがって、冷暖房運転時には圧力損失が少なく、冷媒流量制御が可能な冷暖房除湿制御が可能で、かつ除湿運転時には音の静かな小形のドライ制御弁が得られる。   Thus, the pressure acting above and below the variable throttle hole 28 may be a small differential pressure required for the operation of the switching valve, and the sectional area of the variable throttle hole 28 is small, so that the differential pressure resistance acting on the needle valve 26 is small. . Therefore, the stepping motor 70 may be a small motor. Further, since the switching valve 13 is pilot driven by the variable throttle portion, it is not necessary to increase the driving force even if the diameter of the main valve seat 1b is increased. Therefore, it is possible to obtain a small dry control valve that has low pressure loss during the cooling and heating operation, can perform the cooling and heating dehumidification control capable of controlling the refrigerant flow rate, and has a quiet sound during the dehumidifying operation.

なお、切換弁13の着座条件は、次式(1)である。   In addition, the seating conditions of the switching valve 13 are following Formula (1).

Figure 2005274102
Figure 2005274102

但し、P1、P2、Ppは、それぞれ継手管1の圧力、継手管2の圧力、空間Pの圧力であり、Apは空間Pの水平断面積、Avは弁座の水平断面積である。また、Fはバネ16のバネ力である。したがって、可変絞り部によって、Ppを制御すれば切換弁13の開閉を行うことができる。   However, P1, P2, and Pp are the pressure of the joint pipe 1, the pressure of the joint pipe 2, and the pressure of the space P, respectively, Ap is the horizontal sectional area of the space P, and Av is the horizontal sectional area of the valve seat. F is the spring force of the spring 16. Therefore, the switching valve 13 can be opened and closed if Pp is controlled by the variable throttle.

なお、空気調和機の室内熱交換器は圧力損失を小さくするために、冷媒配管は2パスになっている。したがって、実施形態のドライ制御弁10の第1継手管3,3、第2継手管4,4のように冷媒配管接続を2つ設けることは、室内機の省スペース、省コストに貢献する。   The indoor heat exchanger of the air conditioner has two passes for the refrigerant piping in order to reduce pressure loss. Therefore, providing two refrigerant pipe connections like the first joint pipes 3 and 3 and the second joint pipes 4 and 4 of the dry control valve 10 of the embodiment contributes to space saving and cost saving of the indoor unit.

本発明の実施形態の冷媒流量制御弁の構造と該冷媒流量制御弁を適用した空気調和機の要部を示す図である。It is a figure which shows the principal part of the structure of the refrigerant | coolant flow control valve of embodiment of this invention, and the air conditioner to which this refrigerant | coolant flow control valve is applied. (A) は図1のA−A矢視図(底面図)及び(B) はC−C矢視断面図である。(A) is an AA arrow view (bottom view) of FIG. 1, and (B) is CC arrow sectional drawing.

符号の説明Explanation of symbols

1 弁本体
2 駆動部
3 第1継手管
4 第2継手管
1a 弁室
11 第1ポート
12 第2ポート
1b 主弁座
13 切換弁
14a 静音フィルタ
15 導管
24 シャフト
23 ロータ
25 コイル
26 ニードル弁
26a ニードル
28 可変絞り孔
DESCRIPTION OF SYMBOLS 1 Valve body 2 Drive part 3 1st joint pipe 4 2nd joint pipe 1a Valve chamber 11 1st port 12 2nd port 1b Main valve seat 13 Switching valve 14a Silent filter 15 Conduit 24 Shaft 23 Rotor 25 Coil 26 Needle valve 26a Needle 28 Variable throttle holes

Claims (5)

切換弁を駆動して、2つのポート間を均圧して冷媒を通す開弁状態と、冷媒の膨張を行うための絞り状態とを切換え制御する方法であって、
冷媒流量制御を行う可変絞り弁を用いて、圧力制御空間の圧力を制御して、切換弁の開閉を行うことを特徴とする、切換弁開閉方法。
A method for switching and controlling a valve opening state in which a switching valve is driven to equalize pressure between two ports and a refrigerant is allowed to pass, and a throttle state for performing expansion of the refrigerant,
A switching valve opening and closing method, wherein a variable throttle valve that performs refrigerant flow rate control is used to control the pressure in a pressure control space to open and close the switching valve.
切換弁を駆動して、2つのポート間を均圧して冷媒を通す開弁状態と、冷媒の膨張を行うための絞り状態とを切換え制御する冷媒流量制御弁であって、
第1ポートと第2ポートとが形成された弁室と、
該弁室内に配設され、前記第2ポート側に形成された弁座に着座して該第2ポートと前記第1ポートとを遮蔽し、該弁座から離間して該第2ポートと該第1ポートとを導通する切換弁と、
該切換弁に形成され、該切換弁により前記弁座と反対側に隔成される圧力制御空間と前記第1ポートとの間で冷媒の流れを絞る固定絞り部と、
前記圧力制御空間に導通可能に配設されるとともに導管により前記第2ポートと連通され、絞り弁により該圧力制御空間と該導管との間で冷媒の流れを可変に絞る可変絞り部と、
前記絞り弁を駆動して該可変絞り部の絞り量を制御するモータとを備え、
前記可変絞り部の絞り量により前記圧力制御空間の圧力を制御し、該圧力制御空間と前記第1ポートとの差圧、該圧力制御空間と前記第2ポートとの差圧を制御して、前記切換弁の着座/離間を切換えるようにしたことを特徴とする冷媒流量制御弁。
A refrigerant flow rate control valve that controls a switching between a valve opening state in which a switching valve is driven to equalize pressure between two ports to pass the refrigerant and a throttle state for expansion of the refrigerant;
A valve chamber in which a first port and a second port are formed;
The second port is disposed in the valve chamber and is seated on a valve seat formed on the second port side to shield the second port and the first port, and the second port and the second port are separated from the valve seat. A switching valve for conducting the first port;
A fixed restricting portion for restricting a refrigerant flow between the first port and a pressure control space formed on the switching valve and separated by the switching valve on the side opposite to the valve seat;
A variable throttle portion that is arranged to be conductive to the pressure control space and communicates with the second port by a conduit, and variably restricts the flow of the refrigerant between the pressure control space and the conduit by a throttle valve;
A motor for controlling the throttle amount of the variable throttle unit by driving the throttle valve;
Controlling the pressure of the pressure control space by the amount of restriction of the variable restrictor, controlling the pressure difference between the pressure control space and the first port, and the pressure difference between the pressure control space and the second port; A refrigerant flow control valve characterized in that seating / separation of the switching valve is switched.
前記絞り部の前記圧力制御空間側と前記導管側とに静音フィルタを備えたことを特徴とする請求項2記載の冷媒流量制御弁。   The refrigerant flow control valve according to claim 2, further comprising a silent filter on the pressure control space side and the conduit side of the throttle portion. 前記導管を、前記弁室を構成する本体ケース内に形成したことを特徴とする請求項2または3記載の冷媒流量制御弁。   The refrigerant flow control valve according to claim 2 or 3, wherein the conduit is formed in a main body case constituting the valve chamber. 前記第1ポートに連通される継手管と、前記第2ポートに連通される継手管とを、それぞれ2本としたことを特徴とする請求項2、3または4記載の冷媒流量制御弁。   5. The refrigerant flow control valve according to claim 2, wherein two joint pipes communicated with the first port and two joint pipes communicated with the second port.
JP2004091697A 2004-03-26 2004-03-26 Selector valve opening/closing method and refrigerant flow control valve Withdrawn JP2005274102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004091697A JP2005274102A (en) 2004-03-26 2004-03-26 Selector valve opening/closing method and refrigerant flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004091697A JP2005274102A (en) 2004-03-26 2004-03-26 Selector valve opening/closing method and refrigerant flow control valve

Publications (1)

Publication Number Publication Date
JP2005274102A true JP2005274102A (en) 2005-10-06

Family

ID=35173966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004091697A Withdrawn JP2005274102A (en) 2004-03-26 2004-03-26 Selector valve opening/closing method and refrigerant flow control valve

Country Status (1)

Country Link
JP (1) JP2005274102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100916A (en) * 2009-11-01 2013-05-23 Zhejiang Sanhua Climate & Appliance Controls Group Co Ltd Flow path opening/closing control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100916A (en) * 2009-11-01 2013-05-23 Zhejiang Sanhua Climate & Appliance Controls Group Co Ltd Flow path opening/closing control device

Similar Documents

Publication Publication Date Title
JP5390181B2 (en) Expansion valve, heat pump refrigeration cycle and air conditioner
US20220196160A1 (en) 3-2 way expansion valve
JP3145048U (en) Electric expansion valve and refrigeration cycle
JP6968768B2 (en) Electric valve and refrigeration cycle system
JP5645437B2 (en) Channel switching valve, switching valve main body used for channel switching valve, and heat pump device using the same
JP4570484B2 (en) Composite valve, heat pump type air conditioner and control method thereof
JP5620833B2 (en) 3-way solenoid valve
JP4056378B2 (en) Differential pressure valve
JP4897428B2 (en) Differential pressure control valve and air conditioner
JP2024010029A (en) Motor-operated valve and refrigeration cycle system
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP2006266568A (en) Expansion valve
JP2005274102A (en) Selector valve opening/closing method and refrigerant flow control valve
JP2006349274A (en) Throttle device, flow control valve and air conditioner incorporating them
JP2005256853A (en) Flow passage change-over valve
JP2004108764A (en) Electric expansion valve and freezer
KR20230110435A (en) Direction switch valve
JP7107881B2 (en) Electric valve and refrigeration cycle system
JP2012002282A (en) Three-way solenoid valve
JP2008051147A (en) Flow control valve and air conditioner incorporating this
JP2002350003A (en) Air conditioner
JP2002295694A (en) Motor-operated valve
JPS63275865A (en) Double stage reducing valve
JP4319100B2 (en) Solenoid expansion valve
JP2004093016A (en) Expansion valve and refrigeration device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605