JP2005272632A - Silyl group-containing iodized epoxy compound and method for producing the same - Google Patents

Silyl group-containing iodized epoxy compound and method for producing the same Download PDF

Info

Publication number
JP2005272632A
JP2005272632A JP2004087815A JP2004087815A JP2005272632A JP 2005272632 A JP2005272632 A JP 2005272632A JP 2004087815 A JP2004087815 A JP 2004087815A JP 2004087815 A JP2004087815 A JP 2004087815A JP 2005272632 A JP2005272632 A JP 2005272632A
Authority
JP
Japan
Prior art keywords
iodinated
epoxy compound
group
general formula
silyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004087815A
Other languages
Japanese (ja)
Inventor
Hidefumi Nakamura
英史 中村
Makoto Nakao
眞 中尾
Hideki Nakagawa
秀樹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
AGC Inc
Ise Chemicals Corp
Original Assignee
Asahi Fiber Glass Co Ltd
Asahi Glass Co Ltd
Ise Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd, Asahi Glass Co Ltd, Ise Chemicals Corp filed Critical Asahi Fiber Glass Co Ltd
Priority to JP2004087815A priority Critical patent/JP2005272632A/en
Publication of JP2005272632A publication Critical patent/JP2005272632A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a silyl group-containing iodized epoxy compound which is an iodine-containing compound having little change in hue and suitable as a flame retardant capable of replacing a bromine-based flame retardant, and to provide a method for producing the epoxy compound. <P>SOLUTION: The silyl group-containing iodized epoxy compound has a structure represented by formula (1) [wherein A is a divalent group represented by formula (2) (wherein 1≤p+q≤12 and I is an iodine atom and (m) and (n) are each independently an integer of 1 or 2); R<SP>1</SP>, R<SP>2</SP>and R<SP>3</SP>are each independently a 1-4C alkyl group or alkoxy group which may have a substituent group; (p) is an integer of 0-12 and (q) is an integer of 1-12]. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規なシリル基含有ヨウ素化エポキシ化合物及びその製造方法に関する。   The present invention relates to a novel silyl group-containing iodinated epoxy compound and a method for producing the same.

樹脂を難燃化するための難燃剤としては、すでに多くの化合物が知られている。例えば、臭素原子を含有する臭素系難燃剤としては、脂肪族系、ビスフェノール系、フェノール系、芳香族系、ビフェニル系、カルボン酸系、エポキシ系、イミド系、アクリル系などの種類があり、これら臭素系難燃剤は電気、電子機器等において広く使用されている(例えば、特許文献1又は2参照。)。   Many compounds are already known as flame retardants for flame-retarding resins. For example, brominated flame retardants containing bromine atoms include aliphatic, bisphenol, phenol, aromatic, biphenyl, carboxylic acid, epoxy, imide, and acrylic types. Brominated flame retardants are widely used in electrical and electronic equipment (see, for example, Patent Document 1 or 2).

しかし、臭素系難燃剤は塩素系難燃剤等と比較すると環境への負荷は小さいと考えられるものの、近年、その使用は規制される傾向にあり、臭素系難燃剤に代わる新規な難燃剤の開発が望まれている。
特開昭54−15954号公報 特開平4−11652号公報
However, although brominated flame retardants are considered to have a lower environmental impact than chlorinated flame retardants, their use has been tended to be regulated in recent years, and the development of new flame retardants to replace brominated flame retardants Is desired.
Japanese Patent Laid-Open No. 54-15594 JP-A-4-11652

ヨウ素含有化合物は、臭素系難燃剤等の従来のハロゲン系の難燃剤と同様の作用によって難燃化の効果を奏することが期待され、臭素系難燃剤を代替し得ると考えられる。しかし、従来知られているヨウ素含有化合物の場合、樹脂と混合させて加熱しながら混錬したときに樹脂が着色しやすく、樹脂成形体等における色相変化が大きいことを本発明者らは見出している。この問題のために、ヨウ素含有化合物を難燃剤として実用化することは、極めて困難と考えられた。   Iodine-containing compounds are expected to have a flame-retarding effect by the same action as conventional halogen-based flame retardants such as brominated flame retardants, and are considered to be able to replace brominated flame retardants. However, in the case of conventionally known iodine-containing compounds, the present inventors have found that the resin is easy to be colored when mixed with the resin and heated and kneaded, and that the hue change in the resin molded body is large. Yes. Because of this problem, it was considered extremely difficult to put iodine-containing compounds into practical use as flame retardants.

一方、臭素系難燃剤を代替する他の難燃剤として、例えばリン系難燃剤等の非ハロゲン系の難燃剤が知られているが、用途によっては、臭素系難燃剤を非ハロゲン系の難燃剤だけで代替することが困難な場合がある。   On the other hand, as other flame retardants that replace brominated flame retardants, for example, non-halogen flame retardants such as phosphorus flame retardants are known, but depending on the application, brominated flame retardants may be used as non-halogen flame retardants. It may be difficult to just substitute.

そこで、本発明は、色相変化が少なく、臭素系難燃剤を代替し得る難燃剤として好適なヨウ素含有化合物である、シリル基含有ヨウ素化エポキシ化合物及びその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a silyl group-containing iodinated epoxy compound and a method for producing the same, which are iodine-containing compounds that are suitable as flame retardants that have little hue change and can replace brominated flame retardants.

上記課題を解決するため、本発明は、下記一般式(1)で表される構造を有するシリル基含有ヨウ素化エポキシ化合物を提供する。   In order to solve the above problems, the present invention provides a silyl group-containing iodinated epoxy compound having a structure represented by the following general formula (1).

Figure 2005272632
[式中、Aは下記一般式(2)で表される2価の基、R、R及びRはそれぞれ独立に置換基を有していてもよい炭素数1〜4のアルキル基又はアルコキシ基、pは0〜12の整数、qは1〜12の整数、をそれぞれ示す。
Figure 2005272632
但し、1≦p+q≦12であり、Iはヨウ素原子を示し、m及びnはそれぞれ独立に1又は2の整数を示す。]
Figure 2005272632
[Wherein, A is a divalent group represented by the following general formula (2), R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 4 carbon atoms which may have a substituent. Or an alkoxy group, p represents an integer of 0 to 12, and q represents an integer of 1 to 12, respectively.
Figure 2005272632
However, it is 1 <= p + q <= 12, I shows an iodine atom, m and n show the integer of 1 or 2 each independently. ]

このシリル基含有ヨウ素化エポキシ化合物は、ヨウ素原子を含有することによって難燃化効果を発現する。また、分子量が比較的大きいこと、及び、水酸基の含有量を減少させた構造であることによって、その分解温度が高められ、他の樹脂と混合したときの色相変化を抑制する効果が得られたと考えられる。また、水酸基を保護する基をシリル基としたことにより、ヨウ素化エポキシ化合物による難燃性向上の効果を著しく損なうことなく、上記のような色相変化抑制の効果が得られる。   This silyl group-containing iodinated epoxy compound exhibits a flame-retarding effect by containing iodine atoms. In addition, due to the relatively large molecular weight and the structure with a reduced content of hydroxyl groups, the decomposition temperature was increased, and the effect of suppressing hue change when mixed with other resins was obtained. Conceivable. Moreover, by using a silyl group as the group for protecting the hydroxyl group, the above-described effect of suppressing hue change can be obtained without significantly impairing the effect of improving the flame retardancy by the iodinated epoxy compound.

ヨウ素含有化合物としては、従来、下記一般式(5)で表される構造を有するヨウ素化ビスフェノール化合物が知られていたが、この化合物は、樹脂の色相変化が大きく、実用的には難燃剤としての適用が困難なものであった。   As an iodine-containing compound, an iodinated bisphenol compound having a structure represented by the following general formula (5) has been conventionally known. However, this compound has a large change in hue of a resin and is practically used as a flame retardant. The application of was difficult.

Figure 2005272632
[式中、Iはヨウ素原子を示し、m及びnはそれぞれ独立に1又は2の整数を示す。]
Figure 2005272632
[Wherein, I represents an iodine atom, and m and n each independently represents an integer of 1 or 2. ]

本発明者は、この色相変化は、ヨウ素化ビスフェノール化合物が加熱されたときにその一部が分解して、ヨウ素原子がヨウ化水素等として遊離してしまうことに起因すると考え、その分解を抑制するために、これをエピハロヒドリンと反応させて、下記一般式(3)で表される構造を有するヨウ素化エポキシ化合物を難燃剤として用いることを検討した。   The present inventor believes that this hue change is caused by a part of the iodinated bisphenol compound being decomposed when heated, and the iodine atoms are liberated as hydrogen iodide, etc. In order to do this, this was reacted with epihalohydrin, and the use of an iodinated epoxy compound having a structure represented by the following general formula (3) as a flame retardant was examined.

Figure 2005272632
[式中、Aは上記一般式(2)で表される2価の基、rは1〜12の整数、をそれぞれ示す。]
Figure 2005272632
[Wherein, A represents a divalent group represented by the general formula (2), and r represents an integer of 1 to 12, respectively. ]

ところが、上記ヨウ素化エポキシ化合物は、色相変化が改善されるもののまだ充分でなく、さらなる改良が必要であることが明らかとなった。そこで、この知見を基にさらなる検討を重ねた結果、上記ヨウ素化エポキシ化合物にさらにシリル基を導入した構造を有する、上記一般式(1)で表される構造を有するシリル基含有エポキシ化合物が、各種樹脂に添加したときの色相変化も充分に抑制されることを本発明者は見出し、上記本発明の完成に至った。   However, although the above-mentioned iodinated epoxy compound is improved in hue change, it is still not sufficient, and it has become clear that further improvement is necessary. Therefore, as a result of repeated studies based on this knowledge, a silyl group-containing epoxy compound having a structure represented by the above general formula (1) having a structure in which a silyl group is further introduced into the iodinated epoxy compound, The present inventor has found that the change in hue when added to various resins is sufficiently suppressed, and the present invention has been completed.

上記シリル基含有ヨウ素化化合物は、上記ヨウ素化エポキシ化合物における水酸基の多くが、シリル基の導入によって保護された構造を有している。上記ヨウ素化エポキシ化合物の水酸基は、脂肪族系の水酸基であり、芳香族系の水酸基(フェノール性水酸基)と比較してその反応性は低い。また、この水酸基は立体障害の点からも、通常、分解反応等には関与し難いと考えられる。しかし、上記シリル基含有エポキシ化合物は、上記ヨウ素化エポキシ化合物と比較して色相変化が著しく改善されることから、予想に反して、この脂肪族系の水酸基が色相変化に大きく関与していると本発明者は推察している。このような点から、上記シリル基含有エポキシ化合物が含有する水酸基は少ないほうが好ましく、上記一般式(1)におけるq/(p+q)の値(以下、「シリル化率」という。)が0.9〜1の範囲内であることが好ましい。   The silyl group-containing iodinated compound has a structure in which many of the hydroxyl groups in the iodinated epoxy compound are protected by introduction of a silyl group. The hydroxyl group of the iodinated epoxy compound is an aliphatic hydroxyl group, and its reactivity is low compared to an aromatic hydroxyl group (phenolic hydroxyl group). In addition, this hydroxyl group is generally considered to be hardly involved in a decomposition reaction or the like from the viewpoint of steric hindrance. However, the silyl group-containing epoxy compound has a significantly improved hue change compared to the iodinated epoxy compound, and contrary to expectations, this aliphatic hydroxyl group is greatly involved in the hue change. The inventor has inferred. From this point, it is preferable that the silyl group-containing epoxy compound contains fewer hydroxyl groups, and the value of q / (p + q) in the general formula (1) (hereinafter referred to as “silylation rate”) is 0.9. It is preferable to be within the range of ˜1.

また、上記一般式(1)においては、R、R及びRがメチル基であることが、難燃化の効果の点、樹脂への分散性の点等から好ましい。 In the general formula (1), R 1 , R 2, and R 3 are preferably methyl groups from the viewpoint of flame retardancy and dispersibility in the resin.

本発明の難燃剤は、上記本発明のシリル基含有エポキシ化合物からなるものであって、優れた難燃化効果を奏し、樹脂と混錬したときの着色も少ない。   The flame retardant of the present invention is composed of the silyl group-containing epoxy compound of the present invention, exhibits an excellent flame retarding effect, and is less colored when kneaded with a resin.

本発明はまた、上記一般式(3)で表される構造を有するヨウ素化エポキシ化合物を提供する。このヨウ素化エポキシ化合物は、下記本発明の製造方法を採用してシリル基含有エポキシ化合物を合成するための中間体として、有用な化合物である。   The present invention also provides an iodinated epoxy compound having a structure represented by the general formula (3). This iodinated epoxy compound is a useful compound as an intermediate for synthesizing a silyl group-containing epoxy compound by employing the following production method of the present invention.

本発明のシリル基含有ヨウ素化エポキシ化合物の製造方法は、上記一般式(3)で表される構造を有するヨウ素化エポキシ化合物に、下記一般式(4)で表される構造を有するケイ素化合物を反応させる工程を備えることを特徴とする。この方法によって、水酸基の部分に効率的にシリル基が導入され、上記一般式(1)で表される構造を有する本発明のシリル基含有ヨウ素化エポキシ化合物が得られる。

Figure 2005272632
[式中、Xは加水分解性基、R、R及びRはそれぞれ独立に置換基を有していてもよい炭素数1〜4のアルキル基又はアルコキシ基、をそれぞれ示す。] In the method for producing a silyl group-containing iodinated epoxy compound of the present invention, a silicon compound having a structure represented by the following general formula (4) is added to the iodinated epoxy compound having a structure represented by the above general formula (3). It has the process made to react, It is characterized by the above-mentioned. By this method, a silyl group is efficiently introduced into the hydroxyl portion, and the silyl group-containing iodinated epoxy compound of the present invention having the structure represented by the general formula (1) is obtained.
Figure 2005272632
[Wherein, X represents a hydrolyzable group, and R 1 , R 2, and R 3 each independently represent a C 1-4 alkyl group or alkoxy group that may have a substituent. ]

また、本発明は、上記一般式(5)で表される構造を有するヨウ素化ビスフェノール化合物に、エピハロヒドリンを反応させる工程を備えることを特徴とする、上記一般式(3)で表される構造を有するヨウ素化エポキシ化合物の製造方法を提供する。この方法により、上記一般式(3)で表される構造を有するヨウ素化エポキシ化合物が効率的且つ確実に得られ、これを加水分解性基を有するケイ素化合物と反応させること等により、シリル基含有ヨウ素化エポキシ化合物を得ることができる。   Moreover, this invention comprises the process of making an epihalohydrin react with the iodinated bisphenol compound which has a structure represented by the said General formula (5), The structure represented by the said General formula (3) characterized by the above-mentioned. A method for producing an iodinated epoxy compound is provided. By this method, an iodinated epoxy compound having a structure represented by the above general formula (3) can be obtained efficiently and reliably, and by reacting it with a silicon compound having a hydrolyzable group, etc. An iodinated epoxy compound can be obtained.

本発明によれば、色相変化が少なく、臭素系難燃剤を代替し得る難燃剤として好適なヨウ素含有化合物である、シリル基含有ヨウ素化エポキシ化合物及びその製造方法が提供される。   According to the present invention, there are provided a silyl group-containing iodinated epoxy compound and a method for producing the same, which is an iodine-containing compound that is suitable as a flame retardant capable of substituting for a brominated flame retardant with little hue change.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明のシリル基含有ヨウ素化エポキシ化合物は、上記一般式(1)で表される構造を有する。一般式(1)において、水酸基を有する繰り返し単位と、シリル基を有する繰り返し単位とは、通常はランダムに共重合されているが、それぞれの繰り返し単位が連続して互いに結合されたブロックを形成していてもよい。   The silyl group-containing iodinated epoxy compound of the present invention has a structure represented by the general formula (1). In the general formula (1), the repeating unit having a hydroxyl group and the repeating unit having a silyl group are usually randomly copolymerized, but each repeating unit forms a block in which the repeating units are continuously bonded to each other. It may be.

pとqとの合計(重合度)は12以下であればよいが、9〜12であることがより好ましい。重合度が12を超えると、他の樹脂への溶解性、あるいは分散性が低下する傾向がある。一方、重合度が9未満であると、分解温度が低下する傾向にある。   Although the sum (degree of polymerization) of p and q should just be 12 or less, it is more preferable that it is 9-12. When the degree of polymerization exceeds 12, the solubility or dispersibility in other resins tends to decrease. On the other hand, when the degree of polymerization is less than 9, the decomposition temperature tends to decrease.

シリル基を有する繰り返し単位を含有する割合であるシリル化率は、0.9〜1であることが好ましい。このシリル化率が0.9未満であると、樹脂等に添加したときの色相変化が大きくなる傾向がある。   It is preferable that the silylation rate which is the ratio containing the repeating unit which has a silyl group is 0.9-1. If the silylation rate is less than 0.9, the hue change tends to increase when added to a resin or the like.

シリル基含有ヨウ素化エポキシ化合物のビスフェノール骨格を置換するヨウ素基の数であるm及びnの値は、それぞれ独立に1又は2の整数であればよいが、これらがともに2であることが好ましい。特に、m及びnが2であって、一般式(1)におけるAが、3,3位及び3’,3’位にヨウ素基を有する下記化学式(6)で表される2価の基であることが、その合成が容易である等の点から、好ましい。   The values of m and n, which are the number of iodine groups substituting the bisphenol skeleton of the silyl group-containing iodinated epoxy compound, may be each independently an integer of 1 or 2, but it is preferable that both of them are 2. In particular, m and n are 2, and A in the general formula (1) is a divalent group represented by the following chemical formula (6) having iodine groups at the 3, 3 and 3 ′ and 3 ′ positions. It is preferable from the viewpoint that the synthesis is easy.

Figure 2005272632
Figure 2005272632

シリル基含有ヨウ素化エポキシ化合物は、上記一般式(1)におけるAで示される2価の基を複数含有するが、それらは、ヨウ素基の数及び置換の位置が互いに異なっていてもよい。ただし、難燃化効果の点から、シリル基含有ヨウ素化エポキシ化合物全体に対するヨウ素の含有量は、52〜60重量%であることが好ましく、55〜60重量%であることがより好ましい。   The silyl group-containing iodinated epoxy compound contains a plurality of divalent groups represented by A in the above general formula (1), but they may have different numbers of iodine groups and different substitution positions. However, from the viewpoint of the flame retarding effect, the iodine content relative to the entire silyl group-containing iodinated epoxy compound is preferably 52 to 60% by weight, and more preferably 55 to 60% by weight.

上記一般式(1)においては、R、R及びRは、それぞれ独立に炭素数1〜4のアルキル基(炭素数1〜3のアルキル基が好ましく、炭素数1〜2のアルキル基がより好ましい。)又はアルコキシ基であればよく、ハロゲン基、シリル基等の置換基を有していてもよい。特に、R、R及びRがメチル基であることが、難燃化の効果の点、樹脂への分散性の点等から好ましい。 In the general formula (1), R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 4 carbon atoms (preferably an alkyl group having 1 to 3 carbon atoms, and an alkyl group having 1 to 2 carbon atoms). Or an alkoxy group, and may have a substituent such as a halogen group or a silyl group. In particular, R 1 , R 2 and R 3 are preferably methyl groups from the viewpoint of flame retardancy, dispersibility in resin, and the like.

本発明の難燃剤は、上記本発明のシリル基含有ヨウ素化エポキシ化合物からなるものであり、単一の化合物で構成されていてもよいが、通常、重合度等の異なる複数のシリル基含有ヨウ素化エポキシ化合物で構成される混合物として用いられる。この混合物においては、上記一般式における、p、q、p+q、m及びnのうち少なくとも何れか一つの値が上記範囲内にないものが共存していてもよい。ただし、混合物全体の平均値としてのp、q、p+q、m及びnの値は、それぞれ上記範囲内にあることが好ましい。また、本発明の難燃剤は、必要に応じてさらに他の成分を共存させた状態で用いることもできる。   The flame retardant of the present invention is composed of the silyl group-containing iodinated epoxy compound of the present invention, and may be composed of a single compound, but usually a plurality of silyl group-containing iodines having different degrees of polymerization, etc. It is used as a mixture composed of an epoxy compound. In this mixture, those in which at least one of p, q, p + q, m and n in the above general formula is not within the above range may coexist. However, it is preferable that the values of p, q, p + q, m, and n as average values of the entire mixture are within the above ranges. Moreover, the flame retardant of this invention can also be used in the state which made another component coexist as needed.

本発明の難燃剤は他の熱可塑性樹脂や熱硬化性樹脂に溶解又は分散させるなどして添加して用いることができるが、特に、ABS樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂等の樹脂の難燃化に好適に用いることができる。樹脂への添加量は、所望の難燃性が得られるように適宜決定すればよいが、通常、樹脂100重量部に対して0.5〜10重量部添加することで、充分な難燃性が得られる。   The flame retardant of the present invention can be added and used by dissolving or dispersing in other thermoplastic resins or thermosetting resins. In particular, the flame retardant of ABS resin, polycarbonate resin, polyester resin, polyamide resin, etc. It can be suitably used for flame retardancy. The amount added to the resin may be determined as appropriate so as to obtain the desired flame retardancy, but it is usually sufficient to add 0.5 to 10 parts by weight with respect to 100 parts by weight of the resin. Is obtained.

以上のような本発明のシリル基含有ヨウ素化エポキシ化合物は、上記一般式(3)で表される構造を有するヨウ素化エポキシ化合物を中間体として経る、主として2段階の合成反応からなる下記の方法により好適に製造することができる。   The silyl group-containing iodinated epoxy compound of the present invention as described above comprises the following method mainly comprising a two-step synthesis reaction through an iodinated epoxy compound having a structure represented by the general formula (3) as an intermediate. It can manufacture more suitably.

第一段階としてまず、上記一般式(5)で表されるヨウ素化ビスフェノール化合物に、エピハロヒドリンを反応させて、上記一般式(3)で表される構造を有する成分を主成分とするヨウ素化エポキシ化合物を得る。   As the first step, first, an iodinated epoxy containing, as a main component, a component having a structure represented by the above general formula (3) by reacting the iodinated bisphenol compound represented by the above general formula (5) with an epihalohydrin. A compound is obtained.

原料として用いるヨウ素化ビスフェノール化合物は、例えば、ビスフェノールAに、ヨウ素(I)、ヨウ素酸カリウム(KIO)、過ヨウ素酸カリウム(KIO)、過ヨウ素酸(HIO)、ヨウ素酸(HIO)、一塩化ヨウ素(ICl)等のヨウ素化剤を反応させることにより得ることができる。このとき、原料であるビスフェノールAとヨウ素化剤との当量比を適宜調整することによって、ヨウ素基の数であるm及びnの値を1又は2の範囲で制御できる。例えば、ビスフェノールA1.0モルに対して一塩化ヨウ素を4.0〜6.5モルの範囲内の比率として反応させることにより、m及びnが2である成分(4ヨウ素化体)を主成分とするヨウ素化ビスフェノール化合物が得られる。このとき得られる4ヨウ素化体は、通常、3,3位及び3’,3’位がヨウ素で置換された、下記化学式(7)で表される構造を有する。 Examples of the iodinated bisphenol compound used as a raw material include bisphenol A, iodine (I 2 ), potassium iodate (KIO 3 ), potassium periodate (KIO 4 ), periodate (HIO 4 ), and iodate (HIO). 3 ), and can be obtained by reacting an iodinating agent such as iodine monochloride (ICl). At this time, the values of m and n, which are the number of iodine groups, can be controlled within a range of 1 or 2 by appropriately adjusting the equivalent ratio of the raw material bisphenol A and the iodinating agent. For example, by reacting iodine monochloride as a ratio in the range of 4.0 to 6.5 mol with respect to 1.0 mol of bisphenol A, a component (tetraiodide) in which m and n are 2 is a main component. An iodinated bisphenol compound is obtained. The tetraiodide obtained at this time usually has a structure represented by the following chemical formula (7) in which the 3,3 and 3 ′, 3 ′ positions are substituted with iodine.

Figure 2005272632
Figure 2005272632

ヨウ素化ビスフェノール化合物とエピハロヒドリンとの反応は、例えば、反応溶媒中で、水酸化ナトリウム等のアルカリ性化合物の存在下、加熱して進行させることができる。このとき、ヨウ素化ビスフェノール化合物1.0モルに対するエピハロヒドリンの仕込み量は、1.0〜2.0モルの範囲内であることが好ましい。反応の原料として用いるヨウ素化ビスフェノール化合物は単一の化合物であってもよいし、ヨウ素含有量や置換の位置の異なる複数種の化合物の混合物であってもよい。   The reaction between the iodinated bisphenol compound and epihalohydrin can be carried out by heating in the presence of an alkaline compound such as sodium hydroxide in a reaction solvent, for example. At this time, it is preferable that the preparation amount of the epihalohydrin with respect to 1.0 mol of iodinated bisphenol compounds exists in the range of 1.0-2.0 mol. A single compound may be sufficient as the iodinated bisphenol compound used as a raw material of reaction, and the mixture of the multiple types of compound from which iodine content and the position of substitution differ may be sufficient.

エピハロヒドリンとしては、エピクロロヒドリン、エピブロモヒドリン、メチルエピクロロヒドリン、メチルエピブロモヒドリン等を用いることができる。これらの中でも、反応性が良好であること、副生成物除去が容易であること等の点から、エピクロロヒドリンを用いることが好ましい。   As the epihalohydrin, epichlorohydrin, epibromohydrin, methyl epichlorohydrin, methyl epibromohydrin, or the like can be used. Among these, it is preferable to use epichlorohydrin from the viewpoints of good reactivity and easy removal of by-products.

ヨウ素化エポキシ化合物を上記の反応で合成する場合、特に、反応溶媒としてアセトン等を用いることが、反応後の溶媒除去が容易である事等から好ましい。   When synthesizing an iodinated epoxy compound by the above reaction, it is particularly preferable to use acetone or the like as a reaction solvent because it is easy to remove the solvent after the reaction.

得られるヨウ素化エポキシ化合物の重合度(rの値)は、上記反応において、ヨウ素化ビスフェノール化合物とエピハロヒドリンとの仕込み比(当量比)、及び仕込みの順序等によって適宜制御できる。ヨウ素化ビスフェノール化合物に対するエピハロヒドリンの当量比を小さくするほど、重合度が大きくなる傾向にある。また、仕込みの順としては、ヨウ素化ビスフェノール化合物を溶解した溶液にエピハロヒドリンを少量ずつ加えるほうが、この逆に、エピハロヒドリンに対してヨウ素化ビスフェノール化合物を溶解した溶液を少量ずつ加えるよりも重合度の高いヨウ素化エポキシ化合物が得られる。   The degree of polymerization (value of r) of the resulting iodinated epoxy compound can be appropriately controlled in the above reaction by the charging ratio (equivalent ratio) of the iodinated bisphenol compound and epihalohydrin, the charging order, and the like. The degree of polymerization tends to increase as the equivalent ratio of epihalohydrin to iodinated bisphenol compound decreases. In addition, as for the order of preparation, adding the epihalohydrin to the solution in which the iodinated bisphenol compound is dissolved little by little, on the contrary, the degree of polymerization is higher than adding the solution in which the iodinated bisphenol compound is dissolved to the epihalohydrin in small amounts. An iodinated epoxy compound is obtained.

より具体的には、例えば、ヨウ素化ビスフェノール化合物1.0モルに対するエピハロヒドリンの量を0.9〜1.1モルとして、ヨウ素化ビスフェノール化合物を溶解した溶液にエピハロヒドリンを少量ずつ加えることにより、通常、重合度が9〜12の成分を主成分とするヨウ素化エポキシ化合物が得られる。   More specifically, for example, the amount of the epihalohydrin relative to 1.0 mol of the iodinated bisphenol compound is 0.9 to 1.1 mol, and the epihalohydrin is usually added little by little to the solution in which the iodinated bisphenol compound is dissolved. An iodinated epoxy compound having a component having a polymerization degree of 9 to 12 as a main component is obtained.

次に、二段階目として、ヨウ素化エポキシ化合物を下記一般式(4)で表されるケイ素化合物と反応させることにより、上記一般式(1)で表される成分を主成分とするシリル基含有エポキシ化合物が得られる。例えば、テトラヒドロフラン等の溶媒中に、ヨウ素化エポキシ化合物及びケイ素化合物を投入し、好ましくは不活性ガス置換下、20〜80℃で攪拌することでこの反応を進行させることができる。   Next, as a second step, by reacting an iodinated epoxy compound with a silicon compound represented by the following general formula (4), a silyl group containing the component represented by the above general formula (1) as a main component is contained. An epoxy compound is obtained. For example, this reaction can be allowed to proceed by introducing an iodinated epoxy compound and a silicon compound into a solvent such as tetrahydrofuran and stirring at 20 to 80 ° C. preferably under inert gas substitution.

Figure 2005272632
[式中、Xは加水分解性基、R、R及びRはそれぞれ独立に置換基を有していてもよい炭素数1〜4のアルキル基又はアルコキシ基、をそれぞれ示す。]
Figure 2005272632
[Wherein, X represents a hydrolyzable group, and R 1 , R 2, and R 3 each independently represent a C 1-4 alkyl group or alkoxy group that may have a substituent. ]

ケイ素化合物が有する加水分解性基Xとしては、ハロゲン原子、アルコキシ基、アシルオキシ基、アルケニルオキシ基、アミノ基、ケトキシメート基、アミノオキシ基、カルバモイル基、メルカプト基等が挙げられる。これらのなかでも、アルコキシ基が特に好ましい。アルコキシ基の炭素数は1〜6が好ましく、1〜4が更に好ましい。アルコキシ基としてはメトキシ基が特に好ましい。   Examples of the hydrolyzable group X possessed by the silicon compound include a halogen atom, an alkoxy group, an acyloxy group, an alkenyloxy group, an amino group, a ketoximate group, an aminooxy group, a carbamoyl group, and a mercapto group. Among these, an alkoxy group is particularly preferable. 1-6 are preferable and, as for carbon number of an alkoxy group, 1-4 are still more preferable. As the alkoxy group, a methoxy group is particularly preferable.

ケイ素化合物が有するR、R及びRがアルキル基である場合、その炭素数は1〜3であることが好ましく、1〜2であることがより好ましい。また、R、R及びRがアルキル基又はアルコキシ基であって、ハロゲン基、シリル基等の置換基を有していてもよい。特に、R、R及びRががメチル基であることが、難燃化の効果の点、樹脂への分散性の点等から好ましい。 When R 1 , R 2 and R 3 of the silicon compound are alkyl groups, the carbon number is preferably 1 to 3, and more preferably 1 or 2. R 1 , R 2 and R 3 are alkyl groups or alkoxy groups, and may have a substituent such as a halogen group or a silyl group. In particular, it is preferable that R 1 , R 2, and R 3 are methyl groups from the viewpoint of flame retardancy, dispersibility in resin, and the like.

ケイ素化合物の具体例としては、トリメチルメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、n−プロピルトリメトキシシラン、n−ブチルトリメトキシシラン等が挙げられる。これらの中でも、得られるシリル基含有ヨウ素化エポキシ化合物の難燃性や分散性等の点から、トリメチルメトキシシランが好ましい。   Specific examples of the silicon compound include trimethylmethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, n-propyltrimethoxysilane, n-butyltrimethoxysilane and the like. Among these, trimethylmethoxysilane is preferable from the viewpoint of flame retardancy and dispersibility of the resulting silyl group-containing iodinated epoxy compound.

得られるシリル基含有ヨウ素化エポキシ化合物のシリル化率は、反応温度、ヨウ素化エポキシ化合物が有する水酸基に対するケイ素化合物の当量比等で制御できる。反応温度を高くするほど、また、ケイ素化合物の当量比を大きくするほど、シリル化率が高まる傾向にある。より具体的には、例えば、ヨウ素化エポキシ化合物が有する水酸基1モルに対するケイ素化合物の量を1.0〜2.0モルとして、20〜80℃で反応を行うことで、通常、シリル化率が0.9〜1の成分を主成分とするシリル基含有エポキシ化合物が得られる。   The silylation rate of the resulting silyl group-containing iodinated epoxy compound can be controlled by the reaction temperature, the equivalent ratio of the silicon compound to the hydroxyl group of the iodinated epoxy compound, and the like. As the reaction temperature is increased and the equivalent ratio of the silicon compound is increased, the silylation rate tends to increase. More specifically, for example, the amount of the silicon compound with respect to 1 mol of hydroxyl group of the iodinated epoxy compound is 1.0 to 2.0 mol, and the reaction is usually performed at 20 to 80 ° C. A silyl group-containing epoxy compound having a component of 0.9 to 1 as a main component is obtained.

以下に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(合成例1)
<ヨウ素化ビスフェノール化合物1の合成>
20Lのフラスコに、ビスフェノールA(850g、3.72mol)、酢酸(9.10kg)、水(1.73kg)を投入し、80℃に加熱しながら、2N−ICl(11.6kg、16.4mol)を3時間かけて滴下し、さらに80℃に保持して7時間攪拌した。その後、反応液を冷却し、析出した固形物をろ別して、これを水で洗浄した。
次に、20Lのフラスコに、得られた固形物、酢酸(12.8kg)、水(2.42kg)を仕込み、2N−ICl(2.80kg、3.96mol)を80℃に加熱しながら30分かけて滴下し、80℃に保持してさらに7時間攪拌した。その後、反応液を冷却し、析出した固形物をろ別し、水で洗浄した。このとき得られた固形物を、さらに、上記と同様の操作で2N−IClと反応させて、固形の反応生成物を得た。この反応生成物を酢酸エチル及びアセトンで洗浄後、乾燥して、ヨウ素化ビスフェノール化合物1(1.71kg、2.33mol)を得た(収率62.6%)。
(Synthesis Example 1)
<Synthesis of iodinated bisphenol compound 1>
Bisphenol A (850 g, 3.72 mol), acetic acid (9.10 kg) and water (1.73 kg) were charged into a 20 L flask, and 2N-ICl (11.6 kg, 16.4 mol) while being heated to 80 ° C. ) Was added dropwise over 3 hours, and the mixture was further stirred for 7 hours while maintaining the temperature at 80 ° C. Thereafter, the reaction solution was cooled, the precipitated solid was filtered off, and washed with water.
Next, the obtained solid, acetic acid (12.8 kg), and water (2.42 kg) were charged into a 20 L flask, and 2N-ICl (2.80 kg, 3.96 mol) was heated to 80 ° C. while being heated to 30 ° C. The solution was added dropwise over a period of time, and the mixture was kept at 80 ° C and further stirred for 7 hours. Thereafter, the reaction solution was cooled, and the precipitated solid was filtered off and washed with water. The solid obtained at this time was further reacted with 2N-ICl in the same manner as described above to obtain a solid reaction product. The reaction product was washed with ethyl acetate and acetone and then dried to obtain iodinated bisphenol compound 1 (1.71 kg, 2.33 mol) (yield 62.6%).

ヨウ素化ビスフェノール化合物1のヨウ素含有量は69.3重量%であり、TLC分析ではRf0.62に単一のスポットを示した。また、その1H−NMRスペクトルにおいて下記シグナルが観測され、IRスペクトル(図1)において875.6cm−1及び704.1cm−1にC−I結合に由来する吸収が観測された。これらのデータから、ヨウ素化ビスフェノール化合物1は、上記一般式(7)で表される4ヨウ素化体であると同定された。
1H-NMR(300MHz); (DMSO-d6, δppm)1.50(s,6H), 7.48(s,4H), 9.41(s,2H)。
なお、本実施例においては、ヨウ素含有量は燃焼法、IRスペクトルはKBr法で測定した。また、TLC分析は、SilicaGel60(メルクジャパン(株)社製)をF254ガラスプレート上に固着させたものを用いて、酢酸エチル/n−ヘキサン(体積比:3/7)の混合溶媒を展開溶媒として行った。
The iodine content of the iodinated bisphenol compound 1 was 69.3% by weight, and TLC analysis showed a single spot at Rf 0.62. The following signals were observed in its 1 H-NMR spectrum, absorption derived from C-I bonds to 875.6Cm -1 and 704.1Cm -1 in the IR spectrum (Figure 1) was observed. From these data, the iodinated bisphenol compound 1 was identified as a tetraiodinated product represented by the general formula (7).
1 H-NMR (300 MHz); (DMSO-d 6 , δ ppm) 1.50 (s, 6H), 7.48 (s, 4H), 9.41 (s, 2H).
In this example, the iodine content was measured by the combustion method, and the IR spectrum was measured by the KBr method. In addition, TLC analysis was performed by using a mixed solvent of ethyl acetate / n-hexane (volume ratio: 3/7) using SilicaGel 60 (Merck Japan Co., Ltd.) fixed on an F254 glass plate as a developing solvent. Went as.

(合成例2)
<ヨウ素化ビスフェノール化合物2の合成>
20Lのフラスコに、ビスフェノールA(400g、1.75mol)、酢酸(4.28kg)、水(816kg)を投入し、80℃に加熱しながら、2N−ICl(4.96kg、7.01mol)を2時間かけて滴下し、80℃に保持してさらに7時間攪拌した。その後、反応液を冷却し、析出した固形の反応生成物をろ別し、水で洗浄した。この反応生成物を酢酸エチル及びアセトンで洗浄後、乾燥して、ヨウ素化ビスフェノール化合物2(275g)を得た(収率21.4%)。
(Synthesis Example 2)
<Synthesis of iodinated bisphenol compound 2>
Bisphenol A (400 g, 1.75 mol), acetic acid (4.28 kg) and water (816 kg) were charged into a 20 L flask, and 2N-ICl (4.96 kg, 7.01 mol) was added while heating to 80 ° C. The solution was added dropwise over 2 hours, kept at 80 ° C., and further stirred for 7 hours. Thereafter, the reaction solution was cooled, and the precipitated solid reaction product was filtered off and washed with water. This reaction product was washed with ethyl acetate and acetone and then dried to obtain iodinated bisphenol compound 2 (275 g) (yield 21.4%).

ヨウ素化ビスフェノール化合物2のヨウ素含有量は68.0重量%であり、TLC分析ではRf0.62及び0.49の二つのスポットを示した。また、その1H−NMRスペクトルにおいて、合成例1と同様の4ヨウ素化体及び下記化学式(8)で表される3ヨウ素化体に由来するシグナルがそれぞれ観測され、IRスペクトルにおいて875.6cm−1及び704.1cm−1にC−I結合に由来する吸収が観測された。これらデータに基づいて、ヨウ素化ビスフェノール化合物2は、4ヨウ素化体及び3ヨウ素化体の混合物であることが確認された。
1H-NMR(300MHz);(DMSO-d6, δppm)
4ヨウ素化体:1.50(s,6H), 7.48(s,4H), 9.41(s,2H)
3ヨウ素化体:1.50(s,6H), 6.80(d,1H), 6.98-7.01(dd,1H), 7.44(s,1H), 7.46(s,1H), 9.43(s,1H)。
The iodine content of iodinated bisphenol compound 2 was 68.0% by weight, and TLC analysis showed two spots of Rf 0.62 and 0.49. Further, in the 1 H-NMR spectrum, signals derived from a tetraiodide similar to Synthesis Example 1 and a triiodide represented by the following chemical formula (8) were observed, respectively, and 875.6 cm − in the IR spectrum. Absorption due to C—I bonds was observed at 1 and 704.1 cm −1 . Based on these data, it was confirmed that the iodinated bisphenol compound 2 is a mixture of a tetraiodide and a triiodide.
1 H-NMR (300 MHz); (DMSO-d 6 , δ ppm)
Tetraiodide: 1.50 (s, 6H), 7.48 (s, 4H), 9.41 (s, 2H)
Triiodide: 1.50 (s, 6H), 6.80 (d, 1H), 6.98-7.01 (dd, 1H), 7.44 (s, 1H), 7.46 (s, 1H), 9.43 (s, 1H).

Figure 2005272632
Figure 2005272632

(実施例1)
<ヨウ素化エポキシ化合物1の合成>
窒素置換した10Lのフラスコに、実施例1で得たヨウ素化ビスフェノール化合物1(1.71kg、2.33mol)、アセトン(3L)、10%NaOH溶液(1.03kg)を投入し、65℃に加熱しながら、エピクロロヒドリン(237g、2.56mol)を6時間かけて滴下した後、65℃で15時間さらに攪拌した。その後、反応液を冷却し、溶媒を留去して、得られた粘性の反応生成物を水で洗浄し、80℃で減圧下乾燥して、ヨウ素化エポキシ化合物1(1.79kg)を得た。ヨウ素化エポキシ化合物1のヨウ素含有量は60.2重量%、エポキシ当量は4215g/eq.であった。ヨウ素含有量及びエポキシ当量の値から、その平均分子量は8430、平均重合度は9.6と計算された。
(Example 1)
<Synthesis of iodinated epoxy compound 1>
A 10-liter flask purged with nitrogen was charged with the iodinated bisphenol compound 1 (1.71 kg, 2.33 mol), acetone (3 L), and 10% NaOH solution (1.03 kg) obtained in Example 1, and the mixture was heated to 65 ° C. While heating, epichlorohydrin (237 g, 2.56 mol) was added dropwise over 6 hours, followed by further stirring at 65 ° C. for 15 hours. Thereafter, the reaction solution is cooled, the solvent is distilled off, and the resulting viscous reaction product is washed with water and dried under reduced pressure at 80 ° C. to obtain iodinated epoxy compound 1 (1.79 kg). It was. The iodine content of the iodinated epoxy compound 1 was 60.2% by weight, and the epoxy equivalent was 4215 g / eq. Met. From the value of iodine content and epoxy equivalent, the average molecular weight was calculated to be 8430, and the average degree of polymerization was calculated to be 9.6.

エポキシ当量は、以下の1)〜3)の操作で、塩酸−ジオキサン法により測定した。
1)約0.5gを精秤して精秤値(g)を得た試料を、0.2N−塩酸ジオキサン溶液(濃塩酸1.6mL/精製ジオキサン100mL)25mLに溶解して試料液とする。
2)試料液を常温で15分間放置後、アルコール25mLを加え、0.1NのNaOH規定液で滴定して、滴定量(mL)を測定する(指示薬:クレゾールレッド)。
3)空試験も同様にして行い、下記式(1)でエポキシ当量を算出する。
エポキシ当量=10000×(精秤値)/[(0.1NのNaOH規定液のファクター)×{(空試験滴定量)−(試料液滴定量)}] ・・・(1)
The epoxy equivalent was measured by the hydrochloric acid-dioxane method in the following operations 1) to 3).
1) A sample obtained by precisely weighing about 0.5 g to obtain a precisely weighed value (g) is dissolved in 25 mL of 0.2N-dioxane hydrochloride solution (concentrated hydrochloric acid 1.6 mL / purified dioxane 100 mL) to obtain a sample solution. .
2) After leaving the sample solution at room temperature for 15 minutes, add 25 mL of alcohol and titrate with 0.1N NaOH normal solution to measure titration (mL) (indicator: cresol red).
3) The blank test is performed in the same manner, and the epoxy equivalent is calculated by the following formula (1).
Epoxy equivalent = 10000 × (precisely measured value) / [(factor of 0.1N NaOH normal solution) × {(blank test titration) − (sample droplet quantification)}] (1)

水酸基当量は、以下の1)〜6)の操作で、塩化アセチル法により測定した。
1)約1gを精秤して精秤値を得た試料を、10mLのジオキサンに溶解させて試料液とする。
2)試料液に塩化アセチル溶液(塩化アセチル11.8mL/トルエン100mL)10mL加える。
3)さらに、ピリジン2mLを加え、激しく攪拌しながら60℃で1時間熱処理する。
4)蒸留水2mLを加えて氷浴中で30分間冷却した後、さらにアセトン25mLを加える。
5)試料液を、0.5NのNaOH規定液で滴定して、滴定量(mL)を測定する。
6)空試験も同様にして行い、下記式(2)で水酸基当量を算出する。
水酸基当量=2000×(精秤値)/[(0.5NのNaOH規定液のファクター)×{(空試験滴定量)−(試料液滴定量)}] ・・・(2)
The hydroxyl equivalent was measured by the acetyl chloride method in the following operations 1) to 6).
1) A sample obtained by precisely weighing about 1 g to obtain a precisely weighed value is dissolved in 10 mL of dioxane to obtain a sample solution.
2) Add 10 mL of acetyl chloride solution (acetyl chloride 11.8 mL / toluene 100 mL) to the sample solution.
3) Further, add 2 mL of pyridine and heat-treat at 60 ° C. for 1 hour with vigorous stirring.
4) Add 2 mL of distilled water and cool in an ice bath for 30 minutes, and then add 25 mL of acetone.
5) Titrate the sample solution with 0.5N NaOH normal solution and measure the titration amount (mL).
6) The blank test is performed in the same manner, and the hydroxyl equivalent is calculated by the following formula (2).
Hydroxyl equivalent = 2000 × (exactly measured value) / [(factor of 0.5N NaOH normal solution) × {(blank test titration) − (sample droplet quantification)}] (2)

ヨウ素化エポキシ化合物1についてTG/DTAの測定を行ったところ、原料であるヨウ素化ビスフェノール化合物1において観測された281.7℃の吸熱ピークが消失し、350.7℃に、主にエポキシ基の分解に由来すると考えられる発熱ピークが新たに見られた。なお、TG/DTAは、窒素雰囲気下、昇温速度20℃/分で0〜500℃の範囲で測定した。   When TG / DTA was measured for the iodinated epoxy compound 1, the endothermic peak at 281.7 ° C. observed in the raw material iodinated bisphenol compound 1 disappeared, and at 350.7 ° C., A new exothermic peak believed to be derived from decomposition was seen. In addition, TG / DTA was measured in the range of 0-500 degreeC by the temperature increase rate of 20 degree-C / min in nitrogen atmosphere.

(実施例2)
<ヨウ素化エポキシ化合物2の合成>
(Example 2)
<Synthesis of iodinated epoxy compound 2>

100mLのフラスコに、エピクロロヒドリン(2.5g、0.027mol)を投入し、120℃に加熱しながら、実施例1で得たヨウ素化ビスフェノール化合物1(10g、0.014mol)及び10%NaOH溶液(10.9g)の混合液を30分かけて滴下した後、120℃で4時間さらに攪拌した。その後、反応液を冷却し、析出した固形物をアセトンに溶解して、不溶物をろ別により除去した。続いて、ろ液から溶媒を留去して、固形のヨウ素化エポキシ化合物2(9.9g)を得た。ヨウ素化エポキシ化合物2のヨウ素含有量は60.1重量%、エポキシ当量は724であった。ヨウ素含有量及びエポキシ当量の値から、その平均分子量は1451、平均重合度は0.77と計算された。また、これについてTG/DTAを測定したところ、323.1℃に、主にエポキシ基の分解に由来すると考えられる発熱ピークが観測された。これらのデータから、ヨウ素化エポキシ化合物2は、上記一般式(3)で表され、rが1の成分を少なくとも含有する混合物であり、本発明のシリル基含有ヨウ素化エポキシ化合物を得るための中間体として用い得ることが確認された。   Into a 100 mL flask, epichlorohydrin (2.5 g, 0.027 mol) was added and heated to 120 ° C., and the iodinated bisphenol compound 1 (10 g, 0.014 mol) and 10% obtained in Example 1 were used. A mixture of NaOH solution (10.9 g) was added dropwise over 30 minutes, and the mixture was further stirred at 120 ° C. for 4 hours. Thereafter, the reaction solution was cooled, the precipitated solid was dissolved in acetone, and insoluble matters were removed by filtration. Subsequently, the solvent was distilled off from the filtrate to obtain a solid iodinated epoxy compound 2 (9.9 g). The iodine content of the iodinated epoxy compound 2 was 60.1% by weight, and the epoxy equivalent was 724. From the value of iodine content and epoxy equivalent, the average molecular weight was calculated to be 1451, and the average degree of polymerization was calculated to be 0.77. Moreover, when TG / DTA was measured about this, the exothermic peak considered to originate mainly in decomposition | disassembly of an epoxy group was observed at 323.1 degreeC. From these data, the iodinated epoxy compound 2 is a mixture containing at least a component represented by the above general formula (3), where r is 1, and an intermediate for obtaining the silyl group-containing iodinated epoxy compound of the present invention. It was confirmed that it could be used as a body.

(実施例3)
<シリル基含有ヨウ素化エポキシ化合物1の合成>
窒素置換した10Lのフラスコに、実施例1で得たヨウ素化エポキシ化合物1(1.79kg)、テトラヒドロフラン(3.58L)、トリメチルメトキシシラン(426g、4.09mol)を投入し、80℃で15時間攪拌した。その後、反応液を冷却し、溶媒を留去して得た粘性の反応生成物をn−ヘキサンで洗浄し、80℃で減圧下乾燥して、シリル基含有ヨウ素化エポキシ化合物1(1.63kg)を得た。シリル基含有ヨウ素化エポキシ化合物1のヨウ素含有量は60.6重量%、エポキシ当量は4215g/eq.、水酸基当量は9429g/eq.であった。エポキシ当量及び水酸基当量の値から、平均分子量は9429、平均のシリル化率は0.99と計算された。
(Example 3)
<Synthesis of silyl group-containing iodinated epoxy compound 1>
A 10-liter flask purged with nitrogen was charged with the iodinated epoxy compound 1 (1.79 kg) obtained in Example 1, tetrahydrofuran (3.58 L), and trimethylmethoxysilane (426 g, 4.09 mol), and the mixture was stirred at 80 ° C. for 15 minutes. Stir for hours. Thereafter, the reaction solution was cooled, and the viscous reaction product obtained by distilling off the solvent was washed with n-hexane, dried under reduced pressure at 80 ° C., and silyl group-containing iodinated epoxy compound 1 (1.63 kg). ) The iodine content of the silyl group-containing iodinated epoxy compound 1 is 60.6% by weight, and the epoxy equivalent is 4215 g / eq. The hydroxyl group equivalent is 9429 g / eq. Met. From the values of epoxy equivalent and hydroxyl equivalent, the average molecular weight was calculated to be 9429, and the average silylation rate was calculated to be 0.99.

シリル基含有ヨウ素化エポキシ化合物1のTG/DTAを測定したところ、360.9℃に、主にエポキシ基の分解によると考えられる発熱ピークが観測された。また、そのIRスペクトルにおいて、原料であるヨウ素化エポキシ化合物において観測された、水酸基に由来する3400cm−1付近のブロードな吸収がほぼ消失しており(図1)、水酸基がシリル化されていることが確認された。 When the TG / DTA of the silyl group-containing iodinated epoxy compound 1 was measured, an exothermic peak considered to be mainly due to the decomposition of the epoxy group was observed at 360.9 ° C. Further, in the IR spectrum, the broad absorption around 3400 cm −1 derived from the hydroxyl group observed in the iodinated epoxy compound as the raw material has almost disappeared (FIG. 1), and the hydroxyl group is silylated. Was confirmed.

(実施例4)
<シリル基含有ヨウ素化エポキシ化合物2の合成>
窒素置換した50mLのフラスコに、実施例1で得たヨウ素化エポキシ化合物1(10g)、テトラヒドロフラン(20mL)、トリメチルメトキシシラン(1.8g、0.0017mol)を投入し、常温で8時間攪拌した。その後、溶媒を留去して得た粘性の反応生成物をn−ヘキサンで洗浄し、80℃で減圧下乾燥して、シリル基含有ヨウ素化エポキシ化合物2(8.2g)を得た。シリル基含有ヨウ素化エポキシ化合物2のヨウ素含有量は59.9重量%、エポキシ当量は4225g/eq.、水酸基当量は1145g/eq.であった。エポキシ当量及び水酸基当量の値から、平均のシリル化率は0.755と計算された。
Example 4
<Synthesis of silyl group-containing iodinated epoxy compound 2>
A 50 mL flask substituted with nitrogen was charged with the iodinated epoxy compound 1 (10 g) obtained in Example 1, tetrahydrofuran (20 mL), and trimethylmethoxysilane (1.8 g, 0.0017 mol), and stirred at room temperature for 8 hours. . Thereafter, the viscous reaction product obtained by distilling off the solvent was washed with n-hexane and dried under reduced pressure at 80 ° C. to obtain a silyl group-containing iodinated epoxy compound 2 (8.2 g). The iodine content of the silyl group-containing iodinated epoxy compound 2 is 59.9% by weight, and the epoxy equivalent is 4225 g / eq. The hydroxyl group equivalent is 1145 g / eq. Met. From the values of the epoxy equivalent and the hydroxyl equivalent, the average silylation rate was calculated to be 0.755.

(実施例5)
<難燃性の評価>
アクリロニトリル−ブタジエン−スチレン系共重合体(トヨラック(商品名)、東レ(株)社製)100重量部に、実施例3で得たシリル基含有ヨウ素化エポキシ化合物1(10重量部)を加えた混合物を、2軸押出機(シリンダー設定温度220℃)を用いて溶融混錬して、ペレット状の熱可塑性樹脂組成物を得た。この溶融混錬において、樹脂組成物の着色は特に認められなかった。得られた熱可塑性樹脂組成物を80℃で4時間乾燥後、射出成形機を用いて、シリンダー温度210℃、金型温度60℃で成形して試験片を得た。
(Example 5)
<Evaluation of flame retardancy>
The silyl group-containing iodinated epoxy compound 1 (10 parts by weight) obtained in Example 3 was added to 100 parts by weight of an acrylonitrile-butadiene-styrene copolymer (Toyolac (trade name), manufactured by Toray Industries, Inc.). The mixture was melt-kneaded using a twin-screw extruder (cylinder setting temperature 220 ° C.) to obtain a pellet-shaped thermoplastic resin composition. In this melt-kneading, coloring of the resin composition was not particularly recognized. The obtained thermoplastic resin composition was dried at 80 ° C. for 4 hours, and then molded using an injection molding machine at a cylinder temperature of 210 ° C. and a mold temperature of 60 ° C. to obtain a test piece.

得られた試験片について、UL94規格に従ってその難燃性を評価した。試験片のサイズは幅12.7mm、長さ127mm、厚み1.6mmで、5回の燃焼試験を行った。5回の燃焼時間の合計を総燃焼時間(秒)として、これが250秒を超える場合は測定不可とした。試験片からの滴下の有無、総燃焼時間等の結果を基に、UL94の規格に従って難燃性のランクをV−2と判定した。   About the obtained test piece, the flame retardance was evaluated according to UL94 specification. The size of the test piece was 12.7 mm in width, 127 mm in length, and 1.6 mm in thickness, and five combustion tests were performed. The total of the five combustion times was defined as the total combustion time (seconds), and when this exceeded 250 seconds, measurement was impossible. Based on the results such as the presence or absence of dripping from the test piece and the total combustion time, the flame retardance rank was determined as V-2 according to the UL94 standard.

(比較例1)
<難燃性の評価>
シリル基含有ヨウ素化エポキシ化合物1を混合しない他は、実施例5と同様にして、試験片の成形及びその難燃性の評価を行った。総燃焼時間は測定不可であり、難燃性は規格外(V−0〜V−2の何れにも該当しない)であった。
(Comparative Example 1)
<Evaluation of flame retardancy>
A test piece was molded and its flame retardancy was evaluated in the same manner as in Example 5, except that the silyl group-containing iodinated epoxy compound 1 was not mixed. The total combustion time was not measurable, and the flame retardancy was out of specification (not applicable to any of V-0 to V-2).

図1は、合成例1で得たヨウ素化ビスフェノール化合物1、実施例1で得たヨウ素化エポキシ化合物1及び実施例3で得たシリル基含有ヨウ素化エポキシ化合物1のIRスペクトルである。FIG. 1 is an IR spectrum of the iodinated bisphenol compound 1 obtained in Synthesis Example 1, the iodinated epoxy compound 1 obtained in Example 1, and the silyl group-containing iodinated epoxy compound 1 obtained in Example 3.

Claims (7)

下記一般式(1)で表される構造を有するシリル基含有ヨウ素化エポキシ化合物。
Figure 2005272632
[式中、Aは下記一般式(2)で表される2価の基、R、R及びRはそれぞれ独立に置換基を有していてもよい炭素数1〜4のアルキル基又はアルコキシ基、pは0〜12の整数、qは1〜12の整数、をそれぞれ示す。
Figure 2005272632
但し、1≦p+q≦12であり、Iはヨウ素原子を示し、m及びnはそれぞれ独立に1又は2の整数を示す。]
A silyl group-containing iodinated epoxy compound having a structure represented by the following general formula (1).
Figure 2005272632
[Wherein, A is a divalent group represented by the following general formula (2), R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 4 carbon atoms which may have a substituent. Or an alkoxy group, p represents an integer of 0 to 12, and q represents an integer of 1 to 12, respectively.
Figure 2005272632
However, it is 1 <= p + q <= 12, I shows an iodine atom, m and n show the integer of 1 or 2 each independently. ]
q/(p+q)の値が0.9〜1である、請求項1に記載のシリル基含有ヨウ素化エポキシ化合物。   The silyl group-containing iodinated epoxy compound according to claim 1, wherein the value of q / (p + q) is 0.9 to 1. 前記R、前記R及び前記Rがメチル基である、請求項1又は2に記載のシリル基含有ヨウ素化エポキシ化合物。 The silyl group-containing iodinated epoxy compound according to claim 1 , wherein R 1 , R 2, and R 3 are methyl groups. 請求項1〜3のいずれか一項に記載のシリル基含有ヨウ素化エポキシ化合物からなる難燃剤。   The flame retardant which consists of a silyl group containing iodinated epoxy compound as described in any one of Claims 1-3. 下記一般式(3)で表される構造を有するヨウ素化エポキシ化合物。
Figure 2005272632
[式中、Aは下記一般式(2)で表される2価の基、rは1〜12の整数、をそれぞれ示す。
Figure 2005272632
但し、Iはヨウ素原子を示し、m及びnはそれぞれ独立に1又は2の整数を示す。]
An iodinated epoxy compound having a structure represented by the following general formula (3).
Figure 2005272632
[Wherein, A represents a divalent group represented by the following general formula (2), and r represents an integer of 1 to 12, respectively.
Figure 2005272632
However, I shows an iodine atom, m and n show the integer of 1 or 2 each independently. ]
請求項5に記載のヨウ素化エポキシ化合物に、下記一般式(4)で表される構造を有するケイ素化合物を反応させる工程を備える、下記一般式(1)で表される構造を有するシリル基含有ヨウ素化エポキシ化合物の製造方法。
Figure 2005272632
Figure 2005272632
[式中、Xは加水分解性基、R、R及びRはそれぞれ独立に置換基を有していてもよい炭素数1〜4のアルキル基又はアルコキシ基、Aは下記一般式(2)で表される2価の基、pは0〜12の整数、qは1〜12の整数、をそれぞれ示す。
Figure 2005272632
但し、1≦p+q≦12であり、Iはヨウ素原子を示し、m及びnはそれぞれ独立に1又は2の整数を示す。]
A silyl group having a structure represented by the following general formula (1), comprising the step of reacting the iodinated epoxy compound according to claim 5 with a silicon compound having a structure represented by the following general formula (4): A method for producing an iodinated epoxy compound.
Figure 2005272632
Figure 2005272632
[Wherein, X is a hydrolyzable group, R 1 , R 2 and R 3 are each independently an optionally substituted alkyl group or alkoxy group having 1 to 4 carbon atoms, and A is the following general formula ( 2), p is an integer of 0 to 12, and q is an integer of 1 to 12, respectively.
Figure 2005272632
However, it is 1 <= p + q <= 12, I shows an iodine atom, m and n show the integer of 1 or 2 each independently. ]
下記一般式(5)で表される構造を有するヨウ素化ビスフェノール化合物に、エピハロヒドリンを反応させる工程を備える、下記一般式(3)で表される構造を有するヨウ素化エポキシ化合物の製造方法。
Figure 2005272632
Figure 2005272632
[式中、Iはヨウ素原子、m及びnはそれぞれ独立に1又は2の整数、Aは下記一般式(2)で表される2価の基、rは1〜12の整数、をそれぞれ示す。
Figure 2005272632
The manufacturing method of the iodinated epoxy compound which has the process of making an epihalohydrin react with the iodinated bisphenol compound which has a structure represented by following General formula (5).
Figure 2005272632
Figure 2005272632
[Wherein, I is an iodine atom, m and n are each independently an integer of 1 or 2, A is a divalent group represented by the following general formula (2), and r is an integer of 1 to 12, respectively. .
Figure 2005272632
]
JP2004087815A 2004-03-24 2004-03-24 Silyl group-containing iodized epoxy compound and method for producing the same Pending JP2005272632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004087815A JP2005272632A (en) 2004-03-24 2004-03-24 Silyl group-containing iodized epoxy compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004087815A JP2005272632A (en) 2004-03-24 2004-03-24 Silyl group-containing iodized epoxy compound and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005272632A true JP2005272632A (en) 2005-10-06

Family

ID=35172646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004087815A Pending JP2005272632A (en) 2004-03-24 2004-03-24 Silyl group-containing iodized epoxy compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005272632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010057145A1 (en) * 2008-11-17 2010-05-20 Raytheon Company X-ray opaque coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010057145A1 (en) * 2008-11-17 2010-05-20 Raytheon Company X-ray opaque coating
US8575238B2 (en) 2008-11-17 2013-11-05 Raytheon Company X-ray opaque coating

Similar Documents

Publication Publication Date Title
JP3637277B2 (en) Flame retardant, flame retardant resin composition, molded product, and electronic component
JP5916160B2 (en) Method for producing epoxy compound composition
EP2036911A1 (en) Process for production of aminated phosphoric acid ester compound, flame-retardant resin, and flame-retardant resin composition
EP2069420B1 (en) Brominated flame retardant
JP2005272632A (en) Silyl group-containing iodized epoxy compound and method for producing the same
WO2002100868A1 (en) Process for preparation of phosphoric esters
JP4635155B2 (en) Method for producing cyclotriphosphazene derivative
JP2010001447A (en) Manufacturing method for aromatic polyether sulfone having hydroxyphenyl terminal end group
JP2009051780A (en) Method for producing tetrakis(allyloxyphenyl) hydrocarbon compound
JP3576062B2 (en) Flame retardant thermoplastic resin composition
JP3736584B2 (en) Flame retardant, method for producing the flame retardant, and flame retardant thermoplastic resin composition containing the flame retardant
JP4635157B2 (en) Method for producing cyclotriphosphazene derivative
JP2006063229A (en) Resin composition and molded article thereof
JP2017132938A (en) Fire retardant polyhydroxyurethane resin and fire retardant coated film
JP4635156B2 (en) Method for producing cyclotriphosphazene derivative
JP2003238580A (en) New phosphoric acid ester amide compound and flame- retardant resin composition
JP2005307219A (en) Flame retardant, method for producing the same and flame-retardant thermoplastic resin composition containing the same
JP6420616B2 (en) Phenolic resin, method for producing the same, epoxy resin composition containing the phenolic resin, and cured product thereof
JP2009292895A (en) Resin composition for semiconductor sealing
JPS61171728A (en) Novel bromine-containing epoxy resin and production thereof
JP2814214B2 (en) Phosphate ester compound, flame retardant and flame retardant resin composition
JP2002080484A (en) Phosphorus containing hydroquinone derivative, method for producing the same and flame retardant
JPH0826228B2 (en) Flame-retardant resin composition
JPH09227654A (en) Novel epoxy resin and resin composition containing the same
JP3246627B2 (en) Flame retardant polycarbonate resin composition