JP2005271042A - Consumable electrode gas shielded arc welding method by constant current property - Google Patents

Consumable electrode gas shielded arc welding method by constant current property Download PDF

Info

Publication number
JP2005271042A
JP2005271042A JP2004088631A JP2004088631A JP2005271042A JP 2005271042 A JP2005271042 A JP 2005271042A JP 2004088631 A JP2004088631 A JP 2004088631A JP 2004088631 A JP2004088631 A JP 2004088631A JP 2005271042 A JP2005271042 A JP 2005271042A
Authority
JP
Japan
Prior art keywords
welding
current
voltage
arc
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004088631A
Other languages
Japanese (ja)
Other versions
JP4643161B2 (en
Inventor
Hongjun Tong
紅軍 仝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2004088631A priority Critical patent/JP4643161B2/en
Priority to CNB200510054588XA priority patent/CN100509242C/en
Publication of JP2005271042A publication Critical patent/JP2005271042A/en
Application granted granted Critical
Publication of JP4643161B2 publication Critical patent/JP4643161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain satisfactory welding quality, in an consumable electrode gas shielded arc welding using a welding power source having constant current properties, by suppressing the variation of arc length caused by disturbance such as variation in feeding rates and variation in the distance between a power feeding tip and a base material. <P>SOLUTION: In the consumable electrode gas shielded arc welding method by constant current properties where welding wire is fed at a beforehand decided velocity, and further, welding current Iw1 beforehand decided in accordance with the fixed current properties CC1 of a welding power source is energized to an arc, so as to perform welding, a welding voltage between the base metal and the welding wire is detected, the detected value of the welding voltage is subjected to moving averaging to calculate the moving average value of the welding voltage, and the welding current value Iw2 in accordance with the fixed current properties CC2 is changed in such a manner that the detected value of the welding voltage is made almost equal to the moving average value of the welding voltage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、定電流特性による消耗電極ガスシールドアーク溶接において外乱によるアーク長変動を抑制するための定電流特性による消耗電極ガスシールドアーク溶接方法に関するものである。   The present invention relates to a consumable electrode gas shielded arc welding method with constant current characteristics for suppressing fluctuations in arc length due to disturbance in consumable electrode gas shielded arc welding with constant current characteristics.

[従来技術1]
図7は、アルミニウムMIG溶接における溶接ワイヤの溶融特性L1と溶接電源の外部特性CP1との関係を示す図である。同図の横軸はアークに通電する溶接電流Iwを示し、縦軸は溶接ワイヤと母材との間の溶接電圧Vwを示す。溶融特性L1は、溶接ワイヤの送給速度を予め定めた一定値に設定し、溶接電圧Vwを変化させたときの溶接電流Iw及びアーク長Laの変化を測定したものである。Q1点においてアーク長La=2mm程度となり、これよりも下の溶融特性L1上の各点では溶滴移行形態が短絡移行形態になる。Q2点においてアーク長La=6mm程度となり、これよりも上の溶融特性L1上の各点では溶滴移行形態がスプレー移行形態になる。Q1〜Q2点の間の各点では溶滴移行形態はメソスプレー移行形態になる。このメソスプレー移行形態では、1ms以下の微小時間の短絡が発生しつつ溶滴はスプレー移行する。スパッタ、ビード外観、ブローホール等の溶接品質を考慮して実用上使用するアーク長Laの範囲は2〜5mm程度である。したがって実用上使用するアーク長Laの範囲では、溶滴移行形態はメソスプレー移行形態となる。
[Prior art 1]
FIG. 7 is a diagram showing the relationship between the melting characteristic L1 of the welding wire and the external characteristic CP1 of the welding power source in aluminum MIG welding. In the figure, the horizontal axis indicates the welding current Iw energizing the arc, and the vertical axis indicates the welding voltage Vw between the welding wire and the base material. The melting characteristic L1 is obtained by measuring changes in the welding current Iw and the arc length La when the welding wire feeding speed is set to a predetermined constant value and the welding voltage Vw is changed. At the point Q1, the arc length La is about 2 mm, and at each point on the melting characteristic L1 lower than this, the droplet transfer form becomes a short-circuit transfer form. At point Q2, the arc length La is about 6 mm, and at each point on the melting characteristic L1 above this point, the droplet transfer form becomes a spray transfer form. At each point between points Q1 and Q2, the droplet transfer form is a mesospray transfer form. In this mesospray transfer mode, the droplets are transferred to the spray while a short time of 1 ms or less occurs. In consideration of welding quality such as spatter, bead appearance, blow hole, etc., the range of arc length La that is practically used is about 2 to 5 mm. Therefore, in the range of the arc length La used practically, the droplet transfer form is a mesospray transfer form.

ところで、アーク長Laは溶接ワイヤの送給速度と溶融速度とのバランスによって定まる。溶融速度は溶接電流Iwに依存する。溶融特性L1は送給速度が一定の場合であるので、各アーク長において溶融速度と送給速度とが等しくなるように溶接電流Iwの値が定まる。溶融特性L1において、アーク長La=6mmのQ2点の溶接電流値がアーク長La=2mmのQ1点の溶接電流値よりも大きいので、Q2点の方が単位溶接電流値当りの溶融量(以下,比溶融量という)は小さくなる。すなわち、メソスプレー移行形態においては、アーク長Laに反比例して比溶融量が小さくなる。このために、溶接電流Iwが一定値である場合(定電流特性の溶接電源を使用した場合)、送給速度の変動、給電チップ・母材間距離の変動等の外乱によってアーク長Laが過渡的に長くなると比溶融量が小さくなり溶融速度が遅くなるために、アーク長Laは短くなる方向に制御される。逆にアーク長Laが外乱によって短くなった場合は、比溶融量が大きくなり溶融速度が速くなるために、アーク長Laは長くなる方向に制御される。このようにアーク長の変動を復元する作用をアーク固有の自己制御作用と呼んでいる。   By the way, the arc length La is determined by the balance between the welding wire feeding speed and the melting speed. The melting rate depends on the welding current Iw. Since the melting characteristic L1 is when the feeding speed is constant, the value of the welding current Iw is determined so that the melting speed and the feeding speed are equal for each arc length. In the melting characteristic L1, the welding current value at the point Q2 with an arc length La = 6 mm is larger than the welding current value at the point Q1 with an arc length La = 2 mm. , The specific melting amount) becomes smaller. That is, in the mesospray transfer mode, the specific melting amount decreases in inverse proportion to the arc length La. For this reason, when the welding current Iw is a constant value (when using a welding power source having a constant current characteristic), the arc length La becomes transient due to disturbances such as fluctuations in the feeding speed and fluctuations in the distance between the feeding tip and the base material. If the length is longer, the specific melting amount becomes smaller and the melting speed becomes slower, so that the arc length La is controlled in the direction of shortening. On the other hand, when the arc length La is shortened due to a disturbance, the specific melting amount is increased and the melting rate is increased, so that the arc length La is controlled to become longer. This action of restoring the variation in arc length is called the arc-specific self-control action.

一般的に、アルミニウムMIG溶接には定電圧特性CP1の溶接電源が使用される。この場合、送給速度が設定されると溶融特性L1が決まり、溶接電圧Vwが設定されると定電圧特性CP1が決まる。これら両特性の交点P1が動作点となる。このP1点のアーク長La=4mmとする。定常アーク状態では動作点はP1点に停止し、アーク長Laは4mmに維持される。この状態で外乱によってアーク長Laが過渡的に長くなると、動作点が定電圧特性CP1上のP2点に過渡的に移動する。この結果、溶接電流値Iwが小さくなり溶融速度が遅くなるために、アーク長Laは短くなる方向に復元される。この作用を上記のアーク固有の自己制御作用と区別して外部特性による自己制御作用と呼んでいる。通常、外乱によるアーク長Laの変動を抑制して良好な溶接品質を得るためには、アーク固有の自己制御作用では応答性に問題があるので外部特性による自己制御作用が利用される。このために、アルミニウムMIG溶接においては定電圧特性の溶接電源が使用される。   Generally, a welding power source having a constant voltage characteristic CP1 is used for aluminum MIG welding. In this case, the melting characteristic L1 is determined when the feeding speed is set, and the constant voltage characteristic CP1 is determined when the welding voltage Vw is set. The intersection P1 of these two characteristics is the operating point. The arc length La at point P1 is set to 4 mm. In the steady arc state, the operating point stops at point P1, and the arc length La is maintained at 4 mm. In this state, when the arc length La becomes transiently long due to disturbance, the operating point moves transiently to the point P2 on the constant voltage characteristic CP1. As a result, the welding current value Iw is reduced and the melting rate is decreased, so that the arc length La is restored in the direction of shortening. This action is called a self-control action based on external characteristics to distinguish it from the arc-specific self-control action. Usually, in order to obtain a good welding quality by suppressing the fluctuation of the arc length La due to disturbance, the self-control action inherent to the arc has a problem in responsiveness, so the self-control action based on external characteristics is used. For this reason, a welding power source having constant voltage characteristics is used in aluminum MIG welding.

アルミニウムワイヤの材質、直径、シールドガスの種類等の溶接条件が決まり、送給速度が設定されると溶融特性L1が定まる。このために所望のアーク長Laになるように定電圧特性CP1を設定すればよい。しかし、アルミニウムMIG溶接においては、母材の酸化皮膜の状態によって溶融特性L1が変化するという性質がある。図8は、母材の酸化皮膜の状態が変化したときの溶融特性L1、L2を示す図である。溶融特性L1は、上述した図7の溶融特性L1と同一である。MIG溶接では、母材の酸化皮膜をアークによって除去(クリーニング作用)しながら溶接が行われる。この酸化皮膜のクリーニング状態は、母材表面の汚れ具合、母材の温度、シールドガスのシールド状態等の変動によって大きく影響される。しかも酸化皮膜のクリーニング状態は溶接中にも刻々と変化する。   When the welding conditions such as the material of the aluminum wire, the diameter, the type of shield gas, etc. are determined and the feeding speed is set, the melting characteristic L1 is determined. For this purpose, the constant voltage characteristic CP1 may be set so that the desired arc length La is obtained. However, aluminum MIG welding has a property that the melting characteristic L1 changes depending on the state of the oxide film of the base material. FIG. 8 is a diagram showing melting characteristics L1 and L2 when the state of the oxide film of the base material changes. Melting characteristic L1 is the same as melting characteristic L1 of FIG. In MIG welding, welding is performed while removing (cleaning action) the base oxide film with an arc. The cleaning state of the oxide film is greatly affected by fluctuations in the condition of the surface of the base material, the temperature of the base material, the shielding state of the shielding gas, and the like. In addition, the cleaning state of the oxide film changes every time during welding.

酸化皮膜のクリーニング状態が変化すると、溶融特性がL1からL2へと変化する。これは酸化皮膜のクリーニング状態の変化によってアーク形状が変化し溶融速度が変化するためである。溶融特性がL1のときにアーク長La=4mmの所望値に設定するために、定電圧特性をCP1に設定して動作点がP1点になるようにしている。この状態で溶融特性がL2に変化したときにアーク長Laを5mmに維持するためには、動作点をP3点に移動させる必要がある。このために、定電圧特性をCP1からCP2に設定変更する必要がある。すなわち、アルミニウムMIG溶接においては、酸化皮膜のクリーニング状態が変化するごとにアーク長を所望値に維持するために定電圧特性の設定を修正しなければならなかった。上述したように、酸化皮膜のクリーニング状態は溶接中にも変化するために、定電圧特性も溶接中に設定変更する必要があった。このために、溶接作業者が酸化皮膜のクリーニング状態の変動によるアーク長の変動を目視で確認しながら手動で定電圧特性を調整することが現場では行われてきた。しかし、この方法では自動化が困難であり、かつ、アーク長を正確に所望値に維持することができないという問題があった。   When the cleaning state of the oxide film changes, the melting characteristics change from L1 to L2. This is because the arc shape changes due to the change in the cleaning state of the oxide film, and the melting rate changes. In order to set the arc length La = 4 mm to a desired value when the melting characteristic is L1, the constant voltage characteristic is set to CP1 so that the operating point becomes the P1 point. In order to maintain the arc length La at 5 mm when the melting characteristic changes to L2 in this state, it is necessary to move the operating point to the point P3. Therefore, it is necessary to change the setting of the constant voltage characteristic from CP1 to CP2. That is, in aluminum MIG welding, the setting of the constant voltage characteristic has to be corrected in order to maintain the arc length at a desired value every time the cleaning state of the oxide film changes. As described above, since the cleaning state of the oxide film also changes during welding, it is necessary to change the setting of the constant voltage characteristics during welding. For this reason, it has been practiced in the field that the welding operator manually adjusts the constant voltage characteristics while visually confirming the variation in the arc length due to the variation in the cleaning state of the oxide film. However, this method has a problem that automation is difficult and the arc length cannot be accurately maintained at a desired value.

[従来技術2]
上述した問題を解決するための従来技術2について以下説明する。図9は、図8で上述した溶融特性L1、L2について縦軸を溶接電圧Vwからアーク長Laに変更して描いた溶融特性L3である。同図の溶融特性L3は、酸化皮膜のクリーニング状態が変化しても変化しない。これは、溶接電流Iwによって溶融速度が決まり溶融速度によってアーク長が決まる原理は酸化皮膜のクリーニング状態が変化しても変化しないためである。上述した図8においては、溶接電圧Vwによってアーク長を制御しているために、酸化皮膜のクリーニング状態が変化してアーク形状が変化すると同一アーク長に対する溶接電圧Vwの値が変化して上述した問題が発生する。これに対して、同図では溶接電流Iwによってアーク長Laを制御するので、酸化皮膜のクリーニング状態の変動の影響は受けない。
[Prior Art 2]
Prior art 2 for solving the above-described problem will be described below. FIG. 9 is a melting characteristic L3 drawn by changing the vertical axis from the welding voltage Vw to the arc length La for the melting characteristics L1 and L2 described above with reference to FIG. The melting characteristic L3 in the figure does not change even when the cleaning state of the oxide film changes. This is because the principle that the melting rate is determined by the welding current Iw and the arc length is determined by the melting rate does not change even if the cleaning state of the oxide film changes. In FIG. 8 described above, since the arc length is controlled by the welding voltage Vw, the value of the welding voltage Vw for the same arc length changes when the cleaning state of the oxide film changes and the arc shape changes. A problem occurs. On the other hand, since the arc length La is controlled by the welding current Iw in the figure, it is not affected by fluctuations in the cleaning state of the oxide film.

同図において、アーク長La=4mmの所望値に設定するためには、溶接電源の外部特性を定電流特性CC1にして動作点をP4点にすればよい。これによって酸化皮膜のクリーニング状態が変化しても動作点P4は変化しないのでアーク長Laは所望値の4mmのままである。したがって、上述した従来技術1の問題は解決される(例えば、特許文献1参照)。   In the figure, in order to set the desired value of the arc length La = 4 mm, the external characteristic of the welding power source may be the constant current characteristic CC1 and the operating point may be P4. As a result, even if the cleaning state of the oxide film changes, the operating point P4 does not change, so the arc length La remains at the desired value of 4 mm. Therefore, the above-described problem of the conventional technique 1 is solved (for example, see Patent Document 1).

特許第2993174号公報Japanese Patent No. 2993174

上述した従来技術2においては、送給速度の変動、給電チップ・母材間距離の変動等の外乱によってアーク長Laが変動したときの復元力は、上述したアーク固有の自己制御作用となる。すなわち、図9において、外乱によってアーク長Laが過渡的に長くなると動作点はP5に移動する。この動作点P5においても溶接電流値Iwは一定値であるので従来技術1のように外部特性による自己制御作用は働かない。この場合には上述したように、アーク長Laが長くなって比溶融量が小さくなるために同一溶接電流値Iwでの溶融速度が遅くなりアーク長Laは短くなる方向に制御される。しかし、このアーク固有の自己制御作用ではアーク長を復元させる過渡応答性が悪いという問題がある。従来技術1における外部特性による自己制御作用によれば、アーク長を復元させる過渡応答性は20ms程度である。これに対して、アーク固有の自己制御作用による過渡応答性は70ms程度と数倍も遅い。この結果、外乱によるアーク長Laの変動幅が大きくなり、溶接品質が悪くなるおそれがある。このために、MIG溶接に定電流特性の溶接電源を使用することは実用上ほとんどなかった。   In the prior art 2 described above, the restoring force when the arc length La changes due to disturbances such as fluctuations in the feeding speed and fluctuations in the distance between the power supply tip and the base material is the above-described self-control action inherent to the arc. That is, in FIG. 9, when the arc length La becomes transiently long due to a disturbance, the operating point moves to P5. Even at this operating point P5, since the welding current value Iw is a constant value, the self-control action by the external characteristics does not work as in the prior art 1. In this case, as described above, since the arc length La becomes longer and the specific melting amount becomes smaller, the melting rate at the same welding current value Iw becomes slower and the arc length La is controlled to become shorter. However, this arc-specific self-control action has a problem that the transient response to restore the arc length is poor. According to the self-control action by the external characteristic in the prior art 1, the transient response for restoring the arc length is about 20 ms. On the other hand, the transient response due to the arc-specific self-control action is about 70 ms, which is several times slower. As a result, the fluctuation range of the arc length La due to disturbance is increased, and the welding quality may be deteriorated. For this reason, it has been practically impossible to use a welding power source having constant current characteristics for MIG welding.

そこで、本発明では、外乱によるアーク長の変動を小さくすることができる過渡応答性に優れた定電流特性による消耗電極ガスシールドアーク溶接方法を提供する。   Therefore, the present invention provides a consumable electrode gas shielded arc welding method with constant current characteristics excellent in transient response that can reduce fluctuations in arc length due to disturbance.

上述した課題を解決するために、第1の発明は、溶接ワイヤを予め定めた速度で送給すると共に、溶接電源の定電流特性によって予め定めた溶接電流をアークに通電して溶接する定電流特性による消耗電極ガスシールドアーク溶接方法において、
母材・溶接ワイヤ間の溶接電圧を検出し、この溶接電圧検出値を移動平均して溶接電圧移動平均値を算出し、前記溶接電圧検出値が前記溶接電圧移動平均値と略等しくなるように前記定電流特性による前記溶接電流値を変化させることを特徴とする定電流特性による消耗電極ガスシールドアーク溶接方法である。
In order to solve the above-mentioned problem, the first invention is a constant current that feeds a welding wire at a predetermined speed and conducts welding by applying a predetermined welding current to the arc according to a constant current characteristic of a welding power source. In the consumable electrode gas shield arc welding method by characteristics,
The welding voltage between the base metal and the welding wire is detected, the welding voltage detection value is moving averaged to calculate a welding voltage moving average value, and the welding voltage detection value is substantially equal to the welding voltage moving average value. The consumable electrode gas shield arc welding method with constant current characteristics, wherein the welding current value according to the constant current characteristics is changed.

また、第2の発明は、前記消耗電極ガスシールドアーク溶接がピーク期間中のピーク電流の通電及びベース期間中のベース電流の通電をパルス周期として繰り返す消耗電極パルスアーク溶接であり、前記溶接電流値が前記パルス周期ごとの溶接電流平均値であり、前記溶接電圧値が前記パルス周期ごとの溶接電圧平均値であり、前記ピーク期間又は前記ピーク電流又は前記ベース期間又は前記ベース電流の少なくとも1つ以上を変化させて前記パルス周期ごとの溶接電流平均値を変化させることを特徴とする第1の発明記載の定電流特性による消耗電極ガスシールドアーク溶接方法である。   Further, the second invention is consumable electrode pulse arc welding in which the consumable electrode gas shielded arc welding repeats energization of a peak current during a peak period and energization of a base current during a base period as a pulse period, and the welding current value Is a welding current average value for each pulse period, the welding voltage value is a welding voltage average value for each pulse period, and at least one or more of the peak period, the peak current, the base period, or the base current The consumable electrode gas shielded arc welding method with constant current characteristics according to the first aspect of the present invention is characterized in that the welding current average value for each pulse period is changed by changing.

上記第1の発明によれば、定電流特性によって消耗電極ガスシールドアーク溶接を行い、溶接電圧Vwとその移動平均値Vraとが略等しくなるように定電流特性を変化させることによって外部特性による自己制御作用を働かせることができる。このために、外乱及び酸化皮膜のクリーニング状態の変動によるアーク長の変動を迅速に抑制することができ、良好な溶接品質を得ることができる。これにより、定電流特性による消耗電極ガスシールドアーク溶接が実用上可能となった。   According to the first aspect of the present invention, consumable electrode gas shielded arc welding is performed with a constant current characteristic, and the constant current characteristic is changed so that the welding voltage Vw and the moving average value Vra are substantially equal to each other. Control action can be activated. For this reason, the fluctuation of the arc length due to the disturbance and the fluctuation of the cleaning state of the oxide film can be quickly suppressed, and good welding quality can be obtained. As a result, consumable electrode gas shielded arc welding with constant current characteristics has become practical.

上記第2の発明によれば、消耗電極パルスアーク溶接において上記と同様の効果を奏することができ、パルスアーク溶接における溶接品質を向上させることができる。   According to the second aspect, the same effect as described above can be obtained in consumable electrode pulse arc welding, and the welding quality in pulse arc welding can be improved.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
本発明の実施の形態1は、溶接電圧を検出し、この溶接電圧検出値を移動平均して溶接電圧移動平均値を算出し、上記の溶接電圧検出値が上記の溶接電圧移動平均値と略等しくなるように定電流特性による溶接電流値を変化させる定電流特性による消耗電極ガスシールドアーク溶接方法である。
[Embodiment 1]
Embodiment 1 of the present invention detects a welding voltage, calculates a welding voltage moving average value by moving and averaging the welding voltage detection values, and the welding voltage detection value is substantially equal to the welding voltage moving average value. This is a consumable electrode gas shielded arc welding method with constant current characteristics in which the welding current value with constant current characteristics is changed to be equal.

図1は、本発明の実施の形態1に係る定電流特性による消耗電極ガスシールドアーク溶接方法の動作原理を説明するための溶融特性L3と定電流特性CC1、CC2との関係図である。同図の横軸は溶接電流Iwを示し、縦軸はアーク長Laを示す。同図の溶融特性L3及び定電流特性CC1は、上述した図9と同一である。以下、同図を参照して説明する。   FIG. 1 is a relationship diagram between a melting characteristic L3 and constant current characteristics CC1 and CC2 for explaining an operation principle of a consumable electrode gas shielded arc welding method using constant current characteristics according to Embodiment 1 of the present invention. In the figure, the horizontal axis indicates the welding current Iw, and the vertical axis indicates the arc length La. The melting characteristic L3 and the constant current characteristic CC1 in the figure are the same as those in FIG. Hereinafter, a description will be given with reference to FIG.

まず、上述した外乱が発生しておらず、かつ、酸化皮膜のクリーニング状態も変化していない定常アーク状態について考える。送給速度が設定されると溶融特性はL3になる。アーク長Laが所望値の4mmになるように定電流特性をCC1に設定する。動作点は両特性の交点P4になる。定常アーク状態では動作点はP4点に固定されるので、アーク長Laは所望値に維持される。   First, a steady arc state in which the above-described disturbance has not occurred and the oxide film cleaning state has not changed will be considered. When the feeding speed is set, the melting characteristic becomes L3. The constant current characteristic is set to CC1 so that the arc length La becomes a desired value of 4 mm. The operating point is the intersection P4 of both characteristics. Since the operating point is fixed at the point P4 in the steady arc state, the arc length La is maintained at a desired value.

この定常アーク状態において外乱が発生してアーク長Laが過渡的に長くなると、動作点はP4からP5へ移動する。本発明では溶接電圧Vwと溶接電圧移動平均値Vraとの電圧誤差増幅値ΔV=G・(Vra−Vw)に応じて定電流特性による溶接電流値Iwを変化させる。ここでGは増幅率である。すなわち、Iw2=Iw1+ΔVとなる。溶接電流Iw1は定電流特性CC1の電流値である。外乱によってアーク長Laが長くなると、溶接電圧Vwが溶接電圧移動平均値Vraよりも大きくなり、上記の電圧誤差増幅値ΔV<0となる。この結果、Iw2<Iw1となり定電流特性はCC2に変化する。これに応動して動作点はP5からP6へと移動する。動作点がP6になると溶接電流は減少するので、溶融速度が遅くなり、アーク長Laは短くなる方向へ制御される。すなわち、外乱によるアーク長Laの変動を上記の電圧誤差増幅値ΔVによって検出し、定電流特性を変化させて外部特性による自己制御作用を働かせている。上述したように、アーク固有の自己制御作用に比べて外部特性による自己制御作用の方がアーク長制御の過渡応答性が良く変動幅も小さくなる。   When a disturbance occurs in this steady arc state and the arc length La becomes transiently long, the operating point moves from P4 to P5. In the present invention, the welding current value Iw based on the constant current characteristic is changed according to the voltage error amplification value ΔV = G · (Vra−Vw) between the welding voltage Vw and the welding voltage moving average value Vra. Here, G is an amplification factor. That is, Iw2 = Iw1 + ΔV. The welding current Iw1 is a current value of the constant current characteristic CC1. When the arc length La becomes longer due to disturbance, the welding voltage Vw becomes larger than the welding voltage moving average value Vra, and the voltage error amplification value ΔV <0. As a result, Iw2 <Iw1, and the constant current characteristic changes to CC2. In response to this, the operating point moves from P5 to P6. Since the welding current decreases when the operating point becomes P6, the melting rate is slowed and the arc length La is controlled to be shortened. That is, the fluctuation of the arc length La due to the disturbance is detected by the voltage error amplification value ΔV, and the constant current characteristic is changed to make the self-control action by the external characteristic work. As described above, the self-control action based on the external characteristics has better transient response of the arc length control and the fluctuation range is smaller than the self-control action inherent to the arc.

次に、定常アーク状態において酸化皮膜のクリーニング状態が変動すると溶接電圧Vwが変化する。しかし、酸化皮膜のクリーニング状態の変動速度は上記の外乱による変動速度よりも緩やかである。例えば、外乱による変動速度は数ms〜十数ms程度であり、他方酸化皮膜のクリーニング状態の変動速度は数十ms〜数百ms程度である。そこで、溶接電圧移動平均値Vraを算出するための移動平均期間を、外乱の変動速度よりも長く、かつ、酸化皮膜のクリーニング状態の変動速度よりも短く設定する。これによって、酸化皮膜のクリーニング状態の緩やかな変動が発生した場合には、Vw≒Vraとなり定電流特性はCC1のままで変化しない。このために、酸化皮膜のクリーニング状態が変動してもアーク長Laは所望値のままである。他方、外乱が発生したときは上述したようにVa≠Vraとなり定電流特性がCC1からCC2等に過渡的に変化して外部特性による自己制御作用が働く。定常アーク状態に戻ると定電流特性はCC1に戻る。   Next, when the cleaning state of the oxide film varies in the steady arc state, the welding voltage Vw changes. However, the fluctuation rate of the oxide film cleaning state is slower than the fluctuation rate due to the above disturbance. For example, the fluctuation speed due to the disturbance is about several ms to several tens of ms, while the fluctuation speed of the oxide film cleaning state is about several tens to several hundred ms. Therefore, the moving average period for calculating the welding voltage moving average value Vra is set to be longer than the fluctuation speed of the disturbance and shorter than the fluctuation speed of the oxide film cleaning state. As a result, when a gradual change in the cleaning state of the oxide film occurs, Vw≈Vra, and the constant current characteristic remains CC1. For this reason, even if the cleaning state of the oxide film fluctuates, the arc length La remains at a desired value. On the other hand, when a disturbance occurs, Va ≠ Vra as described above, and the constant current characteristic changes transiently from CC1 to CC2 and the like, and the self-control action by the external characteristic works. When returning to the steady arc state, the constant current characteristic returns to CC1.

図2は、上述した実施の形態1に係る定電流特性による消耗電極ガスシールドアーク溶接方法を実施するための溶接電源のブロック図である。電源主回路MCは、商用交流電源(3相200V等)を入力として後述する電流誤差増幅信号Eiに従ってインバータ制御等によって出力制御を行い、溶接電流Iw及び溶接電圧Vwを出力する。溶接ワイヤ1は、ワイヤ送給装置の送給ロール5の回転によって溶接トーチ4内を通って送給され、母材2との間にアーク3が発生する。   FIG. 2 is a block diagram of a welding power source for carrying out the consumable electrode gas shielded arc welding method with constant current characteristics according to the first embodiment described above. The power supply main circuit MC receives a commercial AC power supply (3-phase 200 V or the like) as an input, performs output control by inverter control or the like according to a current error amplification signal Ei described later, and outputs a welding current Iw and a welding voltage Vw. The welding wire 1 is fed through the welding torch 4 by the rotation of the feeding roll 5 of the wire feeding device, and an arc 3 is generated between the welding wire 1 and the base material 2.

溶接電圧検出回路VDは、上記の溶接電圧Vwを検出して溶接電圧検出信号Vdを出力する。溶接電圧移動平均値算出回路VRAは、上記の溶接電圧検出信号Vdを移動平均して溶接電圧移動平均値信号Vraを出力する。電圧誤差増幅回路EVは、上記の溶接電圧移動平均値信号Vraと上記の溶接電圧検出信号Vdとの誤差を増幅して電圧誤差増幅信号ΔV=G・(Vra−Vd)を出力する。Gは予め定めた増幅率である。電流設定回路ISは、予め定めた電流設定信号Isを出力する。加算回路ADは、上記の電流設定信号Isと上記の電圧誤差増幅信号ΔVとの加算を行い、電流制御設定信号Isc=Is+ΔVを出力する。電流検出回路IDは、上記の溶接電流Iwを検出して溶接電流検出信号Idを出力する。電流誤差増幅回路EIは、上記の電流制御設定信号Iscと上記の溶接電流検出信号Idとの誤差を増幅して、電流誤差増幅信号Eiを出力する。この回路によって、電流制御設定信号Iscにより定まる定電流特性が形成される。上記の電圧誤差増幅信号ΔV=0の定常アーク状態においては、Isc=Isとなるので、電流設定信号Isにより定まる定電流特性が形成される。例えば、上述した図1において、Is=Iw1に設定すると、定電流特性CC1が形成される。同様に、外乱によって電圧誤差増幅信号ΔV>0となりIsc=Iw2になると、定電流特性CC2が形成される。   The welding voltage detection circuit VD detects the welding voltage Vw and outputs a welding voltage detection signal Vd. The welding voltage moving average value calculation circuit VRA averages the welding voltage detection signal Vd and outputs a welding voltage moving average value signal Vra. The voltage error amplification circuit EV amplifies the error between the welding voltage moving average value signal Vra and the welding voltage detection signal Vd and outputs a voltage error amplification signal ΔV = G · (Vra−Vd). G is a predetermined amplification factor. The current setting circuit IS outputs a predetermined current setting signal Is. The adder circuit AD adds the current setting signal Is and the voltage error amplification signal ΔV, and outputs a current control setting signal Isc = Is + ΔV. The current detection circuit ID detects the welding current Iw and outputs a welding current detection signal Id. The current error amplification circuit EI amplifies an error between the current control setting signal Isc and the welding current detection signal Id and outputs a current error amplification signal Ei. By this circuit, a constant current characteristic determined by the current control setting signal Isc is formed. In the steady arc state in which the voltage error amplification signal ΔV = 0, Isc = Is, so that a constant current characteristic determined by the current setting signal Is is formed. For example, in FIG. 1 described above, when Is = Iw1, the constant current characteristic CC1 is formed. Similarly, when the voltage error amplification signal ΔV> 0 and Isc = Iw2 due to disturbance, a constant current characteristic CC2 is formed.

[実施の形態2]
本発明の実施の形態2は、実施の形態1における消耗電極ガスシールドアーク溶接として消耗電極パルスアーク溶接を使用する場合である。図3は、パルスアーク溶接の電流・電圧波形を示す。同図(A)は溶接電流瞬時値iwの時間変化を示し、同図(B)は溶接電圧瞬時値vwの時間変化を示す。時刻t1〜t2のピーク期間Tp中は、同図(A)に示すように、溶滴を移行させるために大電流値のピーク電流Ipを通電し、同図(B)に示すように、溶接ワイヤと母材との間にピーク電圧Vpが印加する。時刻t2〜t3のベース期間Tb中は、同図(A)に示すように、溶接ワイヤを溶融させないために小電流値のベース電流Ibを通電し、同図(B)に示すように、溶接ワイヤと母材との間にベース電圧Vbが印加する。ピーク期間Tp及びベース期間Tbからパルス周期Tfが形成される。パルスアーク溶接においては、パルス周期Tfごとに1溶滴が母材に移行するいわゆる1パルス1溶滴移行となる。したがって、アーク長Laは1パルス周期Tfごとに変化する。このために、上述した実施の形態1における溶接電流Iw及び溶接電圧Vwとして、実施の形態2ではパルス周期Tfごとの溶接電流平均値Iwa及びパルス周期Tfごとの溶接電圧平均値Vwaを使用する必要がある。すなわち、実施の形態2では上記のパルス周期溶接電流平均値Iwaが一定値になるように定電流特性が形成される。また、溶接電圧移動平均値Vraは上記のパルス周期溶接電圧平均値Vwaを移動平均して算出する。したがって、電圧誤差増幅値ΔV=G・(Vra−Vwa)となる。同図(A)において、ピーク期間Tp、ピーク電流Ip、ベース期間Tb及びベース電流Ibを設定すると、パルス周期溶接電流平均値Iwaが所定値に定まる.したがって、パルス周期溶接電流平均値Iwaを変化させるためには、ピーク期間Tp、ピーク電流Ip、ベース期間Tb又はベース電流Ibの少なくとも1つ以上を変化させれば良い。上記以外は実施の形態1と同様である。
[Embodiment 2]
The second embodiment of the present invention is a case where consumable electrode pulse arc welding is used as the consumable electrode gas shield arc welding in the first embodiment. FIG. 3 shows current / voltage waveforms of pulse arc welding. FIG. 4A shows the time change of the welding current instantaneous value iw, and FIG. 4B shows the time change of the welding voltage instantaneous value vw. During the peak period Tp from time t1 to t2, as shown in FIG. 4A, a large current peak current Ip is applied to transfer the droplet, and welding is performed as shown in FIG. A peak voltage Vp is applied between the wire and the base material. During the base period Tb from time t2 to t3, as shown in FIG. 6A, the base current Ib having a small current value is energized so as not to melt the welding wire, and as shown in FIG. A base voltage Vb is applied between the wire and the base material. A pulse period Tf is formed from the peak period Tp and the base period Tb. In the pulse arc welding, so-called 1-pulse 1-droplet transfer in which one droplet moves to the base material every pulse period Tf. Therefore, the arc length La changes every pulse period Tf. Therefore, as the welding current Iw and the welding voltage Vw in the first embodiment, the welding current average value Iwa for each pulse period Tf and the welding voltage average value Vwa for each pulse period Tf must be used in the second embodiment. There is. That is, in the second embodiment, the constant current characteristic is formed so that the above-described pulse period welding current average value Iwa becomes a constant value. The welding voltage moving average value Vra is calculated by moving average the above-mentioned pulse period welding voltage average value Vwa. Therefore, the voltage error amplification value ΔV = G · (Vra−Vwa). In FIG. 5A, when the peak period Tp, peak current Ip, base period Tb, and base current Ib are set, the pulse cycle welding current average value Iwa is set to a predetermined value. Therefore, in order to change the pulse period welding current average value Iwa, it is only necessary to change at least one of the peak period Tp, the peak current Ip, the base period Tb, or the base current Ib. Other than the above, the second embodiment is the same as the first embodiment.

図4は、本発明の実施の形態2に係る定電流特性による消耗電極ガスシールドアーク溶接方法を実施するための溶接電源のブロック図である。同図において上述した図2と同一のブロックには同一符号を付してそれらの説明は省略する。以下、図2とは異なる点線で示すブロックについて説明する。   FIG. 4 is a block diagram of a welding power source for carrying out the consumable electrode gas shield arc welding method with constant current characteristics according to Embodiment 2 of the present invention. In the figure, the same blocks as those in FIG. 2 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, blocks indicated by dotted lines different from those in FIG. 2 will be described.

パルス周期溶接電圧平均値算出回路VWAは、溶接電圧瞬時値vwを検出した溶接電圧検出信号Vdをパルス周期Tfごとに平均値を算出し、パルス周期溶接電圧平均値信号Vwaを出力する。溶接電圧移動平均値算出回路VRAは、上記のパルス周期溶接電圧平均値信号Vwaを移動平均して溶接電圧移動平均値信号Vraを出力する。電圧誤差増幅回路EVは、上記の溶接電圧移動平均値信号Vraとパルス周期溶接電圧平均値信号Vwaとの誤差を増幅して、電圧誤差増幅信号ΔV=G・(Vra−Vwa)を出力する。Gは予め定めた増幅率である。   The pulse cycle welding voltage average value calculation circuit VWA calculates an average value of the welding voltage detection signal Vd that detects the welding voltage instantaneous value vw for each pulse cycle Tf, and outputs a pulse cycle welding voltage average value signal Vwa. The welding voltage moving average value calculation circuit VRA moves and averages the pulse period welding voltage average value signal Vwa and outputs a welding voltage moving average value signal Vra. The voltage error amplification circuit EV amplifies the error between the welding voltage moving average value signal Vra and the pulse period welding voltage average value signal Vwa, and outputs a voltage error amplification signal ΔV = G · (Vra−Vwa). G is a predetermined amplification factor.

ベース期間設定回路TBSは、予め定めたベース期間設定信号Tbsを出力する。減算回路SBは、上記のベース期間設定信号Tbsから上記の電圧誤差増幅信号ΔVを減算して、ベース期間制御設定信号Tbsc=Tbs−ΔVを出力する。ピーク期間設定回路TPSは、予め定めたピーク期間設定信号Tpsを出力する。タイマ回路TMは、上記のピーク期間設定信号Tpsによって定まる期間中はHighレベルになり、続く上記のベース期間制御設定信号Tbscによって定まる期間中はLowレベルになり、以後この動作を繰り返すタイマ信号Tmを出力する。すなわち、このタイマ信号TmがHighレベルのときはピーク期間になり、Lowレベルのときはベース期間になる。ピーク電流設定回路IPSは、予め定めたピーク電流設定信号Ipsを出力する。ベース電流設定回路IBSは、予め定めたベース電流設定信号Ibsを出力する。切換回路SWは、上記のタイマ信号TmがHighレベルのときはa側に切り換わり上記のピーク電流設定信号Ipsを電流制御設定信号Iscとして出力し、Lowレベルのときはb側に切り換わり上記のベース電流設定信号Ibsを電流制御設定信号Iscとして出力する。この電流制御設定信号Iscに相当する図3で上述した溶接電流瞬時値iwが通電する。   The base period setting circuit TBS outputs a predetermined base period setting signal Tbs. The subtraction circuit SB subtracts the voltage error amplification signal ΔV from the base period setting signal Tbs, and outputs a base period control setting signal Tbsc = Tbs−ΔV. The peak period setting circuit TPS outputs a predetermined peak period setting signal Tps. The timer circuit TM becomes High level during the period determined by the peak period setting signal Tps, and becomes Low level during the period determined by the subsequent base period control setting signal Tbsc. Thereafter, the timer circuit Tm repeats this operation. Output. That is, when the timer signal Tm is at the high level, the peak period is set, and when the timer signal Tm is at the low level, the base period is set. The peak current setting circuit IPS outputs a predetermined peak current setting signal Ips. The base current setting circuit IBS outputs a predetermined base current setting signal Ibs. The switching circuit SW switches to the a side when the timer signal Tm is at the high level and outputs the peak current setting signal Ips as the current control setting signal Isc, and switches to the b side when the timer signal Tm is at the low level. The base current setting signal Ibs is output as the current control setting signal Isc. The welding current instantaneous value iw described above with reference to FIG. 3 corresponding to the current control setting signal Isc is energized.

同図において定常アーク状態にあるときは電圧誤差増幅信号ΔV=0となるので、Tbsc=Tbsとなる。したがって、ピーク期間設定信号Tpsによって定まる期間中はピーク電流設定信号Ipsによって定まる電流が通電し、ベース期間設定信号Tbsによって定まる期間中はベース電流設定信号Ibsによって定まる電流が通電する。この状態でのパルス周期溶接電流平均値Iwaが、上記した図1のIw1となる。   In the figure, since the voltage error amplification signal ΔV = 0 when in the steady arc state, Tbsc = Tbs. Therefore, a current determined by the peak current setting signal Ips is energized during the period determined by the peak period setting signal Tps, and a current determined by the base current setting signal Ibs is energized during the period determined by the base period setting signal Tbs. The pulse period welding current average value Iwa in this state is Iw1 in FIG.

定常アーク状態において外乱が発生してアーク長Laが過渡的に長くなると、電圧誤差増幅信号ΔV>0となる。したがって、Tbsc<Tbsとなり、ベース期間は定常アーク状態よりも短くなる。この結果、パルス周期溶接電流平均値Iwaは小さくなり、上述した図1のIw2となる。これによって外部特性による自己制御作用を働かせてアーク長Laの変動を抑制する。   When a disturbance occurs in the steady arc state and the arc length La becomes transiently long, the voltage error amplification signal ΔV> 0. Therefore, Tbsc <Tbs, and the base period is shorter than the steady arc state. As a result, the pulse period welding current average value Iwa becomes small and becomes Iw2 in FIG. As a result, a self-control action due to the external characteristics is exerted to suppress fluctuations in the arc length La.

上記においてはベース期間Tbを可変してパルス周期溶接電流平均値Iwaを変化させる場合を説明した。これ以外にピーク期間Tpを可変する場合はTp=Tps+ΔVとすれば良い。同様に、ベース電流Ibを可変する場合はIb=Ibs+ΔVとすれば良い。さらにピーク電流Ipを可変する場合はIp=Ips+ΔVとすれば良い。また、上記はアルミニウムMIG溶接について説明したが、母材に酸化皮膜が形成されるマグネシウム等のMIG溶接にも適用することができる。   In the above description, the base period Tb is varied to change the pulse period welding current average value Iwa. In addition, when the peak period Tp is varied, Tp = Tps + ΔV may be set. Similarly, when the base current Ib is varied, Ib = Ibs + ΔV. Further, when the peak current Ip is varied, Ip = Ips + ΔV may be set. Moreover, although the above demonstrated aluminum MIG welding, it is applicable also to MIG welding, such as magnesium in which an oxide film is formed in a base material.

[効果]
図5は、本発明の効果を説明するためにアーク長変動時の過渡応答性を測定する方法を示す図である。溶接ワイヤに直径1.2mmのアルミニウム合金材を使用し、平均溶接電流100A、平均溶接電圧18V、溶接速度80cm/minでパルスMIG溶接を行った場合である。時刻t1においてアーク長を2mmに設定し、時刻t2において母材の段差により給電チップ・母材間距離が長くなりアーク長は6mmに長くなる。この状態から外部特性による自己制御作用によってアーク長が復元されて時刻t3において2mmに戻る。この時刻t2〜t3までの時間をアーク長復元時間として測定する。測定は比較のために従来技術2と本発明の両者について行った。その結果を図6に示す。同図から明らかなように、従来技術2ではアーク長復元時間は70ms程度であった。これに対して本発明では、アーク長復元時間は大幅に短縮されて20ms程度であった。このために、外乱によるアーク長の変動を迅速に復元させることができ変動幅も小さくすることができるので、溶接品質が向上する。
[effect]
FIG. 5 is a diagram showing a method for measuring the transient response at the time of changing the arc length in order to explain the effect of the present invention. This is a case where an aluminum alloy material having a diameter of 1.2 mm is used for the welding wire, and pulse MIG welding is performed at an average welding current of 100 A, an average welding voltage of 18 V, and a welding speed of 80 cm / min. At time t1, the arc length is set to 2 mm, and at time t2, the distance between the feed tip and the base material becomes longer due to the step difference of the base material, and the arc length becomes 6 mm. From this state, the arc length is restored by the self-control action by the external characteristics and returns to 2 mm at time t3. The time from time t2 to t3 is measured as the arc length restoration time. Measurements were made for both prior art 2 and the present invention for comparison. The result is shown in FIG. As is clear from the figure, in the conventional technique 2, the arc length restoration time is about 70 ms. On the other hand, in the present invention, the arc length restoration time was significantly shortened to about 20 ms. For this reason, the fluctuation of the arc length due to the disturbance can be quickly restored and the fluctuation width can be reduced, so that the welding quality is improved.

本発明の実施の形態1に係る定電流特性による消耗電極ガスシールドアーク溶接方法を示す溶融特性と定電流特性との関係図である。It is a related figure of the fusion | melting characteristic which shows the consumable electrode gas-shield arc welding method by the constant current characteristic which concerns on Embodiment 1 of this invention, and a constant current characteristic. 本発明の実施の形態1に係る溶接電源のブロック図である。It is a block diagram of the welding power supply which concerns on Embodiment 1 of this invention. パルスアーク溶接の電流・電圧波形図である。It is a current / voltage waveform diagram of pulse arc welding. 本発明の実施の形態2に係る溶接電源のブロック図である。It is a block diagram of the welding power supply which concerns on Embodiment 2 of this invention. 本発明の効果を説明するためにアーク長変動時のアーク長復元時間の測定方法を示す図である。It is a figure which shows the measuring method of the arc length restoration time at the time of arc length fluctuation | variation in order to demonstrate the effect of this invention. 図5の測定方法によって行った従来技術と本発明のアーク長復元時間の測定結果を示す図である。It is a figure which shows the measurement result of the prior art performed by the measuring method of FIG. 5, and the arc length restoration time of this invention. 従来技術1における溶融特性と定電圧特性との関係図である。It is a related figure of the fusion characteristic in the prior art 1, and a constant voltage characteristic. 従来技術1における課題を示す溶融特性と定電圧特性との関係図である。It is a related figure of the melting characteristic and the constant voltage characteristic which show the subject in the prior art 1. 従来技術2における課題を示す溶融特性と定電流特性との関係図である。It is a related figure of the fusion characteristic and constant current characteristic which show the subject in prior art 2.

符号の説明Explanation of symbols

1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
AD 加算回路
CC1〜2 定電流特性
CP1〜2 定電圧特性
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
EV 電圧誤差増幅回路
Ib ベース電流
IBS ベース電流設定回路
Ibs ベース電流設定信号
ID 溶接電流検出回路
Id 溶接電圧検出信号
Ip ピーク電流
IPS ピーク電流設定回路
Ips ピーク電流設定信号
IS 電流設定回路
Is 電流設定信号
Isc 電流制御設定信号
Iw 溶接電流
iw 溶接電流瞬時値
Iwa パルス周期溶接電流平均値(信号)
L1〜3 溶融特性
La アーク長
MC 電源主回路
P1〜6 動作点
SB 減算回路
SW 切換回路
Tb ベース期間
TBS ベース期間設定回路
Tbs ベース期間設定信号
Tbsc ベース期間制御設定信号
Tf パルス周期
TM タイマ回路
Tm タイマ信号
Tp ピーク期間
TPS ピーク期間設定回路
Tps ピーク期間設定信号
Vb ベース電圧
VD 溶接電圧検出回路
Vd 溶接電圧検出信号
Vp ピーク電圧
VRA 溶接電圧移動平均値算出回路
Vra 溶接電圧移動平均値(信号)
Vw 溶接電圧
vw 溶接電圧瞬時値
VWA パルス周期溶接電圧平均値算出回路
Vwa パルス周期溶接電圧平均値(信号)
ΔV 電圧誤差増幅(値/信号)

DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 3 Arc 4 Welding torch 5 Feed roll AD Adder circuit CC1-2 Constant current characteristic CP1-2 Constant voltage characteristic EI Current error amplification circuit Ei Current error amplification signal EV Voltage error amplification circuit Ib Base current IBS Base Current setting circuit Ibs Base current setting signal ID Welding current detection circuit Id Welding voltage detection signal Ip Peak current IPS Peak current setting circuit Ips Peak current setting signal IS Current setting circuit Is Current setting signal Isc Current control setting signal Iw Welding current iw Welding current Instantaneous value Iwa Pulse period welding current average value (signal)
L1-3 Melting characteristic La Arc length MC Power supply main circuit P1-6 Operating point SB Subtraction circuit SW Switching circuit Tb Base period TBS Base period setting circuit Tbs Base period setting signal Tbsc Base period control setting signal Tf Pulse period TM Timer circuit Tm Timer Signal Tp Peak period TPS Peak period setting circuit Tps Peak period setting signal Vb Base voltage VD Welding voltage detection circuit Vd Welding voltage detection signal Vp Peak voltage VRA Welding voltage moving average calculation circuit Vra Welding voltage moving average value (signal)
Vw Welding voltage vw Welding voltage instantaneous value VWA Pulse cycle welding voltage average value calculation circuit Vwa Pulse cycle welding voltage average value (signal)
ΔV Voltage error amplification (value / signal)

Claims (2)

溶接ワイヤを予め定めた速度で送給すると共に、溶接電源の定電流特性によって予め定めた溶接電流をアークに通電して溶接する定電流特性による消耗電極ガスシールドアーク溶接方法において、
母材・溶接ワイヤ間の溶接電圧を検出し、この溶接電圧検出値を移動平均して溶接電圧移動平均値を算出し、前記溶接電圧検出値が前記溶接電圧移動平均値と略等しくなるように前記定電流特性による前記溶接電流値を変化させることを特徴とする定電流特性による消耗電極ガスシールドアーク溶接方法。
In the consumable electrode gas shielded arc welding method with constant current characteristics that feeds the welding wire at a predetermined speed and welds the arc by applying a predetermined welding current according to the constant current characteristics of the welding power source,
The welding voltage between the base metal and the welding wire is detected, the welding voltage detection value is moving averaged to calculate a welding voltage moving average value, and the welding voltage detection value is substantially equal to the welding voltage moving average value. A consumable electrode gas shield arc welding method with constant current characteristics, wherein the welding current value according to the constant current characteristics is changed.
前記消耗電極ガスシールドアーク溶接がピーク期間中のピーク電流の通電及びベース期間中のベース電流の通電をパルス周期として繰り返す消耗電極パルスアーク溶接であり、前記溶接電流値が前記パルス周期ごとの溶接電流平均値であり、前記溶接電圧値が前記パルス周期ごとの溶接電圧平均値であり、前記ピーク期間又は前記ピーク電流又は前記ベース期間又は前記ベース電流の少なくとも1つ以上を変化させて前記パルス周期ごとの溶接電流平均値を変化させることを特徴とする請求項1記載の定電流特性による消耗電極ガスシールドアーク溶接方法。

The consumable electrode gas shielded arc welding is consumable electrode pulse arc welding in which energization of a peak current during a peak period and energization of a base current during a base period are repeated as a pulse period, and the welding current value is a welding current for each pulse period. Average value, the welding voltage value is a welding voltage average value for each pulse period, and at least one of the peak period or the peak current or the base period or the base current is changed for each pulse period. The consumable electrode gas shielded arc welding method with constant current characteristics according to claim 1, wherein an average value of welding current is changed.

JP2004088631A 2004-03-25 2004-03-25 Consumable electrode gas shielded arc welding method with constant current characteristics Expired - Fee Related JP4643161B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004088631A JP4643161B2 (en) 2004-03-25 2004-03-25 Consumable electrode gas shielded arc welding method with constant current characteristics
CNB200510054588XA CN100509242C (en) 2004-03-25 2005-03-14 Consumable electrode gas protection arc welding method with constant current performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088631A JP4643161B2 (en) 2004-03-25 2004-03-25 Consumable electrode gas shielded arc welding method with constant current characteristics

Publications (2)

Publication Number Publication Date
JP2005271042A true JP2005271042A (en) 2005-10-06
JP4643161B2 JP4643161B2 (en) 2011-03-02

Family

ID=35045763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088631A Expired - Fee Related JP4643161B2 (en) 2004-03-25 2004-03-25 Consumable electrode gas shielded arc welding method with constant current characteristics

Country Status (2)

Country Link
JP (1) JP4643161B2 (en)
CN (1) CN100509242C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119634A1 (en) * 2009-04-17 2010-10-21 パナソニック株式会社 Arc welding control method and arc welding control system
JP2012040594A (en) * 2010-08-20 2012-03-01 Daihen Corp Arc welding method and arc welding system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992440B1 (en) * 2007-03-07 2017-03-08 Panasonic Intellectual Property Management Co., Ltd. Welding device
CN101612688B (en) * 2008-06-26 2013-10-16 北京石油化工学院 Method for automatically adjusting arc length of slope characteristic type pulse consumable electrode gas shielded welding
JP5468841B2 (en) * 2009-08-07 2014-04-09 株式会社ダイヘン Arc welding method and arc welding system
JP2011073022A (en) * 2009-09-30 2011-04-14 Daihen Corp Carbon dioxide pulsed arc welding method
CN102126077B (en) * 2010-01-12 2014-09-17 株式会社大亨 Plasma metal inert gas arc welding method
CN106425026B (en) * 2016-11-30 2018-02-27 唐山松下产业机器有限公司 Arc-welding equipment, arc welding control method and device
CN110899922A (en) * 2018-09-14 2020-03-24 中国商用飞机有限责任公司 Welding method of 6061 aluminum alloy
CN110954799A (en) * 2018-09-26 2020-04-03 国网江苏省电力有限公司南京供电分公司 TBS valve bank thyristor level online state detection method in UPFC

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662674A (en) * 1979-10-26 1981-05-28 Daihen Corp Pulse arc welding method
JPH02290675A (en) * 1989-04-29 1990-11-30 Daihen Corp Pulse arc welding machine
JPH05261537A (en) * 1992-03-13 1993-10-12 Sansha Electric Mfg Co Ltd Pulse arc welding power unit
JPH09182961A (en) * 1995-12-28 1997-07-15 Kobe Steel Ltd Carbon dioxide gas shielded pulsed arc welding method
JPH09277044A (en) * 1996-04-10 1997-10-28 Daihen Corp Arc length recovery control method of pulse arc welding and welding equipment
JP2002361417A (en) * 2001-06-06 2002-12-18 Daihen Corp Output control method for power unit of pulsed arc welding
JP2003230958A (en) * 2002-02-12 2003-08-19 Daihen Corp Control method for arc length of pulse arc welding
JP2003290924A (en) * 2002-01-29 2003-10-14 Daihen Corp Arc length control method in pulsed arc welding
JP2004082152A (en) * 2002-08-26 2004-03-18 Daihen Corp Profiling control method of pulsed arc welding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662674A (en) * 1979-10-26 1981-05-28 Daihen Corp Pulse arc welding method
JPH02290675A (en) * 1989-04-29 1990-11-30 Daihen Corp Pulse arc welding machine
JPH05261537A (en) * 1992-03-13 1993-10-12 Sansha Electric Mfg Co Ltd Pulse arc welding power unit
JPH09182961A (en) * 1995-12-28 1997-07-15 Kobe Steel Ltd Carbon dioxide gas shielded pulsed arc welding method
JPH09277044A (en) * 1996-04-10 1997-10-28 Daihen Corp Arc length recovery control method of pulse arc welding and welding equipment
JP2002361417A (en) * 2001-06-06 2002-12-18 Daihen Corp Output control method for power unit of pulsed arc welding
JP2003290924A (en) * 2002-01-29 2003-10-14 Daihen Corp Arc length control method in pulsed arc welding
JP2003230958A (en) * 2002-02-12 2003-08-19 Daihen Corp Control method for arc length of pulse arc welding
JP2004082152A (en) * 2002-08-26 2004-03-18 Daihen Corp Profiling control method of pulsed arc welding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119634A1 (en) * 2009-04-17 2010-10-21 パナソニック株式会社 Arc welding control method and arc welding control system
JP5278542B2 (en) * 2009-04-17 2013-09-04 パナソニック株式会社 Arc welding control method and arc welding control apparatus
US8933370B2 (en) 2009-04-17 2015-01-13 Panasonic Corporation Arc welding control method and arc welding control system
JP2012040594A (en) * 2010-08-20 2012-03-01 Daihen Corp Arc welding method and arc welding system

Also Published As

Publication number Publication date
JP4643161B2 (en) 2011-03-02
CN1672852A (en) 2005-09-28
CN100509242C (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4334930B2 (en) Arc length control method for pulse arc welding
JP5214859B2 (en) Output control method for consumable electrode arc welding power supply
US20150158107A1 (en) Method and system to use combination filler wire feed and high intensity energy source for welding
JP2006263757A (en) Method for controlling arc length in pulse arc welding
KR20080088471A (en) Consumable electrode type gas shielded arc welding control apparatus and welding control method
CN100509242C (en) Consumable electrode gas protection arc welding method with constant current performance
JP4319586B2 (en) AC pulse arc welding method
JP4181384B2 (en) Welding current control method for pulse arc welding
JP5154872B2 (en) Output control method of pulse arc welding
JP6245734B2 (en) Welding current control method during short circuit period
JP2006312186A (en) Arc length control method of double-side arc welding, and double-side arc welding equipment
JP4515018B2 (en) Scanning control method of pulse arc welding
JP4163425B2 (en) Arc length control method for pulse arc welding
JP4890281B2 (en) Pulse arc welding control method
JP2006043736A (en) Consumable electrode gas shielded arc welding method
JP4847142B2 (en) Output control method for consumable electrode pulse arc welding
JP2002079373A (en) Method and device for controlling position of welding for high-frequency pulse arc welding
JP4663309B2 (en) Arc length control method for pulse arc welding
JP2009045662A (en) Welding power supply
JP4438359B2 (en) Arc length control method for aluminum MIG welding
JPH09271945A (en) Arc length reset control method and welding equipment in consumable electrode arc welding
JP6525625B2 (en) 2-wire welding control method
JP5064002B2 (en) Output control method for consumable electrode arc welding power supply
JP2006205213A (en) Method for controlling output of pulse arc welding
JP5495758B2 (en) Plasma MIG welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4643161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees