JP2002361417A - Output control method for power unit of pulsed arc welding - Google Patents

Output control method for power unit of pulsed arc welding

Info

Publication number
JP2002361417A
JP2002361417A JP2001170826A JP2001170826A JP2002361417A JP 2002361417 A JP2002361417 A JP 2002361417A JP 2001170826 A JP2001170826 A JP 2001170826A JP 2001170826 A JP2001170826 A JP 2001170826A JP 2002361417 A JP2002361417 A JP 2002361417A
Authority
JP
Japan
Prior art keywords
welding
value
period
current
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001170826A
Other languages
Japanese (ja)
Other versions
JP4704612B2 (en
JP2002361417A5 (en
Inventor
Kogun Do
紅軍 仝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2001170826A priority Critical patent/JP4704612B2/en
Publication of JP2002361417A publication Critical patent/JP2002361417A/en
Publication of JP2002361417A5 publication Critical patent/JP2002361417A5/ja
Application granted granted Critical
Publication of JP4704612B2 publication Critical patent/JP4704612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an output control method for forming external characteristics having an inclination Ks [V/A] of the optimum value for the purpose of improving welding performance in a power unit for pulsed arc welding. SOLUTION: In the output control method for a pulsed arc welding power unit, the inclination Ks of external characteristics is preliminarily set, as are a welding current setting value Is and a welding voltage setting value Vs, and the output of the welding power unit is controlled in the manner that a welding current average value Iw(n) of one period and a welding voltage average value Vw(n) of one period in the n-th pulse period Tpb(n) during welding maintains a relation of Vw(n)=Ks.(Is-Iw(n))+Vs. The external characteristics having the inclination Ks of the optimum value are thereby formed for welding to be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、消耗電極パルスア
ーク溶接において、予め定めた傾きKsを有する外部特
性を形成する溶接電源装置の出力制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an output of a welding power supply device for forming an external characteristic having a predetermined slope Ks in consumable electrode pulse arc welding.

【0002】[0002]

【従来の技術】消耗電極パルスアーク溶接では、美しい
ビード外観、均一な溶込み深さ等の溶接品質を良好に保
持するためには、溶接中のアーク長を適正値に維持する
ことが極めて重要である。一般的に、アーク長は溶接ワ
イヤの送給速度と溶融速度とのバランスによって決ま
る。したがって、溶接中の送給速度が一定であり、か
つ、この送給速度と溶接電流の平均値に略比例する溶融
速度とが等しくなると、アーク長は常に一定となる。し
かし、送給モータの回転速度の変動、溶接トーチの曲が
りによる送給経路の摩擦力の変動等によって、溶接中の
送給速度が変動するために、溶融速度とのバランスが崩
れてアーク長は変化する。また、溶接作業者の手振れ等
によるチップ・被溶接物間距離の変動、溶融池の不規則
な振動等によってもアーク長は変化する。したがって、
これらの種々の変動(以下、外乱という)によるアーク
長の変化を抑制するためには、、外乱に応じて常に溶融
速度を調整してアーク長の変化を抑制する必要がある
(以下、アーク長制御という)。
2. Description of the Related Art In consumable electrode pulse arc welding, it is extremely important to maintain an appropriate arc length during welding in order to maintain good welding quality such as beautiful bead appearance and uniform penetration depth. It is. Generally, the arc length is determined by the balance between the feeding speed and the melting speed of the welding wire. Therefore, when the feeding speed during welding is constant and the feeding speed is equal to the melting speed substantially proportional to the average value of the welding current, the arc length is always constant. However, since the feed speed during welding fluctuates due to fluctuations in the rotation speed of the feed motor, frictional forces in the feed path due to bending of the welding torch, etc., the balance with the melting speed is lost, and the arc length is reduced. Change. The arc length also changes due to fluctuations in the distance between the tip and the workpiece due to hand shake of the welding operator, irregular vibrations of the molten pool, and the like. Therefore,
In order to suppress the change in the arc length due to these various fluctuations (hereinafter, referred to as disturbance), it is necessary to always adjust the melting speed in accordance with the disturbance to suppress the change in the arc length (hereinafter, arc length). Control).

【0003】このアーク長制御方法としては、アーク長
と溶接電圧の平均値とが略比例関係にあることを利用し
て、溶接電圧の平均値が予め定めた目標値と等しくなる
ように溶接電源装置の出力を制御する方法が一般的に使
用されている。以下、従来技術1の出力制御方法につて
説明する。
This arc length control method utilizes the fact that the arc length and the average value of the welding voltage are substantially proportional to each other, so that the welding power source is controlled so that the average value of the welding voltage becomes equal to a predetermined target value. Methods of controlling the output of the device are commonly used. Hereinafter, the output control method of the prior art 1 will be described.

【0004】[従来技術1]図2は、パルスアーク溶接
の電流・電圧波形図である。同図(A)は溶接電流瞬時
値Ioの時間変化を示し、同図(B)は溶接電圧瞬時値
Voの時間変化を示す。以下、同図を参照して説明す
る。
[Prior Art 1] FIG. 2 is a current / voltage waveform diagram of pulse arc welding. FIG. 3A shows the temporal change of the welding current instantaneous value Io, and FIG. 3B shows the temporal change of the welding voltage instantaneous value Vo. Hereinafter, description will be made with reference to FIG.

【0005】 時刻t1〜t2の期間(ピーク期間T
p) 予め定めたピーク期間Tpの間は、同図(A)に示すよ
うに、溶滴移行をさせるために300〜600[A]程
度に予め定めたピーク電流Ipを通電し、同図(B)に
示すように、溶接電圧瞬時値Voは、上記の通電に応じ
てピーク電圧Vpとなる。上記のピーク期間Tpの時間
長さは、溶接ワイヤの材質、直径等に対応して、1〜3
[ms]程度に予め設定される。
[0005] A period from time t1 to time t2 (peak period T
p) During the predetermined peak period Tp, a predetermined peak current Ip of about 300 to 600 [A] is applied to transfer the droplet as shown in FIG. As shown in B), the welding voltage instantaneous value Vo becomes the peak voltage Vp in accordance with the above-described energization. The length of the peak period Tp is 1 to 3 depending on the material and diameter of the welding wire.
[Ms] is set in advance.

【0006】 時刻t2〜t3の期間(ベース期間T
b) ベース期間Tbの間は、同図(A)に示すように、溶滴
移行をさせないために20〜80[A]程度の低電流値
に予め定めたベース電流Ibを通電し、同図(B)に示
すように、溶接電圧瞬時値Voは、上記の通電に応じて
ベース電圧Vbとなる。
A period from time t2 to t3 (base period T
b) During the base period Tb, a predetermined base current Ib is applied to a low current value of about 20 to 80 [A] in order to prevent droplet transfer as shown in FIG. As shown in (B), the welding voltage instantaneous value Vo becomes the base voltage Vb according to the above-described energization.

【0007】同図(A)に示すように、溶接電流瞬時値
Ioの1周期(パルス周期Tpb)の間の平均値が1周期
溶接電流平均値Iwとなり、同様に、同図(B)に示す
ように、溶接電圧瞬時値Voの1周期(パルス周期Tp
b)の間の平均値が1周期溶接電圧平均値Vwとなる。
パルスアーク溶接電源装置において、前述したように、
アーク長を適正値に維持するための出力制御は以下のよ
うに行われる。すなわち、1周期溶接電圧平均値Vw
は、下式で表わされる。 Vw=(1/Tpb)・∫Vo・dt (1)式 但し、積分はパルス周期Tpb(時刻t1〜t3)の間行
う。上式に示す1周期溶接電圧平均値Vwが予め定めた
目標値の溶接電圧設定値Vsと等しくなるように、パル
ス周期Tpbの時間長さが制御される。なお、(1)式に
Vw=Vsを代入して変形すると下式となる。 ∫(Vs−Vo)・dt=0 (2)式 但し、電圧誤差積分値Svの積分は、パルス周期Tpbの
間行う。上式において、電圧誤差積分値Sv=∫(Vs
−Vo)・dtと定義するする。時刻t1のパルス周期
Tpbの開始時点から上記電圧誤差積分値Svの演算を開
始し、時刻t2以降のベース期間Tb中の上記電圧誤差
積分値Svが0[V]となった時点で、パルス周期Tpb
を終了し、次のパルス周期Tpbを開始する。このよう
に、従来技術1の出力制御方法では、各周期ごとの1周
期溶接電圧平均値Vwが電圧設定値Vsと等しくなるよ
うにパルス周期Tpbの時間長さを制御することによって
アーク長を適正値に維持する。
[0007] As shown in FIG. 1A, the average value of the welding current instantaneous value Io during one cycle (pulse cycle Tpb) is the one-cycle welding current average value Iw. Similarly, FIG. As shown, one cycle of the welding voltage instantaneous value Vo (pulse cycle Tp
The average value during b) is the one-cycle welding voltage average value Vw.
In the pulse arc welding power supply device, as described above,
Output control for maintaining the arc length at an appropriate value is performed as follows. That is, one cycle welding voltage average value Vw
Is represented by the following equation. Vw = (1 / Tpb) · ∫Vo · dt (1) where integration is performed during the pulse period Tpb (time t1 to t3). The time length of the pulse period Tpb is controlled such that the one-period welding voltage average value Vw shown in the above equation becomes equal to the predetermined target welding voltage set value Vs. Note that, when Vw = Vs is substituted into the equation (1) and transformed, the following equation is obtained. ∫ (Vs−Vo) · dt = 0 (2) where the integration of the voltage error integrated value Sv is performed during the pulse period Tpb. In the above equation, the voltage error integrated value Sv = ∫ (Vs
−Vo) · dt. The calculation of the voltage error integrated value Sv is started from the start of the pulse cycle Tpb at time t1, and when the voltage error integrated value Sv becomes 0 [V] during the base period Tb after time t2, the pulse cycle is started. Tpb
Is completed, and the next pulse cycle Tpb is started. As described above, according to the output control method of the prior art 1, the arc length is appropriately adjusted by controlling the time length of the pulse cycle Tpb so that the one-cycle welding voltage average value Vw for each cycle becomes equal to the voltage set value Vs. Keep at the value.

【0008】[従来技術2]図3は、横軸に示す1周期
溶接電流平均値Iwと縦軸に示す1周期溶接電圧平均値
Vwとの関係を示す溶接電源装置の外部特性図である。
以下、同図を参照して説明する。特性L1は傾きKs=
0[V/A]の外部特性を示し、特性L2は傾きKs=
−0.1[V/A]の外部特性を示す。前述した従来技
術1の出力制御方法では、1周期溶接電圧平均値Vw
は、1周期溶接電流平均値Iwの値とは関係なく予め定
めた溶接電圧設定値Vsと等しくなるように出力制御さ
れるために、傾きKs=0の上記の外部特性L1を形成
することになる。
[Prior Art 2] FIG. 3 is an external characteristic diagram of a welding power supply device showing the relationship between the one-cycle welding current average value Iw shown on the horizontal axis and the one-cycle welding voltage average value Vw shown on the vertical axis.
Hereinafter, description will be made with reference to FIG. The characteristic L1 has a slope Ks =
0 [V / A], and the characteristic L2 has a slope Ks =
It shows an external characteristic of -0.1 [V / A]. In the output control method of the prior art 1 described above, the one-cycle welding voltage average value Vw
Since the output is controlled so as to be equal to a predetermined welding voltage set value Vs irrespective of the value of the one-cycle welding current average value Iw, the above-mentioned external characteristic L1 having a slope Ks = 0 is formed. Become.

【0009】ところで、溶接電源装置の外部特性の傾き
Ksによってアーク長制御系の安定性(自己制御作用と
呼ばれる)が大きく影響されることが従来から広く知ら
れている。すなわち、アーク長制御系を安定化するため
には、種々の溶接法に対応して外部特性の傾きKsを適
正値に設定する必要がある。例えば、炭酸ガスアーク溶
接法では外部特性の傾きKsの適正値は(0〜−0.0
3)[V/A]程度であり、パルスアーク溶接法では外
部特性の傾きKsの適正値は(-0.05〜−0.3)
[V/A]程度であることが知られている。したがっ
て、本発明の対象であるパルスアーク溶接法において
は、アーク長制御系を安定化するためには、同図に示す
外部特性L1ではなく、-0.05〜−0.2[V/
A]程度の範囲内で予め定めた傾きKsを有する外部特
性L2を形成する必要がある。しかしながら、前述した
ように、従来技術1の出力制御方法では0[V/A]以
外の傾きKsを有する外部特性を形成することはできな
い。そこで、この問題を解決するために、以下に説明す
る従来技術2の出力制御方法が提案されている。以下、
図面を参照して従来技術2の出力制御方法について説明
する。
It has been widely known that the stability (called self-control action) of the arc length control system is greatly affected by the slope Ks of the external characteristic of the welding power supply device. That is, in order to stabilize the arc length control system, it is necessary to set the slope Ks of the external characteristic to an appropriate value corresponding to various welding methods. For example, in the carbon dioxide arc welding method, the appropriate value of the slope Ks of the external characteristic is (0 to -0.0
3) About [V / A], and in the pulse arc welding method, the appropriate value of the slope Ks of the external characteristic is (−0.05 to −0.3).
It is known to be about [V / A]. Therefore, in the pulse arc welding method which is the object of the present invention, in order to stabilize the arc length control system, instead of the external characteristic L1 shown in FIG.
It is necessary to form the external characteristic L2 having a predetermined slope Ks within a range of about A]. However, as described above, the output control method of the related art 1 cannot form an external characteristic having a slope Ks other than 0 [V / A]. Therefore, in order to solve this problem, an output control method according to Prior Art 2 described below has been proposed. Less than,
The output control method according to the prior art 2 will be described with reference to the drawings.

【0010】以下の説明において、前述した図3の外部
特性L2を、形成される目標の外部特性とする。したが
って、外部特性L2の直線の式は、予め定めた溶接電流
設定値Is、溶接電圧設定値Vs及び傾きKsによっ
て、下式となる。 Vw=Ks・(Iw−Is)+Vs (3)式 以下、上式で示す外部特性L2を形成するための出力制
御方法について説明する。
In the following description, the above-described external characteristic L2 in FIG. 3 is defined as a target external characteristic to be formed. Therefore, the equation of the straight line of the external characteristic L2 is given by the following equation based on the predetermined welding current set value Is, welding voltage set value Vs, and slope Ks. Vw = Ks ・ (Iw-Is) + Vs (3) Hereinafter, an output control method for forming the external characteristic L2 represented by the above expression will be described.

【0011】図4は、上記(3)式で示す外部特性L2
を形成する従来技術2の出力制御方法を説明するための
電流・電圧波形図である。同図(A)は溶接電流瞬時値
Ioの時間変化を示し、同図(B)は溶接電圧瞬時値V
oの時間変化を示す。以下、同図を参照して説明する。
FIG. 4 shows the external characteristic L2 expressed by the above equation (3).
FIG. 9 is a current / voltage waveform diagram for explaining an output control method according to the related art 2 for forming a waveform. FIG. 3A shows the change over time of the welding current instantaneous value Io, and FIG.
5 shows a time change of o. Hereinafter, description will be made with reference to FIG.

【0012】第n回目のパルス周期Tpb(n)が開始する
時点t(n)において、第n−1回目のパルス周期Tpb(n-
1)中の前周期溶接電流平均値Iw(n-1)を算出し、Iw
=Iw(n-1)を前述した(3)式に代入して1周期溶接
電圧平均値Vwの目標値である電圧制御設定値Vsc(n)
=Ks・(Iw(n-1)−Is)+Vsを演算する。この
演算は、前述した図3の外部特性L2上のP1点の電圧
制御設定値Vsc(n)を演算することになる。続いて、こ
の電圧制御設定値Vsc(n)及び溶接電圧瞬時値Voによ
って、時刻t(n)からの(2)式で前述した電圧誤差積
分値Sv=∫(Vsc(n)−Vo)・dtを演算する。そ
して、第n回目のパルス周期Tpb(n)のベース期間中の
電圧誤差積分値Svが0[V]になった時点t(n+1)
で、第n回目のパルス周期Tpb(n)を終了して第n+1
回目のパルス周期Tpb(n+1)を開始する。したがって、
第n回目のパルス周期Tpb(n)中の1周期溶接電圧平均
値Vw(n)=Vsc(n)となる。以後、上記の動作を繰り返
して出力制御を行う。上述した従来技術2の出力制御方
法によって、予め定めた傾きKsを有する外部特性を形
成することができる。
At time t (n) at which the n-th pulse cycle Tpb (n) starts, the (n-1) -th pulse cycle Tpb (n-
1) Calculate the previous period welding current average value Iw (n-1) in
= Iw (n-1) is substituted into the above equation (3), and the voltage control set value Vsc (n), which is the target value of the one-period welding voltage average value Vw, is used.
= Ks. (Iw (n-1) -Is) + Vs. In this calculation, the voltage control set value Vsc (n) at the point P1 on the external characteristic L2 in FIG. 3 is calculated. Subsequently, based on the voltage control set value Vsc (n) and the welding voltage instantaneous value Vo, the voltage error integrated value Sv = ∫ (Vsc (n) −Vo) · described in the equation (2) from time t (n). dt is calculated. Then, the time t (n + 1) when the voltage error integrated value Sv during the base period of the n-th pulse cycle Tpb (n) becomes 0 [V].
Then, the n-th pulse cycle Tpb (n) ends and the (n + 1) -th
The first pulse cycle Tpb (n + 1) starts. Therefore,
One-cycle welding voltage average value Vw (n) = Vsc (n) during the n-th pulse cycle Tpb (n). Thereafter, output control is performed by repeating the above operation. According to the output control method of the related art 2 described above, an external characteristic having a predetermined slope Ks can be formed.

【0013】図5は、上述した従来技術2の出力制御方
法を実施するための溶接電源装置PSのブロック図であ
る。以下、同図を参照して各回路ブロックについて説明
する。電圧検出回路VDは、溶接電圧瞬時値Voを検出
して、電圧検出信号Vdを出力する。電流検出回路ID
は、溶接電流瞬時値Ioを検出して、電流検出信号Id
を出力する。1周期溶接電流平均値算出回路IWは、上
記の電流検出信号Idの1周期の間の平均値を算出し
て、1周期溶接電流平均値信号Iwを出力する。
FIG. 5 is a block diagram of a welding power supply device PS for implementing the output control method of the above-mentioned prior art 2. Hereinafter, each circuit block will be described with reference to FIG. The voltage detection circuit VD detects the welding voltage instantaneous value Vo and outputs a voltage detection signal Vd. Current detection circuit ID
Detects the welding current instantaneous value Io and outputs the current detection signal Id
Is output. The one-cycle welding current average value calculation circuit IW calculates an average value of the current detection signal Id during one cycle, and outputs a one-cycle welding current average value signal Iw.

【0014】溶接電源装置の外部に設置された溶接電圧
設定回路VSは、予め定めた溶接電圧設定信号Vsを出
力する。溶接電源装置の外部に設置された溶接電流設定
回路ISは、予め定めた溶接電流設定信号Isを出力す
る。図示していないが、この溶接電流設定信号Isに対
応した送給速度で溶接ワイヤ1が送給される。傾き設定
回路KSは、予め定めた外部特性の傾き設定信号Ksを
出力する。外部特性制御回路VSCは、上記の1周期溶
接電流平均値信号Iw、溶接電圧設定信号Vs、溶接電
流設定信号Is及び傾き設定信号Ksを入力として、前
述した(3)式の演算によって、電圧制御設定信号Vsc
を出力する。電圧誤差積分回路SVは、上記の電圧検出
信号Vd及び電圧制御設定信号Vscを入力として、各パ
ルス周期の開始時点から前述した(2)式の積分を行
い、電圧誤差積分値信号Svを出力する。比較回路CM
は、上記の電圧誤差積分値信号Svと0[V]とを比較
して、両値が等しくなった時点で、短時間Highレベ
ルとなる比較信号Cmを出力する。上記の外部特性制御
回路VSC、電圧誤差積分回路SV及び比較回路CMに
よって、図4の説明の項で前述した従来技術2の出力制
御方法の主要部を形成する。
A welding voltage setting circuit VS installed outside the welding power supply device outputs a predetermined welding voltage setting signal Vs. A welding current setting circuit IS installed outside the welding power supply device outputs a predetermined welding current setting signal Is. Although not shown, the welding wire 1 is fed at a feeding speed corresponding to the welding current setting signal Is. The slope setting circuit KS outputs a slope setting signal Ks of a predetermined external characteristic. The external characteristic control circuit VSC receives the one-period welding current average signal Iw, the welding voltage setting signal Vs, the welding current setting signal Is, and the inclination setting signal Ks as inputs, and performs voltage control by the above-described equation (3). Setting signal Vsc
Is output. The voltage error integration circuit SV receives the voltage detection signal Vd and the voltage control setting signal Vsc as inputs, performs the integration of the above-described equation (2) from the start of each pulse cycle, and outputs a voltage error integrated value signal Sv. . Comparison circuit CM
Compares the above-mentioned voltage error integrated value signal Sv with 0 [V], and outputs a comparison signal Cm which becomes a High level for a short time when both values become equal. The above-described external characteristic control circuit VSC, voltage error integration circuit SV, and comparison circuit CM form a main part of the output control method of the related art 2 described above in the description of FIG.

【0015】タイマ回路MMは、上記の比較信号Cmを
トリガ信号として、予め定めたピーク期間Tpの間Hi
ghレベルとなる切換信号Mmを出力する。ピーク電流
設定回路IPは、予め定めたピーク電流設定信号Ipを
出力する。ベース電流設定回路IBは、予め定めたベー
ス電流設定信号Ibを出力する。ピーク/ベース切換回
路SWは、上記の切換信号Mmを入力として、入力信号
がHighレベルのときはa側に切り換わり上記のピー
ク電流設定信号Ipを電流制御設定信号Iscとして出力
し、入力信号がLowレベルのときはb側に切り換わり
上記のベース電流設定信号Ibを、電流制御設定信号I
scとして出力する。電流誤差増幅回路EIは、上記の電
流制御設定信号Iscと電流検出信号Idとの誤差を増幅
して、電流誤差増幅信号Eiを出力する。
The timer circuit MM uses the above-mentioned comparison signal Cm as a trigger signal to generate Hi for a predetermined peak period Tp.
The switching signal Mm having the gh level is output. The peak current setting circuit IP outputs a predetermined peak current setting signal Ip. The base current setting circuit IB outputs a predetermined base current setting signal Ib. The peak / base switching circuit SW receives the switching signal Mm as an input, switches to the a side when the input signal is at a high level, and outputs the peak current setting signal Ip as a current control setting signal Isc. When the signal is at the low level, the current is switched to the side b, and the base current setting signal Ib is changed to the current control setting signal Ib.
Output as sc. The current error amplification circuit EI amplifies the error between the current control setting signal Isc and the current detection signal Id, and outputs a current error amplification signal Ei.

【0016】出力制御回路INVは、上記の電流誤差増
幅信号Eiを制御信号とし、交流商用電源(3相200
[V]等)を入力としてインバータ制御、サイリスタ位
相制御等によって出力制御して、上記の電流制御設定信
号Iscに相当する溶接電流瞬時値Ioを通電する。すな
わち、Isc=Ipのときにはピーク電流Ipが通電し、
Isc=Ibのときにはベース電流Ibが通電する。ま
た、溶接ワイヤ1はワイヤ送給装置の送給ロール5aに
よって溶接トーチ4を通って送給されて、被溶接物2と
の間にアーク3が発生する。
The output control circuit INV uses the above-mentioned current error amplification signal Ei as a control signal, and uses the AC commercial power supply (three-phase 200
[V], etc.) as input, and the output is controlled by inverter control, thyristor phase control, etc., and the welding current instantaneous value Io corresponding to the current control setting signal Isc is supplied. That is, when Isc = Ip, the peak current Ip flows,
When Isc = Ib, the base current Ib flows. Further, the welding wire 1 is fed through the welding torch 4 by the feeding roll 5 a of the wire feeding device, and an arc 3 is generated between the welding wire 1 and the workpiece 2.

【0017】図6は、上述した溶接電源装置PSの各信
号のタイミングチャートである。同図(A)は溶接電流
瞬時値Ioの時間変化を示し、同図(B)は溶接電圧瞬
時値Voの時間変化を示し、同図(C)は電圧誤差積分
値信号Svの時間変化を示し、同図(D)は比較信号C
mの時間変化を示し、同図(E)は切換信号Mmの時間
変化を示す。同図(A)及び(B)は、前述した図2と
同一である。以下、同図を参照して説明する。
FIG. 6 is a timing chart of each signal of the welding power supply device PS described above. FIG. 3A shows the time change of the welding current instantaneous value Io, FIG. 3B shows the time change of the welding voltage instantaneous value Vo, and FIG. 3C shows the time change of the voltage error integrated value signal Sv. (D) shows the comparison signal C
FIG. 7E shows a time change of the switching signal Mm. FIGS. 7A and 7B are the same as FIG. 2 described above. Hereinafter, description will be made with reference to FIG.

【0018】 時刻t(n-1)〜t(n)の期間(第n−1
回目のパルス周期Tpb(n-1)) 時刻t(n-1)において、同図(C)に示すように、電圧
誤差積分値信号Svが0[V]になると、同図(D)に
示すように、比較信号Cmが短時間Highレベルにな
る。この変化に応じて、同図(E)に示すように、切換
信号Mmはピーク期間Tpの間Highレベルとなり、
同図(A)に示すように、溶接電流瞬時値信号Ioはピ
ーク電流Ipとなる。このピーク期間Tp中は、電圧誤
差積分値信号Sv=∫(Vsc(n-1)−Vo)・dt=∫
(Vsc(n-1)−Vp)・dtの演算が行われる。ここ
で、V(n-1)<Vpなので、同図(C)に示すように、
電圧誤差積分値信号Svは、時間経過と共に負の方向へ
変化する。
A period from time t (n-1) to t (n) (n-1
(Pth pulse period Tpb (n-1)) At time t (n-1), when the voltage error integrated value signal Sv becomes 0 [V] as shown in FIG. As shown, the comparison signal Cm goes high for a short time. In response to this change, the switching signal Mm becomes High level during the peak period Tp, as shown in FIG.
As shown in FIG. 3A, the welding current instantaneous value signal Io becomes a peak current Ip. During the peak period Tp, the voltage error integrated value signal Sv = {(Vsc (n-1) -Vo) .dt =}
The calculation of (Vsc (n-1) -Vp) .dt is performed. Here, since V (n-1) <Vp, as shown in FIG.
The voltage error integrated value signal Sv changes in the negative direction with the passage of time.

【0019】同図(E)に示すように、切換信号Mmが
Lowレベルに変化すると、同図(A)に示すように、
溶接電流瞬時値信号Ioはベース電流Ibとなる。この
ベース期間Tb中は、電圧誤差積分値信号Sv=∫(V
sc(n-1)−Vo)・dt=∫(Vsc(n-1)−Vb)・dt
の演算が行われる。ここで、V(n-1)>Vbなので、同
図(C)に示すように、電圧誤差積分値信号Svは、時
間経過と共に大きくなり、時刻t(n)において0[V]
になる。
As shown in FIG. 2E, when the switching signal Mm changes to Low level, as shown in FIG.
The welding current instantaneous value signal Io becomes the base current Ib. During this base period Tb, the voltage error integrated value signal Sv = ∫ (V
sc (n−1) −Vo) · dt = ∫ (Vsc (n−1) −Vb) · dt
Is performed. Here, since V (n-1)> Vb, as shown in FIG. 3C, the voltage error integrated value signal Sv increases with time, and becomes 0 [V] at time t (n).
become.

【0020】 時刻t(n)以降の期間(第n回目のパ
ルス周期Tpb(n) 第n回目のパルス周期Tpb(n)の開始時点t(n)におい
て、図5の説明の項で前述したように、時刻t(n-1)〜
T(n)の間の前周期溶接電流平均値Iw(n-1)の算出値を
(3)式に代入して、同図(B)に示すように、第n回
目のパルス周期Tpb(n)の電圧制御設定信号Vsc(n)が演
算される。これ以降の動作は、上記項の動作と同様で
あるので、説明を省略する。上述したように、従来技術
2の出力制御方法では、予め定めた傾きKsを有する外
部特性を形成することができる。
The period after time t (n) (at the start time t (n) of the n-th pulse cycle Tpb (n) at the start time t (n) of the n-th pulse cycle Tpb (n), as described above in the description of FIG. Thus, from time t (n-1)
The calculated value of the previous period welding current average value Iw (n-1) during T (n) is substituted into Expression (3), and as shown in FIG. 10B, the n-th pulse period Tpb ( The voltage control setting signal Vsc (n) of (n) is calculated. The subsequent operation is the same as the operation described in the above section, and thus the description is omitted. As described above, according to the output control method of the related art 2, it is possible to form an external characteristic having a predetermined slope Ks.

【0021】[0021]

【発明が解決しようとする課題】 図7は、解決課題
を説明するための前述した図4に対応する電流・電圧波
形図である。同図(A)は溶接電流瞬時値Ioの時間変
化を示し、同図(B)は溶接電圧瞬時値Voの時間変化
を示す。同図は、第n−1回目のパルス周期Tpb(n-1)
中に溶接ワイヤと被溶接物との短絡が発生した場合であ
る。一般的に、パルスアーク溶接においては、溶滴移行
に伴って1秒間に数回〜数十回の短絡が発生する。以
下、同図を参照して説明する。
FIG. 7 is a current / voltage waveform diagram corresponding to FIG. 4 described above for describing a problem to be solved. FIG. 3A shows the temporal change of the welding current instantaneous value Io, and FIG. 3B shows the temporal change of the welding voltage instantaneous value Vo. The figure shows the (n-1) th pulse period Tpb (n-1)
In this case, a short circuit occurs between the welding wire and the workpiece during welding. Generally, in pulse arc welding, several to several tens of short circuits occur per second as droplets move. Hereinafter, description will be made with reference to FIG.

【0022】同図(A)に示すように、第n−1回目の
パルス周期Tpb(n-1)中に短絡が発生すると、通常、短
絡状態を早期に解除してアークを再発生させるために大
きな値の短絡解除電流Itを通電する。このために、第
n−1回目のパルス周期Tpb(n-1)中の前周期溶接電流
平均値Iw(n-1)は、その前の周期の値よりも大きくな
る。図4の説明の項で前述したように、傾きKsを有す
る外部特性を形成するために、この前周期溶接電流平均
値Iw(n-1)を(3)式に代入して、次周期の電圧制御
設定値Vsc(n)を演算する。したがって、前周期溶接電
流平均値Iw(n-1)が大きくなると、第n回目のパルス
周期Tpb(n)の電圧制御設定値Vsc(n)は小さくなくな
る。その結果、1周期溶接電圧平均値Vw(n)も小さく
なるために、第n回目のパルス周期Tpb(n)中のアーク
長は前周期よりも短くなり、さらに短絡が発生しやすい
状態となる。すなわち、1回の短絡の発生が次の短絡を
誘発することになり、アーク状態は不安定になり、ビー
ド外観の悪化、溶込み深さの不均一、スパッタの大量発
生等の溶接不良が生じやすい。特に、高速溶接時におい
ては、アンダーカット等の溶接欠陥の発生を防止するた
めに、通常、アーク長を短く設定して溶接を行う必要が
ある。このために、短絡が発生しやすい状態にあり、従
来技術の出力制御方法ではアーク状態が不安定になりや
すい。
As shown in FIG. 2A, when a short circuit occurs during the (n-1) th pulse period Tpb (n-1), the short circuit state is usually released early to regenerate an arc. Is supplied with a short-circuit release current It having a large value. For this reason, the previous period welding current average value Iw (n-1) during the (n-1) th pulse period Tpb (n-1) is larger than the value of the previous period. As described above in the description of FIG. 4, in order to form the external characteristic having the slope Ks, the previous period welding current average value Iw (n-1) is substituted into the equation (3), and The voltage control set value Vsc (n) is calculated. Therefore, when the preceding cycle welding current average value Iw (n-1) increases, the voltage control set value Vsc (n) of the n-th pulse cycle Tpb (n) does not decrease. As a result, the one-cycle welding voltage average value Vw (n) is also reduced, so that the arc length during the n-th pulse cycle Tpb (n) is shorter than the previous cycle, and a short circuit is more likely to occur. . In other words, the occurrence of one short circuit will induce the next short circuit, and the arc state will become unstable, resulting in poor bead appearance, uneven penetration depth, large amount of spatter, and other welding defects. Cheap. In particular, at the time of high-speed welding, in order to prevent the occurrence of welding defects such as undercuts, it is usually necessary to perform welding with the arc length set short. For this reason, a short circuit is likely to occur, and the arc state tends to be unstable in the output control method of the related art.

【0023】 従来技術2の出力制御方法では、前周
期の状態をフィードバックして、次周期の出力制御を行
うために、原理的にフィードバック制御系の位相余裕が
小さくなり、制御系が不安定になりやすい状態にある。
例えば、第n−1回目のパルス周期Tpb(n-1)中の外乱
によって溶接電圧瞬時値Voが大きくなると、電圧制御
設定値Vsc(n-1)と等しくなるようにパルス周期Tpb(n-
1)の時間長さは長くなる。このため、第n−1回目の前
周期溶接電流平均値Iw(n-1)が小さくなるために、次
周期の電圧制御設定値Vsc(n)は、次周期中のアーク状
態とは関係なく大きくなる。このように、前周期中の外
乱によって次周期の電圧制御設定値Vsc(n)が変化し、
次周期のアーク長に影響を及ぼすことになる。その結
果、1つの外乱の発生に誘発されて、次周期以降のアー
ク長が変化する場合が生じる。
In the output control method of the prior art 2, since the state of the previous cycle is fed back and the output control of the next cycle is performed, the phase margin of the feedback control system is reduced in principle, and the control system becomes unstable. It is in a state that is easy to become.
For example, when the welding voltage instantaneous value Vo increases due to disturbance during the (n-1) th pulse period Tpb (n-1), the pulse period Tpb (n-) becomes equal to the voltage control set value Vsc (n-1).
The time length of 1) becomes longer. For this reason, since the (n-1) -th preceding cycle welding current average value Iw (n-1) becomes small, the voltage control set value Vsc (n) of the next cycle becomes independent of the arc state in the next cycle. growing. As described above, the voltage control set value Vsc (n) in the next cycle changes due to disturbance in the previous cycle,
This will affect the arc length in the next cycle. As a result, the occurrence of one disturbance may cause a change in the arc length after the next cycle.

【0024】そこで、本発明では、予め定めた傾きKs
を有する外部特性を形成すると共に、安定した制御系に
よって現周期の外乱によるアーク長への影響を現周期中
に抑制し、次周期のアーク長に影響を与えない溶接電源
装置の出力制御方法を提供する。
Therefore, in the present invention, a predetermined slope Ks
The output control method of the welding power supply device which forms the external characteristics having the above, suppresses the influence on the arc length due to the disturbance of the current cycle by the stable control system during the current cycle, and does not affect the arc length of the next cycle. provide.

【0025】[0025]

【課題を解決するための手段】出願時の請求項1の発明
は、図8に示すように、予め定めたピーク期間Tp中は
溶滴移行をさせる値に予め定めたピーク電流Ipを通電
し、続けてベース期間Tb中は溶滴移行をさせない値に
予め定めたベース電流Ibを通電し、これら1周期の通
電をパルス周期Tpbとして繰り返し通電して溶接する消
耗電極パルスアーク溶接に使用する溶接電源装置の出力
制御方法において、溶接電源装置の外部特性の傾きKs
及び溶接電流設定値Is及び溶接電圧設定値Vsを予め
設定し、溶接中の第n回目のパルス周期Tpb(n)中の1
周期の間の溶接電流平均値Iw(n)と1周期の間の溶接
電圧平均値Vw(n)とがVw(n)=Ks・(Is−Iw
(n))+Vsの関係を維持するように溶接電源装置の出
力を制御するパルスアーク溶接電源装置の出力制御方法
である。
According to the first aspect of the present invention, as shown in FIG. 8, during a predetermined peak period Tp, a predetermined peak current Ip is applied to a value for causing the droplet to transfer. Then, during the base period Tb, a predetermined base current Ib is applied to a value that does not cause the droplet to transfer, and welding is performed by repeatedly applying a current of one cycle as a pulse cycle Tpb to perform welding. In the output control method of the power supply device, the slope Ks of the external characteristic of the welding power supply device
And the welding current set value Is and the welding voltage set value Vs are set in advance, and 1 in the n-th pulse cycle Tpb (n) during welding is set.
The average welding current value Iw (n) during one cycle and the average welding voltage value Vw (n) during one cycle are represented by Vw (n) = Ks · (Is−Iw
(n)) This is an output control method of the pulse arc welding power supply for controlling the output of the welding power supply so as to maintain the relationship of + Vs.

【0026】出願時の請求項2の発明は、図8に示すよ
うに、ピーク期間Tpに予め定めたピーク立上り期間T
up及び予め定めたピーク立下り期間Tdwを設けた出願時
の請求項1に記載するパルスアーク溶接電源装置の出力
制御方法である。
As shown in FIG. 8, the invention of claim 2 at the time of filing applies a predetermined peak rising period T to the peak period Tp.
It is an output control method of the pulse arc welding power supply device according to claim 1 at the time of filing, in which an up and a predetermined peak fall period Tdw are provided.

【0027】出願時の請求項3の発明は、図9〜図11
に示すように、予め定めたピーク期間Tp中は溶滴移行
をさせる値に予め定めたピーク電流Ipを通電し、続け
てベース期間Tb中は溶滴移行をさせない値に予め定め
たベース電流Ibを通電し、これら1周期の通電をパル
ス周期Tpbとして繰り返し通電して溶接する消耗電極パ
ルスアーク溶接に使用する溶接電源装置の出力制御方法
において、溶接電源装置の外部特性の傾きKs及び溶接
電流設定値Is及び溶接電圧設定値Vsを予め設定し、
上記設定値によって第1の変数A=Ks・(Ib−I
s)及び第2の変数B=Ks・(Ib−Ip)・Tpを
演算した後に、溶接中の溶接電圧瞬時値Voを検出して
第n回目のパルス周期Tpb(n)の開始時点からの傾き形
成電圧誤差積分値Sva=∫(A+Vs−Vo)・dtを
演算し、上記第n回目のピーク期間Tpに続く第n回目
のベース期間Tb中の上記傾き形成電圧誤差積分値Sva
が上記第2の変数Bの値以上になった時点で上記第n回
目のパルス周期Tpb(n)を終了し、続けて第n+1回目
のパルス周期Tpb(n+1)を開始して上記動作を繰り返し
行うことによって上記傾きKsを有する外部特性を形成
して溶接を行うパルスアーク溶接電源装置の出力制御方
法である。
The invention of claim 3 at the time of filing is shown in FIGS.
As shown in the figure, during the predetermined peak period Tp, a predetermined peak current Ip is applied to a value that causes the droplet to shift, and then, during the base period Tb, the predetermined base current Ib is set to a value that does not cause the droplet to shift. In the output control method of the welding power supply used for the pulsed arc welding of the consumable electrode in which welding is performed by repeatedly applying the current of one cycle as the pulse cycle Tpb, the slope Ks and the welding current of the external characteristic of the welding power supply are set. The value Is and the welding voltage set value Vs are set in advance,
According to the above set value, the first variable A = Ks · (Ib−I
s) and the second variable B = Ks ・ (Ib-Ip) ・ Tp, and then the welding voltage instantaneous value Vo during welding is detected to determine the nth pulse period Tpb (n) from the start. The slope forming voltage error integrated value Sva = ∫ (A + Vs−Vo) · dt is calculated, and the slope forming voltage error integrated value Sva during the n-th base period Tb following the n-th peak period Tp.
When the value becomes equal to or greater than the value of the second variable B, the n-th pulse cycle Tpb (n) is terminated, and the (n + 1) -th pulse cycle Tpb (n + 1) is started. Is repeatedly performed to form an external characteristic having the above-described inclination Ks, and is used to perform welding.

【0028】出願時の請求項4の発明は、図9〜図11
に示すように、予め定めたピーク期間Tp中は溶滴移行
をさせる値に予め定めたピーク電流Ipを通電し、続け
てベース期間Tb中は溶滴移行をさせない値に予め定め
たベース電流Ibを通電し、上記ピーク期間Tpには予
め定めたピーク立上り期間Tup及び予め定めたピーク立
下り期間Tdwを設け、これら1周期の通電をパルス周期
Tpbとして繰り返し通電して溶接する消耗電極パルスア
ーク溶接に使用する溶接電源装置の出力制御方法におい
て、溶接電源装置の外部特性の傾きKs及び溶接電流設
定値Is及び溶接電圧設定値Vsを予め設定し、出願時
の請求項3に記載する第2の変数Bの演算をB=Ks・
(Ib−Ip)・(Tp+(1/2)・Tup+(1/2)・Tdw)
とする出願時の請求項3に記載するパルスアーク溶接電
源装置の出力制御方法である。
The invention of claim 4 at the time of filing is shown in FIGS.
As shown in the figure, during the predetermined peak period Tp, a predetermined peak current Ip is applied to a value that causes the droplet to shift, and then, during the base period Tb, the predetermined base current Ib is set to a value that does not cause the droplet to shift. And a predetermined peak rising period Tup and a predetermined peak falling period Tdw are provided in the peak period Tp, and the one-period energization is repeatedly performed as a pulse period Tpb, and consumable electrode pulse arc welding is performed. In the output control method of the welding power supply device used for the second step, the slope Ks of the external characteristic of the welding power supply device, the welding current set value Is and the welding voltage set value Vs are set in advance, and the second method according to claim 3 at the time of filing is described. The operation of variable B is expressed as B = Ks
(Ib-Ip) · (Tp + (1/2) · Tup + (1/2) · Tdw)
An output control method of the pulse arc welding power supply device according to claim 3 at the time of filing the application.

【0029】出願時の請求項5の発明は、図9〜図11
に示すように、第1の変数A及び第2の変数Bの演算
を、溶接中の予め定めた変数演算周期Tc毎に又はパル
ス周期の開始時点毎に行う出願時の請求項3又は請求項
4に記載するパルスアーク溶接電源装置の出力制御方法
である。
The invention of claim 5 at the time of filing is shown in FIGS.
Claim 3 or Claim at the time of filing, wherein the calculation of the first variable A and the second variable B is performed at every predetermined variable calculation cycle Tc during welding or at each start point of the pulse cycle. 4 is an output control method of the pulse arc welding power supply device according to 4.

【0030】出願時の請求項6の発明は、図12〜図1
3に示すように、溶接ワイヤの送給速度設定値Ws並び
に溶接ワイヤの材質及び直径を設定し、それらによって
溶接電流設定値Isを算出する出願時の請求項3又は請
求項4に記載するパルスアーク溶接電源装置の出力制御
方法である。
The invention of claim 6 at the time of filing is shown in FIGS.
As shown in FIG. 3, a pulse set forth in claim 3 or claim 4 at the time of filing, wherein the welding wire feed speed set value Ws and the material and diameter of the welding wire are set, and the welding current set value Is is calculated based on them. 4 is an output control method of the arc welding power supply device.

【0031】[0031]

【発明の実施の形態】本発明の代表的な実施の形態は、
図1(図8と同一の図)に示すように、溶接電源装置の
外部特性の傾きKs及び溶接電流設定値Is及び溶接電
圧設定値Vsを予め設定し、溶接中の第n回目のパルス
周期Tpb(n)中の1周期の間の溶接電流平均値Iw(n)と
1周期の間の溶接電圧平均値Vw(n)とがVw(n)=Ks
・(Is−Iw(n))+Vsの関係を維持するように溶
接電源装置の出力を制御することによって、傾きKsを
有する外部特性を形成して溶接を行うパルスアーク溶接
電源装置の出力制御方法である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention is as follows.
As shown in FIG. 1 (same diagram as FIG. 8), the slope Ks of the external characteristic of the welding power supply device, the welding current set value Is and the welding voltage set value Vs are set in advance, and the n-th pulse cycle during welding is performed. The average welding current value Iw (n) during one cycle and the average welding voltage value Vw (n) during one cycle in Tpb (n) are Vw (n) = Ks
An output control method for a pulse arc welding power supply device that performs welding by forming an external characteristic having a slope Ks by controlling the output of the welding power supply device so as to maintain the relationship of (Is-Iw (n)) + Vs. It is.

【0032】[0032]

【実施例】[実施例1]以下に説明する実施例1の発明
は、出願時の請求項1及び請求項2の発明に対応する。
実施例1の発明は、溶接電源装置の外部特性の傾きKs
及び溶接電流設定値Is及び溶接電圧設定値Vsを予め
設定し、溶接中の第n回目のパルス周期Tpb(n)中の1
周期溶接電流平均値Iw(n)と1周期溶接電圧平均値V
w(n)とがVw(n)=Ks・(Is−Iw(n))+Vsの
関係を維持するように、溶接電源装置の出力を制御する
パルスアーク溶接電源装置の出力制御方法である。以
下、図面を参照して実施例1の発明について説明する。
[Embodiment 1] The invention of Embodiment 1 described below corresponds to the inventions of Claims 1 and 2 at the time of filing.
The invention of the first embodiment is directed to the slope Ks of the external characteristic of the welding power supply device.
And the welding current set value Is and the welding voltage set value Vs are set in advance, and 1 in the n-th pulse cycle Tpb (n) during welding is set.
Periodic welding current average value Iw (n) and 1-period welding voltage average value V
This is an output control method of the pulse arc welding power supply device that controls the output of the welding power supply device so that w (n) maintains a relationship of Vw (n) = Ks · (Is−Iw (n)) + Vs. Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

【0033】図8は、実施例1の出力制御方法を説明す
るための電流・電圧波形図である。同図(A)は溶接電
流瞬時値Ioの時間変化を示し、同図(B)は溶接電圧
瞬時値Voの時間変化を示す。同図において、実施例1
の出力制御方法によって形成される目標の外部特性は、
前述した(3)式と同様に、予め定めた溶接電流設定値
Is、溶接電圧設定値Vs及び傾きKsによってVw=
Ks・(Iw−Is)+Vsで示す直線である。以下、
同図を参照して説明する。
FIG. 8 is a current / voltage waveform diagram for explaining the output control method of the first embodiment. FIG. 3A shows the temporal change of the welding current instantaneous value Io, and FIG. 3B shows the temporal change of the welding voltage instantaneous value Vo. Referring to FIG.
The external characteristics of the target formed by the output control method of
As in the above-described equation (3), Vw = Vw =
It is a straight line indicated by Ks · (Iw−Is) + Vs. Less than,
Description will be made with reference to FIG.

【0034】同図に示すように、第n回目のパルス周期
Tpb(n)中の1周期溶接電流平均値Iw(n)及び1周期溶
接電圧平均値Vw(n)を算出し、両算出値にVw(n)=K
s・(Iw(n)−Is)+Vsの関係が成立した時点t
(n+1)で、第n回目のパルス周期Tpb(n)を終了し、第n
+1回目のパルス周期Tpb(n+1)を開始するように出力
制御する。これによって、(3)式で示す目標の外部特
性が形成されると共に、従来技術2では前周期溶接電流
平均値Iw(n-1)と現周期の1周期溶接電圧平均値Vw
(n)とが(3)式の関係にあったのに対して、実施例1
では現周期の1周期溶接電流平均値Iw(n)と現周期の
1周期溶接電圧平均値Vw(n)とが(3)式の関係にあ
る。したがって、前周期に発生した外乱によって、現周
期の出力制御が影響を受けることはない。
As shown in the figure, the one-cycle welding current average value Iw (n) and the one-cycle welding voltage average value Vw (n) during the n-th pulse cycle Tpb (n) are calculated. And Vw (n) = K
The time t when the relationship of s · (Iw (n) −Is) + Vs is established
At (n + 1), the n-th pulse cycle Tpb (n) ends, and
Output control is performed so as to start the (+1) th pulse cycle Tpb (n + 1). As a result, the target external characteristics represented by the equation (3) are formed, and in the prior art 2, the previous cycle welding current average value Iw (n-1) and the current cycle one cycle welding voltage average value Vw are obtained.
(n) was in the relationship of the equation (3).
In this case, the one-cycle welding current average value Iw (n) of the current cycle and the one-cycle welding voltage average value Vw (n) of the current cycle have a relationship expressed by equation (3). Therefore, the output control of the current cycle is not affected by the disturbance generated in the previous cycle.

【0035】また、出願時の請求項2の発明は、ピーク
期間Tpに予め定めたピーク立上り期間Tup及び予め定
めたピーク立下り期間Tdwを設けた場合であって、それ
以外は上述した実施例1の出力制御方法と同様である。
Further, the invention of claim 2 at the time of filing is the case where a predetermined peak rising period Tup and a predetermined peak falling period Tdw are provided in the peak period Tp. This is the same as the output control method of No. 1.

【0036】[実施例2]以下に説明する実施例2の発
明は、出願時の請求項3及び請求項4の発明に対応す
る。以下、図面を参照して実施例2の発明について説明
する。図9は、以下の説明に使用する設定値パラメータ
を示す電流・電圧波形図である。同図(A)は溶接電流
瞬時値Ioの時間変化を示し、同図(B)は溶接電圧瞬
時値Voの時間変化を示す。以下、同図を参照して説明
する。
[Embodiment 2] The invention of Embodiment 2 described below corresponds to the inventions of Claims 3 and 4 at the time of filing. Hereinafter, the invention of the second embodiment will be described with reference to the drawings. FIG. 9 is a current / voltage waveform diagram showing set value parameters used in the following description. FIG. 3A shows the temporal change of the welding current instantaneous value Io, and FIG. 3B shows the temporal change of the welding voltage instantaneous value Vo. Hereinafter, description will be made with reference to FIG.

【0037】同図(A)に示すように、第n回目のパル
ス周期Tpb(n)[s]において、ピーク期間Tp[s]
に、ピーク立上り期間Tup[s]、最大ピーク期間Tpp
[s]及びピーク立下り期間Tdw[s]を設け、それら
を予め定めた時間長さに設定する。最大ピーク期間Tpp
中は、予め定めたピーク電流Ip[A]が通電し、同図
(B)に示すように、ピーク電圧Vp[V]が印加され
る。また、ベース期間Tb[s]中は、同図(A)に示
すように、予め定めたベース電流Ib[A]が通電し、
同図(B)に示すように、ベース電圧Vb[V]が印加
する。
As shown in FIG. 3A, in the n-th pulse period Tpb (n) [s], the peak period Tp [s]
In addition, the peak rising period Tup [s] and the maximum peak period Tpp
[S] and a peak falling period Tdw [s] are provided, and they are set to a predetermined time length. Maximum peak period Tpp
In the middle, a predetermined peak current Ip [A] is conducted, and a peak voltage Vp [V] is applied as shown in FIG. Further, during the base period Tb [s], a predetermined base current Ib [A] flows as shown in FIG.
As shown in FIG. 3B, a base voltage Vb [V] is applied.

【0038】パルス周期Tpb(n)の逆数がパルス周波数
f(n)[Hz]となる。第n回目の1周期溶接電流平均
値Iw(n)[A]が通電し、第n回目の1周期溶接電圧
平均値Vw(n)[V]が印加される。また、出力制御に
よって形成される目標の外部特性は、予め定めた溶接電
流設定値Is[A]、溶接電圧設定値Vs[V]及び傾
きKs[V/A]によって、前述した(3)式となる。
The reciprocal of the pulse period Tpb (n) is the pulse frequency f (n) [Hz]. The n-th one-cycle welding current average value Iw (n) [A] is energized, and the n-th one-cycle welding voltage average value Vw (n) [V] is applied. The target external characteristic formed by the output control is expressed by the above-described equation (3) based on a predetermined welding current set value Is [A], a welding voltage set value Vs [V], and a slope Ks [V / A]. Becomes

【0039】上述したように、予め定める設定値パラメ
ータは、ピーク期間Tp、ピーク立上り期間Tup、最大
ピーク期間Tpp、ピーク立下り期間Tdw、ピーク電流I
p、ベース電流Ib、溶接電流設定値Is、溶接電圧設
定値Vs及び傾きKsとなる。前述したように、この中
で溶接電流設定値Is及び溶接電圧設定値Vsは、溶接
電源装置の外部から設定される場合が多い。以下、実施
例2の基礎となる前述した(2)式に対応する制御式を
導出する。
As described above, the predetermined set value parameters include a peak period Tp, a peak rising period Tup, a maximum peak period Tpp, a peak falling period Tdw, and a peak current Id.
p, base current Ib, welding current set value Is, welding voltage set value Vs, and slope Ks. As described above, the welding current set value Is and the welding voltage set value Vs are often set from outside the welding power supply device. Hereinafter, a control equation corresponding to the above-described equation (2), which is the basis of the second embodiment, will be derived.

【0040】以下の(1)〜(16)の積分は、全てパルス周
期Tpb(n)の開始時点から終了時点までの期間行う。 (1) 1周期溶接電流平均値Iwとパルス周波数 fとの
関係は下式となる。 1/f=((Ip−Ib)/(Iw−Ib))・(Tpp+(1/2)・Tup+(1/ 2)・Tdw) (41)式 (2) 等価ピーク期間Tpe[s]を下式で定義する。 Tpe=Tpp+(1/2)・Tup+(1/2)・Tdw (42)式 (3) 上式を(41)式に代入すると下式となる。 1/f=((Ip−Ib)/(Iw−Ib))・Tpe (43)式 (4) 上式を変形すると下式となる。 Iw=(Ip−Ib)・Tpe・f+Ib (44)式 (5) 上式において、Iw=Isのときf=fs[H
z]とすると下式となる。 Is=(Ip−Ib)・Tpe・fs+Ib (45)式
The following integrations (1) to (16) are all performed during the period from the start to the end of the pulse period Tpb (n). (1) The relationship between the one-cycle welding current average value Iw and the pulse frequency f is given by the following equation. 1 / f = ((Ip−Ib) / (Iw−Ib)) · (Tpp + (1/2) · Tup + (1/2) · Tdw) (41) Equation (2) Equivalent peak period Tpe [s] It is defined by the following equation. Tpe = Tpp + (1/2) .Tup + (1/2) .Tdw (42) Equation (3) When the above equation is substituted into Equation (41), the following equation is obtained. 1 / f = ((Ip−Ib) / (Iw−Ib)) · Tpe (43) Equation (4) By transforming the above equation, the following equation is obtained. Iw = (Ip−Ib) · Tpe · f + Ib (44) Equation (5) In the above equation, when Iw = Is, f = fs [H
z], the following equation is obtained. Is = (Ip−Ib) · Tpe · fs + Ib (45)

【0041】(6) (44)式のIwをIw(n)とすると下
式となる。 Iw(n)=(Ip−Ib)・Tpe・f(n)+Ib (46)式 (7) 外部特性の傾きKsは下式で表わせる。 Ks=(Vw(n)−Vs)/(Iw(n)−Is) (47)式 (8) 上式に(45)式及び(46)式を代入すると下式と
なる。 Vw(n)−Vs=Ks・(Ip−Ib)・Tpe・(f(n)−fs) (48) 式 (9) Vw(n)は下式で定義される。 Vw(n)=f(n)・∫Vo・dt (49)式 (10) f(n)とTpb(n)との関係は下式で表わせる。 f(n)=1/Tpb(n) (410)式 (11) (49)式及び(410)式から下式が成立する。 Vw(n)−Vs=f(n)・∫(Vo−Vs)・dt (411)式 (12) 上式と(48)式から下式が成立する。 f(n)・∫(Vo−Vs)・dt=Ks・(Ip−Ib)・Tpe・(f(n)− fs) (412)式
(6) If Iw in equation (44) is Iw (n), the following equation is obtained. Iw (n) = (Ip−Ib) · Tpe · f (n) + Ib (46) Equation (7) The slope Ks of the external characteristic can be expressed by the following equation. Ks = (Vw (n) -Vs) / (Iw (n) -Is) (47) Equation (8) When the equations (45) and (46) are substituted into the above equation, the following equation is obtained. Vw (n) −Vs = Ks · (Ip−Ib) · Tpe · (f (n) −fs) (48) Equation (9) Vw (n) is defined by the following equation. Vw (n) = f (n) · ∫Vo · dt (49) Equation (10) The relationship between f (n) and Tpb (n) can be expressed by the following equation. f (n) = 1 / Tpb (n) (410) Equation (11) The following equation is established from Equations (49) and (410). Vw (n) −Vs = f (n) · ∫ (Vo−Vs) · dt (411) Equation (12) The following equation is established from the above equations and equation (48). f (n) · ∫ (Vo−Vs) · dt = Ks · (Ip−Ib) · Tpe · (f (n) −fs) Equation (412)

【0042】(13) 上式に(45)式を代入して整理する
と下式となる。 ∫Ks・(Ib−Is)・dt+∫(Vs−Vo)・dt=Ks・(Ib− Ip)・Tpe (413)式 (14) ここで、式を簡潔にするために、第1の変数Aを
導入して下式で定義する。 A=Ks・(Ib−Is) (5)式 (15) 同様に、第2の変数Bを導入して下式で定義し、
またTpeに(42)式を代入すると下式となる。 B=Ks・(Ib−Ip)・Tpe=Ks・(Ib−Ip)・(Tpp+(1/2) ・Tup+(1/2)・Tdw) (6)式 (16) (5)式及び(6)式を(413)式に代入する
と、実施例2の発明の制御である下式が得られる。 ∫(A+Vs−Vo)・dt=B (7)式
(13) By substituting equation (45) into the above equation and rearranging it, the following equation is obtained. ∫Ks ・ (Ib-Is) ・ dt + ∫ (Vs-Vo) ・ dt = Ks ・ (Ib-Ip) ・ Tpe (413) Here, to simplify the equation, the first variable A is introduced and defined by the following equation. A = Ks · (Ib−Is) (5) Equation (15) Similarly, a second variable B is introduced and defined by the following equation,
Substituting equation (42) for Tpe gives the following equation. B = Ks · (Ib−Ip) · Tpe = Ks · (Ib−Ip) · (Tpp + (1/2) · Tup + (1/2) · Tdw) (6) Equation (16) Equation (5) and ( By substituting equation (6) into equation (413), the following equation, which is the control of the invention of the second embodiment, is obtained. ∫ (A + Vs−Vo) · dt = B Equation (7)

【0043】第n回目のパルス周期Tpb(n)の終了時点
において、上式が成立することになる。また、第n回目
のパルス周期Tpb(n)の開始時点においては、前述した
設定値パラメータは定数とみなすことができるので、上
記(5)式で示す第1の変数A及び上記(6)式で示す
第2の変数Bも定数とみなすことができる。第n回目の
パルス周期Tpb(n)の開始時点からの傾き形成電圧誤差
積分値Svaを Sva=∫(A+Vs−Vo)・dt と定義する。通常、Ks≦0、Ib<Is<Ip、Tpe
>0なので、A≧0及びB≧0となる。図9において、
ピーク期間Tp中は、Vs<Vo(=Vp)となるが、
(A+Vs−Vo)の値は上記の設定値パラメータの値
によって正の値にも負の値にもなる。他方、ベース期間
Tb中は、Vs>Vo(=Vb)なので、(A+Vs−
Vb)>0となり、上記の傾き形成電圧誤差積分値Sva
の値は、ベース期間Tb中は時間経過と共に次第に大き
くなる。したがって、第n回目のパルス周期Tpb(n)の
開始時点からの傾き形成電圧誤差積分値Svaを演算し、
その演算値が第2の変数Bの値と等しくなるか又は第2
の変数Bの値以上になった時点で、第n回目のパルス周
期Tpb(n)を終了する。すなわち、下式が成立した時点
でパルス周期を終了する。 Sva=∫(A+Vs−Vo)・dt≧B (8)式 但し、積分は、Tpb(n)の間行う。
At the end of the n-th pulse cycle Tpb (n), the above equation holds. At the start of the n-th pulse period Tpb (n), the above-described set value parameter can be regarded as a constant, so that the first variable A shown in the above equation (5) and the above-mentioned equation (6) are obtained. Can be regarded as a constant. The slope forming voltage error integrated value Sva from the start of the n-th pulse cycle Tpb (n) is defined as Sva = ∫ (A + Vs−Vo) · dt. Usually, Ks ≦ 0, Ib <Is <Ip, Tpe
> 0, A ≧ 0 and B ≧ 0. In FIG.
During the peak period Tp, Vs <Vo (= Vp),
The value of (A + Vs-Vo) becomes either a positive value or a negative value depending on the value of the set value parameter. On the other hand, during the base period Tb, since Vs> Vo (= Vb), (A + Vs−
Vb)> 0, and the above gradient forming voltage error integrated value Sva
During the base period Tb gradually increases with time. Therefore, the slope forming voltage error integrated value Sva from the start of the n-th pulse cycle Tpb (n) is calculated,
The calculated value is equal to the value of the second variable B, or
When the variable B becomes equal to or greater than the value of the variable B, the n-th pulse cycle Tpb (n) ends. That is, the pulse cycle ends when the following equation is satisfied. Sva = ∫ (A + Vs−Vo) · dt ≧ B (8) where integration is performed during Tpb (n).

【0044】上述したように、実施例2の発明は、第1
の変数A=Ks・(Ib−Is)及び第2の変数B=K
s・(Ib−Ip)・Tpeを演算した後に、溶接中の溶
接電圧瞬時値Voを検出して第n回目のパルス周期Tpb
(n)の開始時点からの傾き形成電圧誤差積分値Sva=∫
(A+Vs−Vo)・dtを演算し、上記第n回目のピ
ーク期間Tpに続く第n回目のベース期間Tb中の上記
傾き形成電圧誤差積分値Svaの値が上記第2の変数Bの
値以上になった時点で、上記第n回目のパルス周期Tpb
(n)を終了し、続けて第n+1回目のパルス周期Tpb(n+
1)を開始して上記動作を繰り返し行うことによって、上
記傾きKsを有する外部特性を形成して溶接を行うパル
スアーク溶接電源装置の出力制御方法である。
As described above, the second embodiment of the present invention
A = Ks · (Ib−Is) and the second variable B = K
After calculating s · (Ib−Ip) · Tpe, the welding voltage instantaneous value Vo during welding is detected and the n-th pulse cycle Tpb
The slope forming voltage error integrated value Sva = ∫ from the start of (n)
(A + Vs−Vo) · dt is calculated, and the value of the gradient forming voltage error integrated value Sva in the nth base period Tb following the nth peak period Tp is equal to or greater than the value of the second variable B. , The n-th pulse period Tpb
(n), and then the (n + 1) th pulse cycle Tpb (n +
This is an output control method of a pulse arc welding power supply device that performs welding by forming the external characteristic having the above-mentioned inclination Ks by repeating the above operation after starting 1).

【0045】なお、傾きKs=0と設定すると、第1の
変数A=0及び第2の変数B=0となるので、(8)式
は Sva=∫(Vs−Vo)・dt≧0 となり、前述した従来技術のときの(2)式と一致す
る。すなわち、本発明の出力制御方法を示す(8)式に
おける特別な場合(Ks=0)が、従来技術の出力制御
方法を示す(2)式の場合となる。
When the slope Ks is set to 0, the first variable A = 0 and the second variable B = 0, and therefore, the equation (8) becomes Sva = ∫ (Vs−Vo) · dt ≧ 0. , Which coincides with the equation (2) in the case of the prior art described above. That is, the special case (Ks = 0) in the equation (8) showing the output control method of the present invention is the case of the equation (2) showing the output control method of the prior art.

【0046】また、ピーク期間Tp中にピーク立上り期
間Tup及びピーク立下り期間Tdwがない場合には、 第2の変数B=Ks・(Ib−Ip)・Tp (9)式 として演算し、それ以外は上述した実施例2と同様に出
力制御を行うことができる。
If the peak rise period Tup and the peak fall period Tdw do not exist during the peak period Tp, the second variable B = Ks ・ (Ib-Ip) ・ Tp (9) is calculated. Other than that, output control can be performed in the same manner as in the second embodiment.

【0047】図10は、上述した実施例2の発明を実施
するためのパルス周期毎制御溶接電源装置PSAのブロ
ック図である。同図は、ピーク期間Tp中にピーク立上
り期間Tup及びピーク立下り期間Tdwがない場合を例示
する。同図において、前述した図5と同一の回路ブロッ
クには同一符号を付し、それらの説明は省略する。以
下、図5とは異なる点線で示す回路ブロック図である第
1の変数演算回路CA、第2の変数演算回路CB、傾き
形成電圧誤差積分回路SVA及び変数比較回路CMAに
ついて説明する。
FIG. 10 is a block diagram of a pulse-per-cycle control welding power supply PSA for carrying out the invention of the second embodiment. This figure illustrates a case where there is no peak rise period Tup and peak fall period Tdw during the peak period Tp. In this figure, the same circuit blocks as those in FIG. 5 described above are denoted by the same reference numerals, and description thereof will be omitted. Hereinafter, a first variable operation circuit CA, a second variable operation circuit CB, a slope forming voltage error integration circuit SVA, and a variable comparison circuit CMA, which are circuit block diagrams indicated by dotted lines different from FIG. 5, will be described.

【0048】第1の変数演算回路CAは、傾き設定信号
Ks、ベース電流設定信号Ib及び溶接電流設定信号I
sを入力として、前述した(5)式の演算を行い、第1
の変数演算値信号Caを出力する。第2の変数演算回路
CBは、傾き設定信号Ks、ベース電流設定信号Ib、
ピーク電流設定信号Ip及びピーク期間設定信号Tpを
入力として、前述した(9)式の演算を行い、第2の変
数演算値信号Cbを出力する。
The first variable operation circuit CA comprises a slope setting signal Ks, a base current setting signal Ib, and a welding current setting signal Ib.
With s as an input, the above-described equation (5) is operated, and the first
Is output. The second variable operation circuit CB includes a slope setting signal Ks, a base current setting signal Ib,
With the input of the peak current setting signal Ip and the peak period setting signal Tp, the calculation of the above-described equation (9) is performed, and the second variable calculation value signal Cb is output.

【0049】傾き形成電圧誤差積分回路SVAは、上記
の第1の変数演算値信号Ca、溶接電圧設定信号Vs及
び電圧検出信号Vdを入力として、第n回目のパルス周
期Tpb(n)の開始時点から前述した(8)式左辺の積分
を行い、傾き形成電圧誤差積分値信号Svaを出力する。
変数比較回路CMAは、上記の傾き形成電圧誤差積分値
信号Svaと上記の第2の変数演算値信号Cbとを比較し
て、SVa≧Cbになった時点で、短時間Highレベル
となる比較信号Cmを出力する。すなわち、上記の傾き
形成電圧誤差積分回路SVA及び変数比較回路CMAに
よって、本発明の出力制御方法を示す前述した(8)式
の演算を行う。これ以降の動作の説明は、図5のときと
同様であるので省略する。なお、ピーク期間Tpにピー
ク立上り期間Tup及びピーク立下り期間Tdwを設けた場
合には、上記の第2の変数演算値信号Cbの演算式を前
述した(6)式に置換すればよい。
The gradient forming voltage error integration circuit SVA receives the first variable operation value signal Ca, the welding voltage setting signal Vs, and the voltage detection signal Vd as inputs and starts the n-th pulse cycle Tpb (n). Then, the integration on the left side of the above equation (8) is performed, and the gradient forming voltage error integrated value signal Sva is output.
The variable comparison circuit CMA compares the gradient forming voltage error integrated value signal Sva with the second variable operation value signal Cb, and when the condition becomes SVa ≧ Cb, the comparison signal which becomes the High level for a short time. Cm is output. That is, the above-described equation (8), which indicates the output control method of the present invention, is performed by the gradient forming voltage error integration circuit SVA and the variable comparison circuit CMA. The description of the subsequent operation is the same as that of FIG. In the case where the peak rise period Tup and the peak fall period Tdw are provided in the peak period Tp, the expression of the second variable operation value signal Cb may be replaced with the expression (6).

【0050】図11は、前述した(8)式左辺に示す傾
き形成電圧誤差積分値Svaの時間変化とパルス周期Tpb
との関係を示す図である。同図(A)は溶接電流瞬時値
Ioの時間変化を示し、同図(B)は、縦軸にパルス周
期の開始時点(t0)からの傾き形成電圧誤差積分値S
vaの時間変化を示し、横軸にパルス周期Tpbの時間長さ
を示す。同図に示す3つの特性Y1〜Y3は、図9の説
明の項で前述した設定値パラメータが同一であり、その
ために(8)式における第1の変数A、第2の変数B及
び溶接電圧設定値Vsが同一である場合において、溶接
中のアーク長が適正値の場合(特性Y2)、適正値より
も短い場合(特性Y1)及び適正値よりも長い場合(特
性Y3)を示す。以下、同図を参照して説明する。
FIG. 11 shows the time change of the gradient forming voltage error integrated value Sva and the pulse period Tpb shown in the left side of the above-mentioned equation (8).
FIG. FIG. 6A shows the time change of the welding current instantaneous value Io, and FIG. 6B shows the gradient forming voltage error integrated value S from the start point (t0) of the pulse cycle on the vertical axis.
The time change of va is shown, and the horizontal axis shows the time length of the pulse period Tpb. The three characteristics Y1 to Y3 shown in FIG. 9 have the same set value parameters described above in the description of FIG. 9, and therefore, the first variable A, the second variable B, and the welding voltage in the equation (8). When the set value Vs is the same, the case where the arc length during welding is an appropriate value (characteristic Y2), the case where it is shorter than the appropriate value (characteristic Y1), and the case where it is longer than the appropriate value (characteristic Y3) are shown. Hereinafter, description will be made with reference to FIG.

【0051】 アーク長が適正値の場合(特性Y2) アーク長が適正値の場合のピーク電圧をVp2とし、ベー
ス電圧をVb2とする。同図(A)に示す時刻t0〜t1
までのピーク期間Tp中は、傾き形成電圧誤差積分値S
vaはSva=∫(A+Vs-Vp2)・dtの演算値として
時間経過と共に次第に大きくなる。そして、時刻t1以
降のベース期間Tb中は、傾き形成電圧誤差積分値Sva
はSva=∫(A+Vs-Vb2)・dtの演算値として時
間経過と共に、上記のピーク期間Tp中とは異なる傾斜
で次第に大きくなり、時刻t3においてSva≧Bとなる
とパルス周期Tpb2が終了する。
When the Arc Length is an Appropriate Value (Characteristic Y2) The peak voltage when the arc length is an appropriate value is Vp2, and the base voltage is Vb2. Times t0 to t1 shown in FIG.
During the peak period Tp, the slope forming voltage error integrated value S
va gradually increases with time as a calculated value of Sva = ∫ (A + Vs−Vp2) · dt. Then, during the base period Tb after the time t1, the gradient forming voltage error integrated value Sva
Becomes gradually larger with the elapse of time as a calculated value of Sva = ∫ (A + Vs−Vb2) · dt, with a slope different from that during the peak period Tp, and the pulse period Tpb2 ends when Sva ≧ B at time t3.

【0052】 アーク長が適正値よりも短い場合(特
性Y1) 溶接電圧瞬時値Voはアーク長に比例するので、アーク
長が適正値よりも短い場合のピーク電圧はVp1<Vp2と
なり、ベース電圧はVb1<Vb2となる。同図(A)に示
す時刻t0〜t1までのピーク期間Tp中は、傾き形成
電圧誤差積分値SvaはSva=∫(A+Vs-Vp1)・d
tの演算値として時間経過と共に、上記項のときより
も急な勾配で大きくなる。そして、時刻t1以降のベー
ス期間Tb中は、傾き形成電圧誤差積分値SvaはSva=
∫(A+Vs-Vb1)・dtの演算値として時間経過と
共に、ピーク期間Tp中とは異なる勾配で大きくなり、
時刻t2においてSva≧Bとなるとパルス周期Tpb1が終
了する。したがって、アーク長が適正値よりも短い場合
には、パルス周期Tpb1は上記項のときのTpb2よりも
短くなり、1周期溶接電圧平均値Vwが大きくなるの
で、アーク長は長くなる方向に変化して適正値に近づく
ことになる。
When the arc length is shorter than the proper value (characteristic Y1) Since the instantaneous welding voltage Vo is proportional to the arc length, the peak voltage when the arc length is shorter than the proper value is Vp1 <Vp2, and the base voltage is Vb1 <Vb2. During the peak period Tp from time t0 to time t1 shown in FIG. 7A, the slope forming voltage error integrated value Sva is Sva = ∫ (A + Vs−Vp1) · d.
As the time elapses, the calculated value of t increases with a steeper gradient than in the above term. Then, during the base period Tb after the time t1, the slope forming voltage error integrated value Sva is equal to Sva =
The calculated value of ∫ (A + Vs−Vb1) · dt increases with time with a gradient different from that during the peak period Tp,
When Sva ≧ B at time t2, the pulse cycle Tpb1 ends. Therefore, when the arc length is shorter than the appropriate value, the pulse period Tpb1 is shorter than Tpb2 in the above term, and the one-cycle welding voltage average value Vw becomes larger, so that the arc length changes in a longer direction. Will approach the appropriate value.

【0053】 アーク長が適正値よりも長い場合(特
性Y3) 溶接電圧瞬時値Voはアーク長に比例するので、アーク
長が適正値よりも長い場合のピーク電圧はVp3>Vp2と
なり、ベース電圧はVb3>Vb2となる。同図(A)に示
す時刻t0〜t1までのピーク期間Tp中は、傾き形成
電圧誤差積分値SvaはSva=∫(A+Vs-Vp3)・d
tの演算値として時間経過と共に、上記項のときより
も緩やかな勾配で大きくなる。そして、時刻t1以降の
ベース期間Tb中は、傾き形成電圧誤差積分値SvaはS
va=∫(A+Vs-Vb3)・dtの演算値として時間経
過と共にピーク期間Tp中とは異なる勾配で大きくな
り、時刻t4においてSva≧Bとなるとパルス周期Tpb3
が終了する。したがって、アーク長が適正値よりも長い
場合には、パルス周期Tpb3は上記項のときのTpb2よ
りも長くなり、1周期溶接電圧平均値Vwが小さくなる
ので、アーク長は短くなる方向に変化して適正値に近づ
くことになる。上述したように、溶接中のアーク長の変
動に応じて、傾き形成電圧誤差積分値Svaの勾配が変化
することによってパルス周期が変化し、その結果、1周
期溶接電圧平均値Vwが変化してアーク長の変動を抑制
する。
When the arc length is longer than the proper value (characteristic Y 3) Since the instantaneous welding voltage Vo is proportional to the arc length, the peak voltage when the arc length is longer than the proper value is Vp 3> Vp 2, and the base voltage is Vb3> Vb2. During the peak period Tp from time t0 to t1 shown in FIG. 7A, the slope forming voltage error integrated value Sva is Sva = ∫ (A + Vs−Vp3) · d.
As the time elapses, the calculated value of t increases with a gentler gradient than in the above term. Then, during the base period Tb after time t1, the slope forming voltage error integrated value Sva is equal to S
As the calculated value of va = ∫ (A + Vs−Vb3) · dt increases with time with a gradient different from that during the peak period Tp, and when Sva ≧ B at time t4, the pulse period Tpb3
Ends. Therefore, when the arc length is longer than the appropriate value, the pulse period Tpb3 is longer than Tpb2 in the above item, and the one-cycle welding voltage average value Vw becomes smaller, so that the arc length changes in a shorter direction. Will approach the appropriate value. As described above, the pulse cycle changes by changing the gradient of the slope forming voltage error integrated value Sva according to the change in the arc length during welding, and as a result, the one-cycle welding voltage average value Vw changes. Suppress variations in arc length.

【0054】[実施例3]以下に説明する実施例3の発
明は、出願時の請求項5の発明に対応する。実施例3の
発明は、実施例2の発明における第1の変数A及び第2
の変数Bの演算を、溶接中の予め定めた変数演算周期T
c[s]毎に又はパルス周期Tpbの開始時点毎に行うパ
ルスアーク溶接電源装置の出力制御方法である。以下、
実施例3の発明について説明する。
[Third Embodiment] The invention of a third embodiment described below corresponds to the invention of claim 5 at the time of filing. The invention of the third embodiment is based on the first variable A and the second variable A in the invention of the second embodiment.
Calculation of the variable B is performed by a predetermined variable calculation period T during welding.
This is an output control method of the pulse arc welding power supply device performed every c [s] or each time the pulse period Tpb starts. Less than,
The invention of the third embodiment will be described.

【0055】実施例3の出力制御方法を実施するための
溶接電源装置は、前述した図10における第1の変数演
算回路CA及び第2の変数演算回路CBの動作を以下の
ように変更した構成となる。実施例3の第1の変数演算
回路CAは、傾き設定信号Ks、ベース電流設定信号I
b及び溶接電流設定信号Isを入力として、予め定めた
変数演算周期Tc毎に又は変数比較信号Cmが短時間H
ighレベルとなるパルス周期Tpbの開始時点毎に、前
述した(5)式の演算を行い、第1の変数演算値信号C
aを出力する。実施例3の第2の変数演算回路CBは、
傾き設定信号Ks、ベース電流設定信号Ib、ピーク電
流設定信号Ip及びピーク期間設定信号Tpを入力とし
て、予め定めた変数演算周期Tc毎に又は変数比較信号
Cmが短時間Highレベルとなるパルス周期Tpbの開
始時点毎に、前述した(9)式又は(6)式の演算を行
い、第2の変数演算値信号Cbを出力する。
A welding power supply device for implementing the output control method of the third embodiment has a configuration in which the operations of the first variable operation circuit CA and the second variable operation circuit CB in FIG. 10 are changed as follows. Becomes The first variable operation circuit CA of the third embodiment includes a slope setting signal Ks and a base current setting signal Is.
b and the welding current setting signal Is, and the variable comparison signal Cm is set to a short time H at every predetermined variable operation cycle Tc.
At each start time of the pulse period Tpb at which the high level is set, the calculation of the above equation (5) is performed, and the first variable calculation value signal C
a is output. The second variable operation circuit CB of the third embodiment is
A pulse cycle Tpb in which the slope setting signal Ks, the base current setting signal Ib, the peak current setting signal Ip, and the peak period setting signal Tp are input, and the variable comparison signal Cm is at a high level for a short time every variable calculation cycle Tc. The calculation of the above-described expression (9) or (6) is performed at every start time of the operation, and the second variable operation value signal Cb is output.

【0056】実施例3の発明では、溶接中に設定値パラ
メータが変化しても、その変化に対応して第1の変数A
及び第2の変数Bが再演算されるので、常にその時点で
の設定値パラメータに応じた適正な出力制御が行われ
る。
In the invention of the third embodiment, even if the set value parameter changes during welding, the first variable A
And the second variable B are recalculated, so that appropriate output control is always performed according to the set value parameter at that time.

【0057】[実施例4]以下に説明する実施例4の発
明は、出願時の請求項6の発明に対応する。実施例4の
発明は、溶接ワイヤの送給速度設定値Ws並びに溶接ワ
イヤの材質及び直径を設定し、それらによって実施例2
の発明における溶接電流設定値Isを算出するパルスア
ーク溶接電源装置の出力制御方法である。以下、実施例
4の発明について説明する。
[Embodiment 4] The invention of Embodiment 4 described below corresponds to the invention of Claim 6 at the time of filing. According to the invention of the fourth embodiment, the feed wire set value Ws of the welding wire and the material and diameter of the welding wire are set.
It is an output control method of the pulse arc welding power supply device for calculating the welding current set value Is according to the invention of the first aspect. Hereinafter, the invention of the fourth embodiment will be described.

【0058】実施例4の発明を実施するための溶接電源
装置は、前述した図10における溶接電流設定回路IS
を図12で後述する溶接電流設定値算出回路CISに置
換した構成となる。図12は、上記の溶接電流設定値算
出回路CISのブロック図である。溶接電源装置の外部
に設置された送給速度設定回路WSは、予め定めた送給
速度設定信号Wsを出力する。溶接電源装置に内蔵され
た溶接電流設定値算出回路CISは、上記の送給速度設
定信号Ws、溶接ワイヤの材質及び溶接ワイヤの直径を
入力として、図13に例示する溶融特性によって算出し
た溶接電流設定信号Isを出力する。
The welding power supply device for carrying out the invention of the fourth embodiment has a welding current setting circuit IS shown in FIG.
Is replaced by a welding current set value calculation circuit CIS described later with reference to FIG. FIG. 12 is a block diagram of the welding current set value calculation circuit CIS. A feed speed setting circuit WS installed outside the welding power supply device outputs a predetermined feed speed setting signal Ws. The welding current set value calculation circuit CIS incorporated in the welding power supply device receives the above-described feed speed setting signal Ws, the material of the welding wire and the diameter of the welding wire as inputs, and calculates the welding current calculated by the melting characteristics illustrated in FIG. The setting signal Is is output.

【0059】図13は、縦軸に示す送給速度設定値Ws
と横軸に示す溶接電流設定値Isとの関係を示す溶融特
性図である。同図は、溶接ワイヤの材質はアルミニウム
合金A5356の場合であり、溶接ワイヤの直径が1.
2[mm]又は1.6[mm]の場合の溶融特性を示す。例
えば、送給速度設定値Ws=900[cm/分]のときの
溶接電流設定値Isは、直径1.2[mm]のときはIs
=150[A]となり、直径1.6[mm]のときはIs
=250[A]となる。溶接ワイヤの材質が鉄鋼、ステ
ンレス鋼等の場合にも、図13に相当する溶融特性図か
ら溶接電流設定値Isを算出する。
FIG. 13 shows the feed speed set value Ws shown on the vertical axis.
FIG. 9 is a melting characteristic diagram showing a relationship between the welding current setting value Is shown on the horizontal axis. The figure shows the case where the material of the welding wire is aluminum alloy A5356, and the diameter of the welding wire is 1.
It shows the melting characteristics in the case of 2 [mm] or 1.6 [mm]. For example, the welding current set value Is when the feed speed set value Ws = 900 [cm / min] is Is when the diameter is 1.2 [mm].
= 150 [A], and when the diameter is 1.6 [mm], Is
= 250 [A]. Even when the material of the welding wire is steel, stainless steel, or the like, the welding current set value Is is calculated from the melting characteristic diagram corresponding to FIG.

【0060】上述した実施例4の発明では、実用上は溶
接電流設定信号Isに代えて多く使用される送給速度設
定信号Wsが外部から入力される場合においても、本発
明の出力制御方法を実施することができる。
In the above-described fourth embodiment, the output control method of the present invention can be applied to the case where the feed speed setting signal Ws, which is frequently used in place of the welding current setting signal Is, is input from outside. Can be implemented.

【0061】[効果] 図14は、本発明の効果を説明するための前述した
図7に対応する電流・電圧波形図である。同図(A)は
溶接電流瞬時値Ioの時間変化を示し、同図(B)は溶
接電圧瞬時値Voの時間変化を示す。同図は、図7のと
きと同様に、第n−1回目のパルス周期Tpb(n-1)中に
溶接ワイヤと被溶接物との短絡が発生した場合である。
以下、同図を参照して説明する。
[Effects] FIG. 14 is a current / voltage waveform diagram corresponding to FIG. 7 for explaining the effects of the present invention. FIG. 3A shows the temporal change of the welding current instantaneous value Io, and FIG. 3B shows the temporal change of the welding voltage instantaneous value Vo. This figure shows a case where a short circuit occurs between the welding wire and the workpiece during the (n-1) th pulse period Tpb (n-1), as in the case of FIG.
Hereinafter, description will be made with reference to FIG.

【0062】同図(A)に示すように、第n−1回目の
パルス周期Tpb(n-1)中に短絡が発生すると、短絡状態
を早期に解除してアークを再発生させるために、大きな
値の短絡解除電流Itを通電する。本発明では、第n−
1回目の1周期溶接電流平均値Iw(n-1)と、第n−1
回目の1周期溶接電圧平均値Vw(n-1)との図示してい
ない交点である動作点は、傾きKsを有する目標の外部
特性上に必ず存在する。また、溶接中に短絡が発生する
のは、前述した図11においてアーク長が短い場合であ
るので、特性Y1に示すように、第n−1回目のパルス
周期Tpb(n-1)は短くなる。その結果、1周期溶接電圧
平均値Vw(n-1)は大きくなり、アーク長が長くなる方
向へと変化させる。
As shown in FIG. 9A, if a short circuit occurs during the (n-1) -th pulse period Tpb (n-1), the short circuit state is released early and an arc is regenerated. A large value short-circuit release current It is supplied. In the present invention, the n-th
The first one-cycle welding current average value Iw (n-1) and the n-1
An operating point which is an intersection (not shown) with the first one-cycle welding voltage average value Vw (n-1) always exists on the target external characteristic having the slope Ks. In addition, since a short circuit occurs during welding when the arc length is short in FIG. 11 described above, the (n−1) -th pulse cycle Tpb (n−1) becomes short as shown in the characteristic Y1. . As a result, the one-period welding voltage average value Vw (n-1) increases, and the arc length is changed in a direction of increasing the arc length.

【0063】次に、第n回目のパルス周期Tpb(n)中
は、第n回目の1周期溶接電流平均値Iw(n)と、第n
回目の1周期溶接電圧平均値Vw(n)との図示していな
い交点である動作点は、必ず目標の外部特性上に存在す
る。しかも、前周期の短絡発生に影響されることなく、
現周期中の外乱に応じてアーク長を安定化するように出
力制御される。
Next, during the n-th pulse period Tpb (n), the n-th one-cycle welding current average value Iw (n) and the n-th
An operating point, which is an intersection (not shown) with the first one-cycle welding voltage average value Vw (n), always exists on the target external characteristic. Moreover, without being affected by the occurrence of a short circuit in the previous cycle,
The output is controlled so as to stabilize the arc length according to the disturbance during the current cycle.

【0064】 本発明の出力制御方法では、前周期と
は関係なく現周期の状態をフィードバックして制御する
ので、原理的にフィードバック制御系の位相余裕が従来
技術よりも大きくなり、制御系の安定性が向上する。す
なわち、各パルス周期Tpb中の外乱によるアーク長の変
動は、その周期中の出力制御によって抑制されて、次周
期に影響を与えることはない。
In the output control method of the present invention, since the state of the current cycle is fed back and controlled irrespective of the previous cycle, the phase margin of the feedback control system becomes larger in principle than the prior art, and the stability of the control system becomes stable. The performance is improved. That is, the fluctuation of the arc length due to the disturbance during each pulse period Tpb is suppressed by the output control during that period, and does not affect the next period.

【0065】[0065]

【発明の効果】本発明では、各パルス周期Tpb中の1周
期溶接電流平均値Iwと1周期溶接電圧平均値Vwとの
動作点は必ず目標の外部特性上に存在するので、各パル
ス周期Tpb中の外乱によるアーク長の変動は、その周期
中に抑制される。したがって、外乱に対する過渡応答性
に優れているので、溶接中のアーク長の変動が小さくな
り良好な溶接品質を得ることができる。さらに、実施例
3の発明では、溶接中に設定値パラメータが変化して
も、それに応じて第1の変数A及び第2の変数Bを再演
算することによって、常に適正な出力制御を行うことが
できる。さらに、実施例4の発明では、外部から溶接電
流設定信号Isに代えて送給速度設定信号Wsが入力さ
れる場合でも、本発明の出力制御方法を実施することが
できる。
According to the present invention, since the operating points of the one-cycle welding current average value Iw and the one-cycle welding voltage average value Vw in each pulse cycle Tpb always exist on the target external characteristics, each pulse cycle Tpb Variations in the arc length due to disturbances inside are suppressed during the cycle. Therefore, the transient response to the disturbance is excellent, and the fluctuation of the arc length during welding is reduced, so that good welding quality can be obtained. Furthermore, in the invention of the third embodiment, even if the set value parameter changes during welding, the first variable A and the second variable B are recalculated in accordance with the change, thereby always performing proper output control. Can be. Further, in the invention of the fourth embodiment, the output control method of the present invention can be implemented even when the feed speed setting signal Ws is input instead of the welding current setting signal Is from outside.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態の出力制御方法を説明するための電
流・電圧波形図
FIG. 1 is a current / voltage waveform diagram for describing an output control method according to an embodiment.

【図2】パルスアーク溶接の電流・電圧波形図FIG. 2 Current / voltage waveform diagram of pulse arc welding

【図3】溶接電源装置の外部特性図FIG. 3 is an external characteristic diagram of the welding power supply device.

【図4】従来技術2の出力制御方法を説明するための電
流・電圧波形図
FIG. 4 is a current / voltage waveform diagram for explaining an output control method according to Prior Art 2.

【図5】従来技術2の溶接電源装置のブロック図FIG. 5 is a block diagram of a welding power supply device according to prior art 2.

【図6】従来技術2の溶接電源装置のタイミングチャー
FIG. 6 is a timing chart of the welding power supply device of the prior art 2;

【図7】解決課題を説明するための電流・電圧波形図FIG. 7 is a current / voltage waveform diagram for explaining a problem to be solved.

【図8】実施例1の出力制御方法を説明するための電流
・電圧波形図
FIG. 8 is a current / voltage waveform diagram for explaining an output control method according to the first embodiment.

【図9】設定値パラメータを示す電流・電圧波形図FIG. 9 is a current / voltage waveform diagram showing set value parameters.

【図10】実施例2の溶接電源装置のブロック図FIG. 10 is a block diagram of a welding power supply device according to a second embodiment.

【図11】傾き形成電圧誤差積分値Svaの時間変化とパ
ルス周期Tpbとの関係を示す図
FIG. 11 is a diagram showing a relationship between a temporal change of a slope forming voltage error integrated value Sva and a pulse period Tpb.

【図12】実施例4における溶接電流設定値算出回路C
ISのブロック図
FIG. 12 shows a welding current set value calculation circuit C according to a fourth embodiment.
IS block diagram

【図13】縦軸に示す送給速度設定値Wsと横軸に示す
溶接電流設定値Isとの関係を示す溶融特性図
FIG. 13 is a melting characteristic diagram showing a relationship between a feed speed set value Ws shown on the vertical axis and a welding current set value Is shown on the horizontal axis.

【図14】本発明の効果を説明するための電流・電圧波
形図
FIG. 14 is a current / voltage waveform diagram for explaining the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 溶接ワイヤ 2 被溶接物 3 アーク 4 溶接トーチ 5a ワイヤ送給装置の送給ロール A 第1の変数 B 第2の変数 CA 第1の変数演算回路 Ca 第1の変数演算値信号 CB 第2の変数演算回路 Cb 第2の変数演算値信号 CIS 溶接電流設定値算出回路 CM 比較回路 Cm 比較信号 CMA 変数比較回路 EI 電流誤差増幅回路 Ei 電流誤差増幅信号 f パルス周波数 IB ベース期間設定回路 Ib ベース電流(設定信号) ID 電流検出回路 Id 電流検出信号 INV 出力制御回路 Io 溶接電流瞬時値 IP ピーク期間設定回路 Ip ピーク電流(設定信号) IS 溶接電流設定回路 Is 溶接電流設定(値/信号) Isc 電流制御設定信号 It 短絡解除電流 IW 1周期溶接電流平均値算出回路 Iw、Iw(n) 1周期溶接電流平均値(信号) KS 傾き設定回路 Ks 外部特性の傾き(設定信号) L1、L2 外部特性 MM タイマ回路 Mm 切換信号 P1 動作点 PS 溶接電源装置 PSA パルス周期毎制御溶接電源装置 SV 電圧誤差積分回路 Sv 電圧誤差積分値(信号) SVA 傾き形成電圧誤差積分回路 Sva 傾き形成電圧誤差積分値(信号) SW ピーク/ベース切換回路 Tb ベース期間 Tdw ピーク立下り期間 Tp ピーク期間 Tpb、Tpb(n) パルス周期 Tpp 最大ピーク期間 Tup ピーク立上り期間 Vb ベース電圧 VD 電圧検出回路 Vd 電圧検出信号 Vo 溶接電圧瞬時値 Vp ピーク電圧 VS 溶接電圧設定回路 Vs 溶接電圧設定(値/信号) VSC 外部特性制御回路 Vsc 電圧制御設定(値/信号) Vw、Vw(n) 1周期溶接電圧平均値 WS 送給速度設定回路 Ws 送給速度設定(値/信号) Y1〜Y3 溶融特性 DESCRIPTION OF SYMBOLS 1 Welding wire 2 Workpiece 3 Arc 4 Welding torch 5a Feeding roll of wire feeder A First variable B Second variable CA First variable operation circuit Ca First variable operation value signal CB Second Variable operation circuit Cb Second variable operation value signal CIS welding current setting value calculation circuit CM comparison circuit Cm comparison signal CMA Variable comparison circuit EI Current error amplification circuit Ei Current error amplification signal f Pulse frequency IB Base period setting circuit Ib Base current ( Setting signal) ID current detection circuit Id current detection signal INV output control circuit Io welding instantaneous value IP peak period setting circuit Ip peak current (setting signal) IS welding current setting circuit Is welding current setting (value / signal) Isc current control setting Signal It Short-circuit release current IW One-cycle welding current average calculation circuit Iw, Iw (n) One-cycle welding current average Signal) KS slope setting circuit Ks slope of external characteristic (setting signal) L1, L2 external characteristic MM timer circuit Mm switching signal P1 operating point PS welding power supply PSA pulse-per-cycle control welding power supply SV voltage error integration circuit Sv voltage error integration Value (signal) SVA slope forming voltage error integration circuit Sva slope forming voltage error integration value (signal) SW peak / base switching circuit Tb base period Tdw peak falling period Tp peak period Tpb, Tpb (n) pulse period Tpp maximum peak period Tup peak rise period Vb base voltage VD voltage detection circuit Vd voltage detection signal Vo welding voltage instantaneous value Vp peak voltage VS welding voltage setting circuit Vs welding voltage setting (value / signal) VSC external characteristic control circuit Vsc voltage control setting (value / signal) ) Vw, Vw (n) One-cycle welding voltage average value WS Feeding speed setting circuit W s Feeding speed setting (value / signal) Y1 to Y3 Melting characteristics

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 予め定めたピーク期間中は溶滴移行をさ
せる値に予め定めたピーク電流を通電し、続けてベース
期間中は溶滴移行をさせない値に予め定めたベース電流
を通電し、これら1周期の通電をパルス周期として繰り
返し通電して溶接する消耗電極パルスアーク溶接に使用
する溶接電源装置の出力制御方法において、 溶接電源装置の外部特性の傾きKs及び溶接電流設定値
Is及び溶接電圧設定値Vsを予め設定し、溶接中の第
n回目のパルス周期中の1周期の間の溶接電流平均値I
w(n)と1周期の間の溶接電圧平均値Vw(n)とがVw
(n)=Ks・(Is−Iw(n))+Vsの関係を維持する
ように溶接電源装置の出力を制御するパルスアーク溶接
電源装置の出力制御方法。
1. A predetermined peak current is applied to a value that causes droplet transfer during a predetermined peak period, and a predetermined base current is subsequently applied to a value that does not cause droplet transfer during a base period; In the output control method of the welding power supply device used for the pulsed arc welding of the consumable electrode, in which welding is performed by repeatedly applying the current of one cycle as a pulse period, the gradient Ks of the external characteristic of the welding power supply, the welding current set value Is, and the welding voltage The set value Vs is set in advance, and the welding current average value I during one cycle of the n-th pulse cycle during welding is set.
w (n) and the average welding voltage Vw (n) during one cycle are Vw
An output control method for a pulse arc welding power supply that controls the output of the welding power supply so as to maintain the relationship of (n) = Ks · (Is−Iw (n)) + Vs.
【請求項2】 ピーク期間に予め定めたピーク立上り期
間及び予め定めたピーク立下り期間を設けた請求項1に
記載するパルスアーク溶接電源装置の出力制御方法。
2. The output control method according to claim 1, wherein a predetermined peak rise period and a predetermined peak fall period are provided in the peak period.
【請求項3】 予め定めたピーク期間Tp中は溶滴移行
をさせる値に予め定めたピーク電流Ipを通電し、続け
てベース期間Tb中は溶滴移行をさせない値に予め定め
たベース電流Ibを通電し、これら1周期の通電をパル
ス周期として繰り返し通電して溶接する消耗電極パルス
アーク溶接に使用する溶接電源装置の出力制御方法にお
いて、 溶接電源装置の外部特性の傾きKs及び溶接電流設定値
Is及び溶接電圧設定値Vsを予め設定し、前記設定値
によって第1の変数A=Ks・(Ib−Is)及び第2
の変数B=Ks・(Ib−Ip)・Tpを演算した後
に、溶接中の溶接電圧瞬時値Voを検出して第n回目の
パルス周期の開始時点からの傾き形成電圧誤差積分値S
va=∫(A+Vs−Vo)・dtを演算し、前記第n回
目のピーク期間に続く第n回目のベース期間中の前記傾
き形成電圧誤差積分値Svaが前記第2の変数Bの値以上
になった時点で前記第n回目のパルス周期を終了し、続
けて第n+1回目のパルス周期を開始して前記動作を繰
り返し行うことによって前記傾きKsを有する外部特性
を形成して溶接を行うパルスアーク溶接電源装置の出力
制御方法。
3. A predetermined peak current Ip is supplied during the predetermined peak period Tp to a value at which droplet transfer is performed, and subsequently, a predetermined base current Ib is set at a value at which droplet transfer is not performed during the base period Tb. The method of controlling the output of a welding power supply device used for pulsed arc welding of a consumable electrode, in which welding is performed by repeatedly applying a current in one cycle as a pulse cycle, comprising: a slope Ks of an external characteristic of the welding power supply and a welding current set value. Is and the welding voltage set value Vs are set in advance, and the first variable A = Ks · (Ib−Is) and the second variable
After calculating the variable B = Ks. (Ib-Ip) .Tp, the welding voltage instantaneous value Vo during welding is detected, and the gradient forming voltage error integrated value S from the start of the n-th pulse cycle is detected.
va = ∫ (A + Vs−Vo) · dt is calculated, and the gradient forming voltage error integrated value Sva in the n-th base period following the n-th peak period is equal to or larger than the value of the second variable B. At this point, the n-th pulse cycle is completed, the (n + 1) -th pulse cycle is subsequently started, and the above operation is repeated, thereby forming an external characteristic having the slope Ks to perform welding. Output control method for welding power supply unit.
【請求項4】 予め定めたピーク期間Tp中は溶滴移行
をさせる値に予め定めたピーク電流Ipを通電し、続け
てベース期間Tb中は溶滴移行をさせない値に予め定め
たベース電流Ibを通電し、前記ピーク期間Tpには予
め定めたピーク立上り期間Tup及び予め定めたピーク立
下り期間Tdwを設け、これら1周期の通電をパルス周期
として繰り返し通電して溶接する消耗電極パルスアーク
溶接に使用する溶接電源装置の出力制御方法において、 溶接電源装置の外部特性の傾きKs及び溶接電流設定値
Is及び溶接電圧設定値Vsを予め設定し、第2の変数
Bの演算をB=Ks・(Ib−Ip)・(Tp+(1/2)
・Tup+(1/2)・Tdw)とする請求項3に記載するパル
スアーク溶接電源装置の出力制御方法。
4. A predetermined peak current Ip is supplied during a predetermined peak period Tp to a value that causes droplet transfer, and a predetermined base current Ib is subsequently set to a value that does not cause droplet transfer during a base period Tb. In the peak period Tp, a predetermined peak rising period Tup and a predetermined peak falling period Tdw are provided, and consumable electrode pulse arc welding is performed in which welding is performed by repeatedly applying a current in one cycle as a pulse period. In the output control method of the welding power supply device to be used, the slope Ks of the external characteristic of the welding power supply device, the welding current set value Is and the welding voltage set value Vs are set in advance, and the calculation of the second variable B is performed by B = Ks · ( Ib−Ip) · (Tp + (1/2)
The output control method of the pulse arc welding power supply device according to claim 3, wherein (Tup + (1/2) .Tdw).
【請求項5】 第1の変数A及び第2の変数Bの演算
を、溶接中の予め定めた変数演算周期毎に又はパルス周
期の開始時点毎に行う請求項3又は請求項4に記載する
パルスアーク溶接電源装置の出力制御方法。
5. The method according to claim 3, wherein the calculation of the first variable A and the second variable B is performed at every predetermined variable calculation period during welding or at the start of each pulse period. An output control method of a pulse arc welding power supply.
【請求項6】 溶接ワイヤの送給速度設定値並びに溶接
ワイヤの材質及び直径を設定し、それらによって溶接電
流設定値Isを算出する請求項3又は請求項4に記載す
るパルスアーク溶接電源装置の出力制御方法。
6. The pulse arc welding power source device according to claim 3, wherein a set value of a feed speed of the welding wire and a material and a diameter of the welding wire are set, and the welding current set value Is is calculated based on the set value. Output control method.
JP2001170826A 2001-06-06 2001-06-06 Output control method for pulse arc welding power supply Expired - Fee Related JP4704612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001170826A JP4704612B2 (en) 2001-06-06 2001-06-06 Output control method for pulse arc welding power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001170826A JP4704612B2 (en) 2001-06-06 2001-06-06 Output control method for pulse arc welding power supply

Publications (3)

Publication Number Publication Date
JP2002361417A true JP2002361417A (en) 2002-12-18
JP2002361417A5 JP2002361417A5 (en) 2008-07-10
JP4704612B2 JP4704612B2 (en) 2011-06-15

Family

ID=19012684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001170826A Expired - Fee Related JP4704612B2 (en) 2001-06-06 2001-06-06 Output control method for pulse arc welding power supply

Country Status (1)

Country Link
JP (1) JP4704612B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514628A1 (en) * 2003-09-12 2005-03-16 Daihen Corporation Pulse arc welding output control method and arc length variation pulse arc welding output control method
JP2005271042A (en) * 2004-03-25 2005-10-06 Daihen Corp Consumable electrode gas shielded arc welding method by constant current property
JP2010000539A (en) * 2008-05-21 2010-01-07 Daihen Corp Output control method in pulse arc welding
EP2218537A1 (en) 2009-02-12 2010-08-18 Kabushiki Kaisha Kobe Seiko Sho Welding control apparatus for pulse arc welding using consumable electrode type, arc length control method for use with the same, and welding system having such welding control apparatus
WO2010119634A1 (en) * 2009-04-17 2010-10-21 パナソニック株式会社 Arc welding control method and arc welding control system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128661A (en) * 1975-05-01 1976-11-09 Stanley Electric Co Ltd Method of d*c* arc welder using expendable electrodes
JPS5227040A (en) * 1975-08-27 1977-03-01 Stanley Electric Co Ltd Power source device for welding machine
JPS57124572A (en) * 1981-01-28 1982-08-03 Hitachi Ltd Arc welding method
JPS5855176A (en) * 1981-09-29 1983-04-01 Osaka Denki Kk Controlling method for automatic arc welding
JPH03116271A (en) * 1989-09-29 1991-05-17 Toshiba Corp Analyzing method for fast fourier transformation of two-dimensional picture
JPH07314136A (en) * 1992-05-29 1995-12-05 Osaka Denki Co Ltd Consumable electrode type arc voltage automatic control method and controller therefor
JPH09271945A (en) * 1996-04-09 1997-10-21 Daihen Corp Arc length reset control method and welding equipment in consumable electrode arc welding
JPH09277044A (en) * 1996-04-10 1997-10-28 Daihen Corp Arc length recovery control method of pulse arc welding and welding equipment
JPH11192553A (en) * 1997-12-26 1999-07-21 Daihen Corp Method for consumable electrode gas shielded arc welding and device therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128661A (en) * 1975-05-01 1976-11-09 Stanley Electric Co Ltd Method of d*c* arc welder using expendable electrodes
JPS5227040A (en) * 1975-08-27 1977-03-01 Stanley Electric Co Ltd Power source device for welding machine
JPS57124572A (en) * 1981-01-28 1982-08-03 Hitachi Ltd Arc welding method
JPS5855176A (en) * 1981-09-29 1983-04-01 Osaka Denki Kk Controlling method for automatic arc welding
JPH03116271A (en) * 1989-09-29 1991-05-17 Toshiba Corp Analyzing method for fast fourier transformation of two-dimensional picture
JPH07314136A (en) * 1992-05-29 1995-12-05 Osaka Denki Co Ltd Consumable electrode type arc voltage automatic control method and controller therefor
JPH09271945A (en) * 1996-04-09 1997-10-21 Daihen Corp Arc length reset control method and welding equipment in consumable electrode arc welding
JPH09277044A (en) * 1996-04-10 1997-10-28 Daihen Corp Arc length recovery control method of pulse arc welding and welding equipment
JPH11192553A (en) * 1997-12-26 1999-07-21 Daihen Corp Method for consumable electrode gas shielded arc welding and device therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490088B2 (en) * 2003-09-12 2010-06-23 株式会社ダイヘン Output control method of pulse arc welding and output control method of arc length fluctuation pulse arc welding
US7145101B2 (en) 2003-09-12 2006-12-05 Daihen Corporation Pulse arc welding output control method and arc length variation pulse arc welding output control method
CN100408244C (en) * 2003-09-12 2008-08-06 株式会社大亨 Pulse arc welding output control method and arc length variation pulse arc welding output control method
JP2005118872A (en) * 2003-09-12 2005-05-12 Daihen Corp Pulse arc welding output control method and arc length variation pulse arc welding output control method
EP1514628A1 (en) * 2003-09-12 2005-03-16 Daihen Corporation Pulse arc welding output control method and arc length variation pulse arc welding output control method
JP2005271042A (en) * 2004-03-25 2005-10-06 Daihen Corp Consumable electrode gas shielded arc welding method by constant current property
JP4643161B2 (en) * 2004-03-25 2011-03-02 株式会社ダイヘン Consumable electrode gas shielded arc welding method with constant current characteristics
JP2010000539A (en) * 2008-05-21 2010-01-07 Daihen Corp Output control method in pulse arc welding
US8274012B2 (en) 2009-02-12 2012-09-25 Kobe Steel, Ltd. Welding control apparatus for pulse arc welding of consumed electrode type, arc length control method for use with the same, and welding system including the welding control apparatus
EP2218537A1 (en) 2009-02-12 2010-08-18 Kabushiki Kaisha Kobe Seiko Sho Welding control apparatus for pulse arc welding using consumable electrode type, arc length control method for use with the same, and welding system having such welding control apparatus
WO2010119634A1 (en) * 2009-04-17 2010-10-21 パナソニック株式会社 Arc welding control method and arc welding control system
CN102271854A (en) * 2009-04-17 2011-12-07 松下电器产业株式会社 Arc welding control method and arc welding control system
JP5278542B2 (en) * 2009-04-17 2013-09-04 パナソニック株式会社 Arc welding control method and arc welding control apparatus
US8933370B2 (en) 2009-04-17 2015-01-13 Panasonic Corporation Arc welding control method and arc welding control system
CN102271854B (en) * 2009-04-17 2015-03-25 松下电器产业株式会社 Arc welding control method and arc welding control system

Also Published As

Publication number Publication date
JP4704612B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US8338750B2 (en) AC pulse arc welding control method
JP4490088B2 (en) Output control method of pulse arc welding and output control method of arc length fluctuation pulse arc welding
US9662736B2 (en) CO2 globular transfer
JP2011073022A (en) Carbon dioxide pulsed arc welding method
JP2009072826A (en) Control method for pulse arc welding
JP2006263757A (en) Method for controlling arc length in pulse arc welding
WO2019203162A1 (en) Arc welding control method
EP3530395B1 (en) Ac pulse arc welding control method
US20100176105A1 (en) Welding output control method and arc welding equipment
JP2011088209A (en) Carbon dioxide pulsed arc welding method
JP4181384B2 (en) Welding current control method for pulse arc welding
JP5154872B2 (en) Output control method of pulse arc welding
CN113165095B (en) Arc welding control method
JP2002361417A (en) Output control method for power unit of pulsed arc welding
JP7188858B2 (en) arc welding method
JP4704632B2 (en) Output control method for pulse arc welding power supply
KR20200050387A (en) Two-stage pulse ramp
JP2019188434A (en) Control method of ac arc-welding
JP2024027931A (en) Feed control method for pulsed arc welding
JP2006205213A (en) Method for controlling output of pulse arc welding
JP5280268B2 (en) Output control method of pulse arc welding
US20210031290A1 (en) Arc-welding control method
JP2011050981A (en) Output control method for pulsed arc welding
JP7198557B2 (en) arc welding method
EP4155019A1 (en) Direct current arc welding control method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4704612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees