JP2005270867A - Dissolving method of organic crystal - Google Patents

Dissolving method of organic crystal Download PDF

Info

Publication number
JP2005270867A
JP2005270867A JP2004089844A JP2004089844A JP2005270867A JP 2005270867 A JP2005270867 A JP 2005270867A JP 2004089844 A JP2004089844 A JP 2004089844A JP 2004089844 A JP2004089844 A JP 2004089844A JP 2005270867 A JP2005270867 A JP 2005270867A
Authority
JP
Japan
Prior art keywords
organic
solvent
solution
crystal
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004089844A
Other languages
Japanese (ja)
Other versions
JP4300144B2 (en
Inventor
Hachiro Nakanishi
八郎 中西
Hitoshi Kasai
均 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004089844A priority Critical patent/JP4300144B2/en
Publication of JP2005270867A publication Critical patent/JP2005270867A/en
Application granted granted Critical
Publication of JP4300144B2 publication Critical patent/JP4300144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for dissolving an organic crystal in a high concentration and in a short time and for making it hard to deposit the crystal from the dissolved solution. <P>SOLUTION: The dissolving method is characterized by irradiating a mixture of the polar solvent and the organic crystal with a microwave, preferably the polar solvent being an organic solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機化合物の高濃度溶液を作成するのに好適な、有機結晶の溶解方法に関する。   The present invention relates to a method for dissolving an organic crystal suitable for preparing a high concentration solution of an organic compound.

有機色素は、印刷インキ、インクジェットインキ、電子写真カラートナー、カラーフィルター、反射型ディスプレイ、化粧料、プラスチック類の着色剤などとして広い分野で使用されている。また、有機色素の中には、着色剤としての用途とは異なる機能性材料、例えば光電子特性やEL特性などを利用した技術分野の新規材料、としての利用が検討されているものもある。   Organic dyes are used in a wide range of fields as printing inks, ink-jet inks, electrophotographic color toners, color filters, reflective displays, cosmetics, colorants for plastics, and the like. In addition, some organic dyes are being studied for use as functional materials different from the use as a colorant, for example, new materials in the technical field using photoelectron characteristics and EL characteristics.

有機色素は、その純度、結晶粒子の大きさ、粒径の分布特性、粒子の形状により、分散性、配合物のレオロジー特性、光物性などの特性が変化する。従って有機色素、特に結晶(結晶微粉末)状態で使用されることの多い有機顔料の結晶粒子の制御をすることは、所望の機能発現のために非常に重要である。   The properties of organic dyes such as dispersibility, rheological properties of blends, and optical properties vary depending on the purity, crystal particle size, particle size distribution characteristics, and particle shape. Therefore, it is very important to control the crystal particles of organic pigments, particularly organic pigments often used in a crystalline (crystal fine powder) state, in order to achieve a desired function.

本発明者らは、これまでに有機化合物のナノサイズの粒子を製造する技術の開発研究をしてきており、その中で、有機化合物が溶解しやすい有機溶媒を選択して溶液を調整し、調整された溶液を前記有機化合物に対しては貧溶媒であり、かつ前記溶液の調整に使用された有機溶媒とは相溶性である貧溶媒中に激しく攪拌しながら注入して、前記有機化合物を沈殿させてナノサイズの粒子を製造する、再沈法という微結晶の作成方法を発明している(特許文献1)。この手法によれば、目的に応じて結晶サイズ、粒径分布等を制御した有機顔料の微結晶の作成が可能である。   The present inventors have so far conducted research and development of technologies for producing nano-sized particles of organic compounds. Among them, an organic solvent in which an organic compound is easily dissolved is selected, and the solution is prepared and adjusted. The organic compound is poured into a poor solvent that is a poor solvent for the organic compound and is compatible with the organic solvent used for the preparation of the solution to precipitate the organic compound. Inventing a method for producing microcrystals called a reprecipitation method that produces nano-sized particles (Patent Document 1). According to this method, it is possible to produce organic pigment microcrystals with controlled crystal size, particle size distribution, and the like according to the purpose.

再沈法では、最初の溶媒への有機顔料の溶解が重要である。高濃度に有機顔料を溶解できれば、一度にたくさんの顔料微結晶を製造することができ、微結晶製造の効率化を図ることができる。   In the reprecipitation method, it is important to dissolve the organic pigment in the first solvent. If the organic pigment can be dissolved at a high concentration, a large number of pigment microcrystals can be produced at once, and the efficiency of microcrystal production can be improved.

これに関し、特許文献2には、有機顔料を溶解する溶媒としてアミド系溶媒を用いた、再沈法による顔料微結晶分散液の作成方法が開示されている。このようにアミド系溶媒を用いることで、キナクリドンやフタロシアニンをはじめとした有機顔料を、比較的高濃度に溶解させることが可能である。
特許第2723200号公報 特願2002−252389号公報
In this regard, Patent Document 2 discloses a method for preparing a pigment fine crystal dispersion by reprecipitation using an amide solvent as a solvent for dissolving an organic pigment. Thus, by using an amide solvent, organic pigments such as quinacridone and phthalocyanine can be dissolved at a relatively high concentration.
Japanese Patent No. 2723200 Japanese Patent Application No. 2002-252389

しかし、工業的に再沈法を用いるためには、一定以上の生産性、経済性が求められるため、さらに高濃度に、あるいはさらに短時間で溶媒に溶解させることが望ましい。また、工業的に再沈法を行う場合、溶液の調整から貧溶媒への滴下までの間が、例えば溶液の移送等により、実験室レベルでの操作に比べて時間が空いてしまうことから、高濃度の溶液を用いる場合に、貧溶媒への滴下までの間に結晶が析出しないようにすることも重要である。   However, in order to use the reprecipitation method industrially, productivity and economy beyond a certain level are required. Therefore, it is desirable to dissolve in a solvent at a higher concentration or in a shorter time. In addition, when performing the reprecipitation method industrially, the time from the adjustment of the solution to the dropping to the poor solvent, for example, due to the transfer of the solution, time is vacant compared to the operation at the laboratory level, When using a high-concentration solution, it is also important to prevent crystals from precipitating before dropping into the poor solvent.

溶解性向上や析出防止の問題は再沈法に限ったことではなく、有機顔料一般の問題である。ほとんどの有機顔料は汎用の溶媒に溶けにくいため、優れた機能を有する顔料であっても、反応、精製、加工等の際の溶解性の低さが障害となって、実用化できないことがある。従って、高濃度に、あるいは短時間に顔料を溶媒に溶解させ、またその析出を防止することは有機顔料全体の重要課題である。   The problem of improving solubility and preventing precipitation is not limited to the reprecipitation method, but is a general problem of organic pigments. Most organic pigments are difficult to dissolve in general-purpose solvents, so even pigments with excellent functions may be impractical due to low solubility during reaction, purification, processing, etc. . Accordingly, it is an important issue for the whole organic pigment to dissolve the pigment in the solvent at a high concentration or in a short time and prevent its precipitation.

さらに、有機顔料のみならず、有機色素をはじめとした有機化合物全般においても、有機溶媒へ高濃度に、短時間に溶解させることは、取り扱い性の向上やコスト低減に直結するために非常に重要であり、その意義は非常に大きい。   Furthermore, not only organic pigments, but also organic compounds such as organic dyes in general, it is very important to dissolve them in organic solvents at high concentrations in a short time in order to directly improve handling and reduce costs. And its significance is very large.

本発明は上記実情に鑑みてなされたものであり、有機結晶を高濃度かつ短時間に溶解し、また溶解させた溶液からの結晶の析出を起こりにくくする方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for dissolving an organic crystal in a high concentration in a short time and making it difficult for the crystal to precipitate from the dissolved solution.

本発明者らは、鋭意検討を行った結果、有機顔料が溶媒中に分散している状態の系にマイクロ波を照射することで、短時間に、また高濃度で有機顔料を溶解させることができ、さらに、この手法を用いて作成した溶液は、通常の加熱により作成した溶液と比して、結晶の析出が遅いことを見出した。加えて、この手法を有機顔料以外の様々な有機結晶の有機溶媒への溶解のために用いても、同様な効果を得られることを見出した。   As a result of intensive studies, the inventors of the present invention can dissolve the organic pigment in a short time and at a high concentration by irradiating the system in a state where the organic pigment is dispersed in the solvent. Further, it was found that the solution prepared by using this method is slower in crystal precipitation than the solution prepared by ordinary heating. In addition, it has been found that the same effect can be obtained even when this method is used for dissolving various organic crystals other than organic pigments in an organic solvent.

すなわち、本発明は、極性溶媒と有機結晶との混合物にマイクロ波を照射することを特徴とする有機結晶の溶解方法を提供して前記課題を解決するものである。この発明によれば、有機結晶を高濃度かつ短時間に溶解させ、また溶解させた溶液からの結晶の析出を起こりにくくすることができる。前記有機結晶としては色素、中でも一般的に溶解性が低い顔料に用いるのが有効であり、特にキナクリドン系化合物あるいはフタロシアニン系化合物が好ましい。また前記極性溶媒としては、有機溶媒を用いるのが好ましく、溶解性の点から1−メチル−2−ピロリジノン、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドから選択されるアミド系溶媒を用いることが好ましい。   That is, the present invention provides a method for dissolving an organic crystal characterized by irradiating a mixture of a polar solvent and an organic crystal with microwaves, and solves the above problems. According to this invention, organic crystals can be dissolved at a high concentration in a short time, and precipitation of crystals from the dissolved solution can be made difficult to occur. As the organic crystal, it is effective to use a dye, particularly a pigment having generally low solubility, and a quinacridone compound or a phthalocyanine compound is particularly preferable. The polar solvent is preferably an organic solvent. From the viewpoint of solubility, 1-methyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylformamide, N, N -It is preferable to use an amide solvent selected from dimethylacetamide.

本発明によれば、有機化合物を外部から加熱して溶媒に溶解させる場合に比べて、短時間に、またより高濃度に溶解させることができる。さらに、この方法を使用して有機結晶を溶解させた溶液は、溶解している有機化合物の析出が遅いため、例えば、工業的に再沈法を行う場合のように、高濃度の溶液を作ってからその使用までに比較的時間が空く場合においても、溶液状態のままで安定に保つことができるため有用である。   According to the present invention, it is possible to dissolve the organic compound in a shorter time and at a higher concentration than when the organic compound is heated from the outside and dissolved in the solvent. Furthermore, since a solution in which organic crystals are dissolved using this method has a slow precipitation of dissolved organic compounds, a high-concentration solution is prepared, for example, in the case of industrial reprecipitation. Even when it takes a relatively long time to use it, it is useful because it can be kept stable in a solution state.

本発明のこのような作用及び利得は、次に説明する発明を実施するための最良の形態から明らかにされる。   Such an operation and gain of the present invention will be made clear from the best mode for carrying out the invention described below.

以下本発明を詳細に説明する。   The present invention will be described in detail below.

本発明は、有機化合物の溶液を作成するために、マイクロ波を照射することを特徴とするものである。マイクロ波とは、広くは1GHz〜300GHzの電磁波を指すが、本発明においては0.3〜30GHz、好ましくは2.45GHzの電磁波を用いることが好ましい。照射方法は特に限定されないが、系の急激な温度上昇を抑えるために、例えば一定間隔を置いての照射を数回〜数十回繰り返したり、あるいは低出力で連続的に照射したりすることができる。一回あたりの照射時間は使用する溶媒や結晶によって異なるが、通常は0.1〜60分間程度である。また、系内の温度分布を均一にするために、照射一回ごとに攪拌したり、あるいは攪拌しながら照射を行ったりすることが好ましい。   The present invention is characterized in that microwaves are irradiated in order to prepare a solution of an organic compound. The microwave generally refers to an electromagnetic wave of 1 GHz to 300 GHz, but in the present invention, it is preferable to use an electromagnetic wave of 0.3 to 30 GHz, preferably 2.45 GHz. The irradiation method is not particularly limited, but in order to suppress a rapid temperature rise of the system, for example, irradiation at a fixed interval may be repeated several times to several tens of times, or may be irradiated continuously at a low output. it can. The irradiation time per time varies depending on the solvent and crystals used, but is usually about 0.1 to 60 minutes. In order to make the temperature distribution in the system uniform, it is preferable to stir for each irradiation or to perform irradiation while stirring.

通常は、上記照射方法により溶媒の沸点まで温度が上昇しないように照射するが、溶媒が高沸点のものを用いるときには、好ましくない溶媒と溶質の副反応を防止する観点から、沸点以下であっても、一定温度以下となるように温度制御をすることが好ましい。   Usually, irradiation is performed so that the temperature does not rise to the boiling point of the solvent by the above irradiation method, but when a solvent having a high boiling point is used, it is below the boiling point from the viewpoint of preventing a side reaction between an undesirable solvent and a solute. However, it is preferable to control the temperature so as to be a certain temperature or less.

マイクロ波の照射手段としては、公知のものであれば何ら制限されることなく使用できるが、例えば、電子レンジの利用がその入手が安価かつ容易であるため便利である。また、温度が設定された温度以上にならないように出力や照射時間を調節する制御機構が搭載されたマイクロ波照射装置を用いることも有用である。   As a microwave irradiation means, any known means can be used without any limitation. For example, use of a microwave oven is convenient because it is inexpensive and easy to obtain. It is also useful to use a microwave irradiation apparatus equipped with a control mechanism that adjusts the output and irradiation time so that the temperature does not exceed the set temperature.

本発明の溶解方法で溶解させる有機結晶としては特に制限はなく、低分子化合物、高分子化合物を問わず使用可能であるが、中でも本発明の溶解方法は、比較的高融点で溶解性が低い有機色素に対して有用である。特に、一般的に溶媒に非常に溶けにくく、取り扱い性が悪い有機顔料に対して有用である。   The organic crystal to be dissolved by the dissolution method of the present invention is not particularly limited and can be used regardless of whether it is a low molecular compound or a high molecular compound. Among them, the dissolution method of the present invention has a relatively high melting point and low solubility. Useful for organic dyes. In particular, it is useful for organic pigments which are generally very insoluble in solvents and have poor handleability.

有機色素は、アゾ系、フタロシアニン系、アントラキノン系、キナクリドン系、シアニン系、メロシアニン系、フラーレン系、ジオキサジン系、アントラピリミジン系、アントラピリドン系、lアンサンスロン系、インダンスロン系、フラバンスロン系、ペリノン系、チオインジコ系、アントラキノン系、ポリジアセチレン系化合物が例示できるが、色素骨格はこれに限定されるものではない。例えば、具体的な化合物として、カラーインデックス(C.I.;The Society of Dyers and Colourists社発行)においてC.I.ナンバーが付されているものが例示できる。また、有機顔料としては、その中でもピグメント(Pigment)に分類されている化合物を例示することができるが、これに限定されるものではない。   Organic dyes include azo, phthalocyanine, anthraquinone, quinacridone, cyanine, merocyanine, fullerene, dioxazine, anthrapyrimidine, anthrapyridone, l ansanthrone, indanthrone, flavanthrone, Perinone-based, thioindico-based, anthraquinone-based, and polydiacetylene-based compounds can be exemplified, but the dye skeleton is not limited thereto. For example, as a specific compound, C.I. in the color index (CI; published by The Society of Dyer's and Colorists). I. The thing which number is attached can be illustrated. Moreover, as an organic pigment, the compound classified into Pigment (Pigment) can be illustrated among them, However, It is not limited to this.

中でも、光電子材料やEL材料としての利用が期待されているが、難溶性のために取り扱い性の向上が求められているフタロシアニン系化合物やキナクリドン系化合物に対して本発明を用いることが有用である。フタロシアニン化合物としては、チタニルフタロシアニン、バナジルフタロシアニン、銅フタロシアニン、無金属フタロシアニン、アルミニウムフタロシアニン、鉄フタロシアニン、ニッケルフタロシアニン、コバルトフタロシアニン等が挙げられ、これらはフタロシアニン骨格に置換基を有していてもよい。   Among them, it is useful to use the present invention for phthalocyanine compounds and quinacridone compounds, which are expected to be used as optoelectronic materials and EL materials, but need to be improved in handleability due to poor solubility. . Examples of the phthalocyanine compound include titanyl phthalocyanine, vanadyl phthalocyanine, copper phthalocyanine, metal-free phthalocyanine, aluminum phthalocyanine, iron phthalocyanine, nickel phthalocyanine, and cobalt phthalocyanine, and these may have a substituent on the phthalocyanine skeleton.

キナクリドン系化合物は、無置換キナクリドンと芳香環に置換基を有するキナクリドンとを含むものである。芳香環に置換基を有するキナクリドンとしては、例えば2,9−ジメチルキナクリドン、2,9−ジクロロキナクリドン、2,9−ジフルオロキナクリドン、2,9−ジメトキシキナクリドン、3,10−ジクロロキナクリドン、4,11−ジクロロキナクリドン等のジクロロキナクリドン、2,9−ジメチルキナクリドン等が挙げられる。   The quinacridone-based compound includes unsubstituted quinacridone and quinacridone having a substituent on the aromatic ring. Examples of the quinacridone having a substituent on the aromatic ring include 2,9-dimethylquinacridone, 2,9-dichloroquinacridone, 2,9-difluoroquinacridone, 2,9-dimethoxyquinacridone, 3,10-dichloroquinacridone, and 4,11. -Dichloroquinacridone such as dichloroquinacridone, 2,9-dimethylquinacridone and the like.

本発明は、これらの中でも、特に電子写真感光体材料や着色顔料として実際に利用され、またその溶解性が問題となっているチタニルフタロシアニン、銅フタロシアニン、無置換キナクリドン、2,9−ジメチルキナクリドン、2,9−ジクロロキナクリドンに対して好ましく用いられる。   Among these, the present invention is particularly used as an electrophotographic photosensitive material or a color pigment, and titanyl phthalocyanine, copper phthalocyanine, unsubstituted quinacridone, 2,9-dimethylquinacridone, which is actually problematic in terms of solubility. It is preferably used for 2,9-dichloroquinacridone.

有機結晶の溶解に使用される溶媒は、極性のある溶媒ならば特に制限はなく、水;エタノール、ブタノール、エチレングリコール等のアルコール系溶媒;1−メチル−2−ピロリジノン、1,3−ジメチル−2−イミダゾリジノン、2−ピロリジノン、ε−カプロラクタム、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド等のアミド系溶媒;アセトン、メチルエチルケトンなどのケトン系溶媒;酢酸エチル、酪酸エチル、プロピオン酸n−ブチル等のエステル系溶媒;テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;アセトニトリル、ベンゾニトリル、プロピオニトリル等のニトリル系溶媒、クロロホルム、ジクロロメタン、ブロモベンゼン、ジブロモベンゼン、クロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒;n-メチル-2-ピロリドン、ジメチルアニリン、ジブチルアニリン、ジイソプロピルアニリン等のアミン系溶媒;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒などが例示できる。また、テトラメチルアンモニウムハイドロキサイド、テトラメチルアンモニウムヘキサフルオロホスフェイト、テトラブチルアンモニウムテトラフルオロボレート等の、比較的低融点である塩、具体的には好ましくは100℃以下、さらに好ましくは50℃以下で液状である塩、いわゆるイオン性溶媒も使用可能である。使用する溶媒は、単一でも、また複数の溶媒を混合した混合溶媒であってもよい。どの溶媒が使用されるかは、溶解させる有機化合物によって、また溶液の用途によって、適宜選択される。溶解性の点からはアミド系溶媒が好ましく、特に難溶性の有機顔料に対しては、その沸点や溶解性の点から、1−メチル−2−ピロリジノン、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが好ましく用いられる。その中でも最もこの好ましいのは、1−メチル−2−ピロリジノンである。   The solvent used for dissolving the organic crystal is not particularly limited as long as it is a polar solvent, water; alcohol solvents such as ethanol, butanol, ethylene glycol; 1-methyl-2-pyrrolidinone, 1,3-dimethyl- Amide solvents such as 2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide; ketone solvents such as acetone, methyl ethyl ketone; acetic acid Ester solvents such as ethyl, ethyl butyrate and n-butyl propionate; Ether solvents such as tetrahydrofuran and dioxane; Nitrile solvents such as acetonitrile, benzonitrile and propionitrile, chloroform, dichloromethane, bromobenzene, dibromobenzene, Robenzen, halogenated solvents dichlorobenzene; n-methyl-2-pyrrolidone, dimethyl aniline, dibutyl aniline, amine solvents such as diisopropyl aniline; dimethyl sulfoxide, and sulfur-containing solvents sulfolane and the like. Further, a salt having a relatively low melting point such as tetramethylammonium hydroxide, tetramethylammonium hexafluorophosphate, tetrabutylammonium tetrafluoroborate, specifically preferably 100 ° C. or less, more preferably 50 ° C. or less. It is also possible to use a salt that is liquid and a so-called ionic solvent. The solvent used may be a single solvent or a mixed solvent obtained by mixing a plurality of solvents. Which solvent is used is appropriately selected depending on the organic compound to be dissolved and the use of the solution. From the viewpoint of solubility, an amide solvent is preferable, and particularly for a poorly soluble organic pigment, 1-methyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazolidine is particularly preferable from the viewpoint of its boiling point and solubility. Non, N, N-dimethylformamide and N, N-dimethylacetamide are preferably used. Most preferred among these is 1-methyl-2-pyrrolidinone.

以下実施例を示すが、本発明はこれに限定されるものではない。
(実施例1)
500ml三角フラスコに、東京化成から購入した非置換直鎖状キナクリドン顔料微細粉末1.87gを入れ、さらに無水処理された1-メチル-2-ピロリジノン(通称名:N−メチルピロリドン(NMP))300mLを加えてしばらく放置した。その後、本三角フラスコに対し、市販の電子レンジを用いてマイクロ波(2.45GHz、1kw)の照射を繰り返し行った。照射1回ごとにフラスコの中の液をよく攪拌し、本操作をフラスコ底部に舞う微細粉末が無くなるまで繰り返した。1回あたりの照射時間は10秒から2分であり、その際の液の温度が190℃を越えないように注意深く行った。その結果、蛍光性を有する20mMのNMP赤色溶液が得られた。本溶液の吸収スペクトル(光路長:0.1mm)を図1に示す。490nmと520nmの二本の吸収ピークは溶液の特徴的なものであり、本実施例で得られた赤色溶液が、キナクリドンが完全に溶解した溶液であることが分かる。また、得られた溶液をさらにNMPを添加することによって希釈させた場合にも、吸光度の低下以外にスペクトルの変化はみられなかった。また、本実施例で得られた溶液を室温下で15時間静置しても結晶の析出は認められなかった。
Examples will be shown below, but the present invention is not limited thereto.
(Example 1)
1.87 g of unsubstituted linear quinacridone pigment fine powder purchased from Tokyo Chemical Industry is placed in a 500 ml Erlenmeyer flask, and further treated with anhydrous 1-methyl-2-pyrrolidinone (common name: N-methylpyrrolidone (NMP)) 300 mL And left for a while. Then, the microwave (2.45 GHz, 1 kW) was repeatedly irradiated to the Erlenmeyer flask using a commercially available microwave oven. The liquid in the flask was thoroughly stirred for each irradiation, and this operation was repeated until there was no fine powder floating on the bottom of the flask. The irradiation time per time was 10 seconds to 2 minutes, and the temperature of the liquid at that time was carefully measured so as not to exceed 190 ° C. As a result, a fluorescent 20 mM NMP red solution was obtained. The absorption spectrum (optical path length: 0.1 mm) of this solution is shown in FIG. Two absorption peaks at 490 nm and 520 nm are characteristic of the solution, and it can be seen that the red solution obtained in this example is a solution in which quinacridone is completely dissolved. Moreover, when the obtained solution was further diluted by adding NMP, no change in the spectrum was observed other than the decrease in absorbance. Further, no precipitation of crystals was observed even when the solution obtained in this example was allowed to stand at room temperature for 15 hours.

(実施例2)
500ml三角フラスコに、市販の2,9−ジメチルキナクリドン顔料微細粉末681mgを入れ、さらに無水処理されたNMP200mLを加えて、しばらく放置した。その後、本三角フラスコに対し、市販の電子レンジを用いてマイクロ波(2.45GHz、1kw)の照射を繰り返し行った。照射1回ごとにフラスコの中の液をよく攪拌し、本操作をフラスコ底部に舞う微細粉末が無くなるまで繰り返した。1回あたりの照射時間は10秒から2分であり、その際の液の温度が180℃を越えないように注意深く行った。その結果、透明性の高い10mMのNMP赤色溶液が得られた。また、本実施例で得られた溶液を室温下で12時間静置しても結晶の析出は認められなかった。
(Example 2)
In a 500 ml Erlenmeyer flask, 681 mg of a commercially available 2,9-dimethylquinacridone pigment fine powder was added, and 200 mL of NMP subjected to anhydrous treatment was further added and left for a while. Then, the microwave (2.45 GHz, 1 kW) was repeatedly irradiated to the Erlenmeyer flask using a commercially available microwave oven. The liquid in the flask was thoroughly stirred for each irradiation, and this operation was repeated until there was no fine powder floating on the bottom of the flask. The irradiation time per time was 10 seconds to 2 minutes, and the temperature of the liquid at that time was carefully measured so as not to exceed 180 ° C. As a result, a highly transparent 10 mM NMP red solution was obtained. Further, no precipitation of crystals was observed even when the solution obtained in this example was allowed to stand at room temperature for 12 hours.

(実施例3)
500ml三角フラスコに、市販のチタニルフタロシアニン顔料微細粉末174mgを入れ、さらに無水処理されたNMP300mLを加えて、しばらく放置した。その後、本三角フラスコに対し、市販の電子レンジを用いてマイクロ波(2.45GHz、1kw)の照射を繰り返し行った。照射1回ごとにフラスコの中の液をよく攪拌し、本操作をフラスコ底部に舞う微細粉末が無くなるまで繰り返した。1回あたりの照射時間は10秒から2分であり、その際の液の温度が150℃を越えないように注意深く行った。その結果、透明性の高い2mMのNMP溶液が得られた。溶液の色はエメラルドグリーンであった。また、本実施例で得られた溶液を室温下で6時間静置しても結晶の析出は認められなかった。
(Example 3)
Into a 500 ml Erlenmeyer flask, 174 mg of a commercially available titanyl phthalocyanine pigment fine powder was added, and 300 ml of anhydrous NMP was further added and left for a while. Then, the microwave (2.45 GHz, 1 kW) was repeatedly irradiated to the Erlenmeyer flask using a commercially available microwave oven. The liquid in the flask was thoroughly stirred for each irradiation, and this operation was repeated until there was no fine powder floating on the bottom of the flask. The irradiation time per time was 10 seconds to 2 minutes, and the temperature of the liquid at that time was carefully measured so as not to exceed 150 ° C. As a result, a highly transparent 2 mM NMP solution was obtained. The color of the solution was emerald green. In addition, no precipitation of crystals was observed even when the solution obtained in this example was allowed to stand at room temperature for 6 hours.

(実施例4)
500ml三角フラスコに、市販の銅フタロシアニン顔料微細粉末63mgを入れ、さらに無水処理されたNMP200mLを加えて、しばらく放置した。その後、本三角フラスコに対し、市販の電子レンジを用いてマイクロ波(2.45GHz、1kw)の照射を繰り返し行った。照射1回ごとにフラスコの中の液をよく攪拌し、本操作をフラスコ底部に舞う微細粉末が無くなるまで繰り返した。1回あたりの照射時間は10秒から2分であり、その際の液の温度が150℃を越えないように注意深く行った。その結果、透明性の高い2mMのNMP溶液が得られた。溶液の色は青色であった。また、本実施例で得られた溶液を室温下で10時間静置しても結晶の析出は認められなかった。
Example 4
In a 500 ml Erlenmeyer flask, 63 mg of commercially available copper phthalocyanine pigment fine powder was added, and 200 mL of NMP subjected to anhydrous treatment was further added and left for a while. Then, the microwave (2.45 GHz, 1 kW) was repeatedly irradiated to the Erlenmeyer flask using a commercially available microwave oven. The liquid in the flask was thoroughly stirred for each irradiation, and this operation was repeated until there was no fine powder floating on the bottom of the flask. The irradiation time per time was 10 seconds to 2 minutes, and the temperature of the liquid at that time was carefully measured so as not to exceed 150 ° C. As a result, a highly transparent 2 mM NMP solution was obtained. The color of the solution was blue. Further, no precipitation of crystals was observed even when the solution obtained in this example was allowed to stand at room temperature for 10 hours.

(実施例5)
500ml三角フラスコに、市販のC60顔料微細粉末36mgを入れ、さらに無水処理されたNMP200mLを加えてしばらく放置した。その後、本三角フラスコに対し、市販の電子レンジを用いてマイクロ波(2.45GHz、1kw)の照射を繰り返し行った。照射1回ごとにフラスコの中の液をよく攪拌し、本操作をフラスコ底部に舞う微細粉末が無くなるまで繰り返した。1回あたりの照射時間は10秒から2分であり、その際の液の温度が150℃を越えないように注意深く行った。結果、透明性の高い1mMのNMP溶液を作製した。本液は、室温下で12時間静置したが、結晶の析出は認められなかった。
(Example 5)
In a 500 ml Erlenmeyer flask, 36 mg of commercially available fine C 60 pigment powder was added, and 200 mL of NMP subjected to anhydrous treatment was further added and left for a while. Then, the microwave (2.45 GHz, 1 kW) was repeatedly irradiated to the Erlenmeyer flask using a commercially available microwave oven. The liquid in the flask was thoroughly stirred for each irradiation, and this operation was repeated until there was no fine powder floating on the bottom of the flask. The irradiation time per time was 10 seconds to 2 minutes, and the temperature of the liquid at that time was carefully measured so as not to exceed 150 ° C. As a result, a highly transparent 1 mM NMP solution was prepared. This liquid was allowed to stand at room temperature for 12 hours, but no crystal deposition was observed.

(実施例6)
500ml三角フラスコに、市販のペリレン微細粉末379mgを入れ、アセトン75mlを加えて、しばらく放置した。その後、本三角フラスコに対し、市販の電子レンジを用いて、マイクロ波(2.45GHz、1kw)5秒間の照射を繰り返し行った。照射1回ごとにフラスコをよく攪拌し、本操作をフラスコ底部に舞う微細粉末が無くなるまで繰り返した。その結果、透明性の高い20mMのアセトン黄色溶液が得られた。また、本実施例で得られた溶液を室温下で30分間静置しても、結晶の析出は認められなかった。
(Example 6)
In a 500 ml Erlenmeyer flask, 379 mg of a commercially available perylene fine powder was added, 75 ml of acetone was added and left for a while. Thereafter, irradiation of microwaves (2.45 GHz, 1 kW) for 5 seconds was repeatedly performed on the Erlenmeyer flask using a commercially available microwave oven. The flask was stirred well for each irradiation, and this operation was repeated until there was no fine powder on the bottom of the flask. As a result, a highly transparent 20 mM acetone yellow solution was obtained. Further, even when the solution obtained in this example was allowed to stand at room temperature for 30 minutes, no precipitation of crystals was observed.

(比較例)
実施例1の比較実験として、500ml三角フラスコに、非置換直鎖状キナクリドン顔料微細粉末1.87gを入れ、さらに無水処理された1-メチル-2-ピロリジノン(通称名:N−メチルピロリドン(NMP))300mLを加えたものを、ホットプレート上で約170℃に加熱した。そのまま加熱を続けると、約4時間後に蛍光性を有する液となったが、相当量の微細粉末が残存しており、赤濁した液の状態であった。また、さらに長時間加熱を続けても液の様子に変化は認められなかった。同様に、実施例2〜5の比較実験もホットプレートを用いて行ったが、4時間程度の加熱(約150〜170℃)を続けても、どれも完全には微細粉末が溶解せずに濁った液のままであった。
また、実施例6の比較実験として、市販のペリレン微細粉末379mgにアセトン75mlを加えたものに対して、同様にホットプレート上で約50℃に加熱することも行った。そのまま加熱を続けると、約4時間後に蛍光性を有する液となったが、相当量の微細粉末が残存しており、黄濁した液の状態であった。
(Comparative example)
As a comparative experiment of Example 1, 1.87 g of an unsubstituted linear quinacridone pigment fine powder was placed in a 500 ml Erlenmeyer flask and further treated with anhydrous 1-methyl-2-pyrrolidinone (common name: N-methylpyrrolidone (NMP )) The one with 300 mL added was heated to about 170 ° C. on a hot plate. When heating was continued as it was, a liquid having fluorescence was obtained after about 4 hours, but a considerable amount of fine powder remained and was in the state of a red turbid liquid. Further, no change was observed in the state of the liquid even when heating was continued for a longer time. Similarly, comparative experiments of Examples 2 to 5 were performed using a hot plate. However, even if heating for about 4 hours (about 150 to 170 ° C.) was continued, none of the fine powders were completely dissolved. It remained a cloudy liquid.
In addition, as a comparative experiment of Example 6, a product obtained by adding 75 ml of acetone to 379 mg of a commercially available perylene fine powder was similarly heated to about 50 ° C. on a hot plate. When heating was continued as it was, a liquid having fluorescence was obtained after about 4 hours, but a considerable amount of fine powder remained and was in the state of a yellowish liquid.

以上、現時点において、最も、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う溶解方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   Although the present invention has been described with reference to the most practical and preferred embodiments at the present time, the invention is limited to the embodiments disclosed herein. However, it can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and a dissolution method involving such a change is also included in the technical scope of the present invention. Must be understood.

実施例1で作成したキナクリドン顔料溶液の吸収スペクトルである。2 is an absorption spectrum of a quinacridone pigment solution prepared in Example 1.

Claims (6)

極性溶媒と有機結晶との混合物にマイクロ波を照射することを特徴とする有機結晶の溶解方法。 A method for dissolving an organic crystal comprising irradiating a mixture of a polar solvent and an organic crystal with microwaves. 前記極性溶媒が有機溶媒であることを特徴とする請求項1に記載の溶解方法。 The dissolution method according to claim 1, wherein the polar solvent is an organic solvent. 前記有機結晶が有機色素であることを特徴とする請求項1または2に記載の溶解方法。 The dissolution method according to claim 1 or 2, wherein the organic crystal is an organic dye. 前記有機色素が有機顔料であることを特徴とする請求項3に記載の溶解方法。 The dissolution method according to claim 3, wherein the organic dye is an organic pigment. 前記顔料が、キナクリドン系化合物あるいはフタロシアニン系化合物であることを特徴とする請求項4に記載の溶解方法。 The dissolution method according to claim 4, wherein the pigment is a quinacridone compound or a phthalocyanine compound. 前記有機溶媒が、1−メチル−2−ピロリジノン、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドから選択されるアミド系溶媒であることを特徴とする請求項2〜5のいずれか1項に記載の溶解方法。
The organic solvent is an amide solvent selected from 1-methyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylformamide, and N, N-dimethylacetamide. The dissolution method according to any one of claims 2 to 5.
JP2004089844A 2004-03-25 2004-03-25 Dissolution method of organic crystals Expired - Fee Related JP4300144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089844A JP4300144B2 (en) 2004-03-25 2004-03-25 Dissolution method of organic crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089844A JP4300144B2 (en) 2004-03-25 2004-03-25 Dissolution method of organic crystals

Publications (2)

Publication Number Publication Date
JP2005270867A true JP2005270867A (en) 2005-10-06
JP4300144B2 JP4300144B2 (en) 2009-07-22

Family

ID=35171077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089844A Expired - Fee Related JP4300144B2 (en) 2004-03-25 2004-03-25 Dissolution method of organic crystals

Country Status (1)

Country Link
JP (1) JP4300144B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086217A1 (en) * 2006-01-26 2007-08-02 Fujifilm Corporation Method for producing pigment fine particle having anthraquinone structure and pigment fine particle having anthraquinone structure which is obtained by such method
US8722292B2 (en) 2007-07-03 2014-05-13 Fuji Xerox Co., Ltd. Electrostatic image developing toner, invisible information toner, electrostatic image developer, process cartridge and image formation apparatus
CN108138042A (en) * 2015-10-09 2018-06-08 默克专利有限公司 Contain N, the preparation of N- dialkyl benzene amine solvents

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086217A1 (en) * 2006-01-26 2007-08-02 Fujifilm Corporation Method for producing pigment fine particle having anthraquinone structure and pigment fine particle having anthraquinone structure which is obtained by such method
JP2007197567A (en) * 2006-01-26 2007-08-09 Fujifilm Corp Method for producing pigment fine particle having anthraquinone structure, pigment fine particle having anthraquinone structure obtained by the same, colored pigment dispersion composition containing the same, colored photosensitive resin composition, photosensitive resin transfer material, color filter and liquid crystal display using them
US7894023B2 (en) 2006-01-26 2011-02-22 Fujifilm Corporation Method of producing fine particles of anthraquinone structure-containing pigment, fine particles of anthraquinone structure-containing pigment produced thereby, colored pigment dispersion composition therewith, colored photosensitive resin composition therewith and photosensitive resin transfer material therewith, and color filter and liquid crystal display device using the same
US8722292B2 (en) 2007-07-03 2014-05-13 Fuji Xerox Co., Ltd. Electrostatic image developing toner, invisible information toner, electrostatic image developer, process cartridge and image formation apparatus
CN108138042A (en) * 2015-10-09 2018-06-08 默克专利有限公司 Contain N, the preparation of N- dialkyl benzene amine solvents
KR20180067593A (en) * 2015-10-09 2018-06-20 메르크 파텐트 게엠베하 Formulation containing N, N-dialkyl aniline solvent
JP2018537808A (en) * 2015-10-09 2018-12-20 メルク パテント ゲーエムベーハー Formulation containing N, N-dialkylaniline solvent
US10907061B2 (en) 2015-10-09 2021-02-02 Merck Patent Gmbh Formulations containing N,N-dialkylaniline solvents
JP2021114468A (en) * 2015-10-09 2021-08-05 メルク パテント ゲーエムベーハー Formulations containing n,n-dialkylaniline solvents
EP3359623B1 (en) * 2015-10-09 2023-04-26 Merck Patent GmbH Formulations containing n,n-dialkylaniline solvents
KR102655461B1 (en) * 2015-10-09 2024-04-05 메르크 파텐트 게엠베하 Formulations containing N,N-dialkylaniline solvent

Also Published As

Publication number Publication date
JP4300144B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP5114905B2 (en) Pigment, pigment composition and pigment dispersion
JP5619729B2 (en) Improved red filter composition
TWI640579B (en) Green pigment composition and color filter for color filters
JP5082318B2 (en) Method for producing α-type crystal-modified dichlorodiketopyrrolopyrrole pigment, α-type crystal-modified dichlorodiketopyrrolopyrrole pigment produced by the method, and coloring composition using the same
JP5717230B2 (en) Two-component diketopyrrolopyrrole pigment composition for use in color filters
US6890380B2 (en) Conditioning of organic pigments
JP2012522086A (en) Process for producing easily dispersible purple pigment
JP2008074987A (en) Pigment additive, pigment composition and pigment dispersion
US7211664B2 (en) Process for the production of epsilon crystal form copper phthalocyanine
JP2008074986A (en) Pigment composition and pigment dispersion
JP2014534290A (en) SALT FOR COLOR FILTER APPLICATION, PROCESS FOR PRODUCING THE SAME, AND COLORANT CONTAINING THE SAME
JP2010533745A (en) Particulate epsilon-copper phthalocyanine-pigment formulation
TW202020061A (en) Pigment composition, coloring composition and color filter
JP4300144B2 (en) Dissolution method of organic crystals
JP2005272760A (en) epsilon-TYPE CRYSTAL FORM COPPER PHTHALOCYANINE AND METHOD FOR PRODUCING THE SAME
JP2008208277A (en) Method for producing organic compound crystal
JP2008081566A (en) Pigment dispersant, pigment composition and pigment dispersion
JP6332722B1 (en) Benzimidazolone dioxazine compounds
WO2020067063A1 (en) Compound, colored composition, ink, toner, colored resin composition, and fiber-dyeing composition
US7737270B2 (en) Method for producing a pigment
JP2004099793A (en) METHOD FOR MANUFACTURING beta-COPPER PHTHALOCYANINE PIGMENT
JP2001172519A (en) Production method for organic pigment applying supercritical field
JP2005306841A (en) METHOD FOR PRODUCING COPPER PHTHALOCYANINE HAVING epsilon-CRYSTAL FORM
JP7110511B1 (en) Method for producing ε-type copper phthalocyanine pigment composition
JP4621528B2 (en) Soluble pigment precursor and method for producing organic pigment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350