JP2005270098A - Method for promotion of plant growth - Google Patents
Method for promotion of plant growth Download PDFInfo
- Publication number
- JP2005270098A JP2005270098A JP2005032494A JP2005032494A JP2005270098A JP 2005270098 A JP2005270098 A JP 2005270098A JP 2005032494 A JP2005032494 A JP 2005032494A JP 2005032494 A JP2005032494 A JP 2005032494A JP 2005270098 A JP2005270098 A JP 2005270098A
- Authority
- JP
- Japan
- Prior art keywords
- plant
- plants
- growth
- ppb
- leaf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cultivation Of Plants (AREA)
Abstract
Description
本発明は、植物の活性化の応用技術に関する。さらに詳しくは、本発明は、植物の生育促進方法に関する。 The present invention relates to an application technique for plant activation. More particularly, the present invention relates to a method for promoting plant growth.
農作物、園芸作物等の収穫量を増加させるために、植物の生育を促進させる試みが行なわれている〔例えば、特許文献1〜5を参照のこと〕。 Attempts have been made to promote the growth of plants in order to increase the yield of agricultural crops, horticultural crops and the like [see, for example, Patent Documents 1 to 5].
前記特許文献1には、シュードモナス・フルオレッセンス SC−29株を植物に供給することにより、植物の栽培期間の短縮化及び収穫量の増大を行ないうることが開示されている。しかしながら、かかる方法では、植物が植えられている土地の気候や土質が本株に適しているとは限らず、適用対象の土壌に生育する微生物との生存競争により、生存しつづけることができない場合があるため、本株が安定に作用し、生存しつづけることができないという欠点があり、また、散布に労力を要するという欠点がある。 Patent Document 1 discloses that by supplying Pseudomonas fluorescens SC-29 strain to a plant, the cultivation period of the plant can be shortened and the yield can be increased. However, with this method, the climate and soil quality of the land where the plant is planted are not necessarily suitable for this strain, and it cannot continue to survive due to survival competition with microorganisms growing in the target soil. Therefore, there is a drawback that this strain acts stably and cannot continue to survive, and there is a disadvantage that it requires labor for spraying.
前記特許文献2には、磁力又は電気による周期的な刺激を植物に付与することにより、植物中のリン濃度や植物の生育量を増大させうることが開示されている。しかしながら、広大な土地に適用する場合の装置のコストが高く、土中のイオン量、水分量、土質自体に依存して磁力又は電気の条件は異なるため、実際には、条件設定が難しく、実用性に乏しいという欠点がある。
前記特許文献3には、620〜760nmの波長範囲の赤色光と400〜480nmの波長範囲の青色光とを植物に照射することにより、植物中のβ−カロチン等の成分を増量させうることが開示されている。しかしながら、特定の波長の光を広大な面積に広がって植えられている植物・作物に照射するためには、発光ダイオードなどの特殊な高価な装置が必要であり、莫大なコストがかかる場合がある等の欠点がある。 In Patent Document 3, it is possible to increase the amount of components such as β-carotene in a plant by irradiating the plant with red light having a wavelength range of 620 to 760 nm and blue light having a wavelength range of 400 to 480 nm. It is disclosed. However, in order to irradiate a plant / crop planted with a specific wavelength of light spread over a large area, a special expensive device such as a light emitting diode is required, which may be very expensive. There are disadvantages such as.
前記特許文献4は、ヨウ素−シクロデキストリン包接化物を植物に供給することにより、発芽後の植物を良好に生育させうることが開示されている。しかしながら、かかるヨウ素−シクロデキストリン包接化物を用いた場合、種子の発芽が抑制されるという欠点があり、また、散布に労力を要するという欠点がある。 Patent Document 4 discloses that a plant after germination can be favorably grown by supplying an iodine-cyclodextrin inclusion product to the plant. However, when such an iodine-cyclodextrin inclusion product is used, there is a disadvantage that germination of seeds is suppressed, and there is a disadvantage that labor is required for spraying.
前記特許文献5は、VA菌根菌感染源を植物に接種して感染させることにより、植物の枝分れを増加させうることが開示されている。しかしながら、VA菌根菌感染源の供給時期が限定されており、発芽・発根に時間を要する植物への応用が困難であるという欠点がある。
本発明は、植物、特に、植物の葉部、樹木を簡便に生育促進させること、植物、特に、植物の葉部、樹木を効率よく生育促進させること、葉菜作物の葉部を効率よく増加させること、葉菜作物の収量を増加させること等の少なくとも1つを達成しうる、植物の生育促進方法を提供することを目的とする。 The present invention facilitates the growth of plants, particularly plant leaves, and trees, facilitates the growth of plants, particularly plant leaves, and trees, and efficiently increases the leaves of leafy vegetable crops. It is an object of the present invention to provide a method for promoting plant growth, which can achieve at least one of, for example, increasing the yield of leaf vegetable crops.
すなわち、本発明の要旨は、
〔1〕 植物の生育環境を、NOX 5〜200ppbの環境に調整することを特徴とする、植物の生育促進方法、
〔2〕 植物の葉部における生育を促進させる、前記〔1〕記載の植物の生育促進方法、
〔3〕 植物が、キク科植物、ナス科植物、アカザ科植物、イネ科植物、アブラナ科植物、マツ科植物、スギ科植物、トウヒ科植物、ヒノキ科植物、フトモモ科植物及びヤナギ科植物からなる群より選ばれた植物である、前記〔1〕又は〔2〕記載の植物の生育促進方法、並びに
〔4〕 植物が、葉菜作物又は樹木である、前記〔1〕又は〔2〕記載の植物の生育促進方法、
に関する。
That is, the gist of the present invention is as follows.
[1] A method for promoting the growth of a plant, comprising adjusting the growth environment of the plant to an environment of
[2] The method for promoting the growth of a plant according to the above [1], wherein the growth in the leaf portion of the plant is promoted,
[3] The plant is an Asteraceae plant, Solanum plant, Rabbitaceae plant, Gramineae plant, Brassicaceae plant, Pinaceae plant, Cryptomeriaceae plant, Spruce plant, Cypress plant, Myrtaceae plant or Willowaceae plant [1] or [2], wherein the plant is selected from the group consisting of: [1] or [2], and [4] the plant is a leafy crop or tree. Plant growth promotion method,
About.
本発明の植物の生育促進方法によれば、植物、特に、植物の葉部を簡便に、効率よく生育促進させることができるという優れた効果を奏する。また、本発明の植物の生育促進方法によれば、葉菜作物や樹木の地上部の生育を効率よく促進することができるという優れた効果を奏する。また、本発明の植物の生育促進方法によれば、葉菜作物の収量を増加させることができるという優れた効果を奏する。 According to the method for promoting the growth of a plant of the present invention, there is an excellent effect that it is possible to easily and efficiently promote the growth of a plant, particularly a plant leaf. Moreover, according to the growth promotion method of the plant of this invention, there exists an outstanding effect that the growth of the leaf vegetable crop and the above-ground part of a tree can be accelerated | stimulated efficiently. Moreover, according to the growth promotion method of the plant of this invention, there exists the outstanding effect that the yield of a leaf vegetable crop can be increased.
本発明は、NOXが、植物の生育に関連するシグナルとして働き、植物の生育を促進するという本発明者らの驚くべき知見に基づく。 The present invention is based on the inventors' surprising discovery that NO x acts as a signal related to plant growth and promotes plant growth.
本発明の1つの側面は、植物の生育環境を、一定濃度のNOXの環境に調整することを特徴とする、植物の生育促進方法に関する。 One aspect of the present invention, the plant growing environment, and adjusting to the environment of a constant concentration of NO X, relates promoting growth process of the plant.
本発明の植物の生育促進方法は、植物の生育環境を一定濃度のNOXの環境に調整しているため、驚くべく、植物の生育を促進することができるという優れた効果を発揮する。具体的には、本発明の植物の生育促進方法によれば、NOX非存在下又は極低レベル(例えば、<5ppb)のNOXの存在下に比べ、有意に植物の生育を促進させることができる。 The plant growth promotion method according to the present invention adjusts the plant growth environment to an environment of a constant concentration of NO x , and thus exhibits an excellent effect that the growth of the plant can be surprisingly promoted. Specifically, according to the growth promotion method of the plant of the present invention, NO X in the absence or very low levels (e.g., <5 ppb) than in the presence of the NO X in significantly be promoted plant growth Can do.
また、本発明の植物の生育促進方法によれば、簡便に、効率よく植物の生育を促進させることができる。 Moreover, according to the plant growth promotion method of the present invention, it is possible to easily and efficiently promote plant growth.
さらに、本発明の植物の生育促進方法は、植物の生育環境を一定濃度のNOXの環境に調整しているため、植物の葉部を生育促進させることができるという優れた効果を発揮する。具体的には、本発明の植物の生育促進方法によれば、NOX非存在下又は極低レベル(例えば、<5ppb)のNOXの存在下に比べ、有意に植物の葉部の生育を促進させることができる。 Furthermore, since the plant growth environment of the present invention adjusts the plant growth environment to a constant concentration of NO x , it exhibits an excellent effect that the plant leaf can be promoted. Specifically, according to the growth promotion method of the plant of the present invention, NO X in the absence or very low levels (e.g., <5 ppb) than in the presence of the NO X in the growth of leaves significantly plants Can be promoted.
本発明の植物の生育促進方法においては、一定濃度のNOXを植物の生育促進のシグナルとして用いているため、種々の植物に利用することができる。 In the plant growth promotion method of the present invention, since a constant concentration of NO x is used as a signal for promoting plant growth, it can be used for various plants.
本発明の植物の生育促進方法を適用しうる植物としては、キク科植物、ナス科植物、アカザ科植物、イネ科植物、アブラナ科植物、マツ科植物、スギ科植物、トウヒ科植物、ヒノキ科植物、フトモモ科植物及びヤナギ科植物等が挙げられる。具体的には、前記植物としては、シュンギク等のキク科植物、タバコ、トマト、ナス等のナス科植物、ホウレンソウ等のアガサ科植物、イネ、コムギ、オオムギ等のイネ科植物、シロイヌナズナ、キャベツ、ハクサイ等のアブラナ科植物、マツ等のマツ科植物、スギ等のスギ科植物、ドイツトウヒ等のトウヒ科植物、ヒノキ、イトスギ等のヒノキ科植物、ユーカリノキ等のフトモモ科植物、ポプラ等のヤナギ科植物等が挙げられる。 Plants to which the plant growth promotion method of the present invention can be applied include asteraceae plants, solanaceous plants, red-breasted plants, gramineous plants, cruciferous plants, pine plant, cedar plant, spruce plant, cypress Examples include plants, myrtaceae plants, and willow plants. Specifically, as the plant, asteraceae plants such as garlic, solanaceae plants such as tobacco, tomato and eggplant, agaceae plants such as spinach, rice plants such as rice, wheat and barley, Arabidopsis, cabbage, Brassicaceae plants such as Chinese cabbage, pine family plants such as pine, cedar family plants such as cedar, spruce plants such as German spruce, cypress plants such as cypress and cypress, corn family plants such as eucalyptus, willow family such as poplar Examples include plants.
本発明の植物の生育促進方法は、植物の葉部における生育を促進させることができるため、好ましくは、葉菜作物又は樹木類に適用されうる。したがって、本発明の植物の生育促進方法によれば、特に、葉菜作物や樹木の収量を増加させることができ、葉菜作物の樹木の品質の向上を図ることもできる。 Since the growth promotion method of the plant of this invention can promote the growth in the leaf part of a plant, Preferably, it can be applied to a leaf vegetable crop or a tree. Therefore, according to the plant growth promotion method of the present invention, in particular, the yield of leaf vegetable crops and trees can be increased, and the quality of the leaf vegetable crops can be improved.
本発明の植物の生育促進方法において、NOXの濃度は、用いられる植物の種類、大きさ等に応じて適宜設定されうるが、植物の生育を維持し、該植物の生育促進効果を十分に発揮させる観点から、5〜200ppb、好ましくは、10〜200ppb、より好ましくは、100〜200ppbである。本発明の植物の生育促進方法においては、NOXの濃度を前記範囲に調整しているため、NOX非存在下又は極低レベル(例えば、<5ppb)のNOXの存在下に比べ、驚くべく、植物、特に、植物の葉部の生育を促進することができる。 In the plant growth promotion method of the present invention, the concentration of NO x can be appropriately set according to the type, size, etc. of the plant used, but it maintains the growth of the plant and sufficiently enhances the growth promotion effect of the plant. From the viewpoint of exhibiting, it is 5 to 200 ppb, preferably 10 to 200 ppb, and more preferably 100 to 200 ppb. In the growth method of promoting plant of the present invention, since the adjusting the concentration of the NO X in the range, NO X in the absence or very low levels (e.g., <5 ppb) than in the presence of the NO X in surprisingly Therefore, it is possible to promote the growth of the leaves of the plant, particularly the plant.
なお、本明細書において、葉部とは、植物の葉を含む部分をいう。 In addition, in this specification, a leaf part means the part containing the leaf of a plant.
また、本明細書において、葉菜作物とは、主に葉を食用とする作物をいい、例えば、キャベツ、白菜、レタス、ホウレンソウ、シュンギク、カイワレ、カリフラワー等が挙げられる。 Moreover, in this specification, a leaf vegetable crop means the crop which mainly uses a leaf as food, for example, a cabbage, a Chinese cabbage, a lettuce, a spinach, a garlic, a cauliflower, a cauliflower, etc. are mentioned.
一定濃度のNOXの環境は、例えば、土壌に植物を植栽し、土壌に植栽された植物が大気環境と接触する部分、すなわち、植物体の地上部を一定濃度のNOXとなるように維持すること等によりつくることができる。具体的には、一定濃度のNOXの環境は、植物体の地上部を含む環境を外気から遮断しうる手段、例えば、温室、ビニルハウス等の内部に配置し、内部を一定濃度のNOXとなるように維持すること等によりつくることができる。なお、本発明においては、大気環境が、上記NOX濃度範囲である場合、植物を植栽し、そのまま栽培すればよい。かかるNOX濃度の維持は、例えば、下記(1)〜(3):
(1)NOXボンベ、灯油等の燃焼、エンジン等によるNOX発生手段と
(2)NOXの除去手段と
(3)該(1)と(2)とを制御することにより所定のNOX濃度に調整する制御手段と
の組み合わせ等により行なわれうる。
The environment with a constant concentration of NO x is, for example, that a plant is planted in the soil, so that the plant planted in the soil comes into contact with the atmospheric environment, that is, the above-ground part of the plant body has a constant concentration of NO x. It is possible to make it by maintaining it. Specifically, the environment of the NO X constant concentration, means capable of interrupting the environment including above-ground parts of the plant from the outside air, for example, greenhouses, and placed inside the vinyl house, inside the constant concentration NO X It can be made by maintaining so that it becomes. In the present invention, air quality, if it is the NO X concentration range, and planting a plant, may be directly grown. The maintenance of the NO x concentration is, for example, the following (1) to (3):
(1) NO X bomb combustion such as kerosene, certain of the NO X by controlling the NO X generation means by the engine, etc. (2) and removal means of the NO X (3) wherein (1) and (2) This can be done by a combination with a control means for adjusting the density.
前記除去手段としては、例えば、図3に示される装置等が挙げられる。ここで、図3に示される装置においては、前記NOXボンベ、灯油等の燃焼、エンジン等から発生したNOX(NO2、NO)を含有したガスを、ファンモーター1から取り込み、ついで、酸化剤を含有したキャニスター2(例えば、過マンガン酸カリウム等を含有したキャニスター)に通して、ガス中のNOをNO2に変換し、その後、NO2を活性炭カラム3にとおして、活性炭に吸着させ、NOX(NO2、NO)が除去された空気が該活性炭カラム3の存在する空気供給孔から供給される。なお、前記活性炭カラム3における活性炭は、空気供給孔の孔径よりも大きい粒径を有する粒状の活性炭であることが望ましい。
Examples of the removing means include the apparatus shown in FIG. Here, in the apparatus shown in FIG. 3, the gas containing NO X (NO 2 , NO) generated from combustion of the NO X cylinder, kerosene, etc., engine, etc. is taken from the fan motor 1 and then oxidized. Through a
なお、本発明においては、大気環境が、上記NOX濃度範囲である場合、植物を植栽し、そのまま栽培してもよい。 In the present invention, air quality, if it is the NO X concentration range, and planting a plant may be cultivated directly.
植物の生育環境を一定濃度のNOX濃度になるように調整する時期は、特に限定されないが、植物が、生成(成長)期にある時期であればよい。 The timing adjusted to be the habitat of plants in the NO X concentration constant concentration is not particularly restricted as long as it is a time to plant, in generation (growth) phase.
なお、NOXの濃度以外の生育条件は、植物に応じて、適宜設定され得、植物の通常の生育条件と同様であればよい。また、必要に応じて、堆肥の供給、農薬の供給等を行なってもよい。 The growth conditions other than the NO x concentration can be set as appropriate according to the plant, and may be the same as the normal growth conditions of the plant. Moreover, you may perform the supply of compost, supply of an agrochemical, etc. as needed.
具体的には、植物の栽培に用いられる土壌には、多量栄養元素(窒素、リン酸、カリウム、カルシウム、マグネシウム、イオン等)、微量栄養元素(ホウ素、塩素、コバルト、銅、ヨウ素、鉄、マンガン、モリブデン、亜鉛)等が含まれていることが望ましい。 Specifically, soil used for plant cultivation includes macronutrient elements (nitrogen, phosphate, potassium, calcium, magnesium, ions, etc.), trace nutrient elements (boron, chlorine, cobalt, copper, iodine, iron, It is desirable that manganese, molybdenum, zinc) and the like are included.
なお、本発明の植物の生育促進方法においては、植物は、予め生育させた苗、植物体等を移植し、その後に、前記一定濃度のNOXとなる条件に維持して生育させてもよく、播種時から、前記一定濃度のNOXとなる条件に維持して生育させてもよい。 In the plant growth promotion method of the present invention, the plant may be transplanted with seedlings, plants and the like that have been grown in advance, and then grown under the condition of the constant concentration of NO x. , from the time of seeding, may be grown and maintained in conditions that the NO X of the constant concentration.
本発明の植物の生育促進方法による生育促進効果は、例えば、本発明の植物の生育促進方法を行なった後に得られた植物、具体的には、全植物体、茎葉、根、特に、葉部について、乾燥重量、炭素、窒素、イオウ、リン、カリウム、カルシウム、マグネシウム、アミノ酸、粗タンパク質等の含有量について、測定することにより評価されうる。なお、本発明の植物の生育促進方法を施用せずに栽培した植物、すなわち、NOX非存在下又は極低レベル(例えば、<5ppb)のNOXの存在下に栽培した植物を対照として用いることができる。 The growth promotion effect of the plant growth promotion method of the present invention is, for example, a plant obtained after performing the plant growth promotion method of the present invention, specifically, the whole plant body, the foliage, the root, particularly the leaf part. Can be evaluated by measuring the content of dry weight, carbon, nitrogen, sulfur, phosphorus, potassium, calcium, magnesium, amino acid, crude protein, and the like. In addition, a plant cultivated without applying the plant growth promotion method of the present invention, that is, a plant cultivated in the absence of NO x or in the presence of extremely low level (eg, <5 ppb) NO x is used as a control. be able to.
以下、本発明を実施例等により詳細に説明するが、本発明は、かかる実施例等により、何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example etc. demonstrate this invention in detail, this invention is not limited at all by this Example etc.
ニコチアナ プルムバギニフォリア(Nicotiana plumbaginifolia)を、バーミキュライト及びパーライト(1:1、v/v)が入ったプラスチックポットに植え、3週齢の若木を、制御された温室に備えられた曝露チャンバーの内側又は外側に置いた。 Nicotiana plumbaginifolia is planted in a plastic pot containing vermiculite and perlite (1: 1, v / v), 3 weeks old young tree inside the exposure chamber in a controlled greenhouse Or placed outside.
流速4m3/分で新鮮な空気を外から温室に取り込み、温室内の空気を、活性炭が入ったカラムを通して濾過した。新鮮な空気を、流速1リットル/分で曝露チャンバーに導入した。15N-標識NO2(51.6原子% 15N) 200±20ppbを曝露チャンバーの気相(10〜20ppb NOが存在する)に入れたが、温室のチャンバーの外側のNOX濃度は、<5ppbであった。 Fresh air was taken into the greenhouse from the outside at a flow rate of 4 m 3 / min, and the air in the greenhouse was filtered through a column containing activated carbon. Fresh air was introduced into the exposure chamber at a flow rate of 1 liter / min. 15 N-labeled NO 2 (51.6 at% 15 N) 200 ± 20 ppb was placed in the gas phase of the exposure chamber (10-20 ppb NO present), but the NO x concentration outside the greenhouse chamber was < It was 5 ppb.
チャンバー内側及び外側のCO2及びO2の濃度を、それぞれ、340±80ppm及び<5ppbに保った。植物を、10mM 硝酸カリウムを含むコイックとレセイントとの培地で4日毎に補い、自然光の下、22±0.3℃、70±4%の相対湿度で10週間生育させた。 The CO 2 and O 2 concentrations inside and outside the chamber were kept at 340 ± 80 ppm and <5 ppb, respectively. Plants were supplemented every 4 days with a cocoic and leisant medium containing 10 mM potassium nitrate and grown for 10 weeks under natural light at 22 ± 0.3 ° C. and 70 ± 4% relative humidity.
栽培終了後、植物を回収し、草丈、葉面積を測定し、凍結乾燥させた。その後、茎葉及び根の乾燥重量、元素及び全アミノ酸を測定した。 After completion of the cultivation, the plants were collected, the plant height and leaf area were measured, and lyophilized. Thereafter, dry weight, elements and total amino acids of the foliage and roots were measured.
また、全窒素、NOX由来窒素及び炭素を、タカハシ(M.Takahashi)ら〔Plant Physiol.、126、731(2001)〕に従い、マススペクトロメトリーにより解析した。具体的には、乾燥させた植物の茎葉及び根を粉末にし、精秤後、元素分析系直結型安定同位体質量分析計により、全窒素及び全炭素を定量した。また、試料中の重窒素(15N)量を測定することにより、NOX由来窒素量を測定した。 In addition, total nitrogen, NO x -derived nitrogen and carbon are obtained from M. Takahashi et al. [Plant Physiol. 126, 731 (2001)] and analyzed by mass spectrometry. Specifically, the dried leaves and roots of the plant were pulverized and precisely weighed, and then the total nitrogen and total carbon were quantified by an elemental analysis system directly connected stable isotope mass spectrometer. Further, the amount of nitrogen derived from NO x was measured by measuring the amount of heavy nitrogen ( 15 N) in the sample.
粗タンパク質含有量を、前記タカハシ(M.Takahashi)ら〔Plant Physiol.、126、731(2001)〕のように、還元窒素に基づくマススペクトロメトリーにより測定した。具体的には、前記タカハシらの方法でケルダール分解を行ない得られたアンモニア量を元素分析計直結型安定同位体質量分析により測定し、粗タンパク質含有量を求めた。 The crude protein content was measured using the above-mentioned M. Takahashi et al. [Plant Physiol. , 126, 731 (2001)], and was measured by mass spectrometry based on reduced nitrogen. Specifically, the amount of ammonia obtained by Kjeldahl decomposition by the method of Takahashi et al. Was measured by elemental analyzer direct coupled stable isotope mass spectrometry to determine the crude protein content.
全イオウ量、全リン量、全カリウム量、全カルシウム量及び全マグネシウム量を、ロデュシュキン(I.Rodushkin)ら〔Anal.Chim.Acta、378,191(1999)〕のように、共役プラズマ原子発光分析により解析した。 The amount of total sulfur, total phosphorus, total potassium, total calcium and total magnesium was determined according to I. Rodushkin et al. [Anal. Chim. Acta, 378, 191 (1999)] and analyzed by conjugate plasma atomic emission spectrometry.
具体的には、乾燥させた植物の茎葉及び根を粉末にし、精秤後、テフロンビーカーに移し、得られた産物 0.5gに、68%(w/v) 濃硝酸 10mlと、30%(w/v) 過酸化水素水 2mlとを添加し、得られた混合物を200〜220℃で60分間加熱し、さらに68%(w/v) 濃硝酸 10mlと、30%(w/v) 過酸化水素水 2mlとを添加し、得られた混合物を200〜220℃で40〜50分間加熱し、加熱分解を行なった。なお、かかる加熱分解の操作を2〜3回行なった。得られた産物を50mlに定容し、測定した。 Specifically, the stalks and roots of the dried plant were powdered, precisely weighed, transferred to a Teflon beaker, and 0.5 g of the resulting product was added to 10% of 68% (w / v) concentrated nitric acid and 30% ( w / v) 2 ml of aqueous hydrogen peroxide was added and the resulting mixture was heated at 200-220 ° C. for 60 minutes, and further 10 ml of 68% (w / v) concentrated nitric acid and 30% (w / v) excess. 2 ml of hydrogen oxide water was added, and the resulting mixture was heated at 200 to 220 ° C. for 40 to 50 minutes for thermal decomposition. In addition, this heat decomposition operation was performed 2-3 times. The obtained product was made up to 50 ml and measured.
また、全遊離アミノ酸を、イガラシ(D.Igarashi)ら〔Plant J.、33、975−987(2003)〕に従い、エタノールで抽出し、解析した。具体的には、乾燥させた茎葉又は根を粉末にし、得られた産物を精秤後、80% エタノールを該産物に添加した。その後、80℃に加熱し、アミノ酸の抽出を行ない、得られた産物をエバポレーターで蒸発乾固させ、0.02N 塩酸に溶解し、得られた試料について、アミノ酸分析計で測定した。 Also, the total free amino acids can be obtained from D. Igarashi et al. [Plant J. et al. 33, 975-987 (2003)], and extracted with ethanol and analyzed. Specifically, dried foliage or roots were made into powder, the obtained product was precisely weighed, and 80% ethanol was added to the product. Then, it heated at 80 degreeC, the amino acid was extracted, the obtained product was evaporated to dryness with the evaporator, it melt | dissolved in 0.02N hydrochloric acid, and the obtained sample was measured with the amino acid analyzer.
また、ニコチアナ プルムバギニフォリア(Nicotiana plumbaginifolia)を、200ppbのNOXの汚染空気中及び5ppb未満のNOXの清浄空気中のそれぞれで、自然光下、10週間生育させた。なお、他の条件は、前記と同様にした。結果を図2に示す。 Also, Nicotiana plumbaginifolia was grown under natural light for 10 weeks in each of 200 ppb NO x contaminated air and less than 5 ppb NO x clean air. Other conditions were the same as described above. The results are shown in FIG.
その結果、図1のパネルAに示されるように、意外なことに、汚染空気中で栽培された植物のバイオマスは、清浄空気中で栽培された植物のほぼ2倍であった。また、図1のパネルAに示されるように、NOX曝露によるバイオマスの増加は、植物あたりの調べられた全主要元素、炭素、窒素、イオウ、リン、カリウム、カルシウム及びマグネシウムの組成の非常に類似した増加又はより大きな増加を伴っていた。興味深いことに、NOX曝露は、植物あたりの全遊離アミノ酸及び粗タンパク質の含有量を同程度に増加させた。 As a result, as shown in panel A of FIG. 1, surprisingly, the biomass of plants grown in contaminated air was almost twice that of plants grown in clean air. Also, as shown in panel A of FIG. 1, the increase in biomass due to NO x exposure is a significant increase in the composition of all major elements examined per plant, carbon, nitrogen, sulfur, phosphorus, potassium, calcium and magnesium. There was a similar or greater increase. Interestingly, NO X exposure, the content of total free amino acids and crude protein per plant was increased to the same extent.
図2に示されるように、NOX曝露された植物は、非曝露植物の類似の外観の1.7倍程度であり、環境レベルの大気のNOXが、植物を「活性化」し、炭素固定、窒素同化、アミノ酸及びタンパク質の合成並びに全主要元素の取り込みは、全て、NOX曝露で刺激されたという点で植物に有益であることがわかった。 As shown in FIG. 2, plants exposed to NO x are about 1.7 times the similar appearance of non-exposed plants, and atmospheric atmospheric NO x “activates” the plant, producing carbon. fixed, nitrogen assimilation, the amino acids and the synthesis and all major elements of the protein uptake, they were all found to be beneficial to plants in that they were stimulated with NO X exposure.
さらに、図1のパネルBに示されるように、アイソトープマススペクトル解析は、NOX由来窒素は、茎葉及び根における全窒素の3%未満であった。 Furthermore, as shown in panel B of FIG. 1, isotope mass spectral analysis showed that NO x -derived nitrogen was less than 3% of the total nitrogen in the foliage and roots.
したがって、環境レベルのNOXは、(長期曝露後でさえ)N源として、極わずかに寄与するにすぎず、窒素源としての作用とは異なる作用を発揮していることが示唆される。かかる知見により、環境レベルの大気NOXは、有害因子又はN源ではなく、植物活性化シグナルとして働くことが示される。 Therefore, NO X environment level as (long-term even after exposure) N source, only very slightly contribute, it is suggested that exhibit different effects with the action of a nitrogen source. Such findings, atmospheric NO X environment level is not a hazardous factor or N source is shown to act as a plant activation signals.
シロイヌナズナ(Arabidopsis thaliana ecotype C24)の種子を、4℃で一晩吸水させた。得られた種子を、1バットあたり500粒ずつ、バーミキュライト及びパーライト(1:1、v/v)の混合物が入ったプラスチックポットに播種した。前記ポットを、制御された温室に備えられた2つの曝露チャンバーの内部に置いた。チャンバー内のCO2及びO2の濃度を、それぞれ、3容積%及び20容積%に保った。なお、前記曝露チャンバーの一方は、NOX濃度150ppbとし、他方は対照としてNOX非暴露(5ppb未満)とした。 Arabidopsis thaliana ecotype C24 seeds were soaked overnight at 4 ° C. The obtained seeds were sown in a plastic pot containing a mixture of vermiculite and perlite (1: 1, v / v), 500 per vat. The pot was placed inside two exposure chambers equipped in a controlled greenhouse. The concentration of CO 2 and O 2 in the chamber was kept at 3% and 20% by volume, respectively. One of the exposure chambers had an NO x concentration of 150 ppb, and the other was NO x unexposed (less than 5 ppb) as a control.
20mM 硝酸カリウムを含む1/2MS[MS基本培地〔ムラシゲ(Murashige,T.)ら,Physiol.Plant.,15:473,(1962)〕]を、植物に3日毎に供給し、自然光の下、22℃、70%の相対湿度で4週間生育させた。 1/2 MS [MS basal medium [Murashige, T. et al., Physiol. Plant. , 15: 473, (1962)]] was fed to the plants every 3 days and grown under natural light at 22 ° C. and 70% relative humidity for 4 weeks.
その後、前記シロイヌナズナの茎葉及び根を凍結乾燥させた。前記実施例1と同様の手法により、成長量と主成分とを分析した。なお、15NでラベルしたNOXで暴露し元素分析計直結質量分析計により分析することで、NOX由来の窒素吸収量を調べた。結果を、図4、図5及び表1に示す。 Thereafter, the leaves and roots of the Arabidopsis thaliana were lyophilized. The growth amount and the main component were analyzed by the same method as in Example 1. In addition, the amount of nitrogen absorbed from NO x was examined by exposing to NO x labeled with 15 N and analyzing with a mass spectrometer directly connected to an element analyzer. The results are shown in FIGS. 4 and 5 and Table 1.
その結果、表1に示されるように、NOX濃度150ppbで生育させたシロイヌナズナの茎葉バイオマスは、NOX非存在下で生育させたものと比較して、約1.7倍、根バイオマスは、約1.4倍まで増加した。 As a result, as shown in Table 1, the shoot and leaf biomass of Arabidopsis thaliana grown at a NO x concentration of 150 ppb was about 1.7 times that of the one grown in the absence of NO x , and the root biomass was It increased to about 1.4 times.
また、図4に示されるように、各主要元素の取り込み、同化量も同様に増加した。さらに、図5に示されるように、NOX由来の窒素量は、全窒素量の4%以下であるため、NOXの窒素源としての成長量の増加への寄与は無視できることが示唆される。したがってNOXによる成長促進は、NOXのホルモン様効果によるものであることが示唆される。 In addition, as shown in FIG. 4, the amount of assimilation and assimilation of each major element also increased. Furthermore, as shown in FIG. 5, since the amount of nitrogen derived from NO x is 4% or less of the total amount of nitrogen, it is suggested that the contribution of NO x to the growth amount as a nitrogen source can be ignored. . Therefore growth promotion by NO X is suggested is due hormone-like effect of NO X.
本発明によれば、生物の生育を促進させることができ、したがって、作物や樹木の収量の増大や品質の向上に有用である。 According to the present invention, the growth of living organisms can be promoted, and therefore, it is useful for increasing the yield and quality of crops and trees.
1 ファンモーター
2 キャニスター
3 活性炭カラム
1
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005032494A JP2005270098A (en) | 2004-02-23 | 2005-02-09 | Method for promotion of plant growth |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004047091 | 2004-02-23 | ||
JP2005032494A JP2005270098A (en) | 2004-02-23 | 2005-02-09 | Method for promotion of plant growth |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005270098A true JP2005270098A (en) | 2005-10-06 |
Family
ID=35170394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005032494A Pending JP2005270098A (en) | 2004-02-23 | 2005-02-09 | Method for promotion of plant growth |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005270098A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012235748A (en) * | 2011-05-12 | 2012-12-06 | Hiroshima Univ | Growth promotion method of plant, and plant grown by using the same |
CN104429782A (en) * | 2014-12-12 | 2015-03-25 | 新疆农垦科学院 | Method for salicaceae seedling culture in drought regions |
JP2017073988A (en) * | 2015-10-13 | 2017-04-20 | 東京瓦斯株式会社 | Plant growth promoting apparatus and plant cultivation method |
JP2017073990A (en) * | 2015-10-13 | 2017-04-20 | 東京瓦斯株式会社 | Plant growth promoting apparatus |
JP2017073989A (en) * | 2015-10-13 | 2017-04-20 | 東京瓦斯株式会社 | Plant growth promoting apparatus |
WO2023062667A1 (en) * | 2021-10-11 | 2023-04-20 | 国立大学法人東北大学 | Method for inducing plant disease resistance, device for inducing plant disease resistance, and agent for inducing plant disease resistance |
-
2005
- 2005-02-09 JP JP2005032494A patent/JP2005270098A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012235748A (en) * | 2011-05-12 | 2012-12-06 | Hiroshima Univ | Growth promotion method of plant, and plant grown by using the same |
CN104429782A (en) * | 2014-12-12 | 2015-03-25 | 新疆农垦科学院 | Method for salicaceae seedling culture in drought regions |
CN104429782B (en) * | 2014-12-12 | 2016-06-08 | 新疆农垦科学院 | The method of arid area bamboo willow seedling raising |
JP2017073988A (en) * | 2015-10-13 | 2017-04-20 | 東京瓦斯株式会社 | Plant growth promoting apparatus and plant cultivation method |
JP2017073990A (en) * | 2015-10-13 | 2017-04-20 | 東京瓦斯株式会社 | Plant growth promoting apparatus |
JP2017073989A (en) * | 2015-10-13 | 2017-04-20 | 東京瓦斯株式会社 | Plant growth promoting apparatus |
WO2023062667A1 (en) * | 2021-10-11 | 2023-04-20 | 国立大学法人東北大学 | Method for inducing plant disease resistance, device for inducing plant disease resistance, and agent for inducing plant disease resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zulfiqar et al. | Nanofertilizer use for sustainable agriculture: Advantages and limitations | |
Casadesús et al. | Hormonal effects of an enzymatically hydrolyzed animal protein-based biostimulant (Pepton) in water-stressed tomato plants | |
Zhao et al. | Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization | |
Zhang et al. | Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse | |
Talukder et al. | Light-emitting diodes and exogenous amino acids application improve growth and yield of strawberry plants cultivated in recycled hydroponics | |
Jang et al. | Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS | |
Mustafa et al. | Response of okra (Abelmoschus esculentus L.) to soil and foliar applied L-tryptophan. | |
JP2005270098A (en) | Method for promotion of plant growth | |
Muranaka et al. | A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake | |
Arsenov et al. | Citric acid as soil amendment in cadmium removal by Salix viminalis L., alterations on biometric attributes and photosynthesis | |
Nikolić et al. | Responses of wheat (Triticum aestivum L.) and maize (Zea mays L.) plants to cadmium toxicity in relation to magnesium nutrition | |
Osorio et al. | Vegetative and physiological responses of “Emerald” blueberry to ammoniacal sources with a nitrification inhibitor | |
Desoky et al. | Humus materials and moringa (Moringa oleifera Lam.) leaf extract modulate the harmful effect of soil salinity stress in Sudan grass (Sorghum vulgare L.) | |
Ghanbari Zarmehri et al. | The effect of plant growth promoting rhizobacteria (PGPR) and zinc fertilizer on forage yield of maize under water deficit stress conditions | |
Mayak et al. | Stimulation of the growth of tomato, pepper and mung bean plants by the plant growth-promoting bacterium Enterobacter cloacae CAL3 | |
Procházka et al. | The influence of effective soybean seed treatment on root biomass formation and seed production. | |
Sundar et al. | Utilization of Rhodopseudomonas palustris in Crop Rotation Practice Boosts Rice Productivity and Soil Nutrient Dynamics | |
Saapilin et al. | Physiological and biochemical responses of Chinese cabbage (Brassica rapa var. chinensis) to different light treatments | |
Robakowski et al. | Seasonal changes affect root prunasin concentration in Prunus serotina and override species interactions between P. serotina and Quercus petraea | |
Latif et al. | Effect of biofertilizers and carbolizer on growth of gerbera plant (Gerbera jamesonii). | |
Choudhary et al. | Effect of ga3 and growing media on seedling growth of papaya (Carica papaya L.) cv. pusa Nanha | |
Khurana et al. | Response of five dry tropical tree seedlings to elevated CO 2: impact of seed size and successional status | |
Luyima et al. | Post–pyrolysis nutrient enhancement of wood biochar with compost and uncharred wastes–influence on soil chemical properties and crop productivity | |
Mjwara et al. | Photosynthesis, growth and nutrient changes in non‐nodulated Phaseolus vulgaris grown under atmospheric and elevated carbon dioxide conditions | |
Vigardt | Influence of coffee vermicompost on growth and nutrient quality of greenhouse spinach and field grown green bell peppers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070710 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090430 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090507 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20090702 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090727 |
|
A521 | Written amendment |
Effective date: 20090910 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091005 |
|
A521 | Written amendment |
Effective date: 20091224 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100112 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20100205 Free format text: JAPANESE INTERMEDIATE CODE: A912 |