JP2005269768A - Three-phase inverter - Google Patents

Three-phase inverter Download PDF

Info

Publication number
JP2005269768A
JP2005269768A JP2004078051A JP2004078051A JP2005269768A JP 2005269768 A JP2005269768 A JP 2005269768A JP 2004078051 A JP2004078051 A JP 2004078051A JP 2004078051 A JP2004078051 A JP 2004078051A JP 2005269768 A JP2005269768 A JP 2005269768A
Authority
JP
Japan
Prior art keywords
phase
vector
current
load
voltage command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004078051A
Other languages
Japanese (ja)
Other versions
JP4600726B2 (en
Inventor
Akio Toba
章夫 鳥羽
Hiroshi Osawa
博 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2004078051A priority Critical patent/JP4600726B2/en
Publication of JP2005269768A publication Critical patent/JP2005269768A/en
Application granted granted Critical
Publication of JP4600726B2 publication Critical patent/JP4600726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure high performance while reducing the cost by eliminating the need for judging the relation between a DC input current and the load current of each phase, and deriving the component of a load current vector required for inverter control through simple processing thereby shortening the processing time. <P>SOLUTION: The controller of a three-phase inverter comprises means 26, 29 and 27 for sample holding a DC input current flowing between a DC voltage part and a load through an arm part, and a current conversion means 30 for determining the component of a load current vector using two DC input current values sample held in two kinds of mode and the phase angle information of a voltage command vector in the two kinds of mode being specified every predetermined phase period of the voltage command vector out of a plurality of modes where a load terminal takes a state substantially conducting with the positive pole or the negative pole of the DC voltage part only at one of three arm parts. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、三相インバータの直流入力電流検出値を用いてインバータの負荷電流ベクトル成分を間接的に検出し、この負荷電流ベクトル成分をインバータの制御に用いるようにした三相インバータ装置に関する。   The present invention relates to a three-phase inverter device that indirectly detects a load current vector component of an inverter using a DC input current detection value of the three-phase inverter and uses the load current vector component for controlling the inverter.

図5は第1の従来技術を示す構成図であり、三相インバータ及びその制御装置の基本的な構成を示している。
図5において、10は半導体スイッチング素子11〜16を備えた三相インバータであり、周知のように直列接続されたスイッチング素子11,14からなるu相アーム部と、同じく12,15からなるv相アーム部と、同じく13,16からなるw相アーム部とが、図示されていない直流電圧部に並列に接続されており、スイッチング素子11,14同士の接続部、同12,15同士の接続部、同13,16同士の接続部である出力端子に負荷が接続されている。
FIG. 5 is a block diagram showing the first prior art, showing the basic configuration of a three-phase inverter and its control device.
In FIG. 5, reference numeral 10 denotes a three-phase inverter provided with semiconductor switching elements 11 to 16, and as is well known, a u-phase arm portion including switching elements 11 and 14 connected in series and a v-phase including 12 and 15. An arm part and a w-phase arm part composed of 13 and 16 are connected in parallel to a DC voltage part (not shown), and a connection part between the switching elements 11 and 14 and a connection part between the 12 and 15. The load is connected to the output terminal which is the connection part between the 13 and 16.

上記インバータ10の三相出力のうち二相(例えばu相、w相)分の負荷電流は電流検出手段21,22により検出され、これらの検出電流iu det,iw detが座標変換手段23に入力されている。
座標変換手段23では、電圧指令ベクトルの位相に同期した位相角θを用いて、三相負荷電流を二軸回転座標上の成分に変換し、有効電流振幅iδ及び無効電流振幅iγを導出する。なお、座標変換手段23では、電流検出手段21,22により検出されない他の一相(v相)の電流を、三相電流の総和がゼロになることを利用して導出している。
Among the three-phase outputs of the inverter 10, load currents for two phases (for example, u phase and w phase) are detected by current detection means 21, 22, and these detected currents i u det , i w det are converted into coordinate conversion means 23. Has been entered.
The coordinate conversion means 23 uses the phase angle θ synchronized with the phase of the voltage command vector to convert the three-phase load current into a component on the biaxial rotation coordinate, and derives the effective current amplitude i δ and the reactive current amplitude i γ . To do. The coordinate conversion means 23 derives another one-phase (v-phase) current that is not detected by the current detection means 21 and 22 by utilizing the fact that the sum of the three-phase currents becomes zero.

ここで、有効電流振幅iδ及び無効電流振幅iγを求める場合、位相角θは電圧指令ベクトルの位相に他ならないが、例えば、負荷として同期電動機を用いる場合等には、回転子の磁極位置に従った座標変換、すなわち無負荷誘起電圧と同相の成分であるq軸成分i、及び、これと直交するd軸成分iに分解する必要がある。その場合には、θとして磁極位置を表す位相角を用いればよい。 Here, when the active current amplitude i δ and the reactive current amplitude i γ are obtained, the phase angle θ is nothing but the phase of the voltage command vector. For example, when using a synchronous motor as a load, the magnetic pole position of the rotor coordinate transformation in accordance with, i.e. q-axis component i q is the component of the no-load induced voltage in phase, and, it is necessary to disassemble the d-axis component i d perpendicular thereto. In that case, a phase angle representing the magnetic pole position may be used as θ.

電圧指令演算手段24は、導出された二軸電流iδ,iγを基に、電圧指令ベクトルの振幅V及び位相角θを決定する。このためには、例えば電流指令値と2軸電流iδ,iγとの偏差を計算し、これを最小化するような電圧指令の振幅V及び位相角θを出力する調節手段、代表的には比例積分調節器が用いられる。
指令パルス発生手段25は、電圧指令の振幅V及び位相角θに基づいて、三相インバータ10の各スイッチング素子11〜16に与えるオン、オフ信号を生成する。
三相インバータ10は、各スイッチング素子11〜16が所定の規則に従ってオン、オフを繰り返すことにより、電圧指令に比例した電圧が出力されて負荷に印加されることになる。
The voltage command calculation unit 24 determines the amplitude V and the phase angle θ of the voltage command vector based on the derived biaxial currents i δ and i γ . For this purpose, for example, adjusting means for calculating the deviation V between the current command value and the biaxial currents i δ and i γ and outputting the amplitude V and the phase angle θ of the voltage command so as to minimize it, typically A proportional integral controller is used.
The command pulse generating means 25 generates on / off signals to be given to the switching elements 11 to 16 of the three-phase inverter 10 based on the amplitude V and the phase angle θ of the voltage command.
In the three-phase inverter 10, the switching elements 11 to 16 are repeatedly turned on and off according to a predetermined rule, so that a voltage proportional to the voltage command is output and applied to the load.

次に、図6は第2の従来技術を示す構成図であり、低コスト化を目的として図5の負荷電流検出手段21,22を除去し、代わりにインバータ10の直流入力電流を検出して有効電流振幅iδ及び無効電流振幅iγを導出するものである。
インバータ10の直流入力電流idcは、スイッチング素子11〜16のオン、オフ状態に依存して三相のうち何れかの相の負荷電流に必ず一致する。また、インバータ10の全上アームのスイッチング素子11〜13のみがオンし、または、全下アームのスイッチング素子14〜16のみがオンする場合、負荷電流はオン状態のスイッチング素子を環流するため、idcはゼロとなる。
Next, FIG. 6 is a block diagram showing the second prior art, in which the load current detecting means 21 and 22 of FIG. 5 are removed for the purpose of cost reduction, and instead the DC input current of the inverter 10 is detected. The effective current amplitude i δ and the reactive current amplitude i γ are derived.
The DC input current i dc of the inverter 10 always matches the load current of any one of the three phases depending on the on / off states of the switching elements 11 to 16. In addition, when only the switching elements 11 to 13 of all the upper arms of the inverter 10 are turned on or only the switching elements 14 to 16 of all the lower arms are turned on, the load current circulates through the switching elements in the on state. dc is zero.

従って、あるスイッチング素子の状態においてidcをサンプル・ホールドして制御系に取り込めば、スイッチング素子の状態からそのidcがどの相の負荷電流に相当しているかを判定することができ、この動作を三相のうち二相分についてごく短期間(ほぼ同時と見なせる期間)に行うことにより、ほぼ同時刻の二相の負荷電流を得ることができる。 Therefore, if i dc is sampled and held in the state of a certain switching element and taken into the control system, it can be determined from the state of the switching element which phase the load current corresponds to i dc. Is performed in a very short period (a period that can be regarded as almost simultaneous) for two phases of the three phases, a two-phase load current at substantially the same time can be obtained.

図6の従来技術は上記原理に基づくものであり、直流入力電流検出手段26により検出した直流入力電流idcをサンプル・ホールド回路27によりごく短期間に二相分、サンプル・ホールドして電流変換手段28に取り込み、二相分の検出電流相当値i’,i’として座標変換手段23に入力している。以後の動作は図5の従来技術と同様である。
なお、図6において、29は電圧指令演算手段24の出力に基づいてサンプル・ホールド信号aを発生するサンプル・ホールド信号発生手段である。
この従来技術によれば、単一の安価な直流入力電流検出手段26によってインバータ10の負荷電流を検出し、インバータ10を制御できるため、装置の低コスト化が可能になる。
The prior art of FIG. 6 is based on the above principle, and the DC input current i dc detected by the DC input current detecting means 26 is sampled and held by a sample and hold circuit 27 for two phases in a very short time to convert the current. The data is taken into the means 28 and input to the coordinate conversion means 23 as detected current equivalent values i u ′ and i w ′ for two phases. The subsequent operation is the same as that of the prior art of FIG.
In FIG. 6, reference numeral 29 denotes a sample / hold signal generating means for generating the sample / hold signal a based on the output of the voltage command calculating means 24.
According to this prior art, the load current of the inverter 10 can be detected by the single inexpensive DC input current detection means 26 and the inverter 10 can be controlled, so that the cost of the apparatus can be reduced.

なお、後述する特許文献1には、
a.前記図6と同様に、直流入力電流から負荷電流を導出する原理
b.三相電圧指令値で規定される電圧ベクトルを定義し、その位相角60°ごとに出力される瞬時電圧ベクトル(すなわちスイッチングモード)が2種類に決まり、従って直流入力電流と一致する負荷電流も2種類に決まり、これが電圧ベクトルが当該60°の位相領域に依存する場合に検出可能な電流となること
c.検出した直流入力電流がどの相の負荷電流に相当するかを判定し、二相の負荷電流から三相分の負荷電流を求めること
が開示されている。
また、特許文献2には、上記aとほぼ同様の技術が開示され、特許文献3には、上記a,bとほぼ同様の技術が開示されている。
In Patent Document 1 described later,
a. Similar to FIG. 6, the principle of deriving the load current from the DC input current b. The voltage vector defined by the three-phase voltage command value is defined, and the instantaneous voltage vector (that is, the switching mode) output at every 60 ° of the phase angle is determined in two types. Therefore, the load current that matches the DC input current is also 2 Determined by the type, this being a detectable current if the voltage vector depends on the 60 ° phase region c. It is disclosed to determine which phase load current corresponds to the detected DC input current, and to obtain the load current for three phases from the two-phase load current.
Patent Document 2 discloses a technique substantially similar to the above-mentioned a, and Patent Document 3 discloses a technique substantially similar to the above-described a and b.

特許2563226号公報(請求項1、[0014]〜[0016]、[0019]〜[0024]、図1〜図3、図5等)Japanese Patent No. 2563226 (Claim 1, [0014] to [0016], [0019] to [0024], FIGS. 1 to 3, FIG. 5, etc.) 特開平8−19263号公報(請求項1、[0021],[0036]〜[0038]、図2〜図4等)JP-A-8-19263 (Claim 1, [0021], [0036] to [0038], FIGS. 2 to 4 etc.) 特開2001−314090号公報([0016]〜[0019]、図2,図3,図5等)JP 2001-314090 A ([0016] to [0019], FIG. 2, FIG. 3, FIG. 5 etc.)

図5と図6とを比較すれば明らかなように、図6の構成では電流検出手段が簡略化されるものの、直流入力電流がどの相の負荷電流に相当するかを判定する処理が必要である。この処理をマイクロプロセッサによりソフトウェアにて実現する場合、処理時間が増加してしまい、電圧指令演算等の制御装置本来の性能が犠牲になることがある。また、上記判定処理をハードウェアによって実現する場合には、コストの上昇やハードウェアの実装面積の増大を伴う等の不都合が予想される。これらの問題点は、特許文献1〜3の従来技術にも共通するものである。   As apparent from a comparison between FIG. 5 and FIG. 6, the current detection means is simplified in the configuration of FIG. 6, but it is necessary to determine which phase load current the DC input current corresponds to. is there. When this processing is realized by software using a microprocessor, the processing time increases, and the inherent performance of the control device such as voltage command calculation may be sacrificed. Further, when the determination process is realized by hardware, inconveniences such as an increase in cost and an increase in hardware mounting area are expected. These problems are common to the prior arts of Patent Documents 1 to 3.

なお、特許文献3の請求項10、及びこれに対応する実施の形態([0027],[0028])には、直流入力電流から直接的に有効電流及び無効電流を導出する旨記載されているが、実際には電圧指令ベクトルの60°領域ごとに両電流を求める計算式が変更されていることから、実質的には、図6の従来技術のように、電圧ベクトルの領域ごとに負荷電流を検出可能な二相を判定しているのと変わらず、演算処理の煩雑さや処理時間は余り改善されていない。   Note that claim 10 of Patent Document 3 and the corresponding embodiments ([0027], [0028]) describe that the effective current and the reactive current are derived directly from the DC input current. However, since the calculation formula for obtaining both currents is actually changed for each 60 ° region of the voltage command vector, the load current is substantially changed for each region of the voltage vector as in the prior art of FIG. As in the case of determining the two phases capable of detecting the above, the complexity of the arithmetic processing and the processing time are not so improved.

そこで本発明の解決課題は、直流入力電流と負荷電流との関係や電圧指令ベクトルの帰属領域の判定を不要にして、簡単な処理によりインバータの制御に必要な負荷電流ベクトル成分を導出可能とした三相インバータ装置を提供することにある。   Therefore, the problem to be solved by the present invention is that it is not necessary to determine the relationship between the DC input current and the load current and the attribute region of the voltage command vector, and the load current vector component necessary for inverter control can be derived by simple processing. The object is to provide a three-phase inverter device.

上記課題を解決するため、請求項1に記載した発明は、少なくとも2個の半導体スイッチング素子を直列に接続してなるアーム部が直流電圧部に3個並列接続され、これらの3個のアーム部における半導体スイッチング素子同士の接続部に負荷が接続された三相インバータと、このインバータを制御するための制御装置とを備えた三相インバータ装置において、
前記制御装置は、
3個のアーム部のうち1個のアーム部のみにおいて前記負荷の端子が前記直流電圧部の正極と実質的に導通状態となる3種類のモード(スイッチングモード)、または、1個のアーム部のみにおいて前記負荷の端子が前記直流電圧部の負極と実質的に導通状態となる3種類のモードのうち、前記三相インバータの電圧指令ベクトルの所定位相周期ごとに特定される2種類の前記モードにおいて、前記アーム部を介して前記直流電圧部と前記負荷との間を流れる直流入力電流をサンプル・ホールドする手段と、
前記電圧指令ベクトルがとり得る位相角を前記所定位相周期により分割した各領域について、前記手段により2種類の前記モードにおいてそれぞれサンプル・ホールドした二つの直流入力電流値と、前記電圧指令ベクトルの位相角情報とを用いて負荷電流ベクトルの成分を求める手段と、
を備えたものである。
なお、前記2種類のモードとは、言い換えれば、電圧指令ベクトルが存在する領域を決定する二つの電圧ベクトルを出力するためのスイッチングモードに他ならない。
In order to solve the above-mentioned problem, the invention described in claim 1 is characterized in that three arm portions formed by connecting at least two semiconductor switching elements in series are connected in parallel to the DC voltage portion, and these three arm portions are In a three-phase inverter device comprising a three-phase inverter in which a load is connected to a connection portion between semiconductor switching elements in and a control device for controlling the inverter,
The control device includes:
Three types of modes (switching mode) in which the terminal of the load is in a substantially conductive state with the positive electrode of the DC voltage unit in only one arm unit among the three arm units, or only one arm unit In the three types of modes specified for each predetermined phase period of the voltage command vector of the three-phase inverter, among the three types of modes in which the terminal of the load is substantially conductive with the negative electrode of the DC voltage unit Means for sampling and holding a DC input current flowing between the DC voltage unit and the load via the arm unit;
For each region obtained by dividing the phase angle that the voltage command vector can take by the predetermined phase period, two DC input current values sampled and held in the two types of modes by the means, and the phase angle of the voltage command vector Means for determining the component of the load current vector using the information,
It is equipped with.
In other words, the two types of modes are none other than switching modes for outputting two voltage vectors that determine the region where the voltage command vector exists.

請求項2に記載した発明は、請求項1において、
前記所定位相周期を60°に設定して、前記電圧指令ベクトルがとり得る位相角の領域を6個に分割したものである。
The invention described in claim 2 is the invention according to claim 1,
The predetermined phase period is set to 60 °, and the phase angle region that the voltage command vector can take is divided into six.

請求項3に記載した発明は、請求項2において、
電圧指令ベクトルの位相角情報が、120°間隔で分布する三相基準軸を中心とした−60°〜60°の値であることを特徴とする。
The invention described in claim 3 is, in claim 2,
The phase angle information of the voltage command vector is a value between −60 ° and 60 ° centered on a three-phase reference axis distributed at 120 ° intervals.

請求項4に記載した発明は、請求項3において、
2種類の前記モードにおける直流入力電流値、電圧指令ベクトルの位相角情報及び係数を用いた四則演算と、電圧指令ベクトルの位相角の極性判定のみにより負荷電流ベクトルの成分を求めるものである。
The invention described in claim 4 is, in claim 3,
The component of the load current vector is obtained only by the four arithmetic operations using the DC input current value, the voltage command vector phase angle information and the coefficient in the two types of modes, and the polarity determination of the phase angle of the voltage command vector.

請求項5に記載した発明は、請求項1〜4の何れか1項において、
負荷電流ベクトルの回転座標上の二軸成分(有効電流成分、無効電流成分)を求めるものである。
The invention described in claim 5 is any one of claims 1 to 4,
The biaxial component (effective current component, reactive current component) on the rotation coordinate of the load current vector is obtained.

本発明によれば、従来の直流入力電流検出に基づくインバータ制御において不可避であった、直流入力電流と各相負荷電流との関係や電圧ベクトルの帰属領域の判定を不要にし、簡単な処理によりインバータの制御に必要な負荷電流ベクトルの回転座標上の成分(二軸成分または一軸成分)を導出することができる。これにより、ソフトウェア及びハードウェアの負担を軽減して処理時間を短縮し、低コスト化や高性能化を同時に満足するインバータ装置を提供することが可能になる。   According to the present invention, there is no need to determine the relationship between the DC input current and each phase load current and the voltage vector attribution area, which is unavoidable in conventional inverter control based on DC input current detection, and the inverter can be easily processed. It is possible to derive a component (biaxial component or uniaxial component) on the rotational coordinate of the load current vector necessary for controlling the current. As a result, it is possible to provide an inverter device that reduces the burden on software and hardware, shortens the processing time, and satisfies both low cost and high performance.

以下、図に沿って本発明の実施形態を説明する。
図1は、実施形態にかかる三相インバータ装置の構成を示したものであり、図6と同一の構成要素には同一の参照符号を付してある。この実施形態は、直流入力電流がどの相の負荷電流に相当するかという判定処理を行わずに、負荷電流ベクトルの回転座標上の成分(以下、単に二軸電流ともいう)を導出可能としたものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a three-phase inverter device according to the embodiment, and the same reference numerals are given to the same components as those in FIG. In this embodiment, it is possible to derive a component on the rotational coordinate of the load current vector (hereinafter also simply referred to as a biaxial current) without performing a process of determining which phase of the load current the DC input current corresponds to. Is.

図1において、主に図6との相違点を説明すると、サンプル・ホールド信号発生手段29は、電圧指令演算手段24から出力される電圧ベクトルの振幅V及び位相角θの情報を用い、インバータ10が所定の電圧ベクトルを出力している2種類のモードでサンプル・ホールド手段27がそれぞれ直流入力電流idcを取り込むようにサンプル・ホールド信号aを発生する。 In FIG. 1, the difference from FIG. 6 will be mainly described. The sample and hold signal generation means 29 uses the information on the amplitude V and the phase angle θ of the voltage vector output from the voltage command calculation means 24, and the inverter 10 The sample and hold means 27 generates the sample and hold signal a so that the sample and hold means 27 takes in the DC input current i dc in two types of modes that output a predetermined voltage vector.

このサンプル・ホールド信号aは、図1に示した構成以外にも、例えば指令パルス生成手段25からインバータ10に出力される指令パルスによってどの電圧ベクトルが選択されているかが判明するため、上記パルスに基づいて出力させても良く、あるいは、上記指令パルスが出力されるタイミングを事前に決めておき、丁度所定の指令パルスが発生して直流入力電流idcの検出が可能となるタイミングでサンプル・ホールドするようにタイマ処理によって出力してもよい。
また、サンプル・ホールド信号aは、電圧指令ベクトルが存在する60°の領域ごとに、検出可能な二相分の直流入力電流idcが、ほぼ同時刻と見なせるごく短時間にサンプル・ホールド手段27に取り込まれるように出力される。
In addition to the configuration shown in FIG. 1, the sample-and-hold signal a can be used to determine which voltage vector is selected by the command pulse output from the command pulse generation means 25 to the inverter 10, for example. Alternatively, the timing at which the command pulse is output may be determined in advance, and the sample and hold may be performed at a timing at which the predetermined command pulse is generated and the DC input current i dc can be detected. Thus, it may be output by timer processing.
In addition, the sample and hold signal a is obtained from the sample and hold means 27 in such a short time that the DC input current i dc for two phases that can be detected can be regarded as almost the same time for each 60 ° region where the voltage command vector exists. Is output so that it can be captured.

電流変換手段30は、得られた二つの直流入力電流検出値idc detがどの相の負荷電流に相当するかの判定を行わずに、負荷電流ベクトルの回転座標上の二軸成分(有効電流振幅iδ及び無効電流振幅iγ)を直接、導出する。これによって、制御装置の演算処理量が減るため、マイクロプロセッサ等の本来の性能を損なうことがない。
以下、上記の内容を詳述する。
The current conversion unit 30 does not determine which phase of the obtained two DC input current detection values i dc det corresponds to the two-axis component (effective current) on the rotation coordinate of the load current vector. Amplitude i δ and reactive current amplitude i γ ) are derived directly. As a result, the calculation processing amount of the control device is reduced, so that the original performance of the microprocessor or the like is not impaired.
The above contents will be described in detail below.

図2の上段は、三相インバータ10の電圧指令ベクトルv、インバータ10が出力可能な6種類の、電圧基準軸に沿った電圧ベクトル(U,U’,V,V’,W,W’)、遅れ位相の電流ベクトルi、この電流ベクトルiを構成する三相電流ベクトルi,i,i、電圧指令ベクトルvの位相角θ、及び、前記6種類の電圧ベクトルによって区分される領域<I>〜<VI>を示している。
なお、電圧ベクトルの記号に併記した(0,1,0),(1,0,0)等は、(u相,v相,w相)のスイッチング素子のオン、オフ状態を示しており、“1”は上アームのスイッチング素子がオン、“0”は下アームのスイッチング素子がオンの状態を表す。例えば、(0,1,0)は、図1のインバータ10におけるu相の下アームスイッチング素子14がオン、v相の上アームスイッチング素子12がオン、w相の下アームスイッチング素子16がオンの状態である。(0,0,0),(1,1,1)は何れもゼロ電圧ベクトルを示す。
また、ベクトル図の下には、電圧指令ベクトルがとり得る位相角θ(0〜360°)に応じた各相電圧指令の変化、及び、位相角θのときに電圧指令ベクトルvが存在する6種類の領域<I>〜<VI>(ベクトル図の領域に対応する)を波形で示している。
2 shows the voltage command vector v of the three-phase inverter 10 and six types of voltage vectors (U, U ′, V, V ′, W, W ′) that can be output by the inverter 10 along the voltage reference axis. , Phase current vector i, three-phase current vectors i u , i v , i w constituting the current vector i, phase angle θ of the voltage command vector v, and a region divided by the six types of voltage vectors <I> to <VI> are shown.
In addition, (0, 1, 0), (1, 0, 0), etc. written together with the symbol of the voltage vector indicate the on / off states of the (u-phase, v-phase, w-phase) switching elements, “1” indicates that the upper arm switching element is ON, and “0” indicates that the lower arm switching element is ON. For example, (0, 1, 0) indicates that the u-phase lower arm switching element 14 in the inverter 10 of FIG. 1 is on, the v-phase upper arm switching element 12 is on, and the w-phase lower arm switching element 16 is on. State. (0, 0, 0) and (1, 1, 1) all indicate zero voltage vectors.
Also, below the vector diagram, there is a change in each phase voltage command according to the phase angle θ (0 to 360 °) that the voltage command vector can take, and the voltage command vector v exists at the phase angle θ 6 The types of areas <I> to <VI> (corresponding to the areas of the vector diagram) are shown as waveforms.

まず、電流ベクトルiを、複素ベクトルを用いて数式1のように表す。
First, the current vector i is expressed as Equation 1 using a complex vector.

Figure 2005269768
Figure 2005269768

数式1の関係は、三相交流では一般に成り立つ。また、三相電流には数式2に示す関係が成り立つものとする。   The relationship of Formula 1 is generally established in three-phase alternating current. Further, it is assumed that the relationship shown in Formula 2 is established for the three-phase current.

Figure 2005269768
Figure 2005269768

さて、電圧指令ベクトルvが図2における領域<I>にあるとき、インバータ10は電圧ベクトルU(1,0,0),W’(1,1,0)、及びゼロ電圧ベクトルの3通りを時間的に分割して出力するので、図1の直流入力電流idcにより検出できる負荷電流はu相のiとw相の−iである。同様にして、電圧指令ベクトルvが領域<II>にあるときには、v相のiとw相の−iとを検出することができる。
ここで、検出できる二つの相の負荷電流のうち、極性が正である相の電流をis1とし、負である相の電流をis2として検出し、更に、極性が正である相を電流ベクトル基準相として数式2に従って電流ベクトルを定義するものとする。このときの電圧指令ベクトルvの存在領域、is1,is2、電流ベクトル基準相の関係を整理すると、表1のようになる。
Now, when the voltage command vector v is in the region <I> in FIG. 2, the inverter 10 outputs three types of voltage vectors U (1, 0, 0), W ′ (1, 1, 0), and zero voltage vector. Since the output is divided in terms of time, the load currents that can be detected by the DC input current i dc in FIG. 1 are u u i u and w phase −i w . Similarly, when the voltage command vector v is in the region <II>, the v-phase iv and the w-phase -i w can be detected.
Here, among the load current of the two phases can be detected, the current of the phase polarity is positive and i s1, detects the phase of the current is negative as i s2, further, the phase current polarity is positive Assume that the current vector is defined according to Equation 2 as the vector reference phase. Table 1 summarizes the relationship between the voltage command vector v existing region, i s1 , i s2 , and the current vector reference phase at this time.

Figure 2005269768
Figure 2005269768

<I>〜<VI>の各領域について、表1に示す、負荷電流を検出可能な相の情報を用いて数式1,数式2の関係を整理すると、数式3〜数式8のようになる。   For each region of <I> to <VI>, formulas 3 and 8 are obtained by rearranging the relations of formulas 1 and 2 using the phase information that can detect the load current shown in Table 1.

Figure 2005269768
Figure 2005269768

Figure 2005269768
Figure 2005269768

Figure 2005269768
Figure 2005269768

Figure 2005269768
Figure 2005269768

Figure 2005269768
Figure 2005269768

Figure 2005269768
Figure 2005269768

以上のように、各領域において電流ベクトルの計算式の実部Xと虚部jYとは共通になり、虚部jYの符号のみ交互に入れ替わることがわかる。
ここで更に、電圧指令ベクトルvの位相角θも、電圧指令ベクトルvが存在する領域ごとに表1に示す電流ベクトル基準相を基準として定義するものとし、その位相角を新たにθとすれば、数式9,数式10の関係が成り立つ。
As described above, it can be seen that the real part X and the imaginary part jY of the current vector calculation formula are common in each region, and only the sign of the imaginary part jY is alternately replaced.
Here, the phase angle θ of the voltage command vector v is also defined with reference to the current vector reference phase shown in Table 1 for each region where the voltage command vector v exists, and the phase angle is newly set to θ v. For example, the relationship of Equation 9 and Equation 10 is established.

Figure 2005269768
Figure 2005269768

Figure 2005269768
Figure 2005269768

以上の検討より、直流入力電流検出値idc detに基づく電流ベクトルiの有効分iδ及び無効分iγの導出は、図3に示す演算ブロックによって、二つの時点の直流入力電流値、電圧指令ベクトルvの位相角情報及び係数を用いた四則演算と、上記位相角の極性判定のみにより実現できることがわかる。
図3において、31は電流検出値属性判定手段、32,34,36は係数乗算手段、33は60°マスク処理手段、35は加算手段、37は符号判定関数、38は乗算手段、39は位相角関数行列である。
図3の構成により、係数乗算手段34からXが出力されると共に、係数乗算手段36からYが出力され、このYは前記数式9により乗算手段38にてYに変換される。これらのX,Yと行列39との演算により、電流ベクトルiの有効分(有効電流振幅)iδ及び無効分(無効電流振幅)iγが求められる。
From the above discussion, the effective component i δ and the invalid component i γ of the current vector i based on the DC input current detection value i dc det are derived from the DC input current value and voltage at two points of time by the calculation block shown in FIG. It can be seen that this can be realized only by the four arithmetic operations using the phase angle information and coefficient of the command vector v and the polarity determination of the phase angle.
In FIG. 3, 31 is a current detection value attribute determining means, 32, 34 and 36 are coefficient multiplying means, 33 is a 60 ° mask processing means, 35 is an adding means, 37 is a sign determining function, 38 is a multiplying means, and 39 is a phase. It is an angular function matrix.
The configuration of FIG. 3, the X is output from the coefficient multiplying means 34, Y is output from the coefficient multiplying means 36, the Y is converted into Y s in multiplication means 38 by the equation 9. By calculating these X, Y s and the matrix 39, the effective component (effective current amplitude) i δ and the reactive component (reactive current amplitude) i γ of the current vector i are obtained.

なお、電流検出値属性判定手段31は、表1に示したように正極性の電流is1としてi,i,iの何れかを出力可能であり、負極性の電流is1として−i,−i,−iの何れかを出力可能である。
また、60°マスク処理手段33は、θからθへの変換をソフトウェア処理で実現する場合を想定しており、符号付き2進数で表したθがθ=60°で桁上がりするようにし、符号ビットより上位の桁についてマスク処理を行うことによって実質的に処理の追加なしで実現可能である。これに関連して、θの符号判定関数sign(θ)は、θを符号付き2進数で表した場合に符号ビットの参照のみで実現可能であるため、ソフトウェア処理時間はごく小さく、全体に与える影響は無視することができる。
The current detection value attribute determination unit 31, i u as a positive polarity of the current i s1, as shown in Table 1, i v, and can output either i w, as a negative polarity of the current i s1 - Any of i u , −i v , and −i w can be output.
Further, the 60 ° mask processing means 33 assumes a case where conversion from θ to θ v is realized by software processing, so that θ expressed in a signed binary number is carried at θ = 60 °, By performing mask processing for the digits higher than the sign bit, it can be realized without any additional processing. In this connection, theta v code determination function sign (θ v) is, theta v since can be realized only by a reference sign bit when expressed in a signed binary number, the software processing time is very small, The effect on the whole can be ignored.

上記のように、本実施形態では従来技術のように直流入力電流検出値idc detがどの相の負荷電流に相当するかという判定処理を必要とせず、また、2軸電流計算方法の動的な切替も不要なシーケンシャルな処理によって負荷電流ベクトルの回転座標上の二軸成分iδ,iγを導出することができる。
上記電流成分iδ,iγを用いた三相インバータ10の制御動作は従来技術と同様であるため、ここでは説明を省略する。
As described above, according to the present embodiment, it is not necessary to determine which phase the load current of the DC input current detection value i dc deet corresponds to as in the conventional technique, and the dynamics of the biaxial current calculation method are not required. The biaxial components i δ and i γ on the rotational coordinates of the load current vector can be derived by sequential processing that does not require any switching.
Since the control operation of the three-phase inverter 10 using the current components i δ and i γ is the same as that of the prior art, the description thereof is omitted here.

なお、図4は、電圧指令ベクトルvが領域<II>に存在し、電流ベクトルiが遅れ位相である場合(図2と同様のケース)の、X,Y,iδ,iγ,θの関係を示したものである。ここでは、表1により電流ベクトル基準相がV相であるため、電圧指令ベクトルvの位相角θもこのV相を基準とした位相角θとなる。 FIG. 4 shows X, Y, i δ , i γ , θ v when the voltage command vector v exists in the region <II> and the current vector i has a delayed phase (the same case as in FIG. 2). This shows the relationship. Here, the current vector reference phase for a V-phase, a phase angle theta v relative to the phase angle theta Again V-phase voltage command vector v according to Table 1.

以上のように、本発明は、電圧指令ベクトルの位相角60°ごとに分割した各領域において、負荷電流を検出可能な相と導出すべき電流ベクトルとの関係が同一になることが要旨であるため、前述した各数式の表現や定数の違いは本発明の範疇に含まれるものである。
また、領域<I>〜<VI>を循環させることも本願の範疇に含まれる。すなわち、図3,図4の例ではu相を基準にして領域<I>〜<VI>を決めているが、v相を基準にして領域<I>〜<VI>を決めてもよい。)
更に、電流ベクトルは二軸成分として得られるため、このうちの一軸成分(例:有効電流)のみが必要な場合には、不要な成分の導出演算をなくして演算処理を更に簡素化することができる。
As described above, the gist of the present invention is that the relationship between the phase in which the load current can be detected and the current vector to be derived is the same in each region divided by the phase angle of 60 ° of the voltage command vector. For this reason, the expression of each numerical formula and the difference in constants are included in the scope of the present invention.
Further, circulation of the regions <I> to <VI> is also included in the category of the present application. That is, in the example of FIGS. 3 and 4, the regions <I> to <VI> are determined based on the u phase, but the regions <I> to <VI> may be determined based on the v phase. )
Furthermore, since the current vector is obtained as a biaxial component, when only one of the uniaxial components (eg, effective current) is required, the calculation processing can be further simplified by eliminating the calculation of unnecessary components. it can.

本発明の実施形態を示す構成図である。It is a block diagram which shows embodiment of this invention. 三相インバータの電圧、電流ベクトル図である。It is a voltage and current vector diagram of a three-phase inverter. 図1における電流変換手段の構成図である。It is a block diagram of the current conversion means in FIG. 三相インバータの電圧、電流ベクトル図である。It is a voltage and current vector diagram of a three-phase inverter. 第1の従来技術を示す構成図である。It is a block diagram which shows 1st prior art. 第2の従来技術を示す構成図である。It is a block diagram which shows a 2nd prior art.

符号の説明Explanation of symbols

10:三相インバータ
11〜16:半導体スイッチング素子
24:電圧指令演算手段
25:指令パルス発生手段
26:直流入力電流検出手段
27:サンプル・ホールド手段
29:サンプル・ホールド信号発生手段
30:電流変換手段
31:電流検出値属性判定手段
32,34,36:係数乗算手段
33:60°マスク処理手段
35:加算手段
37:符号判定関数
38:乗算手段
39:位相角関数行列
DESCRIPTION OF SYMBOLS 10: Three-phase inverter 11-16: Semiconductor switching element 24: Voltage command calculating means 25: Command pulse generation means 26: DC input current detection means 27: Sample hold means 29: Sample hold signal generation means 30: Current conversion means 31: Current detection value attribute determination means 32, 34, 36: Coefficient multiplication means 33: 60 ° mask processing means 35: Addition means 37: Sign determination function 38: Multiplication means 39: Phase angle function matrix

Claims (5)

少なくとも2個の半導体スイッチング素子を直列に接続してなるアーム部が直流電圧部に3個並列接続され、これらの3個のアーム部における半導体スイッチング素子同士の接続部に負荷が接続された三相インバータと、このインバータを制御するための制御装置とを備えた三相インバータ装置において、
前記制御装置は、
3個のアーム部のうち1個のアーム部のみにおいて前記負荷の端子が前記直流電圧部の正極と実質的に導通状態となる3種類のモード、または、1個のアーム部のみにおいて前記負荷の端子が前記直流電圧部の負極と実質的に導通状態となる3種類のモードのうち、前記三相インバータの電圧指令ベクトルの所定位相周期ごとに特定される2種類の前記モードにおいて、前記アーム部を介して前記直流電圧部と前記負荷との間を流れる直流入力電流をサンプル・ホールドする手段と、
前記電圧指令ベクトルがとり得る位相角を前記所定位相周期により分割した各領域について、前記手段により2種類の前記モードにおいてそれぞれサンプル・ホールドした二つの直流入力電流値と、前記電圧指令ベクトルの位相角情報とを用いて負荷電流ベクトルの成分を求める手段と、
を備えたことを特徴とする三相インバータ装置。
Three-phase in which at least two semiconductor switching elements are connected in series with three arm parts connected in parallel to the DC voltage part, and a load is connected to the connection part between the semiconductor switching elements in these three arm parts In a three-phase inverter device comprising an inverter and a control device for controlling the inverter,
The control device includes:
Three types of modes in which the terminal of the load is substantially in conduction with the positive electrode of the DC voltage unit in only one arm unit among the three arm units, or the load terminal in only one arm unit. Of the three types of modes in which the terminal is substantially in a conductive state with the negative electrode of the DC voltage unit, in the two types of modes specified for each predetermined phase period of the voltage command vector of the three-phase inverter, the arm unit Means for sampling and holding a DC input current flowing between the DC voltage section and the load via
For each region obtained by dividing the phase angle that the voltage command vector can take by the predetermined phase period, two DC input current values sampled and held in the two types of modes by the means, and the phase angle of the voltage command vector Means for determining the component of the load current vector using the information,
A three-phase inverter device comprising:
請求項1に記載した三相インバータ装置において、
前記所定位相周期を60°に設定して、前記電圧指令ベクトルがとり得る位相角の領域を6個に分割したことを特徴とする三相インバータ装置。
In the three-phase inverter device according to claim 1,
A three-phase inverter device, wherein the predetermined phase period is set to 60 °, and a region of a phase angle that can be taken by the voltage command vector is divided into six.
請求項2に記載した三相インバータ装置において、
電圧指令ベクトルの位相角情報が、120°間隔で分布する三相基準軸を中心とした−60°〜60°の値であることを特徴とする三相インバータ装置。
In the three-phase inverter device according to claim 2,
The three-phase inverter device, wherein the phase angle information of the voltage command vector is a value of -60 ° to 60 ° centered on a three-phase reference axis distributed at 120 ° intervals.
請求項3に記載した三相インバータ装置において、
2種類の前記モードにおける直流入力電流値、電圧指令ベクトルの位相角情報及び係数を用いた四則演算と、電圧指令ベクトルの位相角の極性判定のみにより負荷電流ベクトルの成分を求めることを特徴とする三相インバータ装置。
In the three-phase inverter device according to claim 3,
The load current vector component is obtained only by four arithmetic operations using the DC input current value, the voltage command vector phase angle information and the coefficient in the two types of modes, and the polarity determination of the phase angle of the voltage command vector. Three-phase inverter device.
請求項1〜4の何れか1項に記載した三相インバータ装置において、
負荷電流ベクトルの回転座標上の二軸成分を求めることを特徴とする三相インバータ装置。
In the three-phase inverter device according to any one of claims 1 to 4,
A three-phase inverter device characterized by obtaining a biaxial component on a rotation coordinate of a load current vector.
JP2004078051A 2004-03-18 2004-03-18 Three-phase inverter device Expired - Fee Related JP4600726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078051A JP4600726B2 (en) 2004-03-18 2004-03-18 Three-phase inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078051A JP4600726B2 (en) 2004-03-18 2004-03-18 Three-phase inverter device

Publications (2)

Publication Number Publication Date
JP2005269768A true JP2005269768A (en) 2005-09-29
JP4600726B2 JP4600726B2 (en) 2010-12-15

Family

ID=35093721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078051A Expired - Fee Related JP4600726B2 (en) 2004-03-18 2004-03-18 Three-phase inverter device

Country Status (1)

Country Link
JP (1) JP4600726B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728537B2 (en) 2006-09-11 2010-06-01 Sanyo Electric Co., Ltd. Motor control device and current detecting unit
US7898197B2 (en) 2007-07-27 2011-03-01 Sanyo Electric Co., Ltd. Motor control device
JP2012249341A (en) * 2011-05-25 2012-12-13 Hitachi Appliances Inc Power conversion device and air conditioner and washer using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095263A (en) * 2000-09-14 2002-03-29 Mitsubishi Electric Corp Inverter device, compressor drive, refrigerating and air- conditioning apparatus, and control method for inverter device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095263A (en) * 2000-09-14 2002-03-29 Mitsubishi Electric Corp Inverter device, compressor drive, refrigerating and air- conditioning apparatus, and control method for inverter device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728537B2 (en) 2006-09-11 2010-06-01 Sanyo Electric Co., Ltd. Motor control device and current detecting unit
US7898197B2 (en) 2007-07-27 2011-03-01 Sanyo Electric Co., Ltd. Motor control device
JP2012249341A (en) * 2011-05-25 2012-12-13 Hitachi Appliances Inc Power conversion device and air conditioner and washer using the same

Also Published As

Publication number Publication date
JP4600726B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
US7928675B2 (en) Feedback control method and apparatus for electric motor
JP5831444B2 (en) Rotating machine control device
US7453231B2 (en) Electric vehicle control device
EP1557940B1 (en) Motor controller
US6693404B2 (en) AC current detecting device for inverter apparatus and AC current detecting method therefor
JP4529113B2 (en) Voltage source inverter and control method thereof
JP5511700B2 (en) Inverter device, fan drive device, compressor drive device, and air conditioner
JP4896407B2 (en) Inverter device with magnetic pole position detection function
JP4505725B2 (en) Three-phase inverter device
JP4722002B2 (en) PWM inverter control device, PWM inverter control method, and refrigeration air conditioner
JP4600726B2 (en) Three-phase inverter device
JP2008113494A (en) Three-phase pwm signal generator and three-phase voltage-type inverter device
JP3805637B2 (en) Electric motor control device
JP4649955B2 (en) Electric motor control device
JP2017127046A (en) Power converter control device
JP2005210839A (en) Apparatus and method of controlling motor and computer program
JPH1198899A (en) Ac motor driver
JP3378209B2 (en) Voltage-type three-phase inverter device
JP4273402B2 (en) Control device for AC-AC direct conversion power converter
JPH0698557A (en) Control circuit of pulse-width-modulation controlled inverter
US10491144B2 (en) Magnetic pole position detection device and motor control device
JPH08182347A (en) Current control type pwm inverter
JP7075002B2 (en) Synchronous motor position sensorless controller
JP5379514B2 (en) Feedback control method, motor control method, and motor control device
JP2001268930A (en) Current prediction circuit in dead time correction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4600726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees