JP2005265710A - Transmission line inspection system using unpiloted plane and method using it - Google Patents

Transmission line inspection system using unpiloted plane and method using it Download PDF

Info

Publication number
JP2005265710A
JP2005265710A JP2004081018A JP2004081018A JP2005265710A JP 2005265710 A JP2005265710 A JP 2005265710A JP 2004081018 A JP2004081018 A JP 2004081018A JP 2004081018 A JP2004081018 A JP 2004081018A JP 2005265710 A JP2005265710 A JP 2005265710A
Authority
JP
Japan
Prior art keywords
insulator
transmission line
air vehicle
unmanned air
peak frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004081018A
Other languages
Japanese (ja)
Other versions
JP4375725B2 (en
Inventor
Hiroyuki Sumiya
博之 住谷
Yoji Shimo
洋二 志茂
Yasuyoshi Sato
泰能 佐藤
Keitaro Matsuzaka
敬太郎 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hirobo Ltd
Original Assignee
Chugoku Electric Power Co Inc
Hirobo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Hirobo Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2004081018A priority Critical patent/JP4375725B2/en
Publication of JP2005265710A publication Critical patent/JP2005265710A/en
Application granted granted Critical
Publication of JP4375725B2 publication Critical patent/JP4375725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission line inspection system using an unpiloted plane capable of automatically inspecting whether a cap defect and a crack are caused in the insulator used in a transmission line. <P>SOLUTION: The transmission line inspection system is equipped with a flight control system flying to the inspection place of the transmission line while autonomocisely flies, an unmanned helicopter equipped with a data collecting system for collecting various data containing a sound caused when a wood piece is allowed to impinge against the insulator of the inspection place, a control center equipped with a flight control/data collecting system for controlling the flight of the helicopter and collecting various data from the unmmaned helicopter to process the same and an insulator cap defect and the crack an insulator cap defect/crack inspection means 100 for subjecting the sound generated when the wood piece is allowed to impinge against the insulator collected by the data collecting system of the unmanned helicopter, to frequency analysis to detect the peak frequency of the sound to inspect whether there is the cap defect and crack is present in the insulator on the basis of the detected peak frequency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、無人飛行体を用いた送電線点検システムおよび方法に関し、特に、架空送電線に使用されている碍子に笠欠および亀裂が生じているか否かを無人飛行体を用いて点検するための無人飛行体を用いた送電線点検システムおよび方法に関するものである。   The present invention relates to a transmission line inspection system and method using an unmanned aerial vehicle, and more particularly, to inspect whether or not a cap used in an overhead transmission line is damaged or not using a unmanned aerial vehicle. The present invention relates to a transmission line inspection system and method using an unmanned aerial vehicle.

従来、架空送電線(以下、「送電線」という。)の点検は、巡視員が有人ヘリコプターに同乗して送電線に沿って飛行して双眼鏡で送電線を見ながら異常個所の有無を確認していた。しかしながら、双眼鏡を持っての点検は、巡視員(特に、乗り物に苦手な人)の負担となっており、また、異常個所を見過ごすおそれがあった。
そこで、有人ヘリコプターから送電線の画像撮影(ハイビジョン撮影など)を行って、撮影した画像を巡視員が見て送電線の素線切れやアーク痕の有無の点検,接近樹木離隔測定および碍子のひび割れ点検などをすることもなされている。
Conventionally, inspection of overhead power transmission lines (hereinafter referred to as “power transmission lines”) is performed by a patrolman riding a manned helicopter, flying along the power transmission lines, and checking the power transmission lines with binoculars for the presence or absence of abnormal locations. It was. However, inspection with binoculars is a burden on patrolmen (especially those who are not good at vehicles), and there is a risk of overlooking abnormal parts.
Therefore, a transmission line image was taken from a manned helicopter (high-vision shots, etc.), and a patrolman looked at the shot image to check for broken wires and arc marks on the transmission line, to measure the distance between trees approaching and cracking the insulator. There are also inspections.

しかしながら、有人ヘリコプターを使用した送電線の点検は、その費用が高いという問題のほかに、急に点検が必要になった場合に簡易かつ迅速に対応することができないという問題がある。
また、画像撮影による送電線の点検作業も、最終的な異常個所の発見は巡視員が画像を見ながら行っているため、迅速かつ正確な点検が行えないという問題がある。
However, inspecting a transmission line using a manned helicopter has a problem that it cannot be easily and quickly dealt with when the inspection is suddenly required, in addition to the high cost.
In addition, the inspection work of the power transmission line by taking an image also has a problem that the inspection of the final abnormal part is performed while the patrolman looks at the image, so that a quick and accurate inspection cannot be performed.

なお、無人ヘリコプターを使用して送電線やダム湖の取水口などの保守および監視を行う方法に関する技術として、たとえば以下に示す2つの特許文献に開示されているものがある。
特開2003−127994号公報 特開2003−127997号公報
In addition, there exist some which are disclosed by the following two patent documents as a technique regarding the method of performing maintenance and monitoring, such as a power transmission line and the intake of a dam lake, using an unmanned helicopter.
JP 2003-127994 A JP 2003-127997 A

上記特許文献1(特開2003−127994号公報)は、ラジコンヘリコプターおよび地上局にGPS信号受信装置および衛星通信装置を設けることによりラジコンヘリコプターを地形の影響を受けることなく無視界操縦を可能にするとともに、鉄塔や送電線などの障害物の座標をあらかじめ飛行ルートと共に入力しておいてラジコンヘリコプターが障害物に接近しすぎると自動的に回避させることにより障害物への衝突事故を防止することを開示する。   The above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 2003-127994) allows a radio controlled helicopter to be ignored without being affected by topography by providing a radio signal helicopter and a ground station with a GPS signal receiving device and a satellite communication device. In addition, the coordinates of obstacles such as steel towers and power transmission lines are entered in advance with the flight route, and if the radio control helicopter gets too close to the obstacles, they will automatically avoid collisions by preventing them from colliding with obstacles. Disclose.

上記特許文献2(特開2003−127997号公報)は、ラジコンヘリコプターおよび地上局にGPS信号受信装置および衛星通信装置を設けることによりラジコンヘリコプターを地形の影響を受けることなく無視界操縦を可能にするとともに、鉄塔や送電線などの障害物の座標をあらかじめ入力しておいてラジコンヘリコプターが障害物に接近しすぎると警報を発生させたり自動操縦により回避させたりすることにより障害物への衝突事故を防止することを開示する。   The above-mentioned patent document 2 (Japanese Patent Laid-Open No. 2003-127997) makes it possible to control a radio controlled helicopter without being influenced by topography by providing a radio signal helicopter and a ground station with a GPS signal receiving device and a satellite communication device. At the same time, the coordinates of obstacles such as steel towers and power transmission lines are entered in advance, and if the radio controlled helicopter gets too close to the obstacles, an alarm will be generated or a collision accident to the obstacles will be avoided by autopilot. Disclose to prevent.

本発明の目的は、送電線に使用されている碍子に笠欠および亀裂が生じているか否かを自動的に点検することができる無人飛行体を用いた送電線点検システムおよび方法を提供することにある。   An object of the present invention is to provide a power transmission line inspection system and method using an unmanned air vehicle capable of automatically inspecting whether or not a cap and a crack are generated in an insulator used for a power transmission line. It is in.

本発明の無人飛行体を用いた送電線点検装置は、自律飛行しつつ送電線(91)の点検箇所まで飛行するための飛行制御系(20)および前記点検箇所の碍子に木片を当てた時の音を含む各種情報を収集するための情報収集系(30)を備える無人飛行体(10)と、該無人飛行体(10)の飛行を制御するとともに該無人飛行体(10)からの前記各種情報を収集して処理する飛行制御・情報収集系(60)を備える管制センター(50)と、前記無人飛行体(10)の前記情報収集系(30)により収集された前記碍子に木片を当てた時の音を周波数解析して該音のピーク周波数を検出して、該検出したピーク周波数に基づいて前記碍子に笠欠および亀裂があるか否かを点検する碍子笠欠・亀裂点検手段(100)とを具備することを特徴とする。
ここで、前記無人飛行体(10)の前記情報収集系(30)が、前記碍子に向けて前記木片を発射する木片発射装置(81)と、該木片発射装置(81)から発射された前記木片が前記碍子に当たった時の音を収録する高指向性のマイク(82)とを備えてもよい。
前記碍子笠欠・亀裂点検手段(100)が、前記マイク(82)により収録された前記碍子に木片を当てた時の音の周波数解析を行う周波数解析手段(101)と、該周波数解析手段(101)により得られた前記音の周波数特性に基づいてピーク周波数を検出するピーク周波数検出手段(102)と、該ピーク周波数検出手段(102)により得られた前記ピーク周波数の数値に応じて前記碍子が健全な碍子か笠欠碍子か亀裂碍子かを判定する判定手段(103)とを備えてもよい。
The power transmission line inspection apparatus using the unmanned air vehicle of the present invention has a flight control system (20) for flying to the inspection point of the transmission line (91) while flying autonomously, and when a piece of wood is applied to the insulator of the inspection point An unmanned air vehicle (10) having an information collecting system (30) for collecting various information including the sound of the unmanned air vehicle, and controlling the flight of the unmanned air vehicle (10) and the unmanned air vehicle (10) A control center (50) having a flight control / information collection system (60) for collecting and processing various kinds of information, and a piece of wood on the cocoon collected by the information collection system (30) of the unmanned air vehicle (10) Insulator / crack inspection means for detecting the peak frequency of the sound by frequency analysis of the sound when hit and checking whether the insulator has a cap and a crack based on the detected peak frequency (100) To.
Here, the information collecting system (30) of the unmanned aerial vehicle (10) fires the piece of wood toward the insulator, a piece of wood launcher (81), and the piece of wood fired from the piece of wood launcher (81). You may provide the highly directional microphone (82) which records the sound when a piece of wood hits the said insulator.
The frequency analysis means (101) for the frequency analysis of the sound when the insulator shade / crack inspection means (100) applies a piece of wood to the insulator recorded by the microphone (82), and the frequency analysis means ( 101) a peak frequency detecting means (102) for detecting a peak frequency based on the frequency characteristics of the sound obtained by (101), and the insulator according to the numerical value of the peak frequency obtained by the peak frequency detecting means (102). And determining means (103) for determining whether the coconut shell is a healthy insulator, a kasakashi insulator or a crack insulator.

前記判定手段(103)が、前記ピーク周波数検出手段(102)により得られた前記ピーク周波数が健全な碍子について得られたピーク周波数よりも大きければ、前記碍子は笠欠のある碍子であると判定し、前記ピーク周波数検出手段(102)により得られた前記ピーク周波数が健全な碍子について得られたピーク周波数よりも小さければ、前記碍子は亀裂のある碍子であると判定してもよい。
無人飛行体(10)の前記情報収集系(30)が、前記木片発射装置(81)から前記碍子までの距離を測定する距離測定手段(14,15)をさらに備え、前記碍子笠欠・亀裂点検手段(100)の周波数解析手段(101)が、前記距離測定手段(14,15)により測定された距離と前記木片発射装置(81)から発射される前記木片の初速度とから該木片が前記碍子に当る時間を計算し、該計算した時間の前後の所定期間に前記マイク(82)により収録された音の周波数解析を行ってもよい。
If the peak frequency obtained by the peak frequency detection means (102) is greater than the peak frequency obtained for a healthy insulator, the determining means (103) determines that the insulator is an eggplant-shaped insulator. If the peak frequency obtained by the peak frequency detecting means (102) is smaller than the peak frequency obtained for a healthy insulator, the insulator may be determined to be a cracked insulator.
The information collecting system (30) of the unmanned air vehicle (10) further comprises distance measuring means (14, 15) for measuring the distance from the piece launching device (81) to the insulator, The frequency analysis means (101) of the inspection means (100) determines that the piece of wood is obtained from the distance measured by the distance measurement means (14, 15) and the initial velocity of the piece of wood fired from the piece firing device (81). The time hitting the insulator may be calculated, and the frequency analysis of the sound recorded by the microphone (82) may be performed during a predetermined period before and after the calculated time.

前記碍子笠欠・亀裂点検手段(100)が、前記判定手段(103)による判定結果を表示装置に表示して巡視員に通知する判定結果通知手段(104)をさらに備えてもよい。
前記管制センター(50)の前記飛行制御・情報収集系(60)が有するホストコンピュータ(53)が、前記碍子笠欠・亀裂点検手段(100)を備えてもよい。
前記無人飛行体(10)の前記飛行制御系(20)が有するコンピュータ(21)が、前記碍子笠欠・亀裂点検手段(100)を備えてもよい。
The insulator shade defect / crack checking means (100) may further comprise a determination result notifying means (104) for displaying the determination result by the determining means (103) on a display device and notifying a patrolman.
A host computer (53) included in the flight control / information collection system (60) of the control center (50) may include the insulator cap / crack inspection means (100).
The computer (21) included in the flight control system (20) of the unmanned aerial vehicle (10) may include the insulator cap / crack checking means (100).

本発明の無人飛行体を用いた送電線点検方法は、管制センター(50)による制御により無人飛行体(10)を自律飛行させて送電線(91)の点検箇所まで飛行させ、前記無人飛行体(10)を用いて前記点検箇所の碍子に木片を当てた時の音を含む各種情報を収集し、前記無人飛行体(10)を用いて収集した前記碍子に木片を当てた時の音を周波数解析して該音のピーク周波数を検出し、該検出したピーク周波数に基づいて前記碍子に笠欠および亀裂があるか否かを点検することを特徴とする。
ここで、前記検出されたピーク周波数が健全な碍子について検出されたピーク周波数よりも大きければ、前記碍子は笠欠のある碍子であると判定し、前記検出されたピーク周波数が健全な碍子について検出されたピーク周波数よりも小さければ、前記碍子は亀裂のある碍子であると判定してもよい。
前記無人飛行体(10)から前記碍子までの距離を測定し、該測定された距離と記木片の初速度とから該木片が前記碍子に当る時間を計算し、該計算した時間の前後に収集された音の周波数解析を行ってもよい。
According to the transmission line inspection method using the unmanned air vehicle of the present invention, the unmanned air vehicle (10) is allowed to fly autonomously under control of the control center (50) to fly to the inspection point of the power transmission line (91). (10) is used to collect various kinds of information including the sound when a piece of wood is applied to the insulator at the inspection location, and the sound when the piece of wood is applied to the insulator collected using the unmanned air vehicle (10). A frequency analysis is performed to detect a peak frequency of the sound, and based on the detected peak frequency, it is checked whether the insulator has a cap and a crack.
Here, if the detected peak frequency is larger than the peak frequency detected for a healthy insulator, it is determined that the insulator is a shaded insulator, and the detected peak frequency is detected for a healthy insulator. If the frequency is lower than the peak frequency, the insulator may be determined to be a cracked insulator.
Measure the distance from the unmanned aerial vehicle (10) to the insulator, calculate the time for the piece to hit the insulator from the measured distance and the initial velocity of the piece of wood, and collect before and after the calculated time The frequency analysis of the generated sound may be performed.

本発明の無人飛行体を用いた送電線点検システムおよび方法は、以下に示すような効果を奏する。
(1)無人飛行体を使用して送電線の点検を行うことにより、費用を安くすることができるとともに、急に点検が必要になった場合でも簡易かつ迅速に対応することができる。
(2)碍子に木片などを当てたときの音を周波数解析して碍子に笠欠および亀裂が生じているか否かを検出することにより、迅速かつ正確な点検を行うことができる。
The power transmission line inspection system and method using the unmanned air vehicle of the present invention have the following effects.
(1) By inspecting the power transmission line using an unmanned air vehicle, the cost can be reduced, and even if the inspection is suddenly required, it can be dealt with simply and quickly.
(2) By performing frequency analysis of the sound when a piece of wood is applied to the insulator and detecting whether or not the insulator has a cap and a crack, a quick and accurate inspection can be performed.

送電線に用いられている碍子に笠欠および亀裂が生じているか否かを自動的に行うという目的を、無人飛行体を点検箇所まで飛行させるとともに無人飛行体から送電線の碍子に木片などを当て、このときの音の周波数解析を行って求めたピーク周波数に基づいて碍子に笠欠および亀裂が生じているか否かを検出することにより実現した。   The purpose of automatically checking whether or not the insulators used in power transmission lines are clogged and cracked is to fly the unmanned air vehicle to the inspection location and attach a piece of wood from the unmanned air vehicle to the insulator of the power transmission line. This was realized by detecting whether or not a shade and a crack were generated in the insulator based on the peak frequency obtained by analyzing the frequency of the sound at this time.

以下、本発明の無人飛行体を用いた送電線点検システムおよび方法の実施例について図面を参照して説明する。
図1は、本発明の一実施例による無人飛行体を用いた送電線点検システムの概略全体構成を示す図である。
本実施例による送電線点検システム1は、図1に示すように、無人飛行体としてのラジオコントロールヘリコプター10(以下、「ラジコンヘリ10」と称する。)と、ラジコンヘリ10の飛行などを制御および管理するとともにラジコンヘリ10からの映像情報などを用いて送電線の点検を行うホストコンピュータ53を備える管制センター50とから構成される。
ここで、ラジコンヘリ10は、図2に示すように、管制センター50との無線通信により各種情報を送受する通信アンテナ11と、ラジコンヘリ10の位置を検出するためにGPS(Global Positioning System)人工衛星100(図1参照)からの信号を受信するGPSアンテナ12と、周囲の状況を監視するために前方および左右側方の3方向を撮影する3式の周囲監視カメラ13と、所望の点検対象を撮影する情報収集用カメラ14と、所望の点検対象との距離を測定する距離センサー15と、点検する碍子に向けて木片または木の玉(以下、「木片」と称する。)を発射する木片発射装置81と、木片発射装置(81)から発射された木片が碍子に当たった時の音を収録する高指向性のマイク82と、情報収集用カメラ14,距離センサー15,木片発射装置81およびマイク82を収納する収納ケース16aを水平方向および垂直方向の2軸で回転させて情報収集用カメラ14,距離センサー15,木片発射装置81およびマイク82を向ける方向を操作する方向操作装置16と、収納ケース16aの下部に固設されて環境測定をする観測センサー17と、緊急時に起動してパラシュートを拡開させることによりラジコンヘリ10本体の降下速度を緩和するパラシュート装置(安全装置)18と、ラジコンヘリ10本体とともに通信アンテナ11,GPSアンテナ12,監視用カメラ13,情報収集用カメラ14,距離センサー15,木片発射装置81,マイク82,方向操作装置16,観測センサー17およびパラシュート装置18を統括制御するコンピュータ21(図3参照)などが収納された制御ボックス19とを備える。
Embodiments of a transmission line inspection system and method using an unmanned air vehicle of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a schematic overall configuration of a power transmission line inspection system using an unmanned air vehicle according to an embodiment of the present invention.
As shown in FIG. 1, the power transmission line inspection system 1 according to the present embodiment controls and controls the radio control helicopter 10 (hereinafter referred to as “radio control helicopter 10”) as an unmanned air vehicle, the flight of the radio control helicopter 10, and the like. The control center 50 includes a host computer 53 that manages and inspects the transmission line using video information from the radio control helicopter 10.
Here, as shown in FIG. 2, the radio control helicopter 10 includes a communication antenna 11 that transmits and receives various types of information by wireless communication with the control center 50, and a GPS (Global Positioning System) artificial sensor for detecting the position of the radio control helicopter 10. A GPS antenna 12 that receives a signal from the satellite 100 (see FIG. 1), three types of surrounding surveillance cameras 13 that photograph the three directions forward and left and right to monitor the surrounding situation, and a desired inspection target The information collecting camera 14 for photographing the object, the distance sensor 15 for measuring the distance from the desired inspection object, and the piece of wood for firing a piece of wood or a ball of wood (hereinafter referred to as “wood piece”) toward the insulator to be inspected. A launching device 81, a highly directional microphone 82 for recording sound when a piece of wood fired from the wood launching device (81) hits the insulator, an information collecting camera 14, and a distance sensor 15 The storage case 16a for storing the wood chip launcher 81 and the microphone 82 is rotated about two axes in the horizontal direction and the vertical direction to operate the direction in which the information collecting camera 14, the distance sensor 15, the wood chip launcher 81 and the microphone 82 are directed. Direction operating device 16, observation sensor 17 fixed to the lower part of the storage case 16a and measuring the environment, and parachute device that relaxes the descent speed of the radio controlled helicopter 10 by starting in an emergency and expanding the parachute. Safety device 18, radio control helicopter 10 main body, communication antenna 11, GPS antenna 12, monitoring camera 13, information collecting camera 14, distance sensor 15, wood chip launching device 81, microphone 82, direction operation device 16, observation sensor 17 And a computer 21 for overall control of the parachute device 18 (see FIG. 3) Etc. and a control box 19 which is the housing.

ラジコンヘリ10はまた、図3に示すように、飛行制御系20として、コンピュータ21と、コンピュータ21に接続されたGPS部26,距離センサー15,制御用センサー27,赤外センサー28およびスイッチ機構24(以下、「SW/Mixer部24」と称する。)と、SW/Mixer部24に接続されたモデム23およびサーボ制御部25と、モデム23に接続されたデータ送受信機22と、周囲監視カメラ13と、周囲監視カメラ13に接続された画像送信機29とを備えて、自律飛行しつつ所望の位置まで自動飛行することができるようになっている。
なお、SW/Mixer部24は、管制センター50からデータ送受信機22およびモデム23を介して送信されてくる制御情報に応じてラジコンヘリ10本体の自動飛行,半自動飛行または手動飛行と飛行制御の切替を行うとともに、階層的安全制御における制御レベルを切り替えるためのものである。また、サーボ制御部25は、SW/Mixer部24の切替に応じたデータ送受信機22およびモデム23を介する管制センター50からの制御信号またはコンピュータ21からの制御信号に基づいてラジコンヘリ10本体各部10’を機能させるサーボモータの駆動を制御する。
As shown in FIG. 3, the radio control helicopter 10 also has, as a flight control system 20, a computer 21, a GPS unit 26 connected to the computer 21, a distance sensor 15, a control sensor 27, an infrared sensor 28, and a switch mechanism 24. (Hereinafter referred to as “SW / Mixer unit 24”), a modem 23 and a servo control unit 25 connected to the SW / Mixer unit 24, a data transmitter / receiver 22 connected to the modem 23, and a surrounding surveillance camera 13 And an image transmitter 29 connected to the surrounding monitoring camera 13 so that it can automatically fly to a desired position while autonomously flying.
The SW / Mixer unit 24 switches between automatic flight, semi-automatic flight or manual flight and flight control of the radio controlled helicopter 10 according to control information transmitted from the control center 50 via the data transceiver 22 and the modem 23. And switching the control level in hierarchical safety control. In addition, the servo control unit 25 controls each part 10 of the radio controlled helicopter 10 based on a control signal from the control center 50 or a control signal from the computer 21 via the data transceiver 22 and the modem 23 according to the switching of the SW / Mixer unit 24. Controls the drive of the servo motor that makes the 'function.

ラジコンヘリ10はまた、図4に示すように、情報収集系30として、情報収集用カメラ14と、マイク82と、情報収集用カメラ14で撮影した画像を録画するとともにマイク82で収録した音を録音するためのVTR(Video Tape Recorder)31と、有毒ガスなどの濃度センサーなどのラジコンヘリ10の周囲における環境測定をするための観測センサー17と、VTR31への録画・録音と並行して情報収集用カメラ14からの撮影画像などを符号化および圧縮化するための高圧縮・並行処理部32と、高圧縮・並行処理部32で圧縮された撮影画像および観測センサー17による測定データやマイク82で収集された音を管制センター50に送信するための画像送信機29と、データ送受信機22を介して管制センター50から受信した制御信号などに基づいて方向操作装置16を動作させるサーボモータの駆動を制御するためのサーボ制御部36とを備える。
なお、情報収集用カメラ14は、通常の撮影カメラに限らず、所望の画像を撮影する場合には高倍率,広角または魚眼レンズなどの特殊なレンズを取り付けた可視カメラでもよく、温度差などの熱解析を行いたい場合やコロナ放電などを観察したい場合には赤外線カメラや紫外線カメラでもよい。また、画像送信機29は、観測センサー17による測定データを送信する際には、高圧縮・並行処理部32からの撮影画像に重畳してまたは時分割して両者を同時に送信することができるようになっている。
As shown in FIG. 4, the radio control helicopter 10 also serves as the information collection system 30 to record the information captured by the information collection camera 14, the microphone 82, and the information collection camera 14, and to record the sound recorded by the microphone 82. VTR (Video Tape Recorder) 31 for recording, observation sensor 17 for measuring the environment around the radio controlled helicopter 10 such as a concentration sensor of toxic gas, etc., and information collection in parallel with recording / recording to the VTR 31 A high compression / parallel processing unit 32 for encoding and compressing a captured image from the camera 14, a captured image compressed by the high compression / parallel processing unit 32, measurement data from the observation sensor 17, and a microphone 82. An image transmitter 29 for transmitting the collected sound to the control center 50 and a control received from the control center 50 via the data transceiver 22. And a servo control unit 36 for controlling the drive of a servo motor that operates the direction operating device 16 based on a control signal or the like.
Note that the information collecting camera 14 is not limited to a normal photographing camera, and may be a visible camera equipped with a special lens such as a high magnification, wide angle or fisheye lens when photographing a desired image. An infrared camera or an ultraviolet camera may be used to perform analysis or to observe corona discharge. Further, when transmitting the measurement data from the observation sensor 17, the image transmitter 29 can superimpose on the captured image from the high compression / parallel processing unit 32 or can transmit both of them simultaneously. It has become.

管制センター50は、図5に示すように、飛行制御・情報収集系60として、ホストコンピュータ53と、ホストコンピュータ53に接続された操作パネル65と、ホストコンピュータ53に接続された情報モニター54と、ホストコンピュータ53および情報モニター54に接続されたナビゲーションシステム63(目的地設定手段、障害物設定手段および経路決定手段を構成する。)と、通信アンテナ51(図1参照)を介してラジコンヘリ10との間で各種情報を送受するデータ送受信機61と、データ送受信機61とホストコンピュータ53との間に接続されたモデム62と、ラジコンヘリ10から同時に送られてくる周囲監視カメラ13の監視映像情報および情報収集用カメラ14の映像情報をパラボラアンテナ52(図1参照)を介して受信して復号化・伸長させる画像受信機64と、画像受信機64から入力される周囲監視カメラ13の監視映像を表示する安全監視モニター55と、画像受信機64およびホストコンピュータ53に接続された収集映像モニター56とを備える。なお、画像受信機64は、ラジコンヘリ10から送られてくるマイク82により収集された音も受信する。
ここで、収集映像モニター56は、情報収集用カメラ14の情報収集映像や観測センサー17の測定データをホストコンピュータ53に受け渡して、ホストコンピュータ53からその映像などを分析した結果の注目箇所などの分析映像が返送されてきたときには情報収集映像と重畳させて表示する。
モデム62は、ホストコンピュータ53が処理する各種情報をデータ送受信機61とのやり取り可能にA/D変換またはD/A変換する。
As shown in FIG. 5, the control center 50 includes a host computer 53, an operation panel 65 connected to the host computer 53, an information monitor 54 connected to the host computer 53, as a flight control / information collection system 60. A navigation system 63 (which constitutes a destination setting means, an obstacle setting means and a route determination means) connected to the host computer 53 and the information monitor 54, and the radio control helicopter 10 via the communication antenna 51 (see FIG. 1) Data transmitter / receiver 61 for transmitting / receiving various information between them, the modem 62 connected between the data transmitter / receiver 61 and the host computer 53, and the monitoring video information of the ambient monitoring camera 13 sent simultaneously from the radio controlled helicopter 10 And the video information of the information collecting camera 14 is received by the parabolic antenna 52 (see FIG. 1). Connected to the image receiver 64 that receives and decodes / decompresses, the safety monitoring monitor 55 that displays the monitoring video of the surrounding monitoring camera 13 input from the image receiver 64, and the image receiver 64 and the host computer 53. The collected video monitor 56 is provided. The image receiver 64 also receives sounds collected by the microphone 82 sent from the radio control helicopter 10.
Here, the collected video monitor 56 delivers the information collected video of the information collecting camera 14 and the measurement data of the observation sensor 17 to the host computer 53, and analyzes the noticed location etc. as a result of analyzing the video from the host computer 53. When the video is returned, it is displayed superimposed on the information collection video.
The modem 62 performs A / D conversion or D / A conversion so that various types of information processed by the host computer 53 can be exchanged with the data transceiver 61.

ホストコンピュータ53は、図6に示すように、碍子笠欠・亀裂点検手段100として、周波数解析手段101と、ピーク周波数検出手段102と、判定手段103と、判定結果通知手段104とを備える。なお、碍子笠欠・亀裂点検手段100はソフトウエアで構成してもよいしハードウエアで構成してもよい。   As shown in FIG. 6, the host computer 53 includes a frequency analyzing unit 101, a peak frequency detecting unit 102, a determining unit 103, and a determination result notifying unit 104 as the cocoon shade missing / crack checking unit 100. It should be noted that the insulator cover / crack checking means 100 may be configured by software or hardware.

次に、送電線に使用されている碍子に笠欠および亀裂が生じているか否かを点検する際の送電線点検システム1の動作について、図7および図8を参照して説明する。
ナビゲーションシステム63などを用いて予め設定されている制御プログラムに基づいてラジコンヘリ10の完全自動を指示する制御信号を管制センター50からラジコンヘリ10に送信してラジコンヘリ10の飛行制御系20を動作させることにより、碍子の点検箇所までラジコンヘリ10を送電線に沿って自動飛行させる。このとき、たとえば赤外センサー28で障害物を検知し、距離センサー15およびコンピュータ21で飛行方向を修正しながらラジコンヘリ10を自動飛行させる。
送電線の素線切れおよびアーク痕を点検する場合には、図7に示すように、赤外センサー28により特定された鉄塔90に張られた送電線91との距離を距離センサー15により検知しつつ、その送電線91に追従飛行するようにラジコンヘリ10の飛行制御系20を動作させるとともに、碍子の点検箇所に到達したら木片発射装置81およびマイク82が点検する碍子の方に向くように方向操作装置16を動作させる。
Next, the operation of the power transmission line inspection system 1 when inspecting whether or not the shade used in the power transmission line is damaged and cracked will be described with reference to FIGS. 7 and 8.
Based on a control program set in advance using the navigation system 63 or the like, a control signal instructing the fully automatic control of the radio control helicopter 10 is transmitted from the control center 50 to the radio control helicopter 10 to operate the flight control system 20 of the radio control helicopter 10. By doing so, the radio controlled helicopter 10 is automatically caused to fly along the power transmission line to the check point of the insulator. At this time, for example, an obstacle is detected by the infrared sensor 28, and the radio controlled helicopter 10 is automatically caused to fly while correcting the flight direction by the distance sensor 15 and the computer 21.
In the case of inspecting the wire breakage and arc trace of the power transmission line, the distance sensor 15 detects the distance from the power transmission line 91 stretched on the steel tower 90 specified by the infrared sensor 28, as shown in FIG. On the other hand, the flight control system 20 of the radio controlled helicopter 10 is operated so as to follow the power transmission line 91, and the direction of the wood chip launcher 81 and the microphone 82 is directed toward the insulator to be inspected when reaching the check point of the insulator. The operating device 16 is operated.

健全な碍子と笠欠のある碍子(以下、「笠欠碍子」と称する。)と亀裂のある碍子(以下、「亀裂碍子」と称する。)とでは、図8に一例を示すように、碍子を叩いたときに発生する音のピーク周波数が異なる。すなわち、笠欠および亀裂のない健全な碍子を叩いたときに発生する音は、ピーク周波数が約2.25kHzの音となる(図8(a)参照)。一方、笠欠碍子を叩いたときに発生する音は、ピーク周波数が約2.45kHzの音となる(図8(b)参照)。また、亀裂碍子を叩いたときに発生する音は、ピーク周波数が約2.05kHzの音となる。   As shown in an example of FIG. 8, there is a healthy eggplant and an eggplant with a cape (hereinafter referred to as “kasakazushi”) and an eggplant with a crack (hereinafter referred to as “crack insulator”). The peak frequency of the sound generated when you hit is different. That is, the sound generated when hitting a healthy insulator without a cap and a crack is a sound having a peak frequency of about 2.25 kHz (see FIG. 8A). On the other hand, the sound generated when hitting the Kasabiko is a sound having a peak frequency of about 2.45 kHz (see FIG. 8B). The sound generated when the crack insulator is struck is a sound having a peak frequency of about 2.05 kHz.

そこで、碍子を点検するために、ラジコンヘリ10の収納ケース16aに収納された木片発射装置81から碍子に向けて木片を発射し、木片が碍子に当った時の音をマイク82で収録する。マイク82で収録された音はホストコンピュータ53に送られる。ホストコンピュータ53は、送られてきた音の周波数解析を周波数解析手段101を用いて行ったのち、この周波数解析により得られる音の周波数特性に基づいてピーク周波数検出手段102を用いてピーク周波数を検出する。その後、ホストコンピュータ53は、笠欠碍子の場合にはピーク周波数が健全な碍子の場合よりも大きくなり、亀裂碍子の場合にはピーク周波数が健全な碍子の場合よりも小さくなることから(図8参照)、得られたピーク周波数に応じて健全な碍子か笠欠碍子か亀裂碍子かを判定手段103を用いて判定したのち、その判定結果を判定結果通知手段104を用いて収集映像モニター56に表示させる。
以上により、巡視員は、送電線に使用されている碍子に笠欠および亀裂が生じているか否かを点検することができる。
Therefore, in order to check the insulator, a piece of wood is fired toward the insulator from the wood piece launching device 81 stored in the storage case 16a of the radio controlled helicopter 10, and a sound when the piece of wood hits the insulator is recorded by the microphone 82. The sound recorded by the microphone 82 is sent to the host computer 53. The host computer 53 performs frequency analysis of the transmitted sound using the frequency analysis unit 101, and then detects the peak frequency using the peak frequency detection unit 102 based on the frequency characteristics of the sound obtained by the frequency analysis. To do. After that, the host computer 53 has a peak frequency larger than that of a healthy insulator in the case of Kasahashi insulator, and becomes smaller than that of a healthy insulator in the case of crack insulator (FIG. 8). After determining whether a sound insulator, a captive eggplant insulator or a crack insulator is used by the determination unit 103 according to the obtained peak frequency, the determination result is sent to the collected video monitor 56 using the determination result notification unit 104. Display.
As described above, the patrolman can check whether or not the shade used in the transmission line has a cap and a crack.

なお、木片が碍子に当った時の音をマイク82で録音する際にラジコンヘリ10のロータの音や風の音で録音すべき音の周波数解析の精度に影響を与える場合があり得るが、この場合には、以下の対策を施すことにより対処することができる。
(1)情報収集用カメラ14または赤外センサー28と距離センサー15とを用いて点検対象の碍子までの距離を測定し、ホストコンピュータ53はこの測定した距離と木片発射装置81から発射される木片の初速度とから木片が碍子に当る時間を計算し、計算した時間の前後の所定期間に録音された音の周波数解析を行い、得られた周波数特性を比較することにより、木片が碍子に当った時にのみ発生する音を抽出する。
(2)木片を碍子に数回当てて、上記(1)および(2)の処理を数回行う。
In addition, when recording the sound when the piece of wood hits the insulator with the microphone 82, it may affect the accuracy of the frequency analysis of the sound to be recorded with the sound of the rotor of the radio control helicopter 10 or the sound of the wind. Can be dealt with by taking the following measures.
(1) The distance to the insulator to be inspected is measured using the information collecting camera 14 or the infrared sensor 28 and the distance sensor 15, and the host computer 53 measures the measured distance and the piece of wood fired from the wood piece launcher 81. Calculate the time that the piece of wood hits the insulator from the initial velocity of the sound, analyze the frequency of the sound recorded in a predetermined period before and after the calculated time, and compare the obtained frequency characteristics, so that the piece of wood hits the insulator. Extract sounds that occur only when
(2) A piece of wood is applied to the insulator several times, and the above processes (1) and (2) are performed several times.

以上の説明では、図6に示した碍子笠欠・亀裂点検手段100を管制センター50のホストコンピュータ53が備えたが、碍子笠欠・亀裂点検手段100をラジコンヘリ10のコンピュータ21が備えて、碍子に笠欠または亀裂が生じているか否かの点検結果を画像送信機29およびデータ送受信機22を介して管制センター50に送信して収集映像モニター56に表示させるようにしてもよい。
また、管制センター50よりラジコンヘリ10を送電線91に沿って自動飛行させたが、管制センター50の飛行制御・情報収集系60を用いてラジコンヘリ10を送電線91に沿って半自動飛行または手動飛行させてもよい。
さらに、無人飛行体としてラジコンヘリ10(無人ヘリコプター)を用いたが、無人気球,無人飛行船および無人飛行機などを用いてもよい。
In the above description, the coconut cap missing / crack checking means 100 shown in FIG. 6 is provided in the host computer 53 of the control center 50, but the coconut cap missing / crack checking means 100 is provided in the computer 21 of the radio control helicopter 10, The inspection result of whether or not the insulator has a cap or a crack may be transmitted to the control center 50 via the image transmitter 29 and the data transmitter / receiver 22 and displayed on the collected video monitor 56.
Further, the radio control helicopter 10 was automatically flighted along the power transmission line 91 from the control center 50, but the radio control helicopter 10 was semi-automatically flighted or manually operated along the power transmission line 91 using the flight control / information collecting system 60 of the control center 50. You may fly.
Further, although the radio control helicopter 10 (unmanned helicopter) is used as an unmanned air vehicle, an unpopular sphere, an unmanned airship, an unmanned airplane, or the like may be used.

以上説明したように、本発明の無人飛行体を用いた送電線点検システムおよび方法は、送電線に使用されている碍子に笠欠または亀裂が生じているか否かの点検を無人飛行体を用いて自動的に行う際に利用することができる。   As described above, the transmission line inspection system and method using the unmanned aerial vehicle according to the present invention uses the unmanned aerial vehicle to check whether or not a cap or a crack has occurred in the insulator used in the transmission line. It can be used when performing automatically.

本発明の一実施例による無人飛行体を用いた送電線点検システムの概略全体構成を示す図である。(実施例1)1 is a diagram showing a schematic overall configuration of a power transmission line inspection system using an unmanned air vehicle according to an embodiment of the present invention. (Example 1) 図1示したラジコンヘリ10の構成を示す図である。(実施例1)It is a figure which shows the structure of the radio controlled helicopter 10 shown in FIG. (Example 1) 図1に示したラジコンヘリ10の飛行制御系20の構成を示す図である。(実施例1)It is a figure which shows the structure of the flight control system 20 of the radio controlled helicopter 10 shown in FIG. (Example 1) 図1に示したラジコンヘリ10の情報収集系30の構成を示す図である。(実施例1)It is a figure which shows the structure of the information collection system 30 of the radio controlled helicopter 10 shown in FIG. (Example 1) 図1に示した管制センター50の飛行制御・情報収集系60の構成を示す図である。(実施例1)It is a figure which shows the structure of the flight control and information collection system 60 of the control center 50 shown in FIG. (Example 1) 図5に示したホストコンピュータ53が備える碍子笠欠・亀裂点検手段100の構成を示す図である。(実施例1)It is a figure which shows the structure of the coconut cap missing / crack inspection means 100 with which the host computer 53 shown in FIG. 5 is provided. (Example 1) 碍子に笠欠および亀裂が生じているか否かを点検する際の図1に示した送電線点検システム1の動作を説明するための図である。(実施例1)It is a figure for demonstrating operation | movement of the power transmission line inspection system 1 shown in FIG. 1 at the time of inspecting whether the shade and the crack have arisen in the insulator. (Example 1) 碍子に笠欠および亀裂が生じているか否かを点検する際の図1に示した送電線点検システム1の動作を説明するための図である。(実施例1)It is a figure for demonstrating operation | movement of the power transmission line inspection system 1 shown in FIG. 1 at the time of inspecting whether the shade and the crack have arisen in the insulator. (Example 1)

符号の説明Explanation of symbols

10 ラジコンヘリ
20 飛行制御系
21 コンピュータ
30 情報収集系
50 管制センター
53 ホストコンピュータ
60 飛行制御・情報収集系
81 木片発射装置
81 マイク
100 碍子笠欠・亀裂点検手段
101 周波数解析手段
102 ピーク周波数検出手段
103 判定手段
104 判定結果通知手段


DESCRIPTION OF SYMBOLS 10 Radio control helicopter 20 Flight control system 21 Computer 30 Information collection system 50 Control center 53 Host computer 60 Flight control / information collection system 81 Wood chip launcher 81 Microphone 100 Lion shade lack / crack inspection means 101 Frequency analysis means 102 Peak frequency detection means 103 Determination means 104 Determination result notification means


Claims (11)

自律飛行しつつ送電線(91)の点検箇所まで飛行するための飛行制御系(20)および前記点検箇所の碍子に木片を当てた時の音を含む各種情報を収集するための情報収集系(30)を備える無人飛行体(10)と、
該無人飛行体(10)の飛行を制御するとともに該無人飛行体(10)からの前記各種情報を収集して処理する飛行制御・情報収集系(60)を備える管制センター(50)と、
前記無人飛行体(10)の前記情報収集系(30)により収集された前記碍子に木片を当てた時の音を周波数解析して該音のピーク周波数を検出して、該検出したピーク周波数に基づいて前記碍子に笠欠および亀裂があるか否かを点検する碍子笠欠・亀裂点検手段(100)と、
を具備することを特徴とする、無人飛行体を用いた送電線点検システム。
A flight control system (20) for flying to the inspection point of the transmission line (91) while autonomously flying, and an information collection system for collecting various information including sound when a piece of wood is applied to the insulator of the inspection point ( 30) an unmanned air vehicle (10) comprising:
A control center (50) comprising a flight control / information collection system (60) for controlling the flight of the unmanned air vehicle (10) and collecting and processing the various information from the unmanned air vehicle (10);
The sound of the unmanned air vehicle (10) collected by the information collection system (30) is subjected to frequency analysis of the sound when a piece of wood is applied to the insulator and the peak frequency of the sound is detected. Insulator / crack inspection means (100) for inspecting whether or not there is a cap and a crack in the insulator,
A transmission line inspection system using an unmanned aerial vehicle.
前記無人飛行体(10)の前記情報収集系(30)が、
前記碍子に向けて前記木片を発射する木片発射装置(81)と、
該木片発射装置(81)から発射された前記木片が前記碍子に当たった時の音を収録する高指向性のマイク(82)と、
を備えることを特徴とする、請求項1記載の無人飛行体を用いた送電線点検システム。
The information collection system (30) of the unmanned air vehicle (10)
A piece of wood launching device (81) for firing the piece of wood towards the insulator;
A highly directional microphone (82) for recording a sound when the piece of wood fired from the piece launcher (81) hits the insulator;
The transmission line inspection system using the unmanned air vehicle according to claim 1, comprising:
前記碍子笠欠・亀裂点検手段(100)が、
前記マイク(82)により収録された前記碍子に木片を当てた時の音の周波数解析を行う周波数解析手段(101)と、
該周波数解析手段(101)により得られた前記音の周波数特性に基づいてピーク周波数を検出するピーク周波数検出手段(102)と、
該ピーク周波数検出手段(102)により得られた前記ピーク周波数の数値に応じて前記碍子が健全な碍子か笠欠碍子か亀裂碍子かを判定する判定手段(103)と、
を備えることを特徴とする、請求項2記載の無人飛行体を用いた送電線点検システム。
The coconut cap missing / crack checking means (100)
Frequency analysis means (101) for performing frequency analysis of sound when a piece of wood is applied to the insulator recorded by the microphone (82);
Peak frequency detection means (102) for detecting a peak frequency based on the frequency characteristics of the sound obtained by the frequency analysis means (101);
A determination means (103) for determining whether the insulator is a healthy insulator, a kasakashi insulator or a crack insulator according to a numerical value of the peak frequency obtained by the peak frequency detection means (102);
The transmission line inspection system using the unmanned air vehicle according to claim 2, comprising:
前記判定手段(103)が、
前記ピーク周波数検出手段(102)により得られた前記ピーク周波数が健全な碍子について得られたピーク周波数よりも大きければ、前記碍子は笠欠のある碍子であると判定し、
前記ピーク周波数検出手段(102)により得られた前記ピーク周波数が健全な碍子について得られたピーク周波数よりも小さければ、前記碍子は亀裂のある碍子であると判定する、
ことを特徴とする、請求項3記載の無人飛行体を用いた送電線点検システム。
The determination means (103)
If the peak frequency obtained by the peak frequency detection means (102) is greater than the peak frequency obtained for a healthy insulator, it is determined that the insulator is a shaded insulator.
If the peak frequency obtained by the peak frequency detection means (102) is smaller than the peak frequency obtained for a healthy insulator, it is determined that the insulator is a cracked insulator.
The power transmission line inspection system using the unmanned air vehicle according to claim 3.
無人飛行体(10)の前記情報収集系(30)が、前記木片発射装置(81)から前記碍子までの距離を測定する距離測定手段(14,15)をさらに備え、
前記碍子笠欠・亀裂点検手段(100)の周波数解析手段(101)が、前記距離測定手段(14,15)により測定された距離と前記木片発射装置(81)から発射される前記木片の初速度とから該木片が前記碍子に当る時間を計算し、該計算した時間の前後の所定期間に前記マイク(82)により収録された音の周波数解析を行う、
ことを特徴とする、請求項3または4記載の無人飛行体を用いた送電線点検システム。
The information collection system (30) of the unmanned air vehicle (10) further includes distance measuring means (14, 15) for measuring a distance from the piece launching device (81) to the insulator,
The frequency analysis means (101) of the cocoon caps / crack inspection means (100) uses the distance measured by the distance measurement means (14, 15) and the first of the pieces of wood fired from the wood piece launcher (81). Calculating the time that the piece of wood hits the insulator from the speed, and performing a frequency analysis of the sound recorded by the microphone (82) in a predetermined period before and after the calculated time,
The transmission line inspection system using the unmanned air vehicle according to claim 3 or 4,
前記碍子笠欠・亀裂点検手段(100)が、前記判定手段(103)による判定結果を表示装置に表示して巡視員に通知する判定結果通知手段(104)をさらに備えることを特徴とする、請求項3乃至5いずれかに記載の無人飛行体を用いた送電線点検システム。   The coconut cap missing / crack checking means (100) further comprises a determination result notifying means (104) for displaying a determination result by the determining means (103) on a display device and notifying a patrolman. A transmission line inspection system using the unmanned air vehicle according to any one of claims 3 to 5. 前記管制センター(50)の前記飛行制御・情報収集系(60)が有するホストコンピュータ(53)が、前記碍子笠欠・亀裂点検手段(100)を備えることを特徴とする、請求項1乃至6いずれかに記載の無人飛行体を用いた送電線点検システム。   The host computer (53) included in the flight control / information collection system (60) of the control center (50) includes the insulator cap / crack inspection means (100). A transmission line inspection system using the unmanned air vehicle according to any one of the above. 前記無人飛行体(10)の前記飛行制御系(20)が有するコンピュータ(21)が、前記碍子笠欠・亀裂点検手段(100)を備えることを特徴とする、請求項1乃至6いずれかに記載の無人飛行体を用いた送電線点検システム。   The computer (21) included in the flight control system (20) of the unmanned aerial vehicle (10) includes the insulator caps / crack inspection means (100). A transmission line inspection system using the described unmanned air vehicle. 管制センター(50)による制御により無人飛行体(10)を自律飛行させて送電線(91)の点検箇所まで飛行させ、
前記無人飛行体(10)を用いて前記点検箇所の碍子に木片を当てた時の音を含む各種情報を収集し、
前記無人飛行体(10)を用いて収集した前記碍子に木片を当てた時の音を周波数解析して該音のピーク周波数を検出し、
該検出したピーク周波数に基づいて前記碍子に笠欠および亀裂があるか否かを点検する、
ことを特徴とする、無人飛行体を用いた送電線点検方法。
Control the control center (50) to fly the unmanned air vehicle (10) autonomously and fly to the inspection point of the transmission line (91),
Collect various information including sound when a piece of wood is applied to the insulator of the inspection location using the unmanned air vehicle (10),
Frequency analysis of the sound when a piece of wood is applied to the insulator collected using the unmanned air vehicle (10) to detect the peak frequency of the sound,
Inspecting whether or not the insulator has a cap and a crack based on the detected peak frequency,
A power transmission line inspection method using an unmanned air vehicle.
前記検出されたピーク周波数が健全な碍子について検出されたピーク周波数よりも大きければ、前記碍子は笠欠のある碍子であると判定し、
前記検出されたピーク周波数が健全な碍子について検出されたピーク周波数よりも小さければ、前記碍子は亀裂のある碍子であると判定する、
ことを特徴とする、請求項9記載の無人飛行体を用いた送電線点検方法。
If the detected peak frequency is greater than the peak frequency detected for a healthy insulator, the insulator is determined to be a captive insulator;
If the detected peak frequency is less than the peak frequency detected for a healthy insulator, the insulator is determined to be a cracked insulator;
The transmission line inspection method using the unmanned air vehicle according to claim 9.
前記無人飛行体(10)から前記碍子までの距離を測定し、
該測定された距離と記木片の初速度とから該木片が前記碍子に当る時間を計算し、
該計算した時間の前後に収集された音の周波数解析を行う、
ことを特徴とする、請求項9または10記載の無人飛行体を用いた送電線点検方法。
Measure the distance from the unmanned air vehicle (10) to the insulator,
From the measured distance and the initial speed of the piece of wood, calculate the time for the piece of wood to hit the insulator,
Perform frequency analysis of sounds collected before and after the calculated time,
The transmission line inspection method using the unmanned aerial vehicle according to claim 9 or 10, wherein:
JP2004081018A 2004-03-19 2004-03-19 Transmission line inspection system and method using unmanned air vehicle Expired - Fee Related JP4375725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081018A JP4375725B2 (en) 2004-03-19 2004-03-19 Transmission line inspection system and method using unmanned air vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081018A JP4375725B2 (en) 2004-03-19 2004-03-19 Transmission line inspection system and method using unmanned air vehicle

Publications (2)

Publication Number Publication Date
JP2005265710A true JP2005265710A (en) 2005-09-29
JP4375725B2 JP4375725B2 (en) 2009-12-02

Family

ID=35090414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081018A Expired - Fee Related JP4375725B2 (en) 2004-03-19 2004-03-19 Transmission line inspection system and method using unmanned air vehicle

Country Status (1)

Country Link
JP (1) JP4375725B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145346A (en) * 2011-01-07 2012-08-02 Eda Tokushu Bosui Kogyo Kk Outer wall lifting detection system, outer wall lifting detection method and moving flight vehicle for detecting outer wall lifting
CN102879692A (en) * 2012-10-16 2013-01-16 山东电力集团公司电力科学研究院 Method and device for detecting insulator through multi-rotor unmanned aerial vehicle
CN103017753A (en) * 2012-11-01 2013-04-03 中国兵器科学研究院 Unmanned aerial vehicle route planning method and device
KR101309098B1 (en) 2013-04-09 2013-09-25 (주)엠투랩 Apparatus for inspecting power transmission system based on unmanned aerial vehicle and system for inspecting power transmission system using the same
CN104297343A (en) * 2014-10-21 2015-01-21 国家电网公司 Porcelain supporting column insulator defect detection method based on normal state single-class integration model
CN105300510A (en) * 2014-07-28 2016-02-03 斗山重工业株式会社 Intelligent noise monitoring device and noise monitoring method using the same
CN105890739A (en) * 2016-05-24 2016-08-24 国网江西省电力科学研究院 Power transmission conductor galloping amplitude measurement method
WO2016139929A1 (en) * 2015-03-04 2016-09-09 日本電気株式会社 Defect inspection device, defect inspection method, and program
JP2016208065A (en) * 2015-04-15 2016-12-08 いであ株式会社 Animal population survey system
CN106353405A (en) * 2016-09-29 2017-01-25 国网福建省电力有限公司 Live detection diagnosis method and system with field fault display function for strut porcelain insulator
WO2017045144A1 (en) * 2015-09-16 2017-03-23 SZ DJI Technology Co., Ltd. System, apparatus and method for generating sound
WO2017208281A1 (en) * 2016-06-01 2017-12-07 株式会社 スカイロボット Wave-detection-type searching system
WO2017217470A1 (en) * 2016-06-16 2017-12-21 日本電気株式会社 Inspection system, mobile robot device, and inspection method
JP2018129713A (en) * 2017-02-09 2018-08-16 東京電力ホールディングス株式会社 Control method, flying body, controller, generation device and program
JP2018146946A (en) * 2016-10-12 2018-09-20 株式会社ゼンリン Control system and data structure of map data
EP3392652A1 (en) * 2017-04-21 2018-10-24 Arborea Intellbird S.L. Method for inspecting materials and aerial vehicle to implement said method
CN109544544A (en) * 2018-11-30 2019-03-29 长讯通信服务有限公司 It is a kind of that Obj State recognition methods is safeguarded based on deep learning and the mobile communication of unmanned plane
CN110737277A (en) * 2018-07-18 2020-01-31 松下知识产权经营株式会社 Unmanned aerial vehicle, information processing method, and program recording medium
JP2021001823A (en) * 2019-06-24 2021-01-07 藤本 隆 Detector and detection method
JP2021036451A (en) * 2014-04-25 2021-03-04 ソニー株式会社 Information processor, information processing method, and information processing program
CN112636256A (en) * 2021-03-08 2021-04-09 国网山东省电力公司临朐县供电公司 High-altitude power transmission line maintenance system

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145346A (en) * 2011-01-07 2012-08-02 Eda Tokushu Bosui Kogyo Kk Outer wall lifting detection system, outer wall lifting detection method and moving flight vehicle for detecting outer wall lifting
CN102879692A (en) * 2012-10-16 2013-01-16 山东电力集团公司电力科学研究院 Method and device for detecting insulator through multi-rotor unmanned aerial vehicle
CN103017753B (en) * 2012-11-01 2015-07-15 中国兵器科学研究院 Unmanned aerial vehicle route planning method and device
CN103017753A (en) * 2012-11-01 2013-04-03 中国兵器科学研究院 Unmanned aerial vehicle route planning method and device
KR101309098B1 (en) 2013-04-09 2013-09-25 (주)엠투랩 Apparatus for inspecting power transmission system based on unmanned aerial vehicle and system for inspecting power transmission system using the same
US11237560B2 (en) 2014-04-25 2022-02-01 Sony Corporation Control device, imaging device, control method, imaging method, and computer program
JP7078093B2 (en) 2014-04-25 2022-05-31 ソニーグループ株式会社 Information processing equipment, information processing methods and information processing programs
JP2021036451A (en) * 2014-04-25 2021-03-04 ソニー株式会社 Information processor, information processing method, and information processing program
EP2980546A3 (en) * 2014-07-28 2016-02-24 Doosan Heavy Industries & Construction Co., Ltd. Intelligent noise monitoring device and noise monitoring method using the same
CN105300510A (en) * 2014-07-28 2016-02-03 斗山重工业株式会社 Intelligent noise monitoring device and noise monitoring method using the same
KR101866609B1 (en) * 2014-07-28 2018-06-12 두산중공업 주식회사 Intelligent noise monitoring device and noise monitoring method using it
US10371567B2 (en) 2014-07-28 2019-08-06 DOOSAN Heavy Industries Construction Co., LTD Intelligent noise monitoring device and noise monitoring method using the same
CN104297343A (en) * 2014-10-21 2015-01-21 国家电网公司 Porcelain supporting column insulator defect detection method based on normal state single-class integration model
WO2016139929A1 (en) * 2015-03-04 2016-09-09 日本電気株式会社 Defect inspection device, defect inspection method, and program
JPWO2016139929A1 (en) * 2015-03-04 2017-12-14 日本電気株式会社 Defect inspection apparatus, defect inspection method and program
JP2016208065A (en) * 2015-04-15 2016-12-08 いであ株式会社 Animal population survey system
WO2017045144A1 (en) * 2015-09-16 2017-03-23 SZ DJI Technology Co., Ltd. System, apparatus and method for generating sound
US11347472B2 (en) 2015-09-16 2022-05-31 SZ DJI Technology Co., Ltd. System, apparatus and method for generating sound
US10725728B2 (en) 2015-09-16 2020-07-28 SZ DJI Technology Co., Ltd. System, apparatus and method for generating sound
CN105890739A (en) * 2016-05-24 2016-08-24 国网江西省电力科学研究院 Power transmission conductor galloping amplitude measurement method
JPWO2017208281A1 (en) * 2016-06-01 2018-06-14 株式会社 スカイロボット Wave detection type search system
WO2017208281A1 (en) * 2016-06-01 2017-12-07 株式会社 スカイロボット Wave-detection-type searching system
WO2017217470A1 (en) * 2016-06-16 2017-12-21 日本電気株式会社 Inspection system, mobile robot device, and inspection method
CN109313166A (en) * 2016-06-16 2019-02-05 日本电气株式会社 Inspection system, robot moving equipment and inspection method
JP2017227632A (en) * 2016-06-16 2017-12-28 日本電気株式会社 Inspection system, mobile robot device, and inspection method
JP7008948B2 (en) 2016-06-16 2022-01-25 日本電気株式会社 Inspection system, mobile robot device and inspection method
CN106353405A (en) * 2016-09-29 2017-01-25 国网福建省电力有限公司 Live detection diagnosis method and system with field fault display function for strut porcelain insulator
JP2018146946A (en) * 2016-10-12 2018-09-20 株式会社ゼンリン Control system and data structure of map data
JP6997578B2 (en) 2016-10-12 2022-01-17 株式会社ゼンリン Control system
JP2018129713A (en) * 2017-02-09 2018-08-16 東京電力ホールディングス株式会社 Control method, flying body, controller, generation device and program
EP3392652A1 (en) * 2017-04-21 2018-10-24 Arborea Intellbird S.L. Method for inspecting materials and aerial vehicle to implement said method
CN110737277A (en) * 2018-07-18 2020-01-31 松下知识产权经营株式会社 Unmanned aerial vehicle, information processing method, and program recording medium
CN109544544A (en) * 2018-11-30 2019-03-29 长讯通信服务有限公司 It is a kind of that Obj State recognition methods is safeguarded based on deep learning and the mobile communication of unmanned plane
JP2021001823A (en) * 2019-06-24 2021-01-07 藤本 隆 Detector and detection method
CN112636256B (en) * 2021-03-08 2021-07-06 国网山东省电力公司临朐县供电公司 High-altitude power transmission line maintenance system
CN112636256A (en) * 2021-03-08 2021-04-09 国网山东省电力公司临朐县供电公司 High-altitude power transmission line maintenance system

Also Published As

Publication number Publication date
JP4375725B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP4375725B2 (en) Transmission line inspection system and method using unmanned air vehicle
JP4475632B2 (en) Transmission line inspection system using unmanned air vehicle
JP7087130B2 (en) Inspection system, information processing device, inspection control program
JP2006082775A (en) Unmanned flying object controlling system and method
KR102553453B1 (en) Apparatus and method of unmaned aerial vehicle for power facilities inspection monitoring
US20170285092A1 (en) Directional unmanned aerial vehicle (uav) localization of power line ultraviolet corona using point detectors
KR102554336B1 (en) Apparatus and method for monitoring power facilities
JP2006082774A (en) Unmanned flying object and its controlling method
JP2006027448A (en) Aerial photographing method and device using unmanned flying body
JP6203569B2 (en) Bridge damage state investigation system, bridge damage state investigation method and aerial mobile equipment
KR20170101516A (en) Apparatus and method for fire monitoring using unmanned aerial vehicle
CN109906614A (en) Monitoring system and mobile robot device
KR20170101519A (en) Apparatus and method for disaster monitoring using unmanned aerial vehicle
CN104918008A (en) Unmanned aerial vehicle-based closed fire scene heat source location method
US11430101B2 (en) Unmanned aerial vehicle, inspection method, and storage medium
JPWO2018138942A1 (en) Power transmission equipment monitoring device, power transmission equipment monitoring unit, and power transmission equipment monitoring system
WO2016098146A1 (en) Non-destructive structure inspection system
CN207082909U (en) A kind of power circuit intelligent inspection system
WO2021237618A1 (en) Capture assistance method, ground command platform, unmanned aerial vehicle, system, and storage medium
KR20170031896A (en) Ships using the aircraft safe operation support systems
CN110673643A (en) Intelligent environment-friendly monitoring system and method for unmanned aerial vehicle
KR20160123551A (en) System and method for controlling video information based automatic of the drone for the inspection of electric power facilities
JPWO2017199273A1 (en) Exploration system
JP2016208065A (en) Animal population survey system
CN114023035A (en) All-weather full-automatic early detection system and detection method for forest fire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

R150 Certificate of patent or registration of utility model

Ref document number: 4375725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees