JP2005265496A - Physical quantity measuring method and measuring instrument therefor - Google Patents

Physical quantity measuring method and measuring instrument therefor Download PDF

Info

Publication number
JP2005265496A
JP2005265496A JP2004075592A JP2004075592A JP2005265496A JP 2005265496 A JP2005265496 A JP 2005265496A JP 2004075592 A JP2004075592 A JP 2004075592A JP 2004075592 A JP2004075592 A JP 2004075592A JP 2005265496 A JP2005265496 A JP 2005265496A
Authority
JP
Japan
Prior art keywords
microwave
phase shift
physical quantity
measured
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004075592A
Other languages
Japanese (ja)
Inventor
Seichi Okamura
静致 岡村
Nobuto Tsukamoto
伸人 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Foundation for Science and Technology Promotion
Original Assignee
Hamamatsu Foundation for Science and Technology Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Foundation for Science and Technology Promotion filed Critical Hamamatsu Foundation for Science and Technology Promotion
Priority to JP2004075592A priority Critical patent/JP2005265496A/en
Publication of JP2005265496A publication Critical patent/JP2005265496A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a physical quantity measuring method which enables the detection of a phase shift quantity accurately even if the transmission precision or the like of microwaves is not two high and capable of measuring the stable physical quantity of an object to be measured at low cost, and a measuring instrument therefor. <P>SOLUTION: In the physical quantity measuring method for detecting the phase shift quantity obtained by comparing the reference output of microwaves emitted from a microwave transmitter P and the output of the microwaves propagated through tea leaves and measuring the water content (physical quantity) of tea leaves on the basis of the phase shift quantity, the reference output is set to 360° being one cycle of the waveform corresponding to the cycle of its waveform and the waveform thereof is compared with the waveform corresponding to the waveform of the output propagated through the object to be measured to calculate phase shift quantity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マイクロ波発信手段から発せられたマイクロ波の基準出力と被測定物を介して伝播したマイクロ波の出力とを比較して得られる移相量を検知し、該移相量に基づいて当該被測定物の物理量を測定するための物理量の測定方法及び測定装置に関するものである。   The present invention detects a phase shift amount obtained by comparing a reference output of a microwave emitted from a microwave transmission means and an output of a microwave propagated through an object to be measured, and based on the phase shift amount The present invention relates to a physical quantity measuring method and a measuring apparatus for measuring the physical quantity of the object to be measured.

茶葉の加工工程においては、そのほとんどが揉乾装置(葉打ち機、粗揉機、揉捻機、中揉み機、中揉機、精揉機等)を用いて茶葉を揉みつつ乾燥させる作業工程であり、加工途中における茶葉の乾燥状態(茶葉の含水率)を把握することが、品質管理上、極めて重要となっている。それ故、従来より、茶葉の含水率を測定するための装置が種々提案されている。   Most of the tea leaf processing is a work process in which tea leaves are dried using a cocoon drying device (leaf punching machine, roughing machine, twisting machine, intermediate grinder, intermediate grinder, brewing machine, etc.). It is extremely important for quality control to grasp the dry state of tea leaves (water content of tea leaves) during the process. Therefore, various devices for measuring the moisture content of tea leaves have been proposed.

例えば、特許文献1にて開示された茶葉の含水率測定装置は、加工中の茶葉を収容する収容空間に臨ませてマイクロストリップ線路が配設されており、該マイクロストリップ線路をマイクロ波の伝播経路とするとともに、その減衰量を求めている。即ち、マイクロストリップ線路をマイクロ波が伝播する過程において、その一部が茶葉中に含まれる水分に吸収されて減衰するので、当該減衰量と茶葉に含まれる水分量とは相関しており、発振したマイクロ波の減衰量に基づいて含水率を算出することができるのである。   For example, in the tea leaf moisture content measuring device disclosed in Patent Document 1, a microstrip line is arranged facing an accommodating space for accommodating a tea leaf being processed, and propagation of microwaves through the microstrip line is performed. Along with the path, the attenuation is obtained. That is, in the process of propagation of microwaves through the microstrip line, a part of it is absorbed and attenuated by the moisture contained in the tea leaves, so the attenuation and the moisture content contained in the tea leaves are correlated and oscillated. The moisture content can be calculated based on the attenuation amount of the microwave.

然るに、本出願人は、茶葉の如き被測定物の水分率を更に正確に得るべく種々検討した結果、上記減衰量と、マイクロストリップ線路のもう一つの特性である「移相量」との比が被比測物における含水率と極めて高い相関を有することに着目するに至った。即ち、マイクロストリップ線路から発せられるマイクロ波の基準出力と被測定物を介して伝播したマイクロ波の出力とを比較して得られる移相量と減衰量とをそれぞれ検出し、これらパラメータに基づいて被測定物の物理量である含水率を算出するのである。
特開2000−46758号公報
However, as a result of various studies to obtain the moisture content of the object to be measured such as tea leaves more accurately, the applicant of the present invention has found that the ratio of the attenuation amount to the “phase shift amount” which is another characteristic of the microstrip line. It has come to be noted that has a very high correlation with the moisture content in the measured object. That is, the phase shift amount and the attenuation amount obtained by comparing the reference output of the microwave emitted from the microstrip line with the output of the microwave propagated through the object to be measured are detected, and based on these parameters. The moisture content, which is the physical quantity of the object to be measured, is calculated.
JP 2000-46758 A

しかしながら、上記した物理量の測定方法においては、マイクロ波による移相量を精度よく検出するために水晶発振器のような高精度のマイクロ波発信機等が必要であり、そのため高価な装置を使用することが必要となって、測定のためのコストが嵩んでしまうという問題があった。   However, in the physical quantity measuring method described above, a high-accuracy microwave transmitter such as a crystal oscillator is necessary to accurately detect the amount of phase shift due to microwaves, and therefore, an expensive apparatus is used. There is a problem that the measurement cost increases.

本発明は、このような事情に鑑みてなされたもので、マイクロ波の発信精度等がそれほど高くなくても、正確に移相量を検出することができ、低コスト且つ安定した被測定物の物理量を測定することができる物理量の測定方法及び測定装置を提供することにある。   The present invention has been made in view of such circumstances, and even if the microwave transmission accuracy is not so high, the amount of phase shift can be accurately detected, and a low-cost and stable object to be measured can be obtained. An object of the present invention is to provide a physical quantity measuring method and measuring apparatus capable of measuring a physical quantity.

請求項1記載の発明は、マイクロ波発信手段から発せられたマイクロ波の基準出力と被測定物を介して伝播したマイクロ波の出力とを比較して得られる移相量を検知し、該移相量に基づいて当該被測定物の物理量を測定する物理量測定方法において、前記基準出力は、その波形の周期に対応する波形の1周期である360度の自然数倍とされつつ被測定物を介して伝播した出力の波形に対応する波形と比較され、前記移相量が求められることを特徴とする。   According to the first aspect of the present invention, the amount of phase shift obtained by comparing the reference output of the microwave emitted from the microwave transmission means and the output of the microwave propagated through the object to be measured is detected. In the physical quantity measurement method for measuring the physical quantity of the object to be measured based on the phase amount, the reference output is a natural number multiple of 360 degrees that is one period of the waveform corresponding to the period of the waveform. The amount of phase shift is obtained by comparing with the waveform corresponding to the waveform of the output propagated through.

請求項2記載の発明は、請求項1記載の物理量の測定方法において、前記移相量及びマイクロ波の減衰量に基づき被測定物の含水率を算出することを特徴とする。   According to a second aspect of the present invention, in the physical quantity measuring method according to the first aspect, the moisture content of the object to be measured is calculated based on the phase shift amount and the attenuation amount of the microwave.

請求項3記載の発明は、マイクロ波を送信し得るマイクロ波発信手段と、該マイクロ波発信手段にて発信されたマイクロ波における被測定物を介して伝播した出力を受信し得るマイクロ波受信手段と、前記マイクロ波発信手段で送信されたマイクロ波の基準出力と、前記マイクロ波受信手段で受信されたマイクロ波の出力とを比較して移相量を検出する比較演算手段とを具備し、前記比較演算手段にて検出された移相量に基づき被測定物の物理量を測定する物理量の測定装置において、前記基準出力の波形の周期に対応する波形の1周期である360度の自然数倍に変換する変換手段を具備したことを特徴とする。   According to a third aspect of the present invention, there is provided a microwave transmission means capable of transmitting a microwave, and a microwave reception means capable of receiving an output propagated through a measurement object in the microwave transmitted by the microwave transmission means. And a comparison operation means for detecting a phase shift amount by comparing the reference output of the microwave transmitted by the microwave transmission means and the output of the microwave received by the microwave reception means, In the physical quantity measuring device for measuring the physical quantity of the object to be measured based on the phase shift amount detected by the comparison calculation means, a natural number multiple of 360 degrees that is one period of the waveform corresponding to the period of the waveform of the reference output It is characterized by comprising conversion means for converting into

請求項4記載の発明は、請求項3記載の物理量の測定装置において、前記マイクロ波受信手段で受信された出力から減衰量を検出する減衰量検出手段を具備し、当該減衰量及び前記移相量に基づき、被測定物の含水率を求めることを特徴とする。   According to a fourth aspect of the invention, there is provided the physical quantity measuring device according to the third aspect, further comprising attenuation amount detecting means for detecting an attenuation amount from the output received by the microwave receiving means, and the attenuation amount and the phase shift. The moisture content of the object to be measured is obtained based on the amount.

請求項1及び請求項3の発明によれば、マイクロ波の発信精度等がそれほど高くなくても、正確に移相量を検出することができ、低コスト且つ安定した被測定物の物理量を測定することができる。   According to the first and third aspects of the invention, even if the microwave transmission accuracy is not so high, the phase shift amount can be detected accurately, and the physical quantity of the measured object can be measured at low cost and stably. can do.

請求項2及び請求項4の発明によれば、マイクロ波の発信精度等がそれほど高くなくても、低コスト且つ安定した被測定物の含水率の測定が可能である。   According to the second and fourth aspects of the invention, the moisture content of the object to be measured can be measured at low cost and stably even if the microwave transmission accuracy is not so high.

以下、本発明の実施形態について図面を参照しながら具体的に説明する。
本実施形態の物理量の測定装置は、茶葉の含水率測定装置に適用されたもので、当該含水率測定装置は、図11に示すように、製茶工程における粗揉機1に配設され、該粗揉機1で揉乾加工中の茶葉の含水率を測定するためのものである。かかる粗揉機1に配設された含水率測定装置2は、当該粗揉機1による揉乾加工中に茶葉を適宜採取し、検出手段15及び算出手段16(図4参照)で含水率を算出し得るよう構成されている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The physical quantity measuring device of the present embodiment is applied to a tea leaf moisture content measuring device, and the moisture content measuring device is disposed in a roughing machine 1 in a tea making process as shown in FIG. This is for measuring the moisture content of tea leaves during the drying process with the machine 1. The moisture content measuring device 2 disposed in the roughing machine 1 appropriately collects tea leaves during the drying process by the roughing machine 1, and calculates the moisture content by the detection means 15 and the calculation means 16 (see FIG. 4). Configured to get.

尚、揉乾加工前、或いは揉乾加工後の茶葉の含水率を測定するよう構成してもよい。また、同図中符号8、17、18及び19は、それぞれ粗揉機1を制御する制御盤、熱風を発生するための熱風発生機、熱風を導入するための熱風ダクト及び加工後の茶葉を取り出すための取出扉を示している。   In addition, you may comprise so that the moisture content of the tea leaf before a drying process or after a drying process may be measured. Further, reference numerals 8, 17, 18 and 19 in the same figure denote a control panel for controlling the roughing machine 1, a hot air generator for generating hot air, a hot air duct for introducing hot air, and a processed tea leaf, respectively. The take-out door is shown.

この含水率測定装置2は、図1に示すように、茶葉を収容し得る収容空間Sを有したもので、かかる収容空間Sは、固設の底板3と、エアシリンダ7により同図中上下方向に移動可能な計測板4と、エアシリンダ6により同図中左右方向に移動可能な排出板5と、同図手前及び奥側に固設された側板(図示せず)とに囲まれて形成されている。   As shown in FIG. 1, the moisture content measuring device 2 has a storage space S that can store tea leaves. The storage space S is vertically fixed by a fixed bottom plate 3 and an air cylinder 7. Surrounded by a measuring plate 4 that can be moved in the direction, a discharge plate 5 that can be moved in the left-right direction in the figure by an air cylinder 6, and a side plate (not shown) fixed to the front and back of the figure. Is formed.

即ち、収容空間Sは、下方が底板3、上方が計測板4、側方が一対の側板及び後ろ側が排出板5で囲まれた空間とされており、当該排出板5と対向する側(前側)が開口して開口部Aを形成したものである。この開口部Aは、粗揉機1の加工室(茶葉を揉乾する室)内に臨むよう形成されており、かかる開口部Aにより、加工室内で揉乾加工中の茶葉を収容空間S内へ導入、又は含水率の測定が終了した茶葉の収容空間Sからの排出を行い得るようになっている。   That is, the storage space S is a space surrounded by the bottom plate 3 on the lower side, the measurement plate 4 on the upper side, a pair of side plates on the side and the discharge plate 5 on the rear side, and the side facing the discharge plate 5 (front side) ) To form an opening A. The opening A is formed so as to face the processing chamber (chamber for drying the tea leaves) of the roughing machine 1, and the opening A allows the tea leaves being subjected to the drying process in the processing chamber to the accommodation space S. The tea leaves can be discharged from the accommodation space S after the introduction or moisture content measurement has been completed.

計測板4は、底板3の上方に所定寸法離間して配設された板状部材から成り、エアシリンダ7によって当該底板3に対し近接又は離間方向に移動可能とされている。即ち、茶葉を収容空間Sに採取する際は、計測板4は、底板3と離間した位置とされており、含水率の測定の際には、図5に示すように、当該底板3に近接して収容空間S内の茶葉を加圧し得るようになっている。尚、計測板4の端部(開口部A側)には、シャッター9が形成されており、開口部Aを開閉可能としている。   The measurement plate 4 is composed of a plate-like member disposed above the bottom plate 3 by a predetermined distance, and can be moved toward or away from the bottom plate 3 by an air cylinder 7. That is, when the tea leaves are collected in the storage space S, the measurement plate 4 is positioned away from the bottom plate 3, and when measuring the moisture content, the measurement plate 4 is close to the bottom plate 3 as shown in FIG. Thus, the tea leaves in the accommodation space S can be pressurized. A shutter 9 is formed at the end (on the opening A side) of the measurement plate 4 so that the opening A can be opened and closed.

排出板5は、底板3及び計測板4と同様、板状部材から成り、エアシリンダ6により、その計測板4と底板3との間隙部を摺動し得るよう構成されていている。即ち、図1の状態からエアシリンダ6が駆動すると、図6に示すように、排出板5が収容空間S内に入り込んで、当該収容空間S内の茶葉を開口部Aから排出し得るようになっている。尚、かかる排出板5の下端(底板3の上面と当接する側)にスクレーパ等の払拭手段を設けるようにしてもよい。   Similarly to the bottom plate 3 and the measurement plate 4, the discharge plate 5 is composed of a plate-like member, and is configured to be able to slide in the gap between the measurement plate 4 and the bottom plate 3 by the air cylinder 6. That is, when the air cylinder 6 is driven from the state of FIG. 1, the discharge plate 5 enters the storage space S and the tea leaves in the storage space S can be discharged from the opening A as shown in FIG. It has become. In addition, you may make it provide wiping means, such as a scraper, in the lower end (side which contact | abuts the upper surface of the baseplate 3) of this discharge plate 5. FIG.

底板3は、その上面が収容空間Sに面しつつ所定角度傾斜して配設され、開口部Aから導入した茶葉を載置し得る板状部材から成るものである。即ち、開口部A側から排出板5側に亘って所定角度下方へ傾斜しているので、収容空間S内の茶葉が自然と開口部Aから落下してしまうのを回避している。かかる底板3の上面には、図2に示すように、収容空間Sに収容された茶葉の含水率を測定すべきマイクロストリップ線路10が形成されている。このマイクロストリップ線路10は、底板3の縁に沿って形成されているため、収容空間Sの略全域を測定し得るようになっている。   The bottom plate 3 is formed of a plate-like member on which an upper surface faces the accommodation space S and is inclined at a predetermined angle, on which tea leaves introduced from the opening A can be placed. That is, since it is inclined downward by a predetermined angle from the opening A side to the discharge plate 5 side, it is avoided that the tea leaves in the accommodation space S naturally fall from the opening A. As shown in FIG. 2, a microstrip line 10 for measuring the moisture content of the tea leaves accommodated in the accommodation space S is formed on the upper surface of the bottom plate 3. Since the microstrip line 10 is formed along the edge of the bottom plate 3, it can measure almost the entire area of the accommodation space S.

また、マイクロストリップ線路10は、図3に示すように、保護板14、ストリップ導体11、誘電体12及び導体板13が積層して成るものであり、このうちストリップ導体11及び導体板13の間にマイクロ波を発振し得る発振器Pが接続されているともに、その発振されたマイクロ波を受信すべく他端に受信器Qが接続されている。ストリップ導体11の表面(即ち、収容空間Sに面した側)には、アクリル等から成る保護板14が形成されている。   Further, as shown in FIG. 3, the microstrip line 10 is formed by stacking a protective plate 14, a strip conductor 11, a dielectric 12, and a conductor plate 13, and among these, between the strip conductor 11 and the conductor plate 13. In addition, an oscillator P that can oscillate microwaves is connected, and a receiver Q is connected to the other end to receive the oscillated microwaves. A protective plate 14 made of acrylic or the like is formed on the surface of the strip conductor 11 (that is, the side facing the accommodation space S).

一方、ストリップ導体11と導体板13とは誘電体12を介して対向するよう配設されている。尚、ストリップ導体11及び導体板13は、銅或いは金等の金属から成るものとするのが好ましく、誘電体12は、ガラスエポキシ或いはセラミックを用いるのが好ましい。また、ストリップ導体11(即ち、マイクロストリップ線路10)の平面視配設パターンは、図2のものに限定されず、種々パターンを成して形成されていてもよい。   On the other hand, the strip conductor 11 and the conductor plate 13 are arranged to face each other with the dielectric 12 interposed therebetween. The strip conductor 11 and the conductor plate 13 are preferably made of metal such as copper or gold, and the dielectric 12 is preferably made of glass epoxy or ceramic. Further, the arrangement pattern in plan view of the strip conductor 11 (that is, the microstrip line 10) is not limited to that shown in FIG. 2, and may be formed in various patterns.

そして、発振器Pから発振されたマイクロ波は、マイクロストリップ線路10を伝播する過程において種々の損失(導体損失、誘電体損失及び放射損失)を生じてレベルが低下した後、受信器Qにて受信される。ここで、マイクロストリップ線路10上に茶葉が位置しない状態で発振器Pからマイクロ波を送出するとともに、受信器Qにて受信し、発振器Pの送信レベル(出力レベル)と受信器Qの受信レベル(入力レベル)との差を基準値としておく。   Then, the microwave oscillated from the oscillator P causes various losses (conductor loss, dielectric loss and radiation loss) in the process of propagating through the microstrip line 10 and is received by the receiver Q after the level is lowered. Is done. Here, the microwave is transmitted from the oscillator P in a state where the tea leaves are not located on the microstrip line 10 and is received by the receiver Q. The transmission level (output level) of the oscillator P and the reception level of the receiver Q ( The difference from the input level is set as a reference value.

一方、収容空間S内に茶葉を導入し、底板3に計測板4を近接させることにより茶葉を加圧した状態において、発振器Pからマイクロ波を送出すると、上記損失に加えて、茶葉中に含まれる水分にマイクロ波が吸収されることによる損失が生じるので、送信レベルと受信レベルとの差から更に基準値を差し引いた値が、茶葉中の水分によるマイクロ波の減衰量となる。   On the other hand, when microwaves are sent out from the oscillator P in a state where tea leaves are introduced into the accommodation space S and the tea leaves are pressurized by bringing the measuring plate 4 close to the bottom plate 3, they are included in the tea leaves in addition to the above loss. Since a loss occurs due to the absorption of microwaves in the water that is absorbed, a value obtained by further subtracting the reference value from the difference between the transmission level and the reception level is the amount of attenuation of the microwaves due to the water in the tea leaves.

具体的には、マイクロ波の減衰量をΔAとした場合、該減衰量ΔAは、茶葉の含水率M(%)、収容空間Sに収容された茶葉の密度ρ(kg/m)、茶葉のマイクロストリップ線路上の長さ(実効測定長)L(m)及び茶葉の温度Tの関数G及びQで表すことができる。即ち、ΔA=G(M、ρ、L、T)=ρLG’(M、T)なる関係式が成り立つ。 Specifically, when the attenuation amount of the microwave is ΔA, the attenuation amount ΔA is the moisture content M (%) of the tea leaf, the density ρ (kg / m 3 ) of the tea leaf accommodated in the accommodation space S, the tea leaf Can be expressed by functions G and Q of the length (effective measurement length) L (m) and the temperature T of tea leaves on the microstrip line. That is, the relational expression ΔA = G (M, ρ, L, T) = ρLG ′ (M, T) holds.

尚、上記関係式は、マイクロストリップ線路10上にある茶葉の高さが十分大きく、その高さの変化が測定値に影響を与えない範囲であることが前提とされる。また、特に、測定時間にそれほど長時間を費やすことがないので、茶葉の温度Tは一定であるという前提が成り立つ。そこで、上記関係式は、ΔA=ρLG”(M)(以下、関係式1という。)と簡略化することができる。   The above relational expression is premised on the fact that the height of the tea leaves on the microstrip line 10 is sufficiently large and the change in the height does not affect the measured value. In particular, since it does not take much time for the measurement time, the premise is that the temperature T of the tea leaves is constant. Therefore, the relational expression can be simplified as ΔA = ρLG ″ (M) (hereinafter referred to as relational expression 1).

然るに、本実施形態に係る含水率測定装置2においては、上記減衰率ΔAの他、マイクロ波の移相量Δφをも検出して、含水率を求めることとしている。具体的には、発振器P及び受信器Qは、減衰量ΔA及び移相量Δφを検出するための検出手段15と電気的に接続されており、該検出手段15で検出された減衰量ΔAと移相量Δφとの比を算出手段16が算出し得るよう構成されている。   However, in the moisture content measuring apparatus 2 according to the present embodiment, the moisture content is obtained by detecting the microwave phase shift amount Δφ in addition to the attenuation rate ΔA. Specifically, the oscillator P and the receiver Q are electrically connected to the detection means 15 for detecting the attenuation amount ΔA and the phase shift amount Δφ, and the attenuation amount ΔA detected by the detection means 15 and The calculating means 16 can calculate the ratio with the phase shift amount Δφ.

マイクロ波の移相量Δφは、ΔAと同一条件下、次式で表すことができる。即ち、移相量Δφ=Q(M、ρ、L、T)=ρLQ’(M、T)なる関係式が成り立つ。上述と同様の理由で、茶葉の温度Tは一定であるという前提が成り立つので、上記関係式は、Δφ=ρLQ”(M)(以下、関係式2という。)と簡略化することができる。   The microwave phase shift amount Δφ can be expressed by the following equation under the same conditions as ΔA. In other words, the relational expression Δφ = Q (M, ρ, L, T) = ρLQ ′ (M, T) holds. For the same reason as described above, it is assumed that the temperature T of the tea leaves is constant. Therefore, the above relational expression can be simplified as Δφ = ρLQ ″ (M) (hereinafter referred to as relational expression 2).

ところで、上述した関数G”(M)及びQ”(M)は、含水率Mに対して1次関数として近時できるので、関係式1及び関係式2は、それぞれG”(M)=a1M+a2、Q”(M)=b1M+b2と表すことができる。これらを用いて減衰量の移相量に対する比を求めると、ΔA/Δφ=G”(M)/Q”(M)=(a1M+a2)/(b1M+b2)(以下、関係式3という。)となる。   By the way, since the above-mentioned functions G ″ (M) and Q ″ (M) can be approximated as a linear function with respect to the moisture content M, the relational expression 1 and the relational expression 2 can be expressed as G ″ (M) = a1M + a2 respectively. , Q ″ (M) = b1M + b2. When the ratio of the attenuation amount to the phase shift amount is obtained using these, ΔA / Δφ = G ″ (M) / Q ″ (M) = (a1M + a2) / (b1M + b2) (hereinafter referred to as relational expression 3). .

かかる関係式3より、減衰量の移相量に対する比ΔA/Δφは、含水率Mのみの関数となり、密度ρ及び長さLに影響されることなく含水率を測定することができることが分かる。更に、緑茶のような植物を測定すべき数GHzのマイクロ波においては、当該マイクロ波に対する減衰量は乾燥した状態ではほとんどゼロと見なすことができるので、上記関係式3は、更に簡略化することができ、以下の如き関係式とされる。即ち、ΔA/Δφ=a1/b1×(1−1/(b1/b2)M+b2)なる関係式4が導かれ、該関係式4を用いて算出手段16が茶葉の含水率Mを求める。   From the relational expression 3, it can be seen that the ratio ΔA / Δφ of the attenuation amount to the phase shift amount is a function of only the moisture content M, and the moisture content can be measured without being affected by the density ρ and the length L. Further, in a microwave of several GHz to measure a plant such as green tea, the attenuation amount with respect to the microwave can be regarded as almost zero in a dry state. Therefore, the relational expression 3 is further simplified. The following relational expression is obtained. That is, a relational expression 4 of ΔA / Δφ = a1 / b1 × (1-1 / (b1 / b2) M + b2) is derived, and the calculation means 16 obtains the moisture content M of the tea leaf using the relational expression 4.

ここで、本実施形態に係る含水率測定装置2においては、移相量Δφを検出すべく検出手段15に図7で示す如き比較演算手段としての回路を有している。同回路は、発信器Pと接続された位相調整回路20と、変換手段としてのJKフリップフロップから成る変換回路21と、基準出力αを形成する積分回路22と、受信器Qと接続されたRSフリップフロップから成る位相比較回路23と、伝播出力βを形成する積分回路24とを有して構成されている。   Here, in the moisture content measuring apparatus 2 according to the present embodiment, the detection means 15 has a circuit as a comparison calculation means as shown in FIG. 7 in order to detect the phase shift amount Δφ. The circuit includes a phase adjustment circuit 20 connected to the transmitter P, a conversion circuit 21 composed of a JK flip-flop as conversion means, an integration circuit 22 that forms a reference output α, and an RS connected to the receiver Q. A phase comparison circuit 23 composed of a flip-flop and an integration circuit 24 that forms a propagation output β are provided.

発信器Pから入力された基準信号は、例えばヘテロダイン検波にて検出された後、位相調整回路20へ送信され、該位相調整回路20で0点調整が行われる。かかる調整された後の基準信号の波形は、図8に示すように、半周期が180度の正弦波α1であるが、変換回路21にてその半周期の周期に対応する波形の1周期である360度の矩形波α2(図9参照)に変換され、積分回路22にて平均化されてDC電圧となり、基準出力αとされる。   The reference signal input from the transmitter P is detected by, for example, heterodyne detection, and then transmitted to the phase adjustment circuit 20. The phase adjustment circuit 20 performs zero point adjustment. As shown in FIG. 8, the waveform of the reference signal after the adjustment is a sine wave α1 having a half cycle of 180 degrees, but the conversion circuit 21 has one cycle of the waveform corresponding to the half cycle. It is converted into a certain 360-degree rectangular wave α2 (see FIG. 9), averaged by the integrating circuit 22 to become a DC voltage, and used as a reference output α.

一方、受信器Qから入力された伝播信号は、例えばヘテロダイン検波にて検出(図8における正弦波β1として検出)された後、位相比較回路23に送信され、該位相比較回路23で位相調整回路20にて調整された基準信号との比較が行われる。かかる比較回路23から出力された信号は、図10に示すように、図8の移相量φに相当する矩形波β2となり、積分回路にて平均化されてDC電圧となり、伝播出力βとされる。   On the other hand, the propagation signal input from the receiver Q is detected by, for example, heterodyne detection (detected as a sine wave β1 in FIG. 8), and then transmitted to the phase comparison circuit 23. The phase comparison circuit 23 uses the phase adjustment circuit. Comparison with the reference signal adjusted at 20 is performed. As shown in FIG. 10, the signal output from the comparison circuit 23 becomes a rectangular wave β2 corresponding to the phase shift amount φ in FIG. 8, averaged by the integration circuit to become a DC voltage, and is set as a propagation output β. The

その後、積分回路24を経た伝播出力βの積分回路22を経た基準出力αに対する比較が算出手段16にて行われ、移相量φが求められるのである。このように、移相量φを求める過程において、通常では180度の矩形波の出力との比較が行われるのに対し、本実施形態においては、図9に示すような360度の矩形波の出力との比較が行われるため、発信器P、ヘテロダイン検波器及び波形整形器等があまり高精度のものを使用しなくても、周波数変動や波形歪みを吸収でき、常に安定した移相量の検出を行うことができる。即ち、発信器P等の精度があまりよくなく、例えば図8における0点の位置が上下にずれたり或いはノイズにより波形が左右にずれて、矩形波とした際に非対称な方形となってしまっても、移相量φを確実に検出することができる。   Thereafter, the propagation means β through the integrating circuit 24 is compared with the reference output α through the integrating circuit 22 by the calculating means 16 to obtain the phase shift amount φ. As described above, in the process of obtaining the phase shift amount φ, the comparison with the output of the rectangular wave of 180 degrees is normally performed, whereas in the present embodiment, the rectangular wave of 360 degrees as shown in FIG. Since the comparison with the output is performed, even if the transmitter P, the heterodyne detector, the waveform shaper, etc. do not use a highly accurate one, the frequency fluctuation and waveform distortion can be absorbed, and a stable amount of phase shift is always achieved. Detection can be performed. That is, the accuracy of the transmitter P or the like is not so good. For example, the position of the zero point in FIG. 8 is shifted up and down or the waveform is shifted to the left and right due to noise, resulting in an asymmetric square. In addition, the phase shift amount φ can be reliably detected.

尚、検出手段15には受信器Qと電気的に接続された減衰量検出手段(不図示)が形成されており、かかる減衰量検出手段にて検出された減衰量(受信器Qで受信された出力から減衰量を既述の如く検出)と上記の如く検出された移相量φとの比較において、茶葉の含水率が求められることとなる。従って、移相量φが上述の如く安定して検出されるので、茶葉の含水率も安定して検出することができる。   The detection means 15 is formed with an attenuation detection means (not shown) electrically connected to the receiver Q, and the attenuation detected by the attenuation detection means (received by the receiver Q). In comparison with the phase shift amount φ detected as described above), the moisture content of the tea leaf is obtained. Therefore, since the phase shift amount φ is stably detected as described above, the moisture content of the tea leaf can also be detected stably.

次に、上記構成の含水率測定装置2における作用について説明する。
粗揉機1による揉乾作業中において、シャッター9を開いて開口部Aを粗揉機1の加工室に臨ませておく。これにより、粗揉機1の揉乾作用で上方へ浚われた茶葉の一部は、開口部Aから入り込み、収容空間Sに収容されることとなる。該収容空間Sに所定量の茶葉が収容された時点で、エアシリンダ7が駆動して計測板4が底板3に近接する方向に移動し、図5に示すように、収容空間S内の茶葉を加圧する。
Next, the effect | action in the moisture content measuring apparatus 2 of the said structure is demonstrated.
During the drying operation by the roughing machine 1, the shutter 9 is opened so that the opening A faces the processing chamber of the roughing machine 1. As a result, a part of the tea leaves sown upward by the drying operation of the roughing machine 1 enters from the opening A and is accommodated in the accommodation space S. When a predetermined amount of tea leaves are accommodated in the accommodation space S, the air cylinder 7 is driven to move the measuring plate 4 in the direction approaching the bottom plate 3, and the tea leaves in the accommodation space S as shown in FIG. Pressurize.

その状態にて発振器Pからマイクロ波を発振するとともに受信機Qで受信し、検出手段15で減衰量ΔA及び移相量φを検出する。ここで検出される移相量φは、既述の如く、半周期が360度とされた基準出力と茶葉を介して伝播した出力との比較において求められる。続いて、算出手段16により関係式4(関係式3であってもよい。)を用いて減衰量ΔAの移相量Δφに対する比を求め、該比から含水率M(%)を算出する。かかる算出手段16で用いられる関係式4が密度ρ及び長さLをパラメータとしていないため、これら密度ρ及び長さLに影響せず含水率M(%)を求めることができる。   In this state, a microwave is oscillated from the oscillator P and received by the receiver Q, and the detection unit 15 detects the attenuation amount ΔA and the phase shift amount φ. As described above, the phase shift amount φ detected here is obtained by comparing the reference output whose half cycle is 360 degrees with the output propagated through the tea leaves. Subsequently, the calculation means 16 calculates the ratio of the attenuation ΔA to the phase shift amount Δφ using the relational expression 4 (may be the relational expression 3), and calculates the moisture content M (%) from the ratio. Since the relational expression 4 used in the calculating unit 16 does not use the density ρ and the length L as parameters, the water content M (%) can be obtained without affecting the density ρ and the length L.

即ち、減衰量の移相量に対する比を求めることにより、含水率Mを求めるための関係式から密度ρ及び長さLなるパラメータを排除することができるので、測定値の不安定要素であった当該密度ρ及び長さLなる2つのパラメータを把握する必要がなく、マイクロストリップ線路を用いて高含水率の茶葉をも正確に測定することができるのである。   That is, by determining the ratio of the attenuation amount to the phase shift amount, the parameters of density ρ and length L can be excluded from the relational expression for determining the moisture content M, which is an unstable factor of the measured value. It is not necessary to grasp the two parameters of the density ρ and the length L, and a high moisture content tea leaf can be accurately measured using a microstrip line.

上記した一連の含水率測定が終了すると、エアシリンダ7が駆動して計測板4が元の位置(図1で示した位置)まで戻り、茶葉に対する加圧作用が解かれるとともに、エアシリンダ6が駆動して排出板5が収容空間S内まで摺動する(図6参照)。これにより、収容空間S内の茶葉が開口部Aから排出され、粗揉機1の加工室に戻されるのである。その後、エアシリンダ6が駆動して排出板5が元の位置(図1で示した位置)まで戻り、次の含水率測定までの待機状態とされる。   When the series of moisture content measurements described above is completed, the air cylinder 7 is driven and the measuring plate 4 returns to the original position (position shown in FIG. 1), the pressurizing action on the tea leaves is released, and the air cylinder 6 When driven, the discharge plate 5 slides into the accommodation space S (see FIG. 6). Thereby, the tea leaves in the accommodation space S are discharged from the opening A and returned to the processing chamber of the roughing machine 1. Thereafter, the air cylinder 6 is driven and the discharge plate 5 returns to the original position (position shown in FIG. 1), and is in a standby state until the next moisture content measurement.

このように、排出板5が収容空間S内において摺動可能とされ、当該収容空間S内の茶葉を粗揉機1の加工室に戻すことができるので、茶葉の収容空間からの排出を作業者が行うものに比べ、含水率測定作業における一連の動作を自動で行うことができ、作業性を向上させることができる。   In this way, the discharge plate 5 can be slid in the storage space S, and the tea leaves in the storage space S can be returned to the processing chamber of the roughing machine 1, so that the tea leaves can be discharged from the storage space. Compared to what is performed, a series of operations in the moisture content measurement work can be performed automatically, and workability can be improved.

以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、例えば図7における変換回路21のJKフリップフロップを複数接続させることにより、基準出力が、その波形の周期に対応する波形の1周期である360度の自然数倍としてもよい。但し、この場合の自然数とは0を含まない。また、マイクロ波の減衰量と移相量との比により茶葉の含水率を求めるものに限らず、他の演算方法(例えば、従来の如く密度ρ及び長さLなるパラメータを用いた演算方法など)によりマイクロ波の減衰量と移相量とから含水率を求めるようにしてもよい。即ち、移相量の算出方法が、茶葉を介して伝播した出力(より具体的には、茶葉を介して伝播した出力の波形に対応する波形)と比較されるべき基準出力が、その波形の周期に対応する波形の1周期である360度とされれば足り、その後の演算方法は如何なるものであってもよいのである。   Although the present embodiment has been described above, the present invention is not limited to this. For example, by connecting a plurality of JK flip-flops of the conversion circuit 21 in FIG. 7, the reference output corresponds to the period of the waveform. It is good also as a natural number multiple of 360 degree | times which is 1 period of the waveform to carry out. However, the natural number in this case does not include 0. Further, the present invention is not limited to the method for obtaining the moisture content of tea leaves by the ratio between the attenuation amount of microwaves and the amount of phase shift, but other calculation methods (for example, calculation methods using parameters such as density ρ and length L as in the past) ), The moisture content may be obtained from the attenuation amount of the microwave and the phase shift amount. That is, the reference output to be compared with the output propagated through the tea leaves (more specifically, the waveform corresponding to the waveform of the output propagated through the tea leaves) is calculated as the phase shift amount calculation method. It suffices to set 360 degrees, which is one period of the waveform corresponding to the period, and any subsequent calculation method may be used.

更に、本実施形態においては、茶葉の含水率を測定する含水率測定装置に適用されているが、茶葉以外の被測定物の含水率を求めるものに適用してもよく、含水率以外の物理量を求めるものに適用してもよい。即ち、マイクロ波の移相量に基づき被測定物の何らかの物理量を求める際にも本発明を適用することができ、それによりマイクロ波の発信精度等がそれほど高くなくても、正確に移相量を検出することができ、低コスト且つ安定した被測定物の物理量を測定することができるのである。   Furthermore, in the present embodiment, the present invention is applied to a moisture content measuring device for measuring the moisture content of tea leaves, but may be applied to a device for obtaining the moisture content of an object to be measured other than tea leaves, and a physical quantity other than the moisture content. You may apply to what asks. In other words, the present invention can also be applied when obtaining some physical quantity of the object to be measured based on the phase shift amount of the microwave, thereby accurately shifting the phase shift amount even if the microwave transmission accuracy is not so high. Can be detected, and the physical quantity of the measured object can be measured at low cost and stably.

基準出力がその波形の周期に対応する波形の1周期である360度の自然数倍とされつつ被測定物を介して伝播した出力と比較され、移相量が求められるものであれば、外観形状が異なるもの或いは他の機能が付加されたものにも適用することができる。   If the reference output is a natural number multiple of 360 degrees, which is one period of the waveform corresponding to the period of the waveform, compared with the output propagated through the object to be measured and the amount of phase shift is required, the appearance The present invention can also be applied to ones having different shapes or to which other functions are added.

本発明の実施形態に係る含水率測定装置を示す縦断面模式図The longitudinal cross-sectional schematic diagram which shows the moisture content measuring apparatus which concerns on embodiment of this invention. 同含水率測定装置におけるマイクロストリップ線路を示す模式図Schematic diagram showing the microstrip line in the moisture content measuring apparatus 図2におけるIII−III線断面図Sectional view taken along line III-III in FIG. 同含水率測定装置における発信器、受信器、検出手段及び算出手段の接続関係を示すブロック図The block diagram which shows the connection relation of the transmitter in the same moisture content measuring apparatus, a receiver, a detection means, and a calculation means. 図1において計測板4が底板3に接近した状態を示す模式図FIG. 1 is a schematic diagram showing a state in which the measurement plate 4 is close to the bottom plate 3. 図1において排出板5が収容空間S内まで摺動した状態を示す模式図1 is a schematic diagram showing a state in which the discharge plate 5 has slid into the accommodation space S in FIG. 同含水率測定装置において検出手段に形成された移相量を求めるための回路を示す回路図The circuit diagram which shows the circuit for calculating | requiring the phase shift amount formed in the detection means in the moisture content measuring apparatus 同含水率測定装置において検出手段に入力される基準出力及び伝播出力を示す正弦波A sine wave indicating the reference output and propagation output input to the detection means in the moisture content measuring apparatus 同含水率測定装置において、基準出力の波形の周期に対応する波形を示す矩形波In the moisture content measuring device, a rectangular wave indicating a waveform corresponding to the period of the waveform of the reference output 同含水率測定装置において伝播出力として出力される矩形波Rectangular wave output as propagation output in the moisture content measurement device 同含水率測定装置が適用される粗揉機を示す全体模式図Overall schematic diagram showing a roughing machine to which the moisture content measuring device is applied

符号の説明Explanation of symbols

1 粗揉機
2 含水率測定装置(物理量の測定装置)
3 底板
4 計測板
5 排出板
6、7 エアシリンダ
8 制御盤
9 シャッター
10 マイクロストリップ線路
11 ストリップ導体
12 誘電体
13 導体板
14 保護板
15 検出手段
16 算出手段
17 熱風発生機
18 熱風ダクト
19 取出扉
20 位相調整回路
21 変換回路(変換手段)
22 積分回路
23 位相比較回路
24 積分回路
1 Coarse crusher 2 Moisture content measuring device (physical quantity measuring device)
DESCRIPTION OF SYMBOLS 3 Bottom plate 4 Measuring plate 5 Discharge plate 6, 7 Air cylinder 8 Control panel 9 Shutter 10 Microstrip line 11 Strip conductor 12 Dielectric 13 Conductor plate 14 Protection plate 15 Detection means 16 Calculation means 17 Hot air generator 18 Hot air duct 19 Take-out door 20 Phase adjustment circuit 21 Conversion circuit (conversion means)
22 Integration circuit 23 Phase comparison circuit 24 Integration circuit

Claims (4)

マイクロ波発信手段から発せられたマイクロ波の基準出力と被測定物を介して伝播したマイクロ波の出力とを比較して得られる移相量を検知し、該移相量に基づいて当該被測定物の物理量を測定する物理量測定方法において、
前記基準出力は、その波形の周期に対応する波形の1周期である360度の自然数倍とされつつ被測定物を介して伝播した出力の波形に対応する波形と比較され、前記移相量が求められることを特徴とする物理量の測定方法。
The amount of phase shift obtained by comparing the reference output of the microwave emitted from the microwave transmitting means and the output of the microwave propagated through the object to be measured is detected, and the object to be measured is detected based on the amount of phase shift. In a physical quantity measuring method for measuring physical quantities of things,
The reference output is compared with a waveform corresponding to the waveform of the output propagated through the object to be measured while being a natural number multiple of 360 degrees which is one period of the waveform corresponding to the period of the waveform, and the phase shift amount Is a physical quantity measurement method characterized by that.
前記移相量及びマイクロ波の減衰量に基づき被測定物の含水率を算出することを特徴とする請求項1記載の物理量の測定方法。   2. The physical quantity measuring method according to claim 1, wherein the moisture content of the object to be measured is calculated based on the phase shift amount and the attenuation amount of the microwave. マイクロ波を送信し得るマイクロ波発信手段と、
該マイクロ波発信手段にて発信されたマイクロ波における被測定物を介して伝播した出力を受信し得るマイクロ波受信手段と、
前記マイクロ波発信手段で送信されたマイクロ波の基準出力と、前記マイクロ波受信手段で受信されたマイクロ波の出力とを比較して移相量を検出する比較演算手段と、
を具備し、前記比較演算手段にて検出された移相量に基づき被測定物の物理量を測定する物理量の測定装置において、
前記基準出力の波形の周期に対応する波形の1周期である360度の自然数倍に変換する変換手段を具備したことを特徴とする物理量の測定装置。
Microwave transmission means capable of transmitting microwaves;
Microwave receiving means capable of receiving the output propagated through the object to be measured in the microwave transmitted by the microwave transmitting means;
Comparison operation means for detecting a phase shift amount by comparing the reference output of the microwave transmitted by the microwave transmission means and the output of the microwave received by the microwave reception means,
In the physical quantity measuring apparatus for measuring the physical quantity of the object to be measured based on the phase shift amount detected by the comparison calculation means,
An apparatus for measuring a physical quantity, comprising conversion means for converting to a natural number multiple of 360 degrees, which is one period of a waveform corresponding to the period of the waveform of the reference output.
前記マイクロ波受信手段で受信された出力から減衰量を検出する減衰量検出手段を具備し、当該減衰量及び前記移相量に基づき、被測定物の含水率を求めることを特徴とする請求項3記載の物理量の測定装置。   An attenuation amount detecting means for detecting an attenuation amount from an output received by the microwave receiving means is provided, and the moisture content of the object to be measured is obtained based on the attenuation amount and the phase shift amount. 3. The physical quantity measuring device according to 3.
JP2004075592A 2004-03-17 2004-03-17 Physical quantity measuring method and measuring instrument therefor Pending JP2005265496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075592A JP2005265496A (en) 2004-03-17 2004-03-17 Physical quantity measuring method and measuring instrument therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075592A JP2005265496A (en) 2004-03-17 2004-03-17 Physical quantity measuring method and measuring instrument therefor

Publications (1)

Publication Number Publication Date
JP2005265496A true JP2005265496A (en) 2005-09-29

Family

ID=35090225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075592A Pending JP2005265496A (en) 2004-03-17 2004-03-17 Physical quantity measuring method and measuring instrument therefor

Country Status (1)

Country Link
JP (1) JP2005265496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085193A (en) * 2008-09-30 2010-04-15 Kawasaki Kiko Co Ltd Water content measuring method of low water-content tea leaf, device therefor, and control method of tea manufacturing process using them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085193A (en) * 2008-09-30 2010-04-15 Kawasaki Kiko Co Ltd Water content measuring method of low water-content tea leaf, device therefor, and control method of tea manufacturing process using them

Similar Documents

Publication Publication Date Title
US4297874A (en) Apparatus for measuring a percentage of moisture and weighing of a sheet-like object
US7508221B2 (en) Wall detector
CN104375011B (en) A kind of any resistance test circuit for vector network analyzer testing of materials and method
Bernard et al. A detector of small harmonic displacements based on two coupled microwave cavities
Fry et al. Temperature dependence of the Brillouin linewidth in water
CN204374103U (en) The online Coal &#39; moisture measuring system of microwave method
CN203965345U (en) Measure the device of material moisture
CN107121593A (en) The measuring method of rf electric field frequency based on Rydberg atom quantum coherence effect
CN104714110A (en) Device and method for measuring high-frequency microwave field strength based on electromagnetic induction transparent effect
EP3308149B1 (en) Sensor for non-destructive characterization of objects
EP0395308A2 (en) Apparatus and method for measuring properties of an object using scattered electromagnetic radiation
CN102175696A (en) Method and device for measuring moisture of material
US3913012A (en) Microwave moisture measuring system with reflection suppressing means
CN105466956B (en) Method and device for detecting moisture content in grain by using microwave signal
CN113376446A (en) Microwave frequency comb-based rydberg atom microwave electric field sensor and detection method
JP4019264B2 (en) Moisture content measuring apparatus and moisture content measuring method for tea leaves
JP2005265496A (en) Physical quantity measuring method and measuring instrument therefor
Arrigoni et al. Laser Doppler interferometer based on a solid Fabry–Perot etalon for measurement of surface velocity in shock experiments
Dai et al. Analysis of a picosecond ultrasonic method for measurement of stress in a substrate
JP2009058379A (en) Method of measuring moisture content and coating amount
Vassilev et al. A mm-wave sensor for remote measurement of moisture in thin paper layers
Gilmore et al. Dual mode (ordinary–extraordinary) correlation reflectometry for magnetic field and turbulence measurements
Baer A Refiectometer Based Sensor System for Acquiring Full S-Parameter Sets Utilizing Dielectric Waveguides
Kramer et al. Electron density fluctuation in JET measured with multichannel reflectometry
Akay et al. An automated amplitudes-only measurement system for permittivity determination using free-space method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Effective date: 20070316

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070515

Free format text: JAPANESE INTERMEDIATE CODE: A02