JP2005263562A - METHOD FOR MANUFACTURING beta-FeSi2 - Google Patents

METHOD FOR MANUFACTURING beta-FeSi2 Download PDF

Info

Publication number
JP2005263562A
JP2005263562A JP2004078752A JP2004078752A JP2005263562A JP 2005263562 A JP2005263562 A JP 2005263562A JP 2004078752 A JP2004078752 A JP 2004078752A JP 2004078752 A JP2004078752 A JP 2004078752A JP 2005263562 A JP2005263562 A JP 2005263562A
Authority
JP
Japan
Prior art keywords
fesi
powder
reaction aid
mixed
solid reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004078752A
Other languages
Japanese (ja)
Other versions
JP4803781B2 (en
Inventor
Masaaki Miyamoto
正章 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama TLO Co Ltd
Original Assignee
Tama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama TLO Co Ltd filed Critical Tama TLO Co Ltd
Priority to JP2004078752A priority Critical patent/JP4803781B2/en
Publication of JP2005263562A publication Critical patent/JP2005263562A/en
Application granted granted Critical
Publication of JP4803781B2 publication Critical patent/JP4803781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing single-phase β-FeSi<SB>2</SB>in a simpler way at a lower temperature in a shorter period of time as compared with a conventional method. <P>SOLUTION: In the method for manufacturing β-FeSi<SB>2</SB>, powders of simple elements of Fe and Si are mixed in an atomic ratio of 1:2, a reaction aid is added to this mixed powder and mixed, and this mixture is heat-treated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、FeおよびSi粉末の固相反応によるβ−FeSi2の製造方法に関する。 The present invention relates to a method for producing β-FeSi 2 by solid phase reaction of Fe and Si powder.

エネルギー、環境問題がクローズアップされる近年、物質に温度差を与えることにより起電力が発生する現象、すなわちゼーベック効果を利用して、熱エネルギーと電気エネルギーを直接にかつ相互に機械的要素を介しないで変換する熱電変換が注目されている。この熱電変換は、機械的要素を必要としないためエネルギー損失がなく、振動や騒音、さらには廃棄物も発生しないため環境負荷の少ないエネルギー変換方法であり、今まで使われなかった排熱エネルギーの有効利用を実現でき、かつ化石燃料を使わない新しい発電方法として注目され、研究開発が進められている。   In recent years, energy and environmental issues have been highlighted. A phenomenon in which electromotive force is generated by giving a temperature difference between materials, that is, Seebeck effect is used, and thermal energy and electric energy are directly and mutually via mechanical elements. Thermoelectric conversion that does not convert is attracting attention. This thermoelectric conversion does not require any mechanical elements, so there is no energy loss, no vibration, noise, and no waste, and it is an energy conversion method with low environmental impact. It is attracting attention as a new power generation method that can realize effective use and does not use fossil fuels, and research and development are underway.

熱電変換効率の高い材料の中でSi系焼結体は高温特性が良好であることから種々研究されている。特に、β−FeSi2は、原料として地殻に大量に存在し安価かつ無害なFeとSiを使用すること、耐酸化性に優れ大気中でも高温で使用できること等から、環境調和型の高温発電材料として研究開発への取り組みが多くなされている。 Among materials with high thermoelectric conversion efficiency, various studies have been made on Si-based sintered bodies because of their high temperature characteristics. In particular, β-FeSi 2 is used as an environmentally conscious high-temperature power generation material because it uses Fe and Si, which are present in large quantities in the crust as raw materials, is inexpensive and harmless, and has excellent oxidation resistance and can be used at high temperatures in the atmosphere. Many efforts are being made in research and development.

また、β−FeSi2は、熱電変換材料として優れた特性を有しているだけでなく、ゼーベック係数が大きく電気抵抗が低いこと、p型・n型のいずれの半導体にもなりうること、直接遷移型の光励起特性を有すること等の半導体としても優れた特性を有しており、次世代の半導体として注目を集めている。 Β-FeSi 2 not only has excellent characteristics as a thermoelectric conversion material, but also has a large Seebeck coefficient and low electrical resistance, and can be either a p-type or n-type semiconductor. It has excellent characteristics as a semiconductor, such as having transition type photoexcitation characteristics, and is attracting attention as a next-generation semiconductor.

β−FeSi2は、原料となるFe及びSiが低温で安定しているため、まずFeとSiとの混合粉末を1230℃以上という高温に加熱してα−FeSi2を作製してから、次いで800℃程度で100時間程度の熱処理(アニール処理等)をして相変態させることにより作製される。しかしながら、この方法は製造に長時間かかり効率が悪く、高温条件での処理に対応できる設備が必要となり製造コストが高いという問題があった。 In β-FeSi 2 , since Fe and Si as raw materials are stable at a low temperature, first, a mixed powder of Fe and Si is heated to a high temperature of 1230 ° C. or more to produce α-FeSi 2 , and then It is fabricated by performing a phase transformation by performing a heat treatment (annealing treatment or the like) for about 100 hours at about 800 ° C. However, this method has a problem that it takes a long time to manufacture and is inefficient, and requires equipment that can handle processing under high temperature conditions, resulting in high manufacturing costs.

上記の問題点を解決するために、α相からβ相への相変態に必要な熱処理時間を短縮する方法が研究されている(例えば、特許文献1参照)。しかし、特許文献1記載の方法では、Cuを添加しているため純粋なβ−FeSi2を作製することができない。一方、α−FeSi2を作製することなく直接β−FeSi2を作製する方法が研究されている(例えば、特許文献2参照)。特許文献2記載の方法は、従来の方法よりも低温かつ短時間でβ−FeSi2を製造することができるが、それでも20時間程度の熱処理を必要とする。また、石英管へ封じ込める作業が必要となる。 In order to solve the above problems, a method for shortening the heat treatment time necessary for the phase transformation from the α phase to the β phase has been studied (for example, see Patent Document 1). However, in the method described in Patent Document 1, pure β-FeSi 2 cannot be produced because Cu is added. On the other hand, a method for directly producing β-FeSi 2 without producing α-FeSi 2 has been studied (for example, see Patent Document 2). Although the method described in Patent Document 2 can produce β-FeSi 2 at a lower temperature and in a shorter time than the conventional method, it still requires a heat treatment of about 20 hours. In addition, it is necessary to enclose the quartz tube.

さらに、熱処理時間の短時間化と熱処理温度の低温化を目的として、メカニカル・アロイング法(MA法)により出発原料を微粒子化したり、放電プラズマ焼結法(SPS法)により短時間で混合した出発原料粉末を焼結したり、MA法とSPS方とを組み合わせた複合プロセスなどが検討されている(例えば、非特許文献1〜3参照)。しかし、MA法では、出発原料を微粒子化するために、密閉容器内に原料とボール状のアルミナなどの粉砕用材料を入れて原料を粉砕し微粒子化しているので、長時間粉砕を行うと密閉容器の内壁を構成する材料や粉砕用材料が原料粉末に混入し、原料粉末の純度が低下するという問題点がある。また、SPS法は、真空中で混合した出発原料粉末を放電処理して焼結するため、真空中での加圧装置や放電用の電源などの高価な付帯設備が必要であり、実用的でないという問題点がある。
特開平8−274380号公報 特開2002−76450号公報 「粉末および粉末冶金」,1994年,vol.41,pp.560−564 「日本金属学会誌」,1999年,vol.63,pp.569−572 「Journal of the Japan Society of Powder and Powder Metallurgy」,2000年,vol.47,No.4,pp.369−374
Furthermore, for the purpose of shortening the heat treatment time and lowering the heat treatment temperature, the starting material is finely divided by the mechanical alloying method (MA method) or mixed by a discharge plasma sintering method (SPS method) in a short time. A composite process in which raw material powder is sintered or a combination of the MA method and the SPS method has been studied (for example, see Non-Patent Documents 1 to 3). However, in the MA method, in order to make the starting material into fine particles, the raw material and a pulverizing material such as ball-like alumina are placed in an airtight container and the raw material is pulverized into fine particles. There is a problem that the material constituting the inner wall of the container and the pulverizing material are mixed into the raw material powder, and the purity of the raw material powder is lowered. In addition, the SPS method is not practical because expensive starting equipment such as a pressurizing device in a vacuum and a power source for discharge is necessary because the starting raw material powder mixed in a vacuum is discharged and sintered. There is a problem.
JP-A-8-274380 JP 2002-76450 A “Powder and powder metallurgy”, 1994, vol. 41, pp. 560-564 “The Journal of the Japan Institute of Metals”, 1999, vol. 63, pp. 569-572 “Journal of the Japan Society of Powder and Powder Metallurgy”, 2000, vol. 47, no. 4, pp. 369-374

本発明は、従来よりも簡易に、低温かつ短時間で単相のβ−FeSi2を製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for producing single-phase β-FeSi 2 at a low temperature and in a short time more easily than in the prior art.

本発明者らは、鋭意検討を重ねた結果、KCl、NaCl等の塩化物を反応助剤として添加してからFeとSiとの混合粉末を加熱することにより、従来よりも低温かつ短時間で単相のβ−FeSi2を製造することができることを見い出した。本発明はこのような知見に基づきなされるに至ったものである。 As a result of intensive studies, the inventors have added a chloride such as KCl and NaCl as a reaction aid and then heated the mixed powder of Fe and Si at a lower temperature and in a shorter time than before. It has been found that single-phase β-FeSi 2 can be produced. The present invention has been made based on such findings.

すなわち本発明は、
(1)Fe及びSiの単体元素の粉末を1:2の原子比で混合し、この混合粉末に固形反応助剤を添加して混合し、この混合物を加熱処理することを特徴とするβ−FeSi2の製造方法、
(2)前記固形反応助剤が塩化物系反応助剤であることを特徴とする(1)項に記載のβ−FeSi2の製造方法、
(3)前記固形反応助剤がKCl又はNaClであることを特徴とする(1)又は(2)項に記載のβ−FeSi2の製造方法、
(4)前記のFeとSiとの混合粉末に固形反応助剤を添加して混合する工程を不活性ガス雰囲気下で行うことを特徴とする(1)〜(3)のいずれか1項に記載のβ−FeSi2の製造方法、および
(5)前記のFeとSiとの混合粉末に固形反応助剤を添加して混合する工程をアルゴン雰囲気下で行うことを特徴とする(1)〜(4)のいずれか1項に記載のβ−FeSi2の製造方法
を提供するものである。
That is, the present invention
(1) A powder of elemental elements of Fe and Si is mixed at an atomic ratio of 1: 2, a solid reaction aid is added to and mixed with the mixed powder, and the mixture is heated. A method of producing FeSi 2 ,
(2) The method for producing β-FeSi 2 according to item (1), wherein the solid reaction aid is a chloride-based reaction aid.
(3) The method for producing β-FeSi 2 according to (1) or (2), wherein the solid reaction aid is KCl or NaCl,
(4) In any one of (1) to (3), the step of adding and mixing a solid reaction aid to the mixed powder of Fe and Si is performed in an inert gas atmosphere. The method for producing β-FeSi 2 described above, and (5) the step of adding and mixing a solid reaction aid to the mixed powder of Fe and Si is performed in an argon atmosphere (1) to there is provided a method for producing a beta-FeSi 2 according to any one of (4).

本発明のβ−FeSi2の製造方法は、従来のような二段階の熱処理を必要とせずに一段階の熱処理だけでよく、しかも全体の反応時間が短い。また、特別な装置を必要とせず、低コストで簡易にβ−FeSi2を製造することができる。また、本発明に用いられる固形反応助剤は水溶性であるので水洗により容易に除去することができ残留しないので、純粋なβ−FeSi2を製造することができる。また、本発明の方法は粉体の固相反応であるから、添加物の添加も同時に行うことが可能である。 The production method of β-FeSi 2 according to the present invention does not require the conventional two-stage heat treatment, only the one-stage heat treatment, and the overall reaction time is short. Further, β-FeSi 2 can be easily produced at low cost without requiring a special apparatus. Moreover, since the solid reaction aid used in the present invention is water-soluble, it can be easily removed by washing with water and does not remain, so that pure β-FeSi 2 can be produced. In addition, since the method of the present invention is a solid-phase reaction of powder, additives can be added simultaneously.

以下、本発明について詳細に説明する。
本発明の製造方法は、以下の(1)〜(5)の工程を含む。
(1)Fe粉末とSi粉末との混合工程
(2)固形反応助剤の添加・混合工程
(3)混合粉末の加熱処理工程
(4)反応助剤の除去工程
(5)乾燥工程
Hereinafter, the present invention will be described in detail.
The production method of the present invention includes the following steps (1) to (5).
(1) Mixing step of Fe powder and Si powder (2) Adding / mixing step of solid reaction aid (3) Heat treatment step of mixed powder (4) Removal step of reaction aid (5) Drying step

(1)Fe粉末とSi粉末との混合工程
まず、Fe及びSiの単体元素の粉末を1:2の原子比(モル比)で混合する。本発明に用いるFe及びSiの単体元素の粉末は、純粋なβ−FeSi2を製造する観点からそれぞれ純度99.9%以上のものが好ましい。また、各粉末の粒径は、0.5〜40μmが好ましく、1〜数μmがより好ましい。
(1) Mixing step of Fe powder and Si powder First, powders of simple elements of Fe and Si are mixed at an atomic ratio (molar ratio) of 1: 2. From the viewpoint of producing pure β-FeSi 2 , the Fe and Si simple element powders used in the present invention preferably have a purity of 99.9% or more. Moreover, 0.5-40 micrometers is preferable and the particle size of each powder has more preferable 1-several micrometers.

(2)固形反応助剤の添加・混合工程
次に、FeとSiとの混合粉末に固形反応助剤を添加して混合する。
本発明に用いる固形反応助剤は塩化物系反応助剤であることが好ましく、アルカリハライドがより好ましく、中でも、KCl及びNaClが特に好ましい。固形反応助剤の添加量は、液相ができFeとSiとの動きを良くする観点から、FeとSiとの混合粉末に対して6質量%以上が好ましく、8質量%以上がより好ましい。また、固形反応助剤の添加量の上限は、15質量%以下が好ましく、13質量%以下がより好ましく、10質量%以下が特に好ましい。
(2) Adding / mixing step of solid reaction aid Next, the solid reaction aid is added to and mixed with the mixed powder of Fe and Si.
The solid reaction aid used in the present invention is preferably a chloride reaction aid, more preferably an alkali halide, and particularly preferably KCl and NaCl. The addition amount of the solid reaction aid is preferably 6% by mass or more, more preferably 8% by mass or more with respect to the mixed powder of Fe and Si from the viewpoint of forming a liquid phase and improving the movement of Fe and Si. Further, the upper limit of the addition amount of the solid reaction aid is preferably 15% by mass or less, more preferably 13% by mass or less, and particularly preferably 10% by mass or less.

FeとSiとの混合粉末と固形反応助剤との混合方法は特に限定されず任意の混合方法を適用することができ、例えばボールミル等により行うことができる。なお、混合速度は特に限定されないが、あまり高速だと摩擦熱による発熱で酸化するおそれがあり好ましくない。
FeとSiとの混合粉末に固形反応助剤を添加して混合する工程は、Feの酸化を防止する観点から不活性ガス(好ましくはアルゴン)雰囲気下で行うことが好ましい。混合時間は、酸化防止の観点からできるだけ短い時間が好ましく、具体的には10〜30分程度が好ましく、15〜20分程度がより好ましい。
The mixing method of the mixed powder of Fe and Si and the solid reaction aid is not particularly limited, and any mixing method can be applied. For example, the mixing can be performed by a ball mill or the like. The mixing speed is not particularly limited. However, if the mixing speed is too high, oxidation may occur due to heat generated by frictional heat, which is not preferable.
The step of adding and mixing the solid reaction aid to the mixed powder of Fe and Si is preferably performed in an inert gas (preferably argon) atmosphere from the viewpoint of preventing oxidation of Fe. The mixing time is preferably as short as possible from the viewpoint of prevention of oxidation, specifically about 10 to 30 minutes, more preferably about 15 to 20 minutes.

Fe及びSiが反応助剤に接近して存在するように、FeとSiとの混合粉末に固形反応助剤を添加して混合した後、混合された粉体をプレス成形等により一定の形状に成形することが好ましい。   After adding and mixing the solid reaction aid to the mixed powder of Fe and Si so that Fe and Si are present close to the reaction aid, the mixed powder is formed into a certain shape by press molding or the like. It is preferable to mold.

(3)混合粉末の加熱処理工程
固形反応助剤との混合後、加熱処理を行う。加熱処理は、FeやSiの酸化を防止する観点から、不活性ガス(好ましくはアルゴン)雰囲気下で行うことが好ましい。
加熱温度は、効率よく製造する観点からできるだけ低い温度が好ましいが、820〜910℃が好ましく、850〜900℃がより好ましい。700〜800℃程度では反応温度が低すぎるため、反応しきれないFeやSiが後述する反応助剤除去工程や乾燥工程中に酸化反応を起こし、FeやSiの酸化物が生成してしまうので好ましくない。
加熱時間は、効率よく製造する観点からできるだけ短い時間が好ましいが、2.5〜10時間が好ましく、3.5〜7時間がより好ましい。
なお、加熱温度を高くすれば加熱時間は短くすることができ、また加熱時間を長くすれば加熱温度を低くすることができ、好ましい反応条件は適宜定めることができる。
(3) Heat treatment process of mixed powder Heat treatment is performed after mixing with the solid reaction aid. The heat treatment is preferably performed in an inert gas (preferably argon) atmosphere from the viewpoint of preventing oxidation of Fe and Si.
The heating temperature is preferably as low as possible from the viewpoint of efficient production, but is preferably 820 to 910 ° C, more preferably 850 to 900 ° C. Since the reaction temperature is too low at about 700 to 800 ° C., Fe or Si that cannot be reacted causes an oxidation reaction during a reaction auxiliary agent removal step and a drying step described later, and an oxide of Fe or Si is generated. It is not preferable.
The heating time is preferably as short as possible from the viewpoint of efficient production, but is preferably 2.5 to 10 hours, and more preferably 3.5 to 7 hours.
Note that if the heating temperature is raised, the heating time can be shortened, and if the heating time is lengthened, the heating temperature can be lowered, and preferable reaction conditions can be appropriately determined.

(4)反応助剤の除去工程
加熱処理終了後、固形反応助剤を除去する。室温まで冷却した焼結体を、メノウ乳鉢等を用いて粉砕し、純水で数回洗浄する。本発明に用いられる固形反応助剤は水溶性であるので水洗により容易に除去することができる。
(4) Reaction auxiliary agent removal step After completion of the heat treatment, the solid reaction auxiliary agent is removed. The sintered body cooled to room temperature is pulverized using an agate mortar or the like and washed several times with pure water. Since the solid reaction aid used in the present invention is water-soluble, it can be easily removed by washing with water.

(5)乾燥工程
水洗した粉末を乾燥させる。
(5) Drying process The powder washed with water is dried.

以上の工程により、本発明の方法はα−FeSi2を作製することなく、一段階の熱処理のみで単相のβ−FeSi2を製造することができる。また、本発明の方法は、放電プラズマ焼結装置などの特別な装置や長時間のメカニカル・アロイングを必要としない。
本発明の方法で得られたβ−FeSi2粉末はアルゴン中にてホットプレスにより焼結体にすることが可能である。また、本発明の方法で製造されたβ−FeSi2は、熱電変換材料や半導体材料などとして様々な分野に利用することができる。
Through the above steps, the method of the present invention can produce single-phase β-FeSi 2 by only one-step heat treatment without producing α-FeSi 2 . Further, the method of the present invention does not require a special apparatus such as a discharge plasma sintering apparatus or a long-time mechanical alloying.
The β-FeSi 2 powder obtained by the method of the present invention can be formed into a sintered body by hot pressing in argon. Further, β-FeSi 2 produced by the method of the present invention can be used in various fields as a thermoelectric conversion material or a semiconductor material.

次に、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

実施例1
Fe粉末(〜300メッシュ、純度3N;フルウチ化学社製、商品名:FEM−30005A)、Si粉末(〜300メッシュ、純度4N;フルウチ化学社製、商品名:SIM−65005A)、KCl(純度99.50%、小泉化学社製)を用意し、Fe粉末とSi粉末とをFe:Si=1:2(原子比)で秤量した(Fe=4.98549g、Si=5.01451g)。これにKClを10質量%(1.00000g)加え、遊星型ボールミルで20分間アルゴン雰囲気下で乾式混合した。
Example 1
Fe powder (˜300 mesh, purity 3N; manufactured by Furuuchi Chemical Co., trade name: FEM-30005A), Si powder (˜300 mesh, purity 4N; manufactured by Furuuchi Chemical Co., trade name: SIM-65005A), KCl (purity 99 .50%, manufactured by Koizumi Chemical Co., Ltd.), and Fe powder and Si powder were weighed with Fe: Si = 1: 2 (atomic ratio) (Fe = 4.985549 g, Si = 5.1451 g). To this, 10% by mass (1.00000 g) of KCl was added and dry-mixed in a planetary ball mill for 20 minutes under an argon atmosphere.

混合された粉末試料を2g秤量し、それを300kgf/cm2(約30MPa)で10分間プレスし、錠剤型の圧粉体を作製した。
作製した圧粉体をアルミナボードに設置して炉心管へ挿入した。なお、炉心管の両端はゴム栓で封鎖し、さらに隙間からの酸素混入を防止する目的で真空グリスを塗布した。また、残留酸素を除去する目的でArガスを室温のまま10分間流した。さらに、Arガス中に極微量の酸素が混入している可能性を考慮して、Arガスが直接試料に当たらないように設置した。炉心管内に高純度Arガスを流通させながら、加熱速度800℃/hで試料を900℃まで加熱し3.5時間保持して焼結させた。加熱処理終了後は自然放冷により冷却した。
2 g of the mixed powder sample was weighed and pressed at 300 kgf / cm 2 (about 30 MPa) for 10 minutes to produce a tablet-type green compact.
The produced green compact was placed on an alumina board and inserted into the core tube. Note that both ends of the core tube were sealed with rubber stoppers, and vacuum grease was applied for the purpose of preventing oxygen contamination from the gaps. Further, Ar gas was allowed to flow for 10 minutes at room temperature for the purpose of removing residual oxygen. Further, in consideration of the possibility that an extremely small amount of oxygen is mixed in the Ar gas, the Ar gas was installed so as not to directly hit the sample. The sample was heated to 900 ° C. at a heating rate of 800 ° C./h and kept for 3.5 hours to sinter while circulating high purity Ar gas in the furnace core tube. After completion of the heat treatment, it was cooled by natural cooling.

焼結試料を取り出してメノウ乳鉢・乳棒を用いて粉砕し、KClを取り除くために純水で数回洗浄した。その後、乾燥機にて試料を乾燥させた(乾燥温度100℃、乾燥時間30分)。
乾燥後、焼結試料をX線回折装置(商品名:CN4037A1、理学電機社製)により回折パターンを調べた。結果を図1に示す。図1から明らかなように、単相のβ−FeSi2を得ることができた。
The sintered sample was taken out and pulverized using an agate mortar and pestle, and washed several times with pure water to remove KCl. Thereafter, the sample was dried with a dryer (drying temperature 100 ° C., drying time 30 minutes).
After drying, the sintered pattern was examined for a diffraction pattern by an X-ray diffractometer (trade name: CN4037A1, manufactured by Rigaku Corporation). The results are shown in FIG. As is apparent from FIG. 1, single-phase β-FeSi 2 could be obtained.

比較例
KClを添加しないこと以外は実施例1と同様にして試験を行ったところ、FeとSiは反応せず、X線回折では単にFeとSiのピークが検出されるのみであった。
Comparative Example A test was conducted in the same manner as in Example 1 except that KCl was not added. As a result, Fe and Si did not react, and the X-ray diffraction merely detected Fe and Si peaks.

実施例2
KClの添加量をFeとSiとの混合粉末に対して7質量%(0.700g)としたこと以外は実施例1と同様にして試験を行ったところ、実施例1と同様に単相のβ−FeSi2を得ることができた。
Example 2
A test was conducted in the same manner as in Example 1 except that the amount of KCl added was 7% by mass (0.700 g) with respect to the mixed powder of Fe and Si. β-FeSi 2 could be obtained.

実施例3
反応温度を850℃とし、反応時間(保持時間)を7時間としたこと以外は実施例1と同様にして試験を行ったところ、実施例1と同様に単相のβ−FeSi2を得ることができた。
Example 3
When the test was conducted in the same manner as in Example 1 except that the reaction temperature was 850 ° C. and the reaction time (retention time) was 7 hours, single-phase β-FeSi 2 was obtained in the same manner as in Example 1. I was able to.

実施例1における焼結試料のX線回折装置による回折パターンを示す。The diffraction pattern by the X-ray-diffraction apparatus of the sintered sample in Example 1 is shown.

Claims (5)

Fe及びSiの単体元素の粉末を1:2の原子比で混合し、この混合粉末に固形反応助剤を添加して混合し、この混合物を加熱処理することを特徴とするβ−FeSi2の製造方法。 The powder for each element of Fe and Si 1: mixed with 2 atomic ratio, and mixed by adding solid reaction aid to the powder mixture, the beta-FeSi 2, characterized in that the heat treatment the mixture Production method. 前記固形反応助剤が塩化物系反応助剤であることを特徴とする請求項1記載のβ−FeSi2の製造方法。 The method for producing β-FeSi 2 according to claim 1, wherein the solid reaction aid is a chloride-based reaction aid. 前記固形反応助剤がKCl又はNaClであることを特徴とする請求項1又は2に記載のβ−FeSi2の製造方法。 The method for producing β-FeSi 2 according to claim 1 or 2, wherein the solid reaction aid is KCl or NaCl. 前記のFeとSiとの混合粉末に固形反応助剤を添加して混合する工程を不活性ガス雰囲気下で行うことを特徴とする請求項1〜3のいずれか1項に記載のβ−FeSi2の製造方法。 The β-FeSi according to any one of claims 1 to 3, wherein the step of adding and mixing a solid reaction aid to the mixed powder of Fe and Si is performed in an inert gas atmosphere. 2. Manufacturing method. 前記のFeとSiとの混合粉末に固形反応助剤を添加して混合する工程をアルゴン雰囲気下で行うことを特徴とする請求項1〜4のいずれか1項に記載のβ−FeSi2の製造方法。 The β-FeSi 2 according to any one of claims 1 to 4, wherein the step of adding and mixing a solid reaction aid to the mixed powder of Fe and Si is performed in an argon atmosphere. Production method.
JP2004078752A 2004-03-18 2004-03-18 Method for producing β-FeSi2 Expired - Fee Related JP4803781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078752A JP4803781B2 (en) 2004-03-18 2004-03-18 Method for producing β-FeSi2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078752A JP4803781B2 (en) 2004-03-18 2004-03-18 Method for producing β-FeSi2

Publications (2)

Publication Number Publication Date
JP2005263562A true JP2005263562A (en) 2005-09-29
JP4803781B2 JP4803781B2 (en) 2011-10-26

Family

ID=35088488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078752A Expired - Fee Related JP4803781B2 (en) 2004-03-18 2004-03-18 Method for producing β-FeSi2

Country Status (1)

Country Link
JP (1) JP4803781B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046381A (en) * 2007-07-20 2009-03-05 Tohoku Univ Method for producing metal silicide
JP2018012614A (en) * 2016-07-19 2018-01-25 アイシン精機株式会社 Superconducting material and method for producing the same
JP2018178153A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 METHOD FOR MANUFACTURING Cu-Si ALLOY PARTICLE, Cu-Si ALLOY PARTICLE, MANUFACTURING METHOD OF Ni-Si ALLOY PARTICLE, Ni-Si ALLOY PARTICLE, METHOD FOR MANUFACTURING Ti-Si ALLOY PARTICLE, Ti-Si ALLOY PARTICLE, METHOD FOR MANUFACTURING Fe-Si ALLOY PARTICLE, AND Fe-Si ALLOY PARTICLE
JP2018178152A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 METHOD FOR MANUFACTURING HYPEREUTECTIC Al-Si ALLOY PARTICLE, AND HYPEREUTECTIC Al-Si ALLOY PARTICLE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681076A (en) * 1992-08-31 1994-03-22 Imura Zairyo Kaihatsu Kenkyusho:Kk Production of betafesi2
JP2002076450A (en) * 2000-08-25 2002-03-15 Univ Waseda Method for manufacturing thermoelectric material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681076A (en) * 1992-08-31 1994-03-22 Imura Zairyo Kaihatsu Kenkyusho:Kk Production of betafesi2
JP2002076450A (en) * 2000-08-25 2002-03-15 Univ Waseda Method for manufacturing thermoelectric material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046381A (en) * 2007-07-20 2009-03-05 Tohoku Univ Method for producing metal silicide
JP2018012614A (en) * 2016-07-19 2018-01-25 アイシン精機株式会社 Superconducting material and method for producing the same
JP2018178153A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 METHOD FOR MANUFACTURING Cu-Si ALLOY PARTICLE, Cu-Si ALLOY PARTICLE, MANUFACTURING METHOD OF Ni-Si ALLOY PARTICLE, Ni-Si ALLOY PARTICLE, METHOD FOR MANUFACTURING Ti-Si ALLOY PARTICLE, Ti-Si ALLOY PARTICLE, METHOD FOR MANUFACTURING Fe-Si ALLOY PARTICLE, AND Fe-Si ALLOY PARTICLE
JP2018178152A (en) * 2017-04-04 2018-11-15 東京印刷機材トレーディング株式会社 METHOD FOR MANUFACTURING HYPEREUTECTIC Al-Si ALLOY PARTICLE, AND HYPEREUTECTIC Al-Si ALLOY PARTICLE

Also Published As

Publication number Publication date
JP4803781B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP7038270B2 (en) Magnetic calorific material containing manganese, iron, silicon, phosphorus, and nitrogen
WO2008075789A1 (en) Thermo-electric converting materials, process for producing the same, and thermo-electric converting element
CN106904972B (en) Environment-friendly tin telluride-based thermoelectric material and preparation method thereof
CN107946450B (en) A kind of doping valence variation element collaboration optimization BiCuSeO base thermoelectricity material
CN110078476B (en) Al-doped BiCuSeO-based thermoelectric material and preparation method thereof
JP2012190984A (en) Magnesium silicide powder, sintered compact and thermoelectric conversion element using the same, and method for producing the same
JP6460351B2 (en) Thermoelectric material and manufacturing method thereof
JP5142208B2 (en) Method for producing metal silicide
JP2018508982A (en) Highly efficient P-type FeNbHfSb thermoelectric material and manufacturing method
CN101435029A (en) Rapid preparation of high performance nanostructured filling type skutterudite thermoelectric material
JP6365950B2 (en) Thermoelectric material and manufacturing method thereof
JP6250172B2 (en) High performance index P-type FeNbTiSb thermoelectric material and preparation method thereof
JP4803781B2 (en) Method for producing β-FeSi2
CN114506823A (en) N-type PbSe-based thermoelectric material and preparation method and application thereof
JP2008047806A (en) Clathrate compound and thermoelectric conversion element formed of same
JP6865951B2 (en) P-type thermoelectric semiconductor, its manufacturing method and thermoelectric power generation element using it
CN101118946B (en) Barium zinc antimony based p type thermoelectric material and method for making same
CN110112281B (en) Al-doped Cu-vacancy BiCuSeO-based thermoelectric material and preparation method thereof
JP2008007825A (en) Yb-Fe-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
CN109022863B (en) Ga-filled skutterudite thermoelectric material and preparation method thereof
JP5784888B2 (en) Method for producing BiTe-based thermoelectric material
JP3750156B2 (en) Manufacturing method of iron disilicide
JP2006057125A (en) Clathrate compound, production method of clathrate compound, and thermoelectric conversion element
JP5126723B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP4790273B2 (en) Method for producing thermoelectric conversion material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees