JP2005262273A - Controlled cooling method for differential thickness steel plate - Google Patents

Controlled cooling method for differential thickness steel plate Download PDF

Info

Publication number
JP2005262273A
JP2005262273A JP2004078321A JP2004078321A JP2005262273A JP 2005262273 A JP2005262273 A JP 2005262273A JP 2004078321 A JP2004078321 A JP 2004078321A JP 2004078321 A JP2004078321 A JP 2004078321A JP 2005262273 A JP2005262273 A JP 2005262273A
Authority
JP
Japan
Prior art keywords
steel plate
controlled cooling
thickness
cooling
straightening machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004078321A
Other languages
Japanese (ja)
Inventor
Kenji Ihara
健滋 井原
Nobuya Ikeda
展也 池田
Satoshi Kamioka
悟史 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004078321A priority Critical patent/JP2005262273A/en
Publication of JP2005262273A publication Critical patent/JP2005262273A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining a differential thickness steel plate superior in flatness by means of a controlled cooling. <P>SOLUTION: When the differential thickness steel plate, whose thickness is different in a longitudinal direction, is hot rolled, and then, is subjected to the controlled cooling immediately, in a roller straightening machine installed on the entrance end of the controlled cooling equipment, the straightening is performed with a passing speed synchronized to that of the controlled cooling equipment, wherein the position of a roll in the straightening machine is adjusted in accordance with the thickness of the steel plate passing therein. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼板の長手方向に厚みを変化させた差厚鋼板、特に厚みのある差厚鋼板を高速で均一に冷却する際に、該冷却前に矯正を行う制御冷却方法に関するものである。   The present invention relates to a controlled cooling method in which correction is performed before cooling when a differential thickness steel sheet having a thickness changed in the longitudinal direction of the steel sheet, particularly a thick differential thickness steel sheet, is uniformly cooled at high speed.

熱間圧延後の厚鋼板に、直ちに冷却を行って材質を調整する、いわゆる制御冷却が実施されている。特に、船舶や橋梁などの構造材として供される差厚鋼板では、材質の調整に制御冷却を適用することが有効な手立てとなる。ここで、差厚鋼板とは、主に部分によって強度を異ならせるために、長手方向に厚みの異なる部分がテーパー部を介して連続する厚鋼板、または鋼板の先端から後端に向かって厚みが漸減(漸増)するテーパー状の厚鋼板を意味し、これらを差厚鋼板と総称する。   So-called controlled cooling is performed in which a thick steel plate after hot rolling is immediately cooled to adjust the material. In particular, in a differential thickness steel plate used as a structural material for ships, bridges, and the like, it is effective to apply control cooling to the adjustment of the material. Here, the difference thickness steel plate is a thick steel plate in which portions having different thicknesses in the longitudinal direction continue through a taper portion in order to vary the strength mainly by the portion, or the thickness from the front end to the rear end of the steel plate. Tapered steel plates that gradually decrease (increase) are meant, and these are collectively called differential steel plates.

この差厚鋼板を熱間圧延後に制御冷却を行う場合、冷却後の鋼板が平坦であることが重要である。なぜなら、平坦でないと需要家での加工等に支障がでるからであり、鋼板の起伏が許容範囲内であることが要求される。
制御冷却後の鋼板の平坦度を確保するには、均一な冷却を実現することが基本であるが、この冷却に先立って予め鋼板を平坦にしておくことも肝要である。
When performing controlled cooling after hot rolling of this differential thickness steel plate, it is important that the steel plate after cooling is flat. This is because if it is not flat, it will hinder the processing at the customer, etc., and the undulation of the steel sheet is required to be within an allowable range.
In order to ensure the flatness of the steel plate after controlled cooling, it is fundamental to achieve uniform cooling, but it is also important to flatten the steel plate in advance prior to this cooling.

冷却前の平坦度を確保する方法としては、例えば特許文献1に、レベリングロールに作用する矯正反力を一定に保ち、テーパー鋼板の板厚に基づいて矯正速度を調整することが、また特許文献2に、差厚鋼板を熱間で製造する方法において、パス間で差厚形成部(薄部)を再加熱して平坦度を得ること、等が提案されている。
特開平8−257637号公報 特開昭62−50004号公報
As a method for ensuring the flatness before cooling, for example, in Patent Document 1, the correction reaction force acting on the leveling roll is kept constant, and the correction speed is adjusted based on the thickness of the tapered steel sheet. Secondly, in a method for manufacturing a differential thickness steel sheet hot, it is proposed to reheat the difference thickness forming portion (thin portion) between passes to obtain flatness.
JP-A-8-257637 JP-A-62-250004

特許文献1にて提案された、レベリングロールに作用する矯正反力を一定に保ち、テーパー鋼板の板厚に基づいて矯正速度を調整する方法は、確かに矯正効果は得られると考えられる。しかしながら、制御冷却の入側で矯正を行う場合、矯正後直ちに制御冷却を連続して実施するため、矯正速度は冷却に律則した通板速度となる。従って、鋼板の平坦度を確保する為に矯正速度を板厚に応じて変化させることは、実際には困難であり、この方法は制御冷却材には不向きである。   The method proposed in Patent Document 1 that keeps the correction reaction force acting on the leveling roll constant and adjusts the correction speed based on the thickness of the tapered steel plate is considered to surely provide a correction effect. However, when the correction is performed on the inlet side of the controlled cooling, the controlled cooling is continuously performed immediately after the correction. Therefore, the correction speed is a plate passing speed regulated by cooling. Therefore, it is actually difficult to change the correction speed according to the plate thickness in order to ensure the flatness of the steel plate, and this method is not suitable for the control coolant.

また、特許文献2にて提案された、差厚鋼板を熱間で製造するに当り、パス間で差厚形成部(薄部)を再加熱して平坦度を得る方法は、再加熱により材質が変化する可能性がある為好ましくない。   In addition, the method of obtaining the flatness by reheating the difference thickness forming portion (thin portion) between passes when manufacturing the difference thickness steel plate hot in the proposal of Patent Document 2 is performed by reheating. Is not preferable because there is a possibility of change.

さらに、これらの従来技術は、差厚鋼板の平坦度確保のみに関する記述にとどまっており、平坦度に優れた差厚鋼板を制御冷却にて安定製造するという観点からは不十分な内容である。なぜなら、差厚鋼板の圧延方法のみを考慮しており、少ない合金元素で要求材質を得るために必要な、制御冷却との組合せは考慮されていなかったからである。   Furthermore, these prior arts are merely descriptions relating to ensuring the flatness of the differential thickness steel plate, and are insufficient from the viewpoint of stably producing the differential thickness steel plate with excellent flatness by controlled cooling. This is because only the rolling method of the differential thickness steel sheet is considered, and the combination with the control cooling necessary for obtaining the required material with a small number of alloy elements is not considered.

上記の通り、差厚鋼板の平坦度を確保しかつ材質の均一化を低コストで実現するためには、差厚鋼板に制御冷却を適用することが必要不可欠であるが、上記の2つの先行技術は、ともにこれらを実現出来ないという問題がある。
そこで、本発明は、上記の問題を解決するために、平坦度に優れた差厚鋼板を制御冷却にて得る方法について提案することを目的とする。
As described above, in order to ensure the flatness of the differential thickness steel sheet and to achieve uniform material quality at a low cost, it is indispensable to apply controlled cooling to the differential thickness steel sheet. Both technologies have the problem that these cannot be realized.
Therefore, an object of the present invention is to propose a method for obtaining a differential thickness steel plate having excellent flatness by controlled cooling in order to solve the above-described problems.

すなわち、本発明は、長手方向に厚みが異なる差厚鋼板を熱間圧延した後、直ちに制御冷却を行うに際して、該制御冷却設備の入側に設けた、ローラー矯正機において、制御冷却設備での通板速度と同調した通板速度の下で矯正を施すに当り、前記矯正機におけるロールの位置を、当該矯正機を通板する鋼板の厚みに応じて調整することを特徴とする差厚鋼板の制御冷却方法である。
なお、ローラー矯正機とは、レベラーに代表されるような、鋼板長手方向にくり返し曲げを施すことにより矯正を施す装置であり、長手方向および上下方向に離間して配置される複数個のロールから構成されている。
That is, the present invention provides a roller straightening machine provided on the inlet side of the control cooling equipment when hot-rolling the differential thickness steel sheets having different thicknesses in the longitudinal direction and then immediately performing the control cooling. When performing correction at a plate feed speed synchronized with the plate feed speed, the thickness of the roll in the straightening machine is adjusted according to the thickness of the steel sheet passing through the straightening machine. This is a controlled cooling method.
The roller straightener is a device that performs correction by repeatedly bending in the longitudinal direction of the steel sheet, as represented by a leveler, from a plurality of rolls that are spaced apart in the longitudinal direction and the vertical direction. It is configured.

本発明によれば、差厚鋼板の制御冷却において、ローラー矯正機におけるロール位置を、そこを通る鋼板の厚みに応じて変更して適切な矯正を行うため、制御冷却後の平坦度に優れた差厚鋼板を安定して製造することが可能となる。   According to the present invention, in the controlled cooling of the differential thickness steel sheet, the roll position in the roller straightening machine is changed according to the thickness of the steel sheet passing therethrough to perform appropriate correction, and thus the flatness after the controlled cooling is excellent. It becomes possible to manufacture the differential thickness steel plate stably.

以下に、本発明の詳細について説明する。
さて、差厚鋼板は、その圧延形状が乱れることが不可避である。特に、板厚差の大きな差厚鋼板や、図1(a)、(b)および(c)に断面形状を示す、一方向二段、凸型または凹型の差厚鋼板では、所望形状の確保が困難である。
Details of the present invention will be described below.
Now, it is inevitable that the rolled shape of the differential thickness steel plate is disturbed. In particular, with a difference thickness steel plate with a large difference in plate thickness, or with a unidirectional two-stage, convex or concave difference thickness steel plate whose cross-sectional shapes are shown in FIGS. Is difficult.

従って、かような差厚鋼板の制御冷却後の形状を確保するには、その制御冷却において、まず当然の事ながら高速かつ均一に冷却することが要求される。例えば、上部および下部の冷却ノズル対を複数対配置するとともに、各冷却ノズル対の出側に該鋼板を上下から挟む上部および下部の水切りロール対を配置した、制御冷却設備にて冷却を行う際に、鋼板の表裏面で均一な冷却を行う必要がある。   Therefore, in order to ensure such a shape after the controlled cooling of the differential thickness steel plate, it is naturally required to cool at a high speed and uniformly in the controlled cooling. For example, when cooling is performed in a controlled cooling facility in which a plurality of pairs of upper and lower cooling nozzles are arranged and upper and lower draining roll pairs sandwiching the steel plate from above and below are arranged on the exit side of each cooling nozzle pair Furthermore, it is necessary to perform uniform cooling on the front and back surfaces of the steel plate.

さらに、冷却前の形状確保も重要であり、そのために図2に示すように、熱間圧延機1を出た差厚鋼板(以下、単に鋼板と示す)2を制御冷却設備3に導入するに先立ち、この設備3入側のローラー矯正機4にて、鋼板2の形状を整えて平坦にしておく必要がある。なお、図2において、符号5は、制御冷却後の鋼板2の形状をさらに整える矯正機であり、必要に応じてさらに矯正することも可能である。   Furthermore, securing the shape before cooling is also important. For this reason, as shown in FIG. 2, a differential thickness steel plate (hereinafter simply referred to as a steel plate) 2 exiting the hot rolling mill 1 is introduced into the controlled cooling facility 3. Prior to this, it is necessary to make the shape of the steel plate 2 flat by using the roller straightening machine 4 on the entry side of the equipment 3. In addition, in FIG. 2, the code | symbol 5 is a straightening machine which further arranges the shape of the steel plate 2 after control cooling, and can also be further corrected as needed.

そこで、上記の矯正機4において、そのロールの位置を、当該矯正機を通板する鋼板2の厚みに応じて調整することが肝要である。
すなわち、例えば図3に示すように、矯正機4は、複数個、図示例で7個のロール4a〜4gを、鋼板2の通板ラインを交互に挟むように配置し、これらロール4a〜4g群に鋼板2を通して、くり返し曲げを行うことによって、鋼板2の形状を矯正することができる。
Therefore, in the straightening machine 4 described above, it is important to adjust the position of the roll according to the thickness of the steel plate 2 through which the straightening machine passes.
That is, for example, as shown in FIG. 3, the straightening machine 4 includes a plurality of seven rolls 4 a to 4 g in the illustrated example so as to sandwich the sheet passing lines of the steel plate 2 alternately, and these rolls 4 a to 4 g. The shape of the steel plate 2 can be corrected by repeatedly bending the steel plate 2 through the group.

かような構成の矯正機4に、鋼板2を、後工程の制御冷却設備3における通板速度に同調させた通板速度で送り込み矯正を行う際、図3に示すように、鋼板2のトラッキングに応じて、上側に配置したロール4a〜4cの位置を上下に連続して調整することにより、板厚変動にかかわらず同じ曲げ歪を与えて制御冷却前の鋼板の矯正を確実に行うところに、本発明の最大の特徴がある。   When the straightening machine 4 having such a configuration is fed and corrected at a sheet feeding speed synchronized with the sheet feeding speed in the control cooling equipment 3 in the subsequent process, as shown in FIG. Accordingly, by continuously adjusting the positions of the rolls 4a to 4c arranged on the upper and lower sides, the same bending strain is given regardless of the plate thickness variation, and the steel plate before control cooling is surely corrected. This is the greatest feature of the present invention.

図3の例では、長手方向に二段の差厚部(テーパ部)を有する差厚鋼板2の場合を示しているが、同図(a)に示すように、板厚の薄部から厚部へ変化するテーパ部T1では、ロール4a〜4cの位置を順次に上方向にシフトし、平行部ではそのままに保持したのち、板厚が厚部から薄部へ変化するテーパ部T2では、同図(b)に示すように、位置を下方向にシフトして、鋼板厚みの変化に追随してロール位置を制御し、一定の曲げ歪を付与する。特に、差厚鋼板の圧延仕上形状は、薄部が腹伸びになることが多いことから、全長に渡り鋼板形状を確保する為には薄部の矯正は必須である。   In the example of FIG. 3, the case of the differential thickness steel plate 2 having a two-stage difference thickness portion (tapered portion) in the longitudinal direction is shown. However, as shown in FIG. In the taper portion T1 where the thickness changes from the thick portion to the thin portion after the positions of the rolls 4a to 4c are sequentially shifted upward and held as they are in the parallel portion, the taper portion T1 changes to the thin portion. As shown in the figure (b), the position is shifted downward, the roll position is controlled following the change in the steel plate thickness, and a certain bending strain is applied. In particular, since the thin part is often stretched in the rolled shape of the differential thickness steel sheet, correction of the thin part is indispensable in order to ensure the steel sheet shape over the entire length.

ここで、鋼板の平坦形状を確保するには、ロール押込量を6mmから2mmとすることが望ましく、これらのロール押込量設定値は鋼板の形状、板厚および板幅により変化させることが望ましい。なお、矯正機におけるロール押込量とは、板厚−(隣り合う上ロール下端と下ロール上端の高さの差)で定義される。また、通常は上流から下流に従いロール押込量を小さくして、曲げ歪がだんだん小さくなるようにして平坦な形状の鋼板を得る。   Here, in order to ensure the flat shape of the steel sheet, it is desirable to set the roll indentation amount to 6 mm to 2 mm, and it is desirable to change these roll indentation amount setting values depending on the shape, thickness and width of the steel sheet. In addition, the roll push-in amount in the straightening machine is defined by the plate thickness minus (the difference in height between the lower end of the adjacent upper roll and the upper end of the lower roll). Further, a flat steel plate is obtained usually by decreasing the roll pressing amount from upstream to downstream so that the bending strain gradually decreases.

ちなみに、ローラー矯正機におけるロール押込量の調整は、通板ラインの上側に配置したロール、図3においてロール4a〜4cの位置を、油圧あるいは機械駆動により上下させ、下ロール位置は一定として行う。   Incidentally, the adjustment of the roll push-in amount in the roller straightening machine is performed by moving the positions of the rolls arranged on the upper side of the sheet passing line, that is, rolls 4a to 4c in FIG.

図2に示した制御冷却ラインにおいて、図4に形状および寸法を示す鋼板2Aおよび図5に形状および寸法を示す鋼板2Bに、鋼板2Aは表1そして鋼板2Bは表2に示す条件に従って、入側矯正を含む制御冷却を施した。なお、表1および表2における、上ロール位置とは複数個の上ロールのパスラインを基準とする高さの平均、そして冷却開始および停止温度とは冷却設備入側での鋼板表面温度の長手方向平均値および冷却設備出側での鋼板表面温度の長手方向平均値である。   In the control cooling line shown in FIG. 2, the steel plate 2A having the shape and dimensions shown in FIG. 4 and the steel plate 2B having the shapes and dimensions shown in FIG. Controlled cooling including lateral correction was applied. In Tables 1 and 2, the upper roll position is the average of the heights based on the pass lines of a plurality of upper rolls, and the cooling start and stop temperatures are the length of the steel sheet surface temperature on the cooling equipment entry side. It is a longitudinal direction average value of a direction average value and a steel plate surface temperature on the cooling facility delivery side.

次いで、各制御冷却後の鋼板について、その幅方向中央部温度の長手方向における最高温度と最低温度との差である、長手方向温度偏差について調査した。その調査結果を表1に併記するように、矯正機の上ロール位置調整を行った発明法では、長手方向温度偏差が10℃と均一冷却が実現出来たが、上ロール位置を一定とした従来法では、40℃と大きな値となった。すなわち、発明法では、矯正機の上ロール位置を通板鋼板の厚みに応じて連続して調整することにより、鋼板の全長にわたる矯正が可能であったために、均一な冷却が実現出来た。一方、従来法では最厚部のみの矯正となったため、薄部での形状不良により均一冷却が実現出来なかった。
以上の評価結果は、表2に示した鋼板2Bの場合も同様である。
Subsequently, about the steel plate after each control cooling, the longitudinal direction temperature deviation which is the difference of the maximum temperature in the longitudinal direction of the width direction center part temperature and minimum temperature was investigated. As shown in Table 1, the results of the survey show that in the method of adjusting the upper roll position of the straightening machine, uniform cooling was achieved with a temperature deviation in the longitudinal direction of 10 ° C. According to the law, the value was as large as 40 ° C. That is, according to the invention method, since the upper roll position of the straightening machine is continuously adjusted according to the thickness of the plate steel plate, it is possible to correct the entire length of the steel plate, so that uniform cooling can be realized. On the other hand, in the conventional method, since only the thickest part was corrected, uniform cooling could not be realized due to a shape defect in the thin part.
The above evaluation results are the same in the case of the steel plate 2B shown in Table 2.

Figure 2005262273
Figure 2005262273

Figure 2005262273
Figure 2005262273

また、図6に、発明法と従来法とによる冷間矯正率の比較を示す。対象材は、図4に示した造船用の一方向差厚鋼板であり、これを表1に示す条件にて、制御冷却に先立って矯正を行った。従来法では約65%の矯正率であったが、発明法では約35%と低減を実現した。
ここで、冷間矯正率とは、形状不良につき、冷間矯正機にて矯正を実施した鋼板の枚数比率である。
FIG. 6 shows a comparison of the cold straightening rate between the inventive method and the conventional method. The target material was a unidirectional steel plate for shipbuilding shown in FIG. 4, and this was corrected prior to controlled cooling under the conditions shown in Table 1. With the conventional method, the correction rate was about 65%, but with the invention method, a reduction of about 35% was achieved.
Here, the cold straightening rate is the ratio of the number of steel sheets that have been straightened with a cold straightening machine for a shape defect.

このように本発明法は、従来法と比較して優れた平坦度を得ることが可能である。
また、材質についても当然のことながら、本発明法により製造した鋼板は従来法により製造した鋼板よりも板内のばらつきが小さく良好な値であった。
Thus, the method of the present invention can obtain excellent flatness as compared with the conventional method.
Further, as a matter of course, the steel plate produced by the method of the present invention has a good value with less variation in the plate than the steel plate produced by the conventional method.

各種差厚鋼板の断面形状を示す図である。It is a figure which shows the cross-sectional shape of various difference thickness steel plates. 制御冷却ラインを示す図である。It is a figure which shows a control cooling line. 制御冷却設備の入側に配置する矯正機を示す図である。It is a figure which shows the correction machine arrange | positioned at the entrance side of control cooling equipment. 差厚鋼板の形状および寸法を示す図である。It is a figure which shows the shape and dimension of a difference thickness steel plate. 差厚鋼板の形状および寸法を示す図である。It is a figure which shows the shape and dimension of a difference thickness steel plate. 冷間矯正率を示す図である。It is a figure which shows a cold correction rate.

符号の説明Explanation of symbols

1 熱間圧延機
2 鋼板
3 制御冷却設備
4 矯正機
4a〜4g ロール
DESCRIPTION OF SYMBOLS 1 Hot rolling mill 2 Steel plate 3 Control cooling equipment 4 Straightening machine 4a-4g Roll

Claims (1)

長手方向に厚みが異なる差厚鋼板を熱間圧延した後、直ちに制御冷却を行うに際して、該制御冷却設備の入側に設けたローラー矯正機において、制御冷却設備での通板速度と同調した通板速度の下で矯正を施すに当り、前記矯正機におけるロールの位置を、当該矯正機を通板する鋼板の厚みに応じて調整することを特徴とする差厚鋼板の制御冷却方法。   When performing controlled cooling immediately after hot-rolling the differential thickness steel sheets having different thicknesses in the longitudinal direction, the roller straightening machine provided on the inlet side of the controlled cooling equipment is synchronized with the feeding speed in the controlled cooling equipment. A method for controlling and cooling a differential thickness steel sheet, comprising: adjusting the position of a roll in the straightening machine according to the thickness of the steel sheet passing through the straightening machine when performing straightening at a plate speed.
JP2004078321A 2004-03-18 2004-03-18 Controlled cooling method for differential thickness steel plate Pending JP2005262273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078321A JP2005262273A (en) 2004-03-18 2004-03-18 Controlled cooling method for differential thickness steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078321A JP2005262273A (en) 2004-03-18 2004-03-18 Controlled cooling method for differential thickness steel plate

Publications (1)

Publication Number Publication Date
JP2005262273A true JP2005262273A (en) 2005-09-29

Family

ID=35087351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078321A Pending JP2005262273A (en) 2004-03-18 2004-03-18 Controlled cooling method for differential thickness steel plate

Country Status (1)

Country Link
JP (1) JP2005262273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073007A (en) * 2009-09-29 2011-04-14 Nisshin Steel Co Ltd Method of straightening tapered steel plate thickness of which is varied into tapered shape in longitudinal direction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011073007A (en) * 2009-09-29 2011-04-14 Nisshin Steel Co Ltd Method of straightening tapered steel plate thickness of which is varied into tapered shape in longitudinal direction

Similar Documents

Publication Publication Date Title
JP6007597B2 (en) Bending straightening device for section steel and method for straightening section bending
EP3560616B1 (en) Method for cooling steel sheet and method for manufacturing steel sheet
CN100441331C (en) Electrical steel producing process
JP6172109B2 (en) Hot rolled steel sheet rolling method
JP6922873B2 (en) Temperable rolling method, temper rolling equipment and steel sheet manufacturing method
JP6172107B2 (en) Hot rolled steel sheet rolling method
JP3551129B2 (en) Manufacturing method and manufacturing equipment for hot rolled steel strip
EP2762241B1 (en) Hot slab shape control equipment and shape control method
JP3924276B2 (en) Straightening method for thin wide plate
JP6172108B2 (en) Hot rolled steel sheet rolling method
JP2019038035A (en) Hat-shaped steel sheet pile, manufacturing method of hat-shaped steel sheet pile, and manufacturing facility therefor
JP2005262273A (en) Controlled cooling method for differential thickness steel plate
JP2008254026A (en) Method of manufacturing high tensile strength metal strip having excellent press formability
JP6172110B2 (en) Hot rolled steel sheet rolling method
JP2001105006A (en) Production of thick steel plate and this apparatus
JP4023436B2 (en) Universal mill and steel plate manufacturing method using the same
JP2010023115A (en) Method for straightening t-shaped steel and straightening facility
JPH08267114A (en) Rolling method for controlling edge drop in cold rolling
WO2021106723A1 (en) Manufacturing equipment and manufacturing method for steel plate
JPH11267755A (en) Manufacture of thick steel plate and straightening device used in it
JP2008213015A (en) Manufacturing method of cold-rolled steel strip, and continuous treatment line for steel strip
JP4412442B2 (en) Correction method of metal plate by roller leveler
JP2010005659A (en) Method of manufacturing magnesium sheet
JP4305156B2 (en) Heat treatment method for steel sheet
JP2010075977A (en) Method of forming slab with sizing press