JP2005262050A - Ashes treatment method and its facility - Google Patents

Ashes treatment method and its facility Download PDF

Info

Publication number
JP2005262050A
JP2005262050A JP2004076686A JP2004076686A JP2005262050A JP 2005262050 A JP2005262050 A JP 2005262050A JP 2004076686 A JP2004076686 A JP 2004076686A JP 2004076686 A JP2004076686 A JP 2004076686A JP 2005262050 A JP2005262050 A JP 2005262050A
Authority
JP
Japan
Prior art keywords
ash
metal
extracted
extract
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004076686A
Other languages
Japanese (ja)
Inventor
Koji Mishima
弘次 三嶋
Masami Tsunekawa
昌美 恒川
Naoki Hiroyoshi
直樹 広吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Hokkaido Technology Licensing Office Co Ltd
Original Assignee
Takuma Co Ltd
Hokkaido Technology Licensing Office Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd, Hokkaido Technology Licensing Office Co Ltd filed Critical Takuma Co Ltd
Priority to JP2004076686A priority Critical patent/JP2005262050A/en
Publication of JP2005262050A publication Critical patent/JP2005262050A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ashes treatment method remaining iron and aluminum in the ash and capable of selectively and inexpensively extracting useful metals such as lead, zinc, cadmium and copper, and its facility. <P>SOLUTION: The ashes are dissolved in an aqueous solution containing ammonium ions and chlorine ions under an acidic condition to extract a metal in the ashes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は灰類処理方法とその設備に関し、詳しくは、灰類中に含まれる鉛などの金属類を抽出・処理する灰類処理方法とその設備に関する。   The present invention relates to an ash treatment method and equipment, and more particularly to an ash treatment method and equipment for extracting and treating metals such as lead contained in ash.

都市ごみ(一般廃棄物)の大部分(約70%。約10万t/日)は焼却処分されており、その結果、焼却されたごみ重量の約9%の焼却灰と約1%の焼却飛灰が発生している。これらの灰名中には、鉛、カドミウム、亜鉛、銅などの金属が高い濃度(約1,000〜10,000ppm)で含まれており、そのまま埋め立てると埋め立て地周辺の土壌、地下水汚染などを引き起こす可能性がある。   Most of the municipal waste (general waste) (about 70%, about 100,000 tons / day) is incinerated. As a result, about 9% of incinerated ash and about 1% of incinerated waste are incinerated. Fly ash is generated. These ash names contain metals such as lead, cadmium, zinc, and copper at high concentrations (about 1,000 to 10,000 ppm). May cause.

なかでも、焼却飛灰は鉛、カドミウム、亜鉛などの揮発性の高い金属を高濃度で含んでおり、粒径が小さく比表面積が大きいことから、金属を溶出し易い。そのため、これらについては、(1)溶融固化法、(2)セメント固化法、(3)薬剤処理法、(4)酸などの溶媒による抽出法などの中間処理法が義務づけられるに至っている。   In particular, incinerated fly ash contains a highly volatile metal such as lead, cadmium, and zinc in a high concentration, and since the particle size is small and the specific surface area is large, the metal is easily eluted. For this reason, intermediate treatment methods such as (1) melt solidification method, (2) cement solidification method, (3) chemical treatment method, and (4) extraction method using a solvent such as an acid have become obligatory.

・ 溶融固化法は、焼却灰や焼却飛灰を融点よりも高い温度でスラグ化し、これを冷却固化してスラグ内に金属を閉じ込め安定化させる方法であるが、溶融時に融点の低い金属が揮発して、溶融飛灰に移行するので、通常の焼却飛灰より高濃度の金属が含まれるようになり、この溶融飛灰を別途再処理する必要が生じる。   ・ The melting and solidification method is a method in which incinerated ash and incinerated fly ash are slagged at a temperature higher than the melting point, and this is cooled and solidified to confine and stabilize the metal in the slag. Then, since it shifts to molten fly ash, a metal having a higher concentration than ordinary incinerated fly ash is contained, and it becomes necessary to reprocess the molten fly ash separately.

・ セメント固化法は、焼却飛灰をセメント及び水と共に混練して、その内部に金属を封じ込める方法であるが、セメントの添加により体積が増加したり、アルカリ性条件下で溶出し易い鉛を多く含む飛灰の処理には適さない等の問題点がある。   ・ The cement solidification method is a method in which incinerated fly ash is kneaded with cement and water, and the metal is contained inside, but the volume increases due to the addition of cement, and it contains a lot of lead that is easily eluted under alkaline conditions. There is a problem that it is not suitable for the treatment of fly ash.

・ 薬剤処理法は、焼却飛灰をキレート剤および水と混練して、飛灰中の金属とキレート剤とを反応させて不溶性の金属キレート化合物を製造し、飛灰の安定化を図るものであるが、高価なキレート剤を用いるため、処理コストが高くなる。また、溶融飛灰のように、金属含有量が多く、塩を多量に含むものには効果が小さい。   ・ The chemical treatment method is intended to stabilize fly ash by mixing incinerated fly ash with a chelating agent and water and reacting the metal in the fly ash with the chelating agent to produce an insoluble metal chelate compound. However, since an expensive chelating agent is used, the processing cost is increased. Moreover, the effect is small for those containing a large amount of metal such as molten fly ash and containing a large amount of salt.

・ 酸による抽出法は、酸性溶液中に灰を懸濁させ、金属イオンにして抽出した後、種々の方法でこの金属イオンを溶解度の低い固体沈殿として回収・安定化する方法であり、上記各方法が有する問題点がなく、灰中の有価金属を回収・再資源化し易いといえる(例えば、特許文献1)。
特開平9−316557号公報
The acid extraction method is a method in which ash is suspended in an acidic solution, extracted as metal ions, and then recovered and stabilized as a solid precipitate having low solubility by various methods. It can be said that there is no problem of the method, and it is easy to recover and recycle valuable metals in ash (for example, Patent Document 1).
Japanese Patent Laid-Open No. 9-316557

しかしながら、上記従来技術の酸抽出法は、ごみ焼却の過程や溶融処理の過程で発生する塩化水素や亜硫酸ガスの有害酸性ガス処理のために、消石灰などのアルカリ剤を吹き込んで中和処理しているので、焼却灰や溶融飛灰中には未反応のアルカリ剤が高濃度に残存しており、抽出用として投入される酸の大半は残存アルカリ剤と中和して消費されてしまう。   However, the acid extraction method of the above prior art is neutralized by blowing an alkaline agent such as slaked lime in order to treat the harmful acid gas of hydrogen chloride and sulfurous acid gas generated in the process of waste incineration and melting process. Therefore, the unreacted alkaline agent remains in high concentration in the incinerated ash and the molten fly ash, and most of the acid added for extraction is neutralized with the residual alkaline agent and consumed.

しかも、灰中には、毒性が低く液相中に抽出しても回収が困難な鉄やアルミニウムが大量に含まれており、これらも有価金属と共に溶出して酸を消費する。さらに、溶出した金属を溶液から回収する際には中和工程が必要となり、そのために多量のアルカリ剤が必要になって、再度酸の添加を必要とする等、高い処理コストが必要となっている。   In addition, the ash contains a large amount of iron and aluminum that have low toxicity and are difficult to recover even if extracted in the liquid phase, and these also elute together with valuable metals and consume acid. Furthermore, when recovering the eluted metal from the solution, a neutralization step is required, which requires a large amount of an alkaline agent, and requires a high processing cost such as the addition of an acid again. Yes.

そこで、本発明が解決しようとする課題は、上記従来技術の有する事情に鑑みて、鉄やアルミニウムを灰中に残留させ、鉛、亜鉛、カドミウム、銅などの有用金属を選択的かつ安価に抽出可能な灰類処理方法とその設備を提供することにある。   Therefore, in view of the circumstances of the prior art, the problem to be solved by the present invention is to leave iron or aluminum in the ash and selectively extract useful metals such as lead, zinc, cadmium, and copper selectively and inexpensively. It is to provide a possible ash treatment method and equipment.

上記課題は、請求項記載の発明により達成される。すなわち、本発明に係る灰類処理方法の特徴構成は、酸性下において、アンモニウムイオンと塩素イオンを含む水溶液中で灰類を溶解し、前記灰類中の金属を抽出することにある。   The above object can be achieved by the invention described in the claims. That is, the characteristic configuration of the ash treatment method according to the present invention is that the ash is dissolved in an aqueous solution containing ammonium ions and chlorine ions under an acidic condition, and the metal in the ash is extracted.

この構成によれば、灰類中の鉄やアルミニウムの溶出を最小限に抑えて、鉛などの有用金属を選択的に効率よく抽出でき、しかも抽出液として高価な薬剤(チオ硫酸ナトリウム等)や多量のアルカリ剤を使用することがないため、処理コストの低い処理方法を実施することができる。尚、本明細書で「灰類」とは、都市ごみや産業廃棄物の焼却の過程で発生する焼却灰や焼却飛灰、更にはこれらを溶融処理する際に発生する溶融飛灰をも含む概念として用いる。   According to this configuration, the elution of iron and aluminum in ash can be minimized, and useful metals such as lead can be selectively extracted efficiently, and an expensive drug (sodium thiosulfate, etc.) Since a large amount of alkaline agent is not used, a treatment method with a low treatment cost can be carried out. In this specification, “ash” includes incineration ash and incineration fly ash generated in the process of incineration of municipal waste and industrial waste, as well as molten fly ash generated when these are melted. Use as a concept.

その結果、鉄やアルミニウムを灰中に残留させ、鉛、亜鉛、カドミウム、銅などの有用金属を選択的かつ安価に抽出することができた。   As a result, iron and aluminum remained in the ash, and useful metals such as lead, zinc, cadmium and copper could be extracted selectively and inexpensively.

前記水溶液のpHは、硫酸酸性下において3以上7未満に調整されることが好ましい。   The pH of the aqueous solution is preferably adjusted to 3 or more and less than 7 under sulfuric acid acidity.

この構成によれば、有用金属を選択的に一層効率よく抽出できる。水溶液のpHが3未満であると、アルミニウムやカルシウム等が溶出し易くなって好ましくなく、pHが7を越えると鉄やアルミニウムの溶出は抑えられるが、亜鉛や鉛の抽出率が低くなって好ましくない。   According to this configuration, useful metals can be selectively extracted more efficiently. When the pH of the aqueous solution is less than 3, it is not preferable because aluminum and calcium are easily eluted, and when the pH exceeds 7, the elution of iron and aluminum can be suppressed, but the extraction rate of zinc and lead is preferably decreased. Absent.

前記アンモニウムイオンの濃度は0.2M以上であり、前記塩素イオンの濃度は3M以上であることが好ましい。   The ammonium ion concentration is preferably 0.2M or more, and the chlorine ion concentration is preferably 3M or more.

この構成によれば、有用金属を選択的に更に効率よく抽出できる。アンモニウムイオンの濃度は0.2M未満であり、塩素イオンの濃度は3M未満であると、有用金属を選択的に効率良く抽出し難くなり好ましくない。   According to this configuration, useful metals can be selectively extracted more efficiently. If the concentration of ammonium ions is less than 0.2M and the concentration of chloride ions is less than 3M, it is difficult to selectively extract useful metals efficiently.

前記灰類から溶解抽出した抽出液に対して硫化物沈殿法により安定化処理を行うことが好ましい。   It is preferable to perform a stabilization treatment by the sulfide precipitation method on the extract solution dissolved and extracted from the ash.

この構成によれば、抽出液から有用金属を確実に高い回収率で回収可能になり、回収した金属(硫化物)を種々の用途、例えば非鉄製錬などの原料として利用することができる。例えば、硫化剤として水硫化ナトリウムを用いると、抽出液中の鉛、カドミウム、銅、亜鉛を100%回収することができる。   According to this configuration, useful metals can be reliably recovered from the extract at a high recovery rate, and the recovered metals (sulfides) can be used as raw materials for various uses, such as non-ferrous smelting. For example, when sodium hydrosulfide is used as the sulfiding agent, 100% of lead, cadmium, copper and zinc in the extract can be recovered.

前記安定化処理した後、更に固液分離処理を行うと共に、分離された液体分を前記溶解槽に送給して再利用することが好ましい。   It is preferable that after the stabilization treatment, a solid-liquid separation treatment is further performed, and the separated liquid is supplied to the dissolution tank and reused.

この構成によれば、分離された液体分を溶解槽で再度溶剤に利用することより、溶解のための使用量が最小限となり、処理コストの低減や省資源に効果的となる。
又、本発明に係る灰類処理設備の特徴構成は、酸性下において、アンモニウムイオンと塩素イオンを含む水溶液中で灰類を溶解し、前記灰類中の金属を抽出する溶解槽を有することにある。
According to this configuration, since the separated liquid is reused as a solvent in the dissolution tank, the amount used for dissolution is minimized, which is effective in reducing processing costs and saving resources.
The characteristic configuration of the ash treatment facility according to the present invention is to have a dissolution tank for dissolving ash in an aqueous solution containing ammonium ions and chlorine ions under acidic conditions and extracting the metal in the ash. is there.

この構成によれば、鉄やアルミニウムを灰中にできるだけ残留させ、鉛、亜鉛、カドミウム、銅などの有用金属を選択的かつ安価に抽出可能な灰類処理設備を提供することができる。   According to this configuration, it is possible to provide an ash treatment facility capable of selectively and inexpensively extracting useful metals such as lead, zinc, cadmium, and copper with iron and aluminum remaining as much as possible in the ash.

前記溶解槽において、前記灰類から溶解抽出した抽出液に対して硫化剤を加えることにより安定化処理を行う沈殿槽を有することが好ましい。   The dissolution tank preferably includes a precipitation tank that performs a stabilization treatment by adding a sulfiding agent to the extract solution dissolved and extracted from the ash.

この構成によれば、灰類中の有用金属を硫化物として回収して、種々な用途に利用できる。   According to this structure, the useful metal in ash can be collect | recovered as a sulfide, and it can utilize for various uses.

前記溶解槽と沈殿槽のいずれか又は双方により処理された被処理物に対して、固液分離を行う固液分離装置が設けられていることが好ましい。   It is preferable that a solid-liquid separation device that performs solid-liquid separation is provided for an object to be processed which is processed by either or both of the dissolution tank and the precipitation tank.

この構成によれば、固体分として有用金属を硫化物にして回収すると共に、液体分を再利用できて、効率のよいシステムを構成することができる。   According to this configuration, the useful metal can be recovered as a sulfide as a solid, and the liquid can be reused, so that an efficient system can be configured.

前記固液分離装置により分離された液体分を、前記溶解槽に送給して再利用可能に構成されていることが好ましい。   It is preferable that the liquid component separated by the solid-liquid separator is supplied to the dissolution tank so that it can be reused.

この構成によれば、金属類の溶解に必要な薬剤の使用量を最小限にでき、処理コストを低減し、省資源となる設備を提供できる。   According to this configuration, it is possible to minimize the amount of chemicals used for dissolving metals, reduce processing costs, and provide equipment that saves resources.

本発明の実施形態を、図面を参照して詳細に説明する。図1は、本実施形態に係る灰処理装置の概略構成を示す。この灰処理装置は、前段に被処理物である灰類を溶解抽出液と共に混合して灰類中の金属成分を抽出する溶解槽1と、溶解処理した灰の固形部分と液体部分とを分離する前段固液分離装置2とを備える。後段には、溶解抽出した金属類を安定化するために、沈殿槽3が配置されており、必要に応じて抽出ろ液に対して凝集剤が加えられると共に、後段の固液分離装置4にて固液分離されるようになっている。以下、本実施形態では、灰類として飛灰を例に挙げて説明する。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration of an ash treatment apparatus according to the present embodiment. This ash treatment apparatus separates the solid portion and the liquid portion of the dissolved ash from the dissolution tank 1 for extracting the metal component in the ash by mixing the ash, which is the object to be processed, with the dissolved extract in the previous stage. The first-stage solid-liquid separation device 2 is provided. In the subsequent stage, a settling tank 3 is arranged to stabilize the dissolved and extracted metals, and a flocculant is added to the extracted filtrate as necessary, and the solid-liquid separation device 4 in the subsequent stage is added. So that it is separated into solid and liquid. Hereinafter, in this embodiment, fly ash will be described as an example of ash.

前段の溶解槽1では飛灰が投入され、これにアンモニウムイオンと塩素イオンとを含む水溶液からなる溶解抽出液が投入されて混合・撹拌され、飛灰中の金属類が抽出される。アンモニウムイオンと塩素イオンを含む水溶液とは、アンモニウムイオンと塩素イオンとを含んでおれば、特に限定されるものではなく、例えば、水中にこれらのイオンを含有する塩を溶解すること等の方法によって得られるものを全て含む。この場合、塩は塩化アンモニウムのような1つの塩中に両イオンを含むものでもよいし、アンモニウム源として硫酸アンモニウム、硝酸アンモニウム、炭酸アンモニウムのようなアンモニウム塩を用いると共に、塩素イオン源として塩化ナトリウム、塩化カルシウムのような塩素イオンを含む塩を用いてもよい。   Fly ash is introduced into the previous dissolution tank 1, and a dissolved extract composed of an aqueous solution containing ammonium ions and chlorine ions is added thereto, mixed and stirred, and the metals in the fly ash are extracted. The aqueous solution containing ammonium ions and chlorine ions is not particularly limited as long as it contains ammonium ions and chlorine ions. For example, by dissolving a salt containing these ions in water, etc. Includes everything that can be obtained. In this case, the salt may contain both ions in one salt such as ammonium chloride, and an ammonium salt such as ammonium sulfate, ammonium nitrate, or ammonium carbonate is used as the ammonium source, and sodium chloride, chloride is used as the chloride ion source. A salt containing a chlorine ion such as calcium may be used.

溶解抽出液中のアンモニウムイオン濃度は、飛灰中の金属含有量などによって異なるが、溶融飛灰の場合、0.2M以上が好ましく、より好ましくは0.4M以上である。塩素イオン濃度についても同様に飛灰中の金属含有量などによって異なるが、好ましくは3M以上であり、より好ましくは4M以上である。かかる濃度とすることにより、効率的に飛灰中の金属を溶解抽出することができる。   The ammonium ion concentration in the dissolved extract varies depending on the metal content in the fly ash, etc., but in the case of molten fly ash, it is preferably 0.2M or more, more preferably 0.4M or more. Similarly, although the chloride ion concentration also varies depending on the metal content in the fly ash, it is preferably 3M or more, more preferably 4M or more. By setting it as this density | concentration, the metal in fly ash can be efficiently dissolved and extracted.

また、溶解槽1中で抽出された金属イオンが水酸化物などの形態で槽中にて固化することを避けるため、抽出後のpH値が酸性域になるように硫酸などの酸を加えてpH調整を行う。従って、pHは7未満とし、好ましくはpH=3以上7未満、より好ましくはpH=5〜7未満に調整することである。   In addition, in order to avoid the metal ions extracted in the dissolution tank 1 from solidifying in the form of hydroxide or the like, an acid such as sulfuric acid is added so that the pH value after extraction is in the acidic range. Adjust the pH. Therefore, the pH is adjusted to less than 7, preferably adjusted to pH = 3 or more and less than 7, more preferably pH = 5 to less than 7.

溶解槽1中での溶解抽出液の温度についても、灰中の金属含有量などによって異なるが、15〜75℃であることが好ましく、25〜35℃であることがより好ましい。このような温度範囲にしておくと、各種金属の溶解抽出を効率的に行えるからである。例えば、図2に示すように、亜鉛の多い灰に対しては25℃以上が好ましい。   Also about the temperature of the melt | dissolution extract in the dissolution tank 1, although it changes with metal contents etc. in ash, it is preferable that it is 15-75 degreeC, and it is more preferable that it is 25-35 degreeC. This is because, in such a temperature range, various metals can be efficiently dissolved and extracted. For example, as shown in FIG. 2, the temperature is preferably 25 ° C. or higher for ash containing a large amount of zinc.

溶解槽1中では、予め投入された飛灰に溶解抽出液を投入してから撹拌・混合してもよいし、その逆であってもよいが、飛灰中の金属を効率よく抽出するためには、例えば、飛灰が溶融飛灰の場合、水溶液に対して1〜50重量%であることが好ましい。溶融飛灰の場合、1重量%未満であると処理量が少ないため効率が悪く、50重量%を越えると抽出に時間がかかり効率的でない。5〜20重量%であることがより好ましい。溶解槽1中での撹拌は、通常、1時間程度で十分である。尚、図1で、Mは撹拌機を駆動する電動機を示す。   In the dissolution tank 1, the dissolved extract may be added to the fly ash charged in advance and then stirred and mixed, or vice versa, in order to efficiently extract the metal in the fly ash. For example, when fly ash is molten fly ash, it is preferable that it is 1 to 50 weight% with respect to aqueous solution. In the case of molten fly ash, if it is less than 1% by weight, the amount of treatment is small and the efficiency is poor, and if it exceeds 50% by weight, extraction takes time and is not efficient. More preferably, it is 5 to 20% by weight. About 1 hour is usually sufficient for stirring in the dissolution tank 1. In FIG. 1, M denotes an electric motor that drives a stirrer.

以上の方法により、飛灰中の鉛、亜鉛、カドミウム、銅などの有用金属が効率よく抽出されることになるが、そのメカニズムは、以下のように考えられる。   By the above method, useful metals such as lead, zinc, cadmium, and copper in fly ash are efficiently extracted. The mechanism is considered as follows.

飛灰中の鉛は、溶融抽出液中の塩素イオンにより、(PbCl42-や(PbCl3-のような塩化物錯体を形成し、抽出中に溶出する。一方、亜鉛、カドミウム、銅は、アンモニウムイオンと反応して、Zn(NH3n 2+、Cd(NH3n 2+ 、Cu(NH3n 2+ 、(ここにn=1〜4)などのアンミン錯体を形成して抽出液に溶出する。このようにして本実施形態による方法では、飛灰中の重金属類を選択的に抽出できるものと理解される。もっとも、本実施形態を実施するに当たり、上記メカニズムによる反応に限定されるものではない。 Lead in the fly ash forms a chloride complex such as (PbCl 4 ) 2− or (PbCl 3 ) 2 by chlorine ions in the molten extract and is eluted during extraction. On the other hand, zinc, cadmium, and copper react with ammonium ions to form Zn (NH 3 ) n 2+ , Cd (NH 3 ) n 2+ , Cu (NH 3 ) n 2+ , where n = 1 to Form an ammine complex such as 4) and elute into the extract. In this manner, it is understood that the method according to the present embodiment can selectively extract heavy metals in fly ash. However, in carrying out this embodiment, the reaction is not limited to the above mechanism.

次に、後段における抽出ろ液中の金属の安定化につき説明する。もっとも、安定化処理は、固液分離した抽出ろ液を対象としてもよいし、固液分離しない抽出液を対象としてもよい。   Next, stabilization of the metal in the extraction filtrate in the latter stage will be described. However, the stabilization treatment may be performed on an extracted filtrate that has been subjected to solid-liquid separation, or on an extract that is not subjected to solid-liquid separation.

飛灰中の金属回収を目的とする場合、固液分離した抽出ろ液を沈殿槽3に送給し、ここで、抽出ろ液は、硫化物沈殿法により硫化剤のような沈殿剤を加えられて電動機Mの駆動力を利用して撹拌され安定化される。他方、溶解残渣は再溶融するかあるいは埋め立て処分する。   For the purpose of metal recovery in fly ash, the solid-liquid separated extract filtrate is fed to the precipitation tank 3, where the extract filtrate is added with a precipitating agent such as a sulfurizing agent by the sulfide precipitation method. Then, it is stirred and stabilized using the driving force of the electric motor M. On the other hand, the dissolved residue is remelted or disposed of in landfills.

特に飛灰中の金属回収を目的とせず、金属類を不溶性にするだけの目的の場合には、溶解槽1から溶解抽出された抽出液を溶解残渣と共に、直接、沈殿槽3に送給し、硫化物沈殿処理を行って抽出金属の安定化を行う。   In particular, when the purpose is not to recover the metal in the fly ash but only to make the metals insoluble, the extract solution dissolved and extracted from the dissolution tank 1 is directly fed to the precipitation tank 3 together with the dissolution residue. Then, a sulfide precipitation treatment is performed to stabilize the extracted metal.

ここに、硫化物沈殿法とは、溶液中にHS-を添加するか、あるいは発生させ、下記の化1式により、硫化物として固化・沈殿させる方法をいう。硫化物沈殿を行う硫化剤としては、水流化ソーダ、硫化ソーダ、硫化水素ガス等を使用できる。 Here, the sulfide precipitation method refers to a method in which HS - is added to or generated in a solution and solidified and precipitated as a sulfide according to the following chemical formula 1. As the sulfiding agent for carrying out the sulfide precipitation, water flow soda, sodium sulfide, hydrogen sulfide gas and the like can be used.

[化1]
M(NH3n 2+ + HS-=MS + H+ + nNH3
(PbCl42-+HS-=PbS+H++4Cl-
ここに、Mは鉛、亜鉛、カドミウム、銅などの金属であり、nは整数を表す。
[Chemical 1]
M (NH 3 ) n 2+ + HS = MS + H + + nNH 3
(PbCl 4 ) 2 + + HS = PbS + H + + 4Cl
Here, M is a metal such as lead, zinc, cadmium, and copper, and n represents an integer.

飛灰中の金属回収を目的とする場合は、固液分離装置4により分離された固体分は金属回収物として回収されて山元還元され、一方、液体分は再度、ポンプPにより溶解槽1に送給されるか、下水道などに放流される。   For the purpose of recovering the metal in the fly ash, the solid component separated by the solid-liquid separation device 4 is recovered as a metal recovery product and reduced to the mountain, while the liquid component is again returned to the dissolution tank 1 by the pump P. It is sent or discharged into sewers.

(実施例1)
ストーカ式ごみ焼却炉から排出された焼却灰と焼却飛灰をプラズマ式溶融炉にて溶融した際に発生する溶融飛灰を、バグフィルターで集塵した灰について、灰中に含まれる金属の抽出を行った。この溶融飛灰1kg中に含まれる主な金属をプラズマ発光分析法で分析したところ、鉛:27.8g,亜鉛:102.1g,カドミウム:1.2g,銅:1.4g,カルシウム:69.8g,アルミニウム:4.9g,鉄:3.3gであった。抽出液は、比較のため(A)純水,(B)5M NaCl,(C)5M NaCl+1M(NH42SO4,(D)5M NaCl+1M(NH42SO4+0.2M H2SO4,(E)0.2M H2SO4,(F)5M NaCl+0.2M H2SO46種類を用いた。
(Example 1)
Extraction of metal contained in ash from the ash collected by the bag filter from the incinerated ash discharged from the stoker-type waste incinerator and the molten fly ash generated when the incinerated fly ash is melted in the plasma melting furnace Went. When the main metals contained in 1 kg of the molten fly ash were analyzed by plasma emission spectrometry, lead: 27.8 g, zinc: 102.1 g, cadmium: 1.2 g, copper: 1.4 g, calcium: 69. It was 8 g, aluminum: 4.9 g, and iron: 3.3 g. For comparison, (A) pure water, (B) 5 M NaCl, (C) 5 M NaCl + 1 M (NH 4 ) 2 SO 4 , (D) 5 M NaCl + 1 M (NH 4 ) 2 SO 4 +0.2 MH 2 SO for comparison. 4 , (E) 0.2 MH 2 SO 4 , (F) 6 M NaCl + 0.2 MH 2 SO 4 were used.

抽出は、容量50mLのガラス栓付き三角フラスコに飛灰試料1gと上記各抽出液(A)〜(F)の10mLを各別に入れて、大気中にて25℃の条件下で振盪・撹拌して行った。1時間後、抽出液を孔径0.2μmのミリポアフィルターにてろ過し、ろ液中の金属量をプラズマ発光法で定量測定し、各金属の溶出量を求めた。ろ液については、pHを測定した。   For extraction, 1 g of fly ash sample and 10 mL of each of the above extracts (A) to (F) were put into a conical flask with a glass stopper of 50 mL capacity, and the mixture was shaken and stirred at 25 ° C. in the atmosphere. I went. After 1 hour, the extract was filtered through a Millipore filter having a pore size of 0.2 μm, and the amount of metal in the filtrate was quantitatively measured by the plasma emission method to determine the elution amount of each metal. For the filtrate, the pH was measured.

抽出液(A)は、飛灰中のCaO等のアルカリ分の溶出により、最終pHは12以上の高いアルカリ性を示し、Ca以外の金属はほとんど溶出しなかった。抽出液(B)は、(A)と同様に飛灰中に含まれるCaO等のアルカリ分の溶出により、最終pHは12以上の高いアルカリ性を示し、Ca以外の金属はほとんど溶出しなかった。抽出液(C)は、硫酸アンモニウムの酸性のため、pHは7程度に低下しており、鉛、カドミウム、銅の大部分は抽出されたが、亜鉛の抽出は50%程度と低かった。抽出液(D)は、硫酸添加によりpHは6.24と酸性となり、鉛、亜鉛、カドミウム、銅の大部分が抽出されることがわかる。抽出液(E)は、硫酸添加によりpHは5.86と強い酸性となり、亜鉛、カドミウムの大部分が抽出されたが、鉛、銅の抽出率が低いことがわかる。特に、鉛は硫酸根と不溶性の化合物を生じるため抽出率は低かった。抽出液(F)は、pHは6.66となり、鉛、カドミウム、亜鉛の抽出率は高いが、銅の抽出率は低かった。   The extract (A) showed a high alkalinity of 12 or more due to the elution of alkaline components such as CaO in the fly ash, and almost no metal other than Ca was eluted. The extract (B) showed high alkalinity of 12 or more due to elution of alkali components such as CaO contained in the fly ash as in (A), and metals other than Ca were hardly eluted. The pH of the extract (C) was lowered to about 7 due to the acidity of ammonium sulfate, and most of lead, cadmium and copper were extracted, but the extraction of zinc was as low as about 50%. It can be seen that the pH of the extract (D) becomes 6.24 by adding sulfuric acid, and most of lead, zinc, cadmium and copper are extracted. The extract (E) became strongly acidic with a pH of 5.86 due to the addition of sulfuric acid, and most of zinc and cadmium were extracted, but the extraction rate of lead and copper was low. In particular, lead has a low extraction rate because it produces sulfate radicals and insoluble compounds. The extract (F) had a pH of 6.66, and the extraction rates of lead, cadmium, and zinc were high, but the extraction rate of copper was low.

以上の結果を表1にまとめる。   The results are summarized in Table 1.

Figure 2005262050
表1より、灰類を酸性下において、アンモニウムイオンと塩素イオンを含む抽出液(D)により抽出することが最も好ましいと言える。
(実施例2)
実施例1と同じ溶融飛灰を用いて、溶融抽出温度に対する抽出率の影響を調べた。溶解抽出液には、上記(D)の抽出液を用い、15〜75℃の範囲で抽出した結果を図2に示す。カドミウム、銅については、全温度範囲で80%以上の抽出率を示したが、鉛は15〜35℃で高い抽出率を示し、亜鉛は温度上昇に伴い抽出率が増加することがわかる。従って、飛灰中の性状により、好ましい温度範囲を設定して高い抽出率を確保することができる。
(実施例3)
実施例1と同じ溶融飛灰を用い、上記(D)の抽出液を用いて金属を抽出し、この抽出液から硫化物法により金属を回収した。硫化物としては、水硫化ナトリウムを用い、抽出液10mLに2Mの水硫化ナトリウムを添加して、抽出液中の水硫化ナトリウム濃度を0〜0.1Mとし、硫化物沈殿を生成させた後、孔径0.2μmのミリポアフィルターでろ過し、ろ液中の金属をプラズマ発光法で定量分析し、各金属の残存濃度から回収率を求めた。その結果を図3に示す。
Figure 2005262050
From Table 1, it can be said that ash is most preferably extracted with an extract (D) containing ammonium ions and chlorine ions under acidic conditions.
(Example 2)
Using the same molten fly ash as in Example 1, the influence of the extraction rate on the melt extraction temperature was examined. FIG. 2 shows the results of extraction in the range of 15 to 75 ° C. using the extract of (D) above as the dissolved extract. Cadmium and copper showed an extraction rate of 80% or more in the entire temperature range, but lead showed a high extraction rate at 15 to 35 ° C., and zinc showed that the extraction rate increased with increasing temperature. Therefore, a high extraction rate can be ensured by setting a preferable temperature range depending on the properties in the fly ash.
(Example 3)
Using the same molten fly ash as in Example 1, the metal was extracted using the extract of (D) above, and the metal was recovered from this extract by the sulfide method. As the sulfide, sodium hydrosulfide was used, 2M sodium hydrosulfide was added to 10 mL of the extract, the sodium hydrosulfide concentration in the extract was adjusted to 0 to 0.1 M, and a sulfide precipitate was generated. The solution was filtered through a Millipore filter having a pore size of 0.2 μm, and the metal in the filtrate was quantitatively analyzed by the plasma emission method, and the recovery rate was determined from the residual concentration of each metal. The result is shown in FIG.

図3より、銅は、水硫化ナトリウム濃度0.0025Mの添加によって100%回収され、鉛、カドミウムは0.025Mの添加で略全量回収され、亜鉛は0.075Mの添加で全量回収されたことがわかる。
(実施例4)
実施例1と同じ溶融飛灰を用い、5M NaClにH2SO4を加えて、pHを6.1〜6.7に調整し、(NH42SO4の濃度を変えて、抽出率を調べた。その結果を表2に示す。
From FIG. 3, copper was 100% recovered by adding sodium hydrosulfide concentration of 0.0025M, almost all of lead and cadmium were recovered by adding 0.025M, and all of zinc was recovered by adding 0.075M. I understand.
Example 4
Using the same molten fly ash as in Example 1, H 2 SO 4 was added to 5M NaCl to adjust the pH to 6.1 to 6.7, and the concentration of (NH 4 ) 2 SO 4 was changed to obtain an extraction rate. I investigated. The results are shown in Table 2.

Figure 2005262050
表2より、(NH42SO4の濃度は0.2M 以上において、Pb,Zn,Cd,Cuのいずれに対しても高い抽出率を確保できることが分かる。
Figure 2005262050
From Table 2, the concentration of (NH 4 ) 2 SO 4 is 0.2M. From the above, it can be seen that a high extraction rate can be secured for any of Pb, Zn, Cd, and Cu.

〔別実施の形態〕
(1)上記実施形態では、沈殿槽により安定化された被処理物をそのまま回収する例を挙げたが、沈殿槽を複数個直列に配置して、上流側の沈殿槽による処理され固液分離された液体分を、更に下流側の沈殿層に送給し、回収率を高めるようにしてもよい。
(2)溶解槽、沈殿槽の仕様、形式などは特に限定されるものではなく、種々のものを使用できる。
[Another embodiment]
(1) In the above embodiment, an example in which the object to be treated stabilized by the settling tank is recovered as it is, but a plurality of settling tanks are arranged in series and processed by the upstream settling tank to be subjected to solid-liquid separation. The collected liquid may be further fed to the downstream sedimentation layer to increase the recovery rate.
(2) The specifications and types of the dissolution tank and the precipitation tank are not particularly limited, and various types can be used.

本発明の一実施形態に係る灰処理装置の概略全体構成図1 is a schematic overall configuration diagram of an ash treatment apparatus according to an embodiment of the present invention. 飛灰中の溶融抽出温度に対する抽出率の影響を示すグラフGraph showing the effect of extraction rate on melt extraction temperature in fly ash 硫化物法による硫化物濃度と金属回収率との関係を示すグラフGraph showing the relationship between sulfide concentration and metal recovery by the sulfide method

符号の説明Explanation of symbols

1 溶解槽
2,4 固液分離装置
3 沈殿槽
1 Dissolution tank 2, 4 Solid-liquid separator 3 Precipitation tank

Claims (9)

酸性下において、アンモニウムイオンと塩素イオンを含む水溶液中で灰類を溶解し、前記灰類中の金属を抽出する灰類処理方法。 An ash treatment method in which ash is dissolved in an aqueous solution containing ammonium ions and chlorine ions under acidic conditions, and a metal in the ash is extracted. 前記水溶液のpHは、硫酸酸性下において3以上7未満に調整される請求項1の灰類処理方法。 The ash treatment method according to claim 1, wherein the pH of the aqueous solution is adjusted to 3 or more and less than 7 under sulfuric acid acidity. 前記アンモニウムイオンの濃度は0.2M以上であり、前記塩素イオンの濃度は3M以上である請求項1又は2の灰類処理方法。 The ash treatment method according to claim 1 or 2, wherein the ammonium ion concentration is 0.2M or more and the chlorine ion concentration is 3M or more. 前記灰類から溶解抽出した抽出液に対して硫化物沈殿法により安定化処理を行う請求項1〜3のいずれか1の灰類処理方法。 The ash treatment method according to any one of claims 1 to 3, wherein the extraction solution dissolved and extracted from the ash is subjected to a stabilization treatment by a sulfide precipitation method. 前記安定化処理した後、更に固液分離処理を行うと共に、分離された液体分を前記溶解槽に送給して再利用する請求項4の灰類処理方法。 5. The ash treatment method according to claim 4, wherein after the stabilization treatment, a solid-liquid separation treatment is further performed, and the separated liquid is supplied to the dissolution tank and reused. 酸性下において、アンモニウムイオンと塩素イオンを含む水溶液中で灰類を溶解し、前記灰類中の金属を抽出する溶解槽を有する灰類処理設備。 An ash treatment facility having a dissolution tank that dissolves ash in an aqueous solution containing ammonium ions and chlorine ions and extracts the metal in the ash under acidic conditions. 前記溶解槽において、前記灰類から溶解抽出した抽出液に対して硫化剤を加えることにより安定化処理を行う沈殿槽を有する請求項6の灰類処理設備。 The ash treatment facility according to claim 6, further comprising a precipitation tank that performs a stabilization process by adding a sulfurizing agent to the extract solution dissolved and extracted from the ash in the dissolution tank. 前記溶解槽と沈殿槽のいずれか又は双方により処理された被処理物に対して、固液分離を行う固液分離装置が設けられている請求項6又は7の灰類処理設備。 The ash treatment facility according to claim 6 or 7, wherein a solid-liquid separation device that performs solid-liquid separation on an object to be processed that has been processed by one or both of the dissolution tank and the precipitation tank is provided. 前記固液分離装置により分離された液体分を、前記溶解槽に送給して再利用可能に構成されている請求項8の灰類処理設備。 The ash treatment facility according to claim 8, wherein the liquid component separated by the solid-liquid separator is supplied to the dissolution tank so as to be reusable.
JP2004076686A 2004-03-17 2004-03-17 Ashes treatment method and its facility Pending JP2005262050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004076686A JP2005262050A (en) 2004-03-17 2004-03-17 Ashes treatment method and its facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004076686A JP2005262050A (en) 2004-03-17 2004-03-17 Ashes treatment method and its facility

Publications (1)

Publication Number Publication Date
JP2005262050A true JP2005262050A (en) 2005-09-29

Family

ID=35087146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076686A Pending JP2005262050A (en) 2004-03-17 2004-03-17 Ashes treatment method and its facility

Country Status (1)

Country Link
JP (1) JP2005262050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129573A1 (en) 2006-05-08 2007-11-15 Nsk Ltd. Controller for electric power steering device
JP2007301502A (en) * 2006-05-12 2007-11-22 Kurita Water Ind Ltd Method and device for treating trash incineration main ash
JP7009008B1 (en) 2021-10-20 2022-01-25 学校法人福岡工業大学 How to treat sewage sludge incinerator ash

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129573A1 (en) 2006-05-08 2007-11-15 Nsk Ltd. Controller for electric power steering device
JP2007301502A (en) * 2006-05-12 2007-11-22 Kurita Water Ind Ltd Method and device for treating trash incineration main ash
JP7009008B1 (en) 2021-10-20 2022-01-25 学校法人福岡工業大学 How to treat sewage sludge incinerator ash
JP2023061513A (en) * 2021-10-20 2023-05-02 学校法人福岡工業大学 Method for treating sewage sludge incineration ashes

Similar Documents

Publication Publication Date Title
CN113549766B (en) Method for removing arsenic from lead smelting smoke dust and recovering valuable metals
ZA200201993B (en) Process for reducing the concetration of dissolved metals and metalloids in a aqueous solution.
WO2005084837A1 (en) Method for treatment of fly ash involving fixation of carbon dioxide
JP2008264628A (en) Treatment method of molten fly ash
JP2001348627A (en) Method for recovering heavy metal from fly ash
JP2010059035A (en) Method for producing aqueous arsenous acid solution of high purity from copper removal slime
JPH09315819A (en) Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
CA2854778A1 (en) Recovery of zinc and manganese from pyrometalurgy sludge or residues
JP3069520B2 (en) Method for separating arsenic from smelting intermediates containing arsenic sulfide
JP2003225633A (en) Method of treating chloride-containing dust
JP2003236497A (en) Waste treatment method
JP4420216B2 (en) Method for treating cleaning liquid containing lead
JP2005262050A (en) Ashes treatment method and its facility
JP3568569B2 (en) Recycling of heavy metals by detoxifying incinerated ash or fly ash
CN105330064A (en) Zinc-containing cyanide barren solution treatment method
JPH08309313A (en) Wet treatment method for fly ash containing heavy metal from high temperature treatment furnace
WO2011035380A1 (en) Recovering metals from industrial residues/wastes
US20150225811A1 (en) Recovery of zinc from lead slag
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
JP3536901B2 (en) Method of recovering valuable metals from fly ash
JP2006035156A (en) Method and equipment for treating ashes
JP5088923B2 (en) Cement manufacturing method and apparatus
WO2005040437A1 (en) Method of wet treatment of fly ash
JP3276074B2 (en) How to treat fly ash from incinerators
JP2003047828A (en) Method for treating gas