JP2005260213A - Cleaning liquid for substrate for semiconductor device and cleaning method - Google Patents
Cleaning liquid for substrate for semiconductor device and cleaning method Download PDFInfo
- Publication number
- JP2005260213A JP2005260213A JP2005023550A JP2005023550A JP2005260213A JP 2005260213 A JP2005260213 A JP 2005260213A JP 2005023550 A JP2005023550 A JP 2005023550A JP 2005023550 A JP2005023550 A JP 2005023550A JP 2005260213 A JP2005260213 A JP 2005260213A
- Authority
- JP
- Japan
- Prior art keywords
- component
- substrate
- semiconductor device
- acid
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
本発明は、半導体デバイス用基板及びその洗浄方法に係り、特に、金属配線や低誘電率(Low−k)絶縁膜などを表面の一部あるいは全面に有する半導体デバイス用基板に付着した微粒子(パーティクル)や有機汚染、金属汚染を、金属配線を腐食することなく短時間で除去する洗浄液と、この洗浄液を用いた洗浄方法に関するものである。 The present invention relates to a semiconductor device substrate and a cleaning method thereof, and in particular, fine particles (particles) adhering to a semiconductor device substrate having a metal wiring, a low dielectric constant (Low-k) insulating film or the like on a part of or the entire surface. ), Organic contamination, and metal contamination in a short time without corroding the metal wiring, and a cleaning method using this cleaning solution.
マイクロプロセッサー、メモリー、CCDなどの半導体デバイスや、TFT液晶などのフラットパネルディスプレイデバイスの製造工程では、シリコンや酸化シリコン(SiO2)、ガラス等の基板表面にサブミクロン〜サブ0.1ミクロンの寸法でパターン形成や薄膜形成を行っており、製造の各工程において該基板表面の微量な汚染を低減することが極めて重要な課題となっている。基板表面の汚染の中でも特にパーティクル汚染、有機物汚染及び金属汚染はデバイスの電気的特性や歩留まりを低下させるため、次工程に持ち込む前に極力低減する必要がある。このような汚染の除去には、洗浄液による基板表面の洗浄が一般的に行われている。この洗浄には、高清浄な表面を、副作用なしで、短時間で再現性よく、低コストで洗浄することが求められる。そして、この要求レベルは、近年のデバイスの高集積化、低価格化と共に益々厳しくなっている。 In the manufacturing process of semiconductor devices such as microprocessors, memories, and CCDs, and flat panel display devices such as TFT liquid crystals, submicron to sub0.1 micron dimensions on the substrate surface of silicon, silicon oxide (SiO 2 ), glass, etc. Thus, pattern formation and thin film formation are carried out, and it is an extremely important issue to reduce a small amount of contamination on the surface of the substrate in each manufacturing process. Among contaminations on the substrate surface, particle contamination, organic contamination, and metal contamination reduce the electrical characteristics and yield of the device, so it is necessary to reduce them as much as possible before bringing them into the next process. In order to remove such contamination, the substrate surface is generally cleaned with a cleaning liquid. For this cleaning, it is required to clean a highly clean surface at a low cost in a short time with good reproducibility without any side effects. This required level is becoming stricter with the recent high integration and low cost of devices.
最近の半導体デバイス製造工程では、デバイスの高速化・高集積化のために、配線として抵抗値の低い新金属材料(Cu等)、層間絶縁膜として低誘電率(Low−k)材料が導入されてきている。また、配線を形成するためには、CMP(Chemical Mechanical Polishing)技術の適用が進んでいる。工程間の洗浄には、従来の酸性若しくはアルカリ性溶液と過酸化水素とを混合したRCA洗浄は配線材料が腐食されてしまうので、これを使用することは出来ない。また低誘電率絶縁膜の多くは表面が疎水性のため、洗浄液をはじいてしまうので洗浄が困難である。さらにCMP工程後の洗浄においては、CMPに使用するスラリー(研磨粒子)が配線や低誘電率絶縁膜の表面を汚染してしまう問題がある。これらの課題を解決するために、従来より、様々な洗浄技術の適応が試みられている。 In recent semiconductor device manufacturing processes, a new metal material (Cu, etc.) having a low resistance value is introduced as a wiring and a low dielectric constant (Low-k) material is introduced as an interlayer insulating film in order to increase the speed and integration of the device. It is coming. In addition, in order to form a wiring, application of CMP (Chemical Mechanical Polishing) technology is progressing. For cleaning between processes, the conventional RCA cleaning in which an acidic or alkaline solution and hydrogen peroxide are mixed cannot corrode the wiring material because it corrodes. Further, many of the low dielectric constant insulating films have a hydrophobic surface, and thus repel the cleaning liquid, and are difficult to clean. Further, in the cleaning after the CMP process, there is a problem that the slurry (abrasive particles) used for CMP contaminates the surface of the wiring and the low dielectric constant insulating film. In order to solve these problems, adaptation of various cleaning techniques has been attempted conventionally.
例えば、表面の遷移金属を腐食することなくパーティクル汚染や金属汚染の除去が行える、特定の構造を持った界面活性剤を含む洗浄液が提案されている(特開2001−284308号公報)。
また、金属配線を有する基板に吸着した金属不純物やパーティクルの除去のため、分散剤及び/又は界面活性剤に有機酸化合物を添加した洗浄液も提案されている(特開2001−007071号公報)。
また、水を滴下したときの表面の接触角が70度以上の基板の接触角を50度以下にする脂肪族ポリカルボン酸類と界面活性剤とを含む洗浄液も提案されている(特開2003−318150号公報)。
また、金属配線を腐食することなくパーティクルや金属汚染の除去が行える有機酸と錯化剤を含んだ洗浄液も提案されている(特許第3219020号公報)。
更には、表面欠陥が大幅に低減された、Cu及びCu合金を平坦化する効率的な方法も提案されている(特開2001−156029号公報)。
また、基板表面を腐食することなく、基板に付着した微粒子や有機汚染を除去するため、特定の界面活性剤と水に、アルカリ又は有機酸を添加した洗浄液も提案されている(特開2003−289060号公報)。
In addition, a cleaning liquid in which an organic acid compound is added to a dispersant and / or a surfactant has been proposed to remove metal impurities and particles adsorbed on a substrate having metal wiring (Japanese Patent Laid-Open No. 2001-007071).
In addition, a cleaning liquid containing an aliphatic polycarboxylic acid and a surfactant that makes a contact angle of a substrate having a surface contact angle of 70 degrees or more when water is dropped to 50 degrees or less has been proposed (Japanese Patent Laid-Open No. 2003-2003). No. 318150).
In addition, a cleaning liquid containing an organic acid and a complexing agent that can remove particles and metal contamination without corroding the metal wiring has been proposed (Japanese Patent No. 3219020).
Furthermore, an efficient method for flattening Cu and a Cu alloy in which surface defects are greatly reduced has been proposed (Japanese Patent Laid-Open No. 2001-156029).
In addition, a cleaning solution in which an alkali or an organic acid is added to a specific surfactant and water has been proposed in order to remove fine particles and organic contamination adhering to the substrate without corroding the substrate surface (Japanese Patent Laid-Open No. 2003-2003). 289060).
半導体デバイスの更なる高速化、高集積化のために、Cuなどの低抵抗金属配線材料や低誘電率材料といった新材料の導入が近年急速に進んでいる。これらを用いた半導体デバイス製造工程における基板洗浄の諸問題を解決するために、前記の様な洗浄法が提案されているが、疎水性の低誘電率絶縁膜や腐食しやすいCu膜の表面上の様々な汚染を短時間で充分に除去できる技術はなく、その確立が求められていた。 In order to further increase the speed and integration of semiconductor devices, new materials such as low resistance metal wiring materials such as Cu and low dielectric constant materials have been introduced rapidly in recent years. In order to solve various problems of substrate cleaning in the semiconductor device manufacturing process using these, the above-described cleaning methods have been proposed, but on the surface of a hydrophobic low dielectric constant insulating film or a corrosive Cu film. There is no technology that can sufficiently remove the various contaminations in a short time, and its establishment has been demanded.
疎水性の低誘電率絶縁膜表面の汚染を効果的に洗浄するためには、界面活性剤を活用して疎水面のぬれ性を向上することが重要である。しかしながら従来技術では、この界面活性剤が超純水を用いたリンス工程で除去されにくい(特にCu表面において)ため、長時間のリンスが必要になり、洗浄の短時間化の妨げとなる問題があった。 In order to effectively clean the surface of the hydrophobic low dielectric constant insulating film, it is important to improve the wettability of the hydrophobic surface by using a surfactant. However, in the prior art, since this surfactant is difficult to be removed in the rinsing process using ultrapure water (especially on the Cu surface), long-time rinsing is required, which hinders shortening of cleaning time. there were.
本発明は上記問題を解決する為になされたものであり、基板表面を腐食することなくパーティクル汚染、有機物汚染及び金属汚染を同時に除去することができ、しかも水リンス性も良好で、短時間で基板表面を高清浄化することができる半導体デバイス用基板及び洗浄方法を提供することを目的とする。 The present invention has been made to solve the above problems, and can simultaneously remove particle contamination, organic contamination and metal contamination without corroding the substrate surface, and also has good water rinsing properties in a short time. An object of the present invention is to provide a semiconductor device substrate and a cleaning method capable of highly cleaning the substrate surface.
本発明者らは上記課題を解決するために鋭意検討を重ねた結果、有機酸、有機アルカリ成分及び界面活性剤を含む特定pH値の洗浄液は、基板表面を腐食することなくパーティクル汚染、有機物汚染及び金属汚染の同時除去のみならず、水リンス性を向上し、短時間で基板表面を高清浄化することができることを見出し、本発明を完成させるに至った。 As a result of intensive studies in order to solve the above problems, the inventors of the present invention have found that a cleaning solution having a specific pH value containing an organic acid, an organic alkali component, and a surfactant is not contaminated with the substrate surface, but is contaminated with particles and organic substances. In addition to the simultaneous removal of metal contamination and metal contamination, it has been found that the water rinsability can be improved and the surface of the substrate can be highly purified in a short time, and the present invention has been completed.
本発明の半導体デバイス用基板洗浄液は、半導体デバイス用基板の洗浄液において、以下の成分(a)、(b)、(c)、及び(d)を含み、かつpHが1.5以上6.5未満であることを特徴とする。
成分(a):有機酸
成分(b):有機アルカリ成分
成分(c):界面活性剤
成分(d):水
The substrate cleaning liquid for semiconductor devices of the present invention contains the following components (a), (b), (c), and (d) in the cleaning liquid for semiconductor device substrates, and has a pH of 1.5 or more and 6.5. It is characterized by being less than.
Component (a): Organic acid Component (b): Organic alkali component Component (c): Surfactant Component (d): Water
この半導体デバイス用基板洗浄液は、表面に金属配線や、低誘電率絶縁膜を有する半導体デバイス用基板の洗浄に特に好適である。 This semiconductor device substrate cleaning solution is particularly suitable for cleaning a semiconductor device substrate having a metal wiring or a low dielectric constant insulating film on its surface.
本発明において、成分(a)としては、カルボキシル基を1以上有する炭素数1〜10の有機化合物が好ましい。より好ましくは炭素数1〜8であり、さらに好ましくは炭素数1〜6である。カルボン酸としてはカルボキシル基を1以上有するものであればよく、モノカルボン酸、ジカルボン酸、トリカルボン酸等を適宜用いうる。ただし通常、カルボキシル基は5以下である。特に好ましくは酢酸、プロピオン酸、蓚酸、コハク酸、マロン酸、クエン酸、酒石酸及びリンゴ酸よりなる群から選ばれる少なくとも一つの有機酸であることが好ましい。 In this invention, as a component (a), a C1-C10 organic compound which has 1 or more of carboxyl groups is preferable. More preferably, it is C1-C8, More preferably, it is C1-C6. Any carboxylic acid may be used as long as it has one or more carboxyl groups, and monocarboxylic acid, dicarboxylic acid, tricarboxylic acid, and the like can be used as appropriate. However, usually the carboxyl group is 5 or less. Particularly preferred is at least one organic acid selected from the group consisting of acetic acid, propionic acid, succinic acid, succinic acid, malonic acid, citric acid, tartaric acid and malic acid.
また、成分(b)としては、以下の一般式(I)で表される有機アルカリ、特に、炭素数1〜4のアルキル基及び/又は炭素数1〜4のヒドロキシアルキル基を有する水酸化第4級アンモニウムが好ましい。
(R1)4N+OH− …(I)
(但し、R1は水素原子、或いは水酸基、アルコキシ基、又はハロゲンにて置換されていてもよいアルキル基を示し、4個のR1は全て同一でもよく、互いに異なっていてもよい。但し、全て同時に水素原子である場合を除く。)
Further, as the component (b), an organic alkali represented by the following general formula (I), in particular, a hydroxyl group having an alkyl group having 1 to 4 carbon atoms and / or a hydroxyalkyl group having 1 to 4 carbon atoms. Quaternary ammonium is preferred.
(R 1 ) 4 N + OH − (I)
(However, R 1 represents a hydrogen atom, a hydroxyl group, an alkoxy group, or an alkyl group which may be substituted with a halogen, and all four R 1 s may be the same or different from each other. (Except when all are hydrogen atoms at the same time.)
また、成分(c)としては、アニオン系界面活性剤、特に、アルキルスルホン酸及びそ
の塩、アルキルベンゼンスルホン酸及びその塩、アルキルジフェニルエーテルジスルホン酸及びその塩、アルキルメチルタウリン酸及びその塩、アルキル硫酸エステル及びその塩、アルキルエーテル硫酸エステル及びその塩並びにスルホコハク酸ジエステル及びその塩よりなる群より選ばれる少なくとも一つのアニオン系界面活性剤が好ましい。
Component (c) includes an anionic surfactant, particularly alkyl sulfonic acid and its salt, alkyl benzene sulfonic acid and its salt, alkyl diphenyl ether disulfonic acid and its salt, alkyl methyl tauric acid and its salt, alkyl sulfate ester And at least one anionic surfactant selected from the group consisting of a salt thereof, an alkyl ether sulfate ester and a salt thereof, and a sulfosuccinic acid diester and a salt thereof.
また、成分(a)の含有量は0.05〜10重量%、成分(b)の含有量は0.01〜10重量%、成分(c)の含有量は0.0003〜0.1重量%であることが好ましく、成分(a)と(b)との重量比率[成分(a)/成分(b)]は0.8以上5以下、成分(c)と(b)との重量比率[成分(c)/成分(b)]は0.01以上0.2以下であることが好ましい。 The content of component (a) is 0.05 to 10% by weight, the content of component (b) is 0.01 to 10% by weight, and the content of component (c) is 0.0003 to 0.1% by weight. The weight ratio of components (a) and (b) [component (a) / component (b)] is 0.8 or more and 5 or less, and the weight ratio of components (c) and (b). [Component (c) / Component (b)] is preferably 0.01 or more and 0.2 or less.
本発明の半導体デバイス用基板の洗浄方法は、このような本発明の半導体デバイス用基板洗浄液を用いて、半導体デバイス用基板、特に表面にCu膜と低誘電率絶縁膜とを有し、かつ、CMP処理後の半導体デバイス用基板を洗浄することを特徴とする。 The method for cleaning a substrate for a semiconductor device of the present invention comprises a substrate for a semiconductor device, particularly a Cu film and a low dielectric constant insulating film on the surface, using such a substrate cleaning solution for a semiconductor device of the present invention, and The semiconductor device substrate after the CMP process is washed.
この方法は、特にアゾール系防食剤を含む研磨剤用いるCMP処理後の半導体デバイス用基板の洗浄に有効である。 This method is particularly effective for cleaning a semiconductor device substrate after CMP using an abrasive containing an azole anticorrosive.
本発明によれば、シリコンなどの半導体材料、窒化シリコン、酸化シリコン、ガラス、低誘電率材料などの絶縁材料、遷移金属又は遷移金属化合物などを表面の一部あるいは全面に有する半導体デバイス用基板において、基板表面を腐食することなく、基板に付着した微粒子(パーティクル)や有機汚染、金属汚染を同時に除去することが可能である。しかも、水リンス性も良好であるため、短時間で基板表面を高清浄化することができることから、本発明は半導体デバイスやディスプレイデバイスなどの製造工程における汚染半導体デバイス用基板の洗浄処理技術として、工業的に非常に有用である。尚、水リンス性が良好であるとは、洗浄後の基板を水でリンスした場合に、洗浄液や微粒子、有機汚染、金属汚染が基板表面から除去されやすいことを言う。 According to the present invention, in a semiconductor device substrate having a semiconductor material such as silicon, an insulating material such as silicon nitride, silicon oxide, glass, or a low dielectric constant material, a transition metal or a transition metal compound on a part of or the entire surface. It is possible to simultaneously remove fine particles (particles) adhering to the substrate, organic contamination, and metal contamination without corroding the substrate surface. In addition, since the water rinsing property is also good, the substrate surface can be highly cleaned in a short time. Therefore, the present invention is an industrial cleaning technology for contaminated semiconductor device substrates in the manufacturing process of semiconductor devices and display devices. Very useful. Note that the water rinsability is good means that when the substrate after cleaning is rinsed with water, the cleaning liquid, fine particles, organic contamination, and metal contamination are easily removed from the substrate surface.
以下に本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明の洗浄液は、成分(a)として有機酸、成分(b)として有機アルカリ成分、成分(c)として界面活性剤、成分(d)として水を含み、かつpHが1.5以上6.5未満のものである。 The cleaning liquid of the present invention contains an organic acid as component (a), an organic alkali component as component (b), a surfactant as component (c), and water as component (d), and has a pH of 1.5 or higher. Less than 5.
本発明において、成分(a)の有機酸とは、水中で酸性(pH<7)を示す有機化合物の総称で、カルボキシル基(−COOH)、スルホ基(−SO3H)、フェノール性ヒドロキシル基(ArOH:Arはフェニル基等のアリール基)、メルカプト基(−SH)等の酸性の官能基を持つものを表す。使用される有機酸は特に限定されないが、官能基にカルボキシル基を持つカルボン酸が好ましい。より好ましくは、カルボキシル基を1以上有する炭素数1〜10の有機化合物であり、更に好ましくは炭素数1〜8の有機化合物であり、中でも好ましくは炭素数1〜6の有機化合物である。 In the present invention, the organic acid of component (a) is a general term for organic compounds that exhibit acidity (pH <7) in water, and includes a carboxyl group (—COOH), a sulfo group (—SO 3 H), and a phenolic hydroxyl group. (ArOH: Ar represents an aryl group such as a phenyl group) and an acid functional group such as a mercapto group (-SH). The organic acid used is not particularly limited, but a carboxylic acid having a carboxyl group as a functional group is preferable. More preferably, it is a C1-C10 organic compound which has 1 or more of carboxyl groups, More preferably, it is a C1-C8 organic compound, Especially preferably, it is a C1-C6 organic compound.
カルボン酸としてはカルボキシル基を1以上有するものであればよく、モノカルボン酸、ジカルボン酸、トリカルボン酸等を適宜用いうる。ただし通常、カルボキシル基は5以下である。具体的には例えば、蟻酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、エチルメチル酢酸、トリメチル酢酸、蓚酸、コハク酸、マロン酸、クエン酸、酒石酸、リンゴ酸等が挙げられる。好ましくは、酢酸、プロピオン酸、蓚酸、コハク酸、マロン酸、クエン酸、酒石酸、リンゴ酸が挙げられ、更に好ましくは、酢酸、蓚酸、クエン酸が挙げられる。これらの有機酸成分は、1種を単独で使用してもよいし、2種以上を任意の割合で併用してもよい。 Any carboxylic acid may be used as long as it has one or more carboxyl groups, and monocarboxylic acid, dicarboxylic acid, tricarboxylic acid, and the like can be used as appropriate. However, usually the carboxyl group is 5 or less. Specific examples include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, ethylmethylacetic acid, trimethylacetic acid, succinic acid, succinic acid, malonic acid, citric acid, tartaric acid, malic acid and the like. Preferred are acetic acid, propionic acid, succinic acid, succinic acid, malonic acid, citric acid, tartaric acid and malic acid, and more preferred are acetic acid, succinic acid and citric acid. These organic acid components may be used individually by 1 type, and may use 2 or more types together by arbitrary ratios.
本発明の洗浄液中における成分(a)の含有量は、汚染の除去を充分に行うためには、洗浄液に対して通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上とする。ただし、基板表面を腐食させないことや経済的であることを重視すれば、成分(a)の含有量は通常30重量%以下、好ましくは10重量%以下、さらに好ましくは2重量%以下とする。成分(a)の濃度が高すぎてもそれ以上の効果は得られない。 The content of the component (a) in the cleaning liquid of the present invention is usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably, based on the cleaning liquid in order to sufficiently remove contamination. 0.1 wt% or more. However, if importance is attached to not corroding the substrate surface and being economical, the content of the component (a) is usually 30% by weight or less, preferably 10% by weight or less, more preferably 2% by weight or less. If the concentration of the component (a) is too high, no further effect can be obtained.
本発明において、成分(b)の有機アルカリ成分とは水中でアルカリ性(pH>7)を示す有機化合物の総称である。使用する有機アルカリ成分は特に限定されないが、以下の一般式(I)で表される、水酸化第4級アンモニウムや、アミン類、アミノアルコール類等が挙げられる。
(R1)4N+OH− …(I)
(但し、R1は水素原子、或いは水酸基、アルコキシ基、又はハロゲンにて置換されていてもよいアルキル基を示し、4個のR1は全て同一でもよく、互いに異なっていてもよい。但し、全て同時に水素原子である場合を除く。)
In the present invention, the organic alkali component of component (b) is a general term for organic compounds that exhibit alkalinity (pH> 7) in water. The organic alkali component to be used is not particularly limited, and examples thereof include quaternary ammonium hydroxide, amines and amino alcohols represented by the following general formula (I).
(R 1 ) 4 N + OH − (I)
(However, R 1 represents a hydrogen atom, a hydroxyl group, an alkoxy group, or an alkyl group which may be substituted with a halogen, and all four R 1 s may be the same or different from each other. (Except when all are hydrogen atoms at the same time.)
水酸化第4級アンモニウムとしては、上記一般式(I)において、R1が水酸基、アルコキシ基、又はハロゲンにて置換されていてもよい炭素数1〜4のアルキル基、特に炭素数1〜4のアルキル基及び/又は炭素数1〜4のヒドロキシアルキル基であるものが好ましい。R1のアルキル基としてはメチル基、エチル基、プロピル基、ブチル基等の炭素数1〜4の低級アルキル基が、ヒドロキシアルキル基としてはヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基等の炭素数1〜4の低級ヒドロキシアルキル基が挙げられる。 As the quaternary ammonium hydroxide, in the above general formula (I), R 1 may be substituted with a hydroxyl group, an alkoxy group, or a halogen, an alkyl group having 1 to 4 carbon atoms, particularly 1 to 4 carbon atoms. Are preferably alkyl groups and / or hydroxyalkyl groups having 1 to 4 carbon atoms. The alkyl group of R 1 is a lower alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group or a butyl group, and the hydroxyalkyl group is a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group or a hydroxybutyl group. And a lower hydroxyalkyl group having 1 to 4 carbon atoms such as a group.
また、アミン類としては、トリエチルアミン、エチレンジアミンなどが挙げられ、アミノアルコール類としてはモノエタノールアミン、ジエタノールアミン、トリメタノールアミンなどが挙げられる。 Examples of amines include triethylamine and ethylenediamine, and examples of amino alcohols include monoethanolamine, diethanolamine, and trimethanolamine.
成分(b)として好ましくは一般式(I)で表される水酸化第4級アンモニウムが挙げられ、この水酸化第4級アンモニウムとしては具体的には、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド、トリメチル(ヒドロキシエチル)アンモニウムヒドロキシド(通称:コリン)、トリエチル(ヒドロキシエチル)アンモニウムヒドロキシド等が挙げられる。 The component (b) is preferably quaternary ammonium hydroxide represented by the general formula (I). Specific examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide (TMAH), tetraethyl Ammonium hydroxide, trimethyl (hydroxyethyl) ammonium hydroxide (common name: choline), triethyl (hydroxyethyl) ammonium hydroxide, and the like can be given.
上述の有機アルカリ成分の中でも洗浄効果、金属残留が少ないこと、経済性、洗浄液の安定性などの理由から、有機アルカリ成分としてはテトラメチルアンモニウムヒドロキシド(TMAH)、トリメチル(ヒドロキシエチル)アンモニウムヒドロキシド(通称:コリン)などが特に好ましい。これらの有機アルカリ成分は、1種を単独で使用してもよいし、2種以上を任意の割合で併用してもよい。 Among the organic alkali components described above, tetramethylammonium hydroxide (TMAH), trimethyl (hydroxyethyl) ammonium hydroxide are used as the organic alkali component because of the cleaning effect, low metal residue, economy, and stability of the cleaning solution. (Common name: Choline) and the like are particularly preferable. These organic alkali components may be used individually by 1 type, and may use 2 or more types together by arbitrary ratios.
なお、アンモニアは金属配線に用いられる銅と錯体を形成しやすく、腐食の原因になるので好ましくない。 Ammonia is not preferable because it easily forms a complex with copper used for metal wiring and causes corrosion.
本発明の洗浄液中における成分(b)の含有量は、水リンス性を充分良好にするためには、洗浄液に対して通常0.001重量%以上、好ましくは0.01重量%以上、さらに好ましくは0.05重量%以上とする。ただし、汚染除去効果が高いことや経済的であることを重視すれば、成分(b)の含有量は、通常30重量%以下、好ましくは10重量%以下、さらに好ましくは2重量%以下とする。成分(b)の濃度が高すぎると逆に汚染除去効果が低下する場合がある。 The content of the component (b) in the cleaning liquid of the present invention is usually 0.001% by weight or more, preferably 0.01% by weight or more, more preferably, based on the cleaning liquid in order to sufficiently improve the water rinsing property. Is 0.05% by weight or more. However, if importance is attached to the high decontamination effect and economic efficiency, the content of the component (b) is usually 30% by weight or less, preferably 10% by weight or less, more preferably 2% by weight or less. . If the concentration of component (b) is too high, the decontamination effect may be reduced.
本発明において、成分(c)として使用する界面活性剤は特に限定されず、アニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤が挙げられる。アニオン系界面活性剤としては、アルキルスルホン酸及びその塩、アルキルベンゼンスルホン酸及びその塩、アルキルジフェニルエーテルジスルホン酸及びその塩、アルキルメチルタウリン酸及びその塩、アルキル硫酸エステル及びその塩、アルキルエーテル硫酸エステル及びその塩、スルホコハク酸ジエステル及びその塩などが挙げられる。ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステルなどのアルキレンオキサイド型界面活性剤などが挙げられる。カチオン系界面活性剤としては、アミン塩型界面活性剤や第4級アンモニウム塩型界面活性剤が挙げられる。両性界面活性剤としては、アミノ酸型両性界面活性剤やベタイン型両性界面活性剤などが挙げられる。中でもアニオン系界面活性剤を使用することが好ましい。更に好ましくは炭素数8〜12のアルキルベンゼンスルホン酸及びその塩、炭素数8〜12のアルキルジフェニルエーテルジスルホン酸及びその塩、炭素数8〜12のアルキルメチルタウリン酸及びその塩、炭素数8〜12のアルキル硫酸エステル及びその塩、炭素数8〜12のアルキルエーテル硫酸エステル及びその塩、炭素数8〜12のスルホコハク酸ジエステル及びその塩が挙げられる。これらの界面活性剤成分は、1種を単独で使用してもよいし、2種以上を任意の割合で併用してもよい。 In the present invention, the surfactant used as the component (c) is not particularly limited, and examples thereof include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants. Examples of the anionic surfactant include alkyl sulfonic acid and its salt, alkyl benzene sulfonic acid and its salt, alkyl diphenyl ether disulfonic acid and its salt, alkyl methyl tauric acid and its salt, alkyl sulfate and its salt, alkyl ether sulfate and The salt, sulfosuccinic acid diester, its salt, etc. are mentioned. Examples of nonionic surfactants include alkylene oxide surfactants such as polyoxyethylene alkyl ethers and polyoxyethylene fatty acid esters. Examples of the cationic surfactant include amine salt type surfactants and quaternary ammonium salt type surfactants. Examples of amphoteric surfactants include amino acid type amphoteric surfactants and betaine type amphoteric surfactants. Among these, it is preferable to use an anionic surfactant. More preferably, the alkylbenzene sulfonic acid having 8 to 12 carbon atoms and a salt thereof, an alkyl diphenyl ether disulfonic acid having 8 to 12 carbon atoms and a salt thereof, an alkylmethyl tauric acid having 8 to 12 carbon atoms and a salt thereof, and 8 to 12 carbon atoms. Examples thereof include alkyl sulfates and salts thereof, alkyl ether sulfates having 8 to 12 carbon atoms and salts thereof, and sulfosuccinic acid diesters having 8 to 12 carbon atoms and salts thereof. These surfactant components may be used individually by 1 type, and may use 2 or more types together by arbitrary ratios.
本発明の洗浄液中における成分(c)の含有量は、パーティクル汚染除去性能を充分得るためには、洗浄液に対して通常0.0001重量%以上、好ましくは0.0003重量%以上、さらに好ましくは0.001重量%以上とする。ただし、過度の泡立ちを抑えることや廃液処理の負荷を軽減することを重視すれば、成分(c)の含有量は通常1重量%以下、好ましくは0.1重量%以下、さらに好ましくは0.05重量%以下とする。成分(c)の濃度が高すぎてもそれ以上の効果は得られない。 The content of the component (c) in the cleaning liquid of the present invention is usually 0.0001% by weight or more, preferably 0.0003% by weight or more, more preferably, based on the cleaning liquid in order to obtain sufficient particle contamination removal performance. 0.001% by weight or more. However, if importance is placed on suppressing excessive foaming and reducing the load of waste liquid treatment, the content of the component (c) is usually 1% by weight or less, preferably 0.1% by weight or less, more preferably 0.8%. 05 wt% or less. If the concentration of component (c) is too high, no further effect can be obtained.
なお、成分(c)としての界面活性剤は、通常市販されている形態において1〜数千重量ppm程度のNa、K、Fe等の金属不純物を含有している場合があり、この場合には、成分(c)が金属汚染源となる。そのため、成分(c)として使用する界面活性剤に金属不純物が含まれる場合には、各々の金属不純物の含有量が、通常10ppm以下、好ましくは1ppm以下、更に好ましくは0.3ppm以下となるように、界面活性剤を精製して使用することが好ましい。この精製方法としては、例えば、界面活性剤を水に溶解した後、イオン交換樹脂に通液し、樹脂に金属不純物を捕捉させる方法が好適である。このようにして精製された成分(c)を使用することで、金属不純物含有量が極めて低減された洗浄液を得ることができる。 In addition, the surfactant as the component (c) may contain metal impurities such as Na, K, and Fe of about 1 to several thousand ppm by weight in the form that is usually on the market. Component (c) becomes a metal contamination source. Therefore, when the surfactant used as component (c) contains metal impurities, the content of each metal impurity is usually 10 ppm or less, preferably 1 ppm or less, more preferably 0.3 ppm or less. In addition, it is preferable to use the surfactant after purification. As this purification method, for example, a method in which a surfactant is dissolved in water and then passed through an ion exchange resin to capture metal impurities in the resin is suitable. By using the component (c) thus purified, it is possible to obtain a cleaning liquid in which the metal impurity content is extremely reduced.
本発明においては成分(d)としては水を使用する。水としては、高清浄な基板表面を得たい場合は、通常、脱イオン水、好ましくは超純水が用いられる。また、水の電気分解によって得られる電解イオン水や、水に水素ガスを溶存させた水素水などを使用することもできる。 In the present invention, water is used as the component (d). As water, in order to obtain a highly clean substrate surface, deionized water, preferably ultrapure water is usually used. Moreover, electrolytic ionic water obtained by electrolysis of water, hydrogen water in which hydrogen gas is dissolved in water, or the like can also be used.
本発明の洗浄液におけるpHは、基板表面の腐食を抑えるためには1.5以上、好ましくは2以上、更に好ましくは3以上とする。ただし金属汚染の除去を充分に行うためには、pHは6.5未満、好ましくは6以下、更に好ましくは5以下とする。 The pH of the cleaning liquid of the present invention is 1.5 or more, preferably 2 or more, more preferably 3 or more, in order to suppress corrosion of the substrate surface. However, in order to sufficiently remove metal contamination, the pH is less than 6.5, preferably 6 or less, more preferably 5 or less.
本発明の洗浄液において、成分(a)の有機酸と成分(b)の有機アルカリ成分との重量比率[成分(a)/成分(b)]は、金属汚染の除去効果を充分に得るためには、0.8以上が好ましく、更に好ましくは1以上とする。ただし、基板表面の腐食を抑えることを重視すれば、該重量比率は、5以下が好ましく、更に好ましくは4以下とする。この重量比率が大きすぎてもそれ以上の効果は得られない。 In the cleaning liquid of the present invention, the weight ratio [component (a) / component (b)] of the organic acid of component (a) and the organic alkali component of component (b) is sufficient to obtain a metal contamination removal effect. Is preferably 0.8 or more, more preferably 1 or more. However, if importance is placed on suppressing corrosion of the substrate surface, the weight ratio is preferably 5 or less, more preferably 4 or less. If the weight ratio is too large, no further effect can be obtained.
また、本発明の洗浄液において、有機アルカリは基板表面の界面活性剤の脱離を促進する効果があり、水リンス性向上効果を充分得るためには界面活性剤に比べて有機アルカリ成分を多く含むことが好ましい。このため成分(c)の界面活性剤と成分(b)の有機アルカリ成分との重量比率[成分(c)/成分(b)]は、0.2以下が好ましく、更に好ましくは0.15以下とする。ただし、有機アルカリがあまり多すぎても効果は変わらないため、経済的であることを重視すれば、該重要比率は0.01以上が好ましく、更に好ましくは0.05以上である。 Further, in the cleaning liquid of the present invention, the organic alkali has an effect of accelerating the desorption of the surfactant on the surface of the substrate, and contains a larger amount of the organic alkali component than the surfactant in order to obtain a sufficient effect of improving the water rinsing property. It is preferable. Therefore, the weight ratio [component (c) / component (b)] between the surfactant of component (c) and the organic alkali component of component (b) is preferably 0.2 or less, more preferably 0.15 or less. And However, even if there is too much organic alkali, the effect does not change. Therefore, if importance is attached to the economy, the important ratio is preferably 0.01 or more, and more preferably 0.05 or more.
このような成分(a)〜(d)を含む本発明の洗浄液は、洗浄液中の金属不純物のうち、少なくともNa,Mg、Al、K、Ca、Fe、Cu、Pb、Znの各々の含有量が20ppb以下、中でも5ppb以下、特に0.1ppb以下であることが、洗浄による半導体デバイス用基板の金属汚染を防止する上で好ましい。特には、これら金属不純物の合計含有量が20ppb以下であることが好ましく、中でも5ppb以下、特に0.1ppb以下であることが好ましい。 The cleaning liquid of the present invention containing such components (a) to (d) includes at least each of Na, Mg, Al, K, Ca, Fe, Cu, Pb, and Zn among the metal impurities in the cleaning liquid. Is preferably 20 ppb or less, more preferably 5 ppb or less, and particularly preferably 0.1 ppb or less, in order to prevent metal contamination of the semiconductor device substrate due to cleaning. In particular, the total content of these metal impurities is preferably 20 ppb or less, more preferably 5 ppb or less, and particularly preferably 0.1 ppb or less.
本発明の洗浄液においては、成分の(a)〜(d)に加えて、更に必要に応じて錯化剤
を含有させても良い。錯化剤には、基板表面の金属汚染を低減する効果がある。錯化剤としては、従来公知の任意のものを使用できる。錯化剤の種類は、基板表面の汚染レベル、金属の種類、基板表面に要求される清浄度レベル、錯化剤コスト、化学的安定性などから総合的に判断して選択すればよく、例えば、以下の(1)〜(4)に示すものが挙げられる。
In the cleaning liquid of the present invention, in addition to the components (a) to (d), a complexing agent may be further contained as necessary. The complexing agent has an effect of reducing metal contamination on the substrate surface. Any conventionally known complexing agent can be used. The type of complexing agent may be selected based on comprehensive judgment from the contamination level of the substrate surface, the type of metal, the level of cleanliness required for the substrate surface, the cost of the complexing agent, chemical stability, etc. The following (1) to (4) are exemplified.
(1)ドナー原子である窒素とカルボキシル基及び/又はホスホン酸基を有する化合物:例えば、グリシン等のアミノ酸類;イミノ2酢酸、ニトリロ3酢酸、エチレンジアミン4酢酸[EDTA]、トランス−1,2−ジアミノシクロヘキサン4酢酸[CyDTA]、ジエチレントリアミン5酢酸[DTPA]、トリエチレンテトラミン6酢酸[TTHA]等の含窒素カルボン酸類;エチレンジアミンテトラキス(メチレンホスホン酸)[EDTPO]、ニトリロトリス(メチレンホスホン酸)[NTPO]、プロピレンジアミンテトラ(メチレンホスホン酸)[PDTMP]等の含窒素ホスホン酸類などが挙げられる。 (1) Compounds having nitrogen as a donor atom and a carboxyl group and / or phosphonic acid group: for example, amino acids such as glycine; iminodiacetic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid [EDTA], trans-1,2- Nitrogen-containing carboxylic acids such as diaminocyclohexane tetraacetic acid [CyDTA], diethylenetriaminepentaacetic acid [DTPA], triethylenetetramine hexaacetic acid [TTHA]; ethylenediaminetetrakis (methylenephosphonic acid) [EDTPO], nitrilotris (methylenephosphonic acid) [NTPO And nitrogen-containing phosphonic acids such as propylenediaminetetra (methylenephosphonic acid) [PDTMP].
(2)芳香族炭化水素環を有し且つ芳香族炭化水素環を構成する炭素原子に直接結合したOH基及び/又はO−基を2つ以上有する化合物:例えば、カテコール、レゾルシノール、タイロン等のフェノール類、その誘導体などが挙げられる。 (2) A compound having an aromatic hydrocarbon ring and having two or more OH groups and / or O-groups directly bonded to carbon atoms constituting the aromatic hydrocarbon ring: for example, catechol, resorcinol, tyrone, etc. Examples thereof include phenols and derivatives thereof.
(3)上記(1)、(2)の構造を併せ持った化合物:例えば、次の(3−1),(3−2)が挙げられる。
(3−1)エチレンジアミンジオルトヒドロキシフェニル酢酸[EDDHA]及びその誘導体: 例えば、エチレンジアミンジオルトヒドロキシフェニル酢酸[EDDHA]、エチレンジアミン−N,N’−ビス〔(2−ヒドロキシ−5−メチルフェニル)酢酸〕[EDDHMA]、エチレンジアミン−N,N’−ビス〔(2−ヒドロキシ−5−クロルフェニル)酢酸〕[EDDHCA]、エチレンジアミン−N,N’−ビス〔(2−ヒドロキシ−5−スルホフェニル)酢酸〕[EDDHSA]等の芳香族含窒素カルボン酸類;エチレンジアミン−N,N’−ビス〔(2−ヒドロキシ−5−メチルフェニル)ホスホン酸〕、エチレンジアミン−N,N’−ビス〔(2−ヒドロキシ−5−ホスホフェニル)ホスホン酸〕等の芳香族含窒素ホスホン酸類が挙げられる。
(3−2)N,N’−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N’−2酢酸[HBED]及びその誘導体:例えば、N,N’−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N’−2酢酸[HBED]、N,N’−ビス(2−ヒドロキシ−5−メチルベンジル)エチレンジアミン−N,N’−2酢酸[HMBED]、N,N’−ビス(2−ヒドロキシ−5−クロルベンジル)エチレンジアミン−N,N’−2酢酸などが挙げられる。
(3) Compounds having the above structures (1) and (2): For example, the following (3-1) and (3-2) may be mentioned.
(3-1) Ethylenediamine diorthydroxyphenylacetic acid [EDDHA] and its derivatives: For example, ethylenediaminediorthydroxyphenylacetic acid [EDDHA], ethylenediamine-N, N′-bis [(2-hydroxy-5-methylphenyl) acetic acid ] [EDDHMA], ethylenediamine-N, N′-bis [(2-hydroxy-5-chlorophenyl) acetic acid] [EDDHCA], ethylenediamine-N, N′-bis [(2-hydroxy-5-sulfophenyl) acetic acid Aromatic nitrogen-containing carboxylic acids such as [EDDHSA]; ethylenediamine-N, N′-bis [(2-hydroxy-5-methylphenyl) phosphonic acid], ethylenediamine-N, N′-bis [(2-hydroxy- Aromatic nitrogen-containing phosphonic acids such as 5-phosphophenyl) phosphonic acid] It is below.
(3-2) N, N′-bis (2-hydroxybenzyl) ethylenediamine-N, N′-2 acetic acid [HBED] and its derivatives: for example, N, N′-bis (2-hydroxybenzyl) ethylenediamine-N , N′-2 acetic acid [HBED], N, N′-bis (2-hydroxy-5-methylbenzyl) ethylenediamine-N, N′-2 acetic acid [HMBED], N, N′-bis (2-hydroxy-) 5-chlorobenzyl) ethylenediamine-N, N′-2 acetic acid and the like.
(4)その他:例えば、エチレンジアミン、8−キノリノール、o−フェナントロリン等のアミン類;ギ酸、酢酸、シュウ酸、酒石酸等のカルボン酸類;フッ化水素酸、塩酸、臭化水素、ヨウ化水素などのハロゲン化水素、それらの塩;リン酸、縮合リン酸などのオキソ酸類、それらの塩等が挙げられる。 (4) Others: For example, amines such as ethylenediamine, 8-quinolinol, o-phenanthroline; carboxylic acids such as formic acid, acetic acid, oxalic acid, tartaric acid; hydrofluoric acid, hydrochloric acid, hydrogen bromide, hydrogen iodide, etc. Examples thereof include hydrogen halides and salts thereof; oxo acids such as phosphoric acid and condensed phosphoric acid, and salts thereof.
上記の錯化剤は、酸の形態のものを使用してもよいし、アンモニウム塩などの塩の形態のものを使用してもよい。 The complexing agent may be in the form of an acid, or may be in the form of a salt such as an ammonium salt.
上述した錯化剤の中でも、洗浄効果、化学的安定性等の理由から、エチレンジアミン4酢酸[EDTA]、ジエチレントリアミン5酢酸[DTPA]等の含窒素カルボン酸類;エチレンジアミンテトラキス(メチレンホスホン酸)[EDTPO]、プロピレンジアミンテトラ(メチレンホスホン酸)[PDTMP]等の含窒素ホスホン酸類;エチレンジアミンジオルトヒドロキシフェニル酢酸[EDDHA]及びその誘導体;N,N’−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N’−2酢酸[HBED]などが好ましい。中でも洗浄効果の観点からエレンジアミンジオルトヒドロキシフェニル酢酸[EDDHA]、エチレンジアミン−N,N’−ビス〔(2−ヒドロキシ−5−メチルフェニル)酢酸〕[EDDHMA]、ジエチレントリアミン5酢酸[DTPA]、エチレンジアミン4酢酸[EDTA]、プロピレンジアミンテトラ(メチレンホスホン酸)[PDTMP]が好ましい。 Among the complexing agents described above, nitrogen-containing carboxylic acids such as ethylenediaminetetraacetic acid [EDTA] and diethylenetriaminepentaacetic acid [DTPA]; ethylenediaminetetrakis (methylenephosphonic acid) [EDTPO] for reasons of cleaning effect, chemical stability, etc. , Nitrogen-containing phosphonic acids such as propylenediaminetetra (methylenephosphonic acid) [PDTMP]; ethylenediaminedioltohydroxyphenylacetic acid [EDDDHA] and its derivatives; N, N′-bis (2-hydroxybenzyl) ethylenediamine-N, N ′ -2 acetic acid [HBED] is preferred. Among them, from the viewpoint of the cleaning effect, enediaminediolhydroxyhydroxyacetic acid [EDDHA], ethylenediamine-N, N′-bis [(2-hydroxy-5-methylphenyl) acetic acid] [EDDHMA], diethylenetriaminepentaacetic acid [DTPA], ethylenediamine Tetraacetic acid [EDTA] and propylenediaminetetra (methylenephosphonic acid) [PDTMP] are preferred.
上記の錯化剤は、1種を単独で使用してもよいし、2種以上を任意の割合で併用してもよい。 The above complexing agents may be used alone or in combination of two or more in any proportion.
本発明の洗浄液中の錯化剤の濃度は、洗浄対象の半導体デバイス用基板の汚染金属不純物の種類と量、基板表面に要求される清浄度レベルによって任意に選択すればよいが、汚染除去や付着防止効果を充分得るためには、一般的には通常1ppm以上、好ましくは5ppm以上、更に好ましくは10ppm以上とする。ただし、基板表面に錯化剤が付着して表面処理後に残留する虞を少なくすることや経済的であることを重視すれば、錯化剤の濃度は、通常10000ppm以下、好ましくは1000ppm以下、更に好ましくは200ppm以下とする。 The concentration of the complexing agent in the cleaning liquid of the present invention may be arbitrarily selected depending on the type and amount of contaminating metal impurities on the semiconductor device substrate to be cleaned, and the cleanliness level required for the substrate surface. In order to obtain a sufficient adhesion preventing effect, it is generally 1 ppm or more, preferably 5 ppm or more, more preferably 10 ppm or more. However, the concentration of the complexing agent is usually 10000 ppm or less, preferably 1000 ppm or less, if importance is attached to reducing the possibility that the complexing agent adheres to the substrate surface and remains after the surface treatment or is economical. Preferably it is 200 ppm or less.
なお、錯化剤は、通常販売されている試薬において1〜数千ppm程度のFe、Al、Zn等の金属不純物を含有しているので、使用する錯化剤が金属汚染源となる場合が考えられる。これらの金属は、初期には錯化剤と安定な錯体を形成して存在しているが、洗浄液として長時間使用しているうちに錯化剤が分解してくると、錯化剤から遊離し、洗浄対象の基体表面に付着する。そのため、本発明で使用する錯化剤は、予め、精製して使用するのが好ましく、精製により各々の金属不純物の含有量が、通常5ppm以下、好ましくは1ppm以下、更に好ましくは0.1ppm以下となるようにすることが好ましい。この精製方法としては、例えば、酸性又はアルカリ性溶液に錯化剤を溶解した後、不溶性不純物を濾過分離して取り除き、再び中和して結晶を析出させ、当該結晶を液と分離する方法が好適である。 In addition, since the complexing agent contains about 1 to several thousand ppm of metal impurities such as Fe, Al, and Zn in reagents that are usually sold, the complexing agent used may be a source of metal contamination. It is done. These metals initially exist in the form of a stable complex with the complexing agent. However, if the complexing agent decomposes during long-term use as a cleaning solution, it is released from the complexing agent. And adheres to the surface of the substrate to be cleaned. Therefore, the complexing agent used in the present invention is preferably used after being purified, and the content of each metal impurity by purification is usually 5 ppm or less, preferably 1 ppm or less, more preferably 0.1 ppm or less. It is preferable that As the purification method, for example, a method in which the complexing agent is dissolved in an acidic or alkaline solution, insoluble impurities are removed by filtration, neutralized again to precipitate crystals, and the crystals are separated from the liquid is preferable. It is.
本発明の洗浄液はまた、その性能を損なわない範囲において、その他の成分を任意の割合で含有していてもよい。他の成分としては、含硫黄有機化合物(2−メルカプトチアゾリン、2−メルカプトイミダゾリン、2−メルカプトエタノール、チオグリセロール等)、含窒素有機化合物(ベンゾトリアゾール、3−アミノトリアゾール、N(R2)3(R2は互いに同一であっても異なっていても良い炭素数1〜4のアルキル基及び/又は炭素数1〜4のヒドロキシアルキル基)、ウレア、チオウレア等)、水溶性ポリマー(ポリエチレングリコール、ポリビニルアルコール等)、アルキルアルコール系化合物(R3OH(R3は炭素数1〜4のアルキル基))等の防食剤、硫酸、塩酸、メタンスルホン酸などの酸、ヒドラジン等の還元剤、水素、アルゴン、窒素などの溶存ガス、フッ酸、フッ化アンモニウム、BHF(バッファードフッ酸)等のドライエッチング後に強固に付着したポリマー等の除去効果が期待できるエッチング促進剤などが挙げられる。 The cleaning liquid of the present invention may also contain other components in any proportion within a range not impairing its performance. Other components include sulfur-containing organic compounds (2-mercaptothiazoline, 2-mercaptoimidazoline, 2-mercaptoethanol, thioglycerol, etc.), nitrogen-containing organic compounds (benzotriazole, 3-aminotriazole, N (R 2 ) 3 (R 2 may be the same or different from each other and may be different from each other, and may be different from each other, alkyl group having 1 to 4 carbon atoms and / or hydroxyalkyl group having 1 to 4 carbon atoms), urea, thiourea, etc.), water-soluble polymer (polyethylene glycol, Polyvinyl alcohol, etc.), anticorrosives such as alkyl alcohol compounds (R 3 OH (R 3 is an alkyl group having 1 to 4 carbon atoms)), acids such as sulfuric acid, hydrochloric acid and methanesulfonic acid, reducing agents such as hydrazine, hydrogen , Dissolved gases such as argon and nitrogen, hydrofluoric acid, ammonium fluoride, BHF (buffered hydrofluoric acid), etc. Removal effect of polymers which firmly adhered after dry etching and the like etching accelerator can be expected.
本発明の洗浄液に含有させる他の成分として過酸化水素、オゾン、酸素などの酸化剤も挙げられる。半導体デバイス用基板の洗浄工程において、酸化膜のないシリコン(ベアシリコン)基板表面を洗浄する際には、酸化剤の配合により、基板表面へのエッチングによる表面荒れを抑える事ができるので好ましい。本発明の洗浄液に過酸化水素等を含有させる場合には、洗浄液中の過酸化水素濃度は、通常0.01重量%以上、好ましくは0.1重量%以上で、通常5重量%以下、好ましくは1重量%以下とされる。 As other components to be contained in the cleaning liquid of the present invention, oxidizing agents such as hydrogen peroxide, ozone and oxygen can be mentioned. In the step of cleaning a semiconductor device substrate, when the surface of a silicon (bare silicon) substrate without an oxide film is cleaned, it is preferable because the surface roughness due to etching on the substrate surface can be suppressed by adding an oxidizing agent. When the cleaning liquid of the present invention contains hydrogen peroxide or the like, the concentration of hydrogen peroxide in the cleaning liquid is usually 0.01% by weight or more, preferably 0.1% by weight or more, and usually 5% by weight or less, preferably Is 1% by weight or less.
ところで、洗浄する基板の表面には、過酸化水素と反応して溶解する金属材料からなる半導体デバイスの配線やデバイス素子電極が露出している場合がある。このような金属材料としては、例えば、CuやWなどの遷移金属又は遷移金属化合物が挙げられる。この際、洗浄に使用する洗浄液は、実質的に過酸化水素を含有しないことが好ましい。本発明の洗浄液は、従来のAPM洗浄液とは異なり、過酸化水素を実質的に含有しなくても、この
ような金属材料に悪影響を及ぼすことなく、充分な洗浄性能を示す。
By the way, the wiring of a semiconductor device and device element electrodes made of a metal material that reacts and dissolves with hydrogen peroxide may be exposed on the surface of the substrate to be cleaned. Examples of such a metal material include transition metals or transition metal compounds such as Cu and W. At this time, it is preferable that the cleaning liquid used for cleaning does not substantially contain hydrogen peroxide. Unlike the conventional APM cleaning liquid, the cleaning liquid of the present invention exhibits sufficient cleaning performance without adversely affecting such a metal material even if it does not substantially contain hydrogen peroxide.
なお、本発明の洗浄液において、「実質的に過酸化水素を含有しない」とは、洗浄する基板上の材料、例えばCuやW等の配線材料や電極材料、及び低誘電率膜に対し、過酸化水素による腐食や変質などの悪影響を生じさせないことを意味する。つまり、これらの材料が、半導体デバイスとした際に、配線や電極などとして充分に機能することを意味する。そのためには、本発明の洗浄液に過酸化水素が含まれていない様にし、含有されたとしてもその含有量を少なく抑えるほど好ましい。その含有量は例えば、10ppm以下、好ましくは1ppm、更に好ましくは10ppb以下とされる。 In the cleaning liquid of the present invention, “substantially does not contain hydrogen peroxide” means that the material on the substrate to be cleaned, for example, the wiring material such as Cu and W, the electrode material, and the low dielectric constant film is excessive. This means that there is no adverse effect such as corrosion or alteration due to hydrogen oxide. That is, when these materials are used as semiconductor devices, it means that they function sufficiently as wirings or electrodes. For that purpose, hydrogen peroxide is not contained in the cleaning liquid of the present invention, and even if it is contained, the content is preferably reduced. The content is, for example, 10 ppm or less, preferably 1 ppm, more preferably 10 ppb or less.
本発明の洗浄液の調製方法は、従来公知の方法によればよい。洗浄液の構成成分(有機酸、有機アルカリ成分、界面活性剤、水、必要に応じて錯化剤等、他の成分)のうち、何れか2成分又は3成分以上を予め配合し、その後に残りの成分を混合してもよいし、一度に全部を混合してもよい。 The method for preparing the cleaning liquid of the present invention may be a conventionally known method. Among the components of the cleaning liquid (organic acid, organic alkali component, surfactant, water, other components such as a complexing agent as required), any two components or three or more components are blended in advance, and then the rest These components may be mixed or all at once.
本発明の洗浄液は、金属汚染やパーティクル汚染が問題となる半導体、ガラス、金属、セラミックス、樹脂、磁性体、超伝導体などの半導体デバイス用基板表面の洗浄に使用される。特に、高清浄な基板表面が要求される、半導体素子やディスプレイデバイス用などの半導体デバイス用基板を製造する工程における、半導体デバイス用基板表面の洗浄に好適に使用される。これらの基板の表面には、配線、電極などが存在していてもよい。配線や電極の材料としては、Si、Ge、GaAs等の半導体材料;SiO2、窒化シリコン、ガラス、低誘電率材料、酸化アルミニウム、遷移金属酸化物(酸化チタン、酸化タンタル、酸化ハフニウム、酸化ジルコニウム等)、(Ba、Sr)TiO2(BST)、ポリイミド、有機熱硬化性樹脂などの絶縁材料;W、Cu、Al等の金属又はこれらの合金、シリサイド、窒化物などが挙げられる。ここで低誘電率材料とは、比誘電率が3.5以下である材料の総称である。SiO2の比誘電率は3.8〜3.9である。 The cleaning liquid of the present invention is used for cleaning the surface of a semiconductor device substrate such as a semiconductor, glass, metal, ceramics, resin, magnetic material, and superconductor in which metal contamination or particle contamination is a problem. In particular, it is suitably used for cleaning a semiconductor device substrate surface in a process of manufacturing a substrate for a semiconductor device such as a semiconductor element or a display device, which requires a highly clean substrate surface. Wirings, electrodes, and the like may be present on the surfaces of these substrates. Wiring and electrode materials include semiconductor materials such as Si, Ge, and GaAs; SiO 2 , silicon nitride, glass, low dielectric constant materials, aluminum oxide, transition metal oxides (titanium oxide, tantalum oxide, hafnium oxide, zirconium oxide) Etc.), (Ba, Sr) TiO 2 (BST), polyimide, organic thermosetting resin and other insulating materials; metals such as W, Cu, Al, or alloys thereof, silicide, nitride, and the like. Here, the low dielectric constant material is a general term for materials having a relative dielectric constant of 3.5 or less. The relative dielectric constant of SiO 2 is 3.8 to 3.9.
特に、本発明の洗浄液は、金属表面を腐食することなく、かつ金属表面に残りやすい界面活性剤が、短時間のリンスで除去が可能で、スループットの向上が出来るため、表面に遷移金属又は遷移金属化合物を有する半導体デバイス用基板の洗浄に好適に使用される。ここで遷移金属としては、W、Cu、Ti、Cr、Co、Zr、Hf、Mo、Ru、Au、Pt、Ag等が挙げられ、遷移金属化合物としては、これらの遷移金属のチッ化物、酸化物、シリサイド等が挙げられる。これらの中では、W及び/又はCuが好ましい。 In particular, the cleaning liquid of the present invention can remove the surfactant that does not corrode the metal surface and remains on the metal surface with a short rinse, and can improve the throughput. It is suitably used for cleaning a semiconductor device substrate having a metal compound. Examples of transition metals include W, Cu, Ti, Cr, Co, Zr, Hf, Mo, Ru, Au, Pt, and Ag. Transition metal compounds include nitrides, oxidations of these transition metals. Material, silicide and the like. In these, W and / or Cu are preferable.
また、本発明の洗浄液は、表面に低誘電率層間絶縁膜を有する半導体デバイス用基板の洗浄にも好適に使用される。低誘電率材料としては、Polyimide、BCB(Benzocyclobutene)、Flare(Honeywell社)、SiLK(Dow Chemical社)等の有機ポリマー材料やFSG(Fluorinated silicate glass)などの無機ポリマー材料、BLACK DIAMOND(Applied Materials社)、Aurora(日本ASM社)等のSiOC系材料が挙げられる。中でも、Flare、SiLK、BLACK DIAMOND、Aurora等の疎水性の強い低誘電率絶縁膜でも本洗浄液を使用すると、基板表面の汚染を短時間で除去できる。 The cleaning liquid of the present invention is also suitably used for cleaning a semiconductor device substrate having a low dielectric constant interlayer insulating film on the surface. Examples of the low dielectric constant material include organic polymer materials such as Polyimide, BCB (Benzocyclobutylene), Flare (Honeywell), SiLK (Dow Chemical), FSG (Fluorinated Silicate Glass), and BLACKDIAMD ), SiOC-based materials such as Aurora (ASM Japan). In particular, the use of the present cleaning liquid can remove contamination of the substrate surface in a short time even with a strong hydrophobic low dielectric constant insulating film such as Flare, SiLK, BLACK DIAMOND, or Aurora.
表面にCuや低誘電率絶縁膜を有する基板の洗浄を行う工程としては、特に、Cu膜に対してCMP(Chemical Mechanical Polishing)を行った後の洗浄工程、配線上の層間絶縁膜にドライエッチングによりホールを開けた後の洗浄工程が挙げられ、上記の効果を奏する本発明の洗浄液が好適に使用される。 As a process for cleaning a substrate having Cu or a low dielectric constant insulating film on the surface, in particular, a cleaning process after performing CMP (Chemical Mechanical Polishing) on the Cu film, or dry etching the interlayer insulating film on the wiring The cleaning process after opening a hole is mentioned, The cleaning liquid of this invention which has said effect is used suitably.
CMP工程では、研磨剤を用いて基板をパッドに擦り付けて研磨が行われる。研磨剤成分としては、研磨粒子、酸化剤、分散剤やその他添加剤が含まれる。研磨粒子としては、コロイダルシリカ(SiO2)、フュームドシリカ(SiO2)、アルミナ(Al2O3)、セリア(CeO2)などが挙げられる。酸化剤としては、過酸化水素、過硫酸アンモニウム、硝酸鉄、ヨウ素酸カリウムなどが挙げられる。分散剤としては、界面活性剤、KOH、アンモニア、アミンなどが挙げられる。その他添加剤としては、有機酸(クエン酸やキナルジン酸等)や防食剤などが挙げられる。特に、Cu膜のCMP研磨では、Cu膜が腐食しやすく、防食剤を入れることが重要であり、防食剤の中でも防食効果の高いアゾール系防食剤が好ましく用いられる。アゾールとは、ヘテロ原子を2個以上含む5員環芳香族化合物で、ヘテロ原子の少なくとも1個は窒素原子である化合物の総称である。窒素以外のヘテロ原子としては、酸素と硫黄のものが良く知られている。窒素のみの複素環では、ジアゾール系やトリアゾール系、テトラゾール系が挙げられる。窒素と酸素の複素環では、オキサゾール系やイソオキサゾール系、オキサジアゾール系が挙げられ、窒素と硫黄の複素環では、チアゾール系やイソチアゾール系、チアジアゾール系が挙げられる。その中でも特に、防食効果に優れるベンゾトリアゾール(BTA)系の防食剤が好ましく用いられる。また、研磨剤はその組成により酸性、中性、アルカリ性と様々なpHのものがあり、目的に応じて選択できる。 In the CMP process, polishing is performed by rubbing the substrate against the pad using an abrasive. As an abrasive | polishing agent component, an abrasive particle, an oxidizing agent, a dispersing agent, and another additive are contained. Examples of the abrasive particles include colloidal silica (SiO 2 ), fumed silica (SiO 2 ), alumina (Al 2 O 3 ), and ceria (CeO 2 ). Examples of the oxidizing agent include hydrogen peroxide, ammonium persulfate, iron nitrate, and potassium iodate. Examples of the dispersant include a surfactant, KOH, ammonia, and amine. Other additives include organic acids (such as citric acid and quinaldic acid) and anticorrosives. In particular, in CMP polishing of a Cu film, it is important that a Cu film is easily corroded and an anticorrosive agent is added. Among the anticorrosive agents, an azole anticorrosive agent having a high anticorrosive effect is preferably used. An azole is a general term for a 5-membered aromatic compound containing two or more heteroatoms, and at least one heteroatom is a nitrogen atom. As heteroatoms other than nitrogen, oxygen and sulfur are well known. Examples of the nitrogen-only heterocycle include diazole, triazole, and tetrazole. Examples of nitrogen and oxygen heterocycles include oxazole, isoxazole, and oxadiazole. Examples of nitrogen and sulfur heterocycles include thiazole, isothiazole, and thiadiazole. Among them, a benzotriazole (BTA) type anticorrosive having an excellent anticorrosive effect is particularly preferably used. Moreover, there are abrasives having various pH such as acidic, neutral and alkaline depending on the composition, and can be selected according to the purpose.
本発明の洗浄液は、このような防食剤を含んだ研磨剤で研磨した後の表面に適用すると、これら防食剤に由来した汚染を極めて効果的に除去できる点において優れている。即ち、研磨剤中にこれらの防食剤が存在すると、Cu膜表面の腐食を抑える半面、研磨時に溶出したCuイオンと反応し、多量の不溶性析出物を生じる。本発明の洗浄液は、このような不溶性析出物を効率的に溶解除去することができ、更に、金属表面に残りやすい界面活性剤が、短時間のリンスで除去可能で、スループットの向上が可能である。特に、アゾール系防食剤が入った研磨剤で、Cu膜と低誘電率絶縁膜が共存した表面をCMP処理した後の半導体デバイス用基板の洗浄に好適に使用される。 When the cleaning liquid of the present invention is applied to the surface after polishing with an abrasive containing such an anticorrosive, it is excellent in that it can very effectively remove contamination derived from these anticorrosive. That is, when these anticorrosives are present in the polishing agent, while suppressing the corrosion of the Cu film surface, it reacts with Cu ions eluted during polishing to produce a large amount of insoluble precipitates. The cleaning solution of the present invention can efficiently dissolve and remove such insoluble precipitates. Furthermore, the surfactant that tends to remain on the metal surface can be removed by rinsing in a short time, and throughput can be improved. is there. In particular, it is preferably used for cleaning a semiconductor device substrate after a CMP treatment is performed on a surface on which a Cu film and a low dielectric constant insulating film coexist with an abrasive containing an azole anticorrosive.
本発明の洗浄方法は、本発明の洗浄液を基板に直接接触させる方法で行われる。洗浄液の基板への接触方法には、洗浄槽に洗浄液を満たして基板を浸漬させるディップ式、ノズルから基板上に洗浄液を流しながら基板を高速回転させるスピン式、基板に液を噴霧して洗浄するスプレー式などが挙げられる。この様な洗浄を行うための装置としては、カセットに収容された複数枚の基板を同時に洗浄するバッチ式洗浄装置、1枚の基板をホルダーに装着して洗浄する枚葉式洗浄装置などがある。 The cleaning method of the present invention is performed by a method in which the cleaning liquid of the present invention is brought into direct contact with the substrate. The contact method of the cleaning liquid to the substrate is a dip type in which the cleaning tank is filled with the cleaning liquid and the substrate is immersed, a spin type in which the substrate is rotated at high speed while flowing the cleaning liquid from the nozzle onto the substrate, and the substrate is cleaned by spraying the liquid on the substrate. A spray type etc. are mentioned. As an apparatus for performing such cleaning, there are a batch-type cleaning apparatus that simultaneously cleans a plurality of substrates housed in a cassette, a single-wafer cleaning apparatus that mounts and cleans a single substrate in a holder, and the like. .
本発明の洗浄液は、上記の何れの方法にも適用できるが、短時間でより効率的な汚染除去が出来る点から、スピン式やスプレー式の洗浄に好ましく使用される。そして、洗浄時間の短縮、洗浄液使用量の削減が望まれている枚葉式洗浄装置に適用するならば、これらの問題が解消されるので好ましい。 Although the cleaning liquid of the present invention can be applied to any of the above methods, it is preferably used for spin-type or spray-type cleaning because it allows more efficient decontamination in a short time. And if it applies to the single-wafer | sheet-fed washing | cleaning apparatus in which shortening of washing | cleaning time and the reduction of the usage-amount of washing | cleaning liquid are desired, since these problems are eliminated, it is preferable.
また、本発明の洗浄方法は、物理力による洗浄方法、特に、洗浄ブラシを使用したスクラブ洗浄や周波数0.5メガヘルツ以上の超音波洗浄を併用するならば、パーティクル汚染の除去性が更に向上し、洗浄時間の短縮にも繋がるので好ましい。特に、CMP後の洗浄においては、樹脂製ブラシを使用してスクラブ洗浄を行うのが好ましい。樹脂製ブラシの材質は、任意に選択し得るが、例えばPVA(ポリビニルアルコール)を使用するのが好ましい。 In addition, the cleaning method of the present invention further improves the removability of particle contamination if a cleaning method using physical force, particularly scrub cleaning using a cleaning brush or ultrasonic cleaning with a frequency of 0.5 MHz or higher is used in combination. This is preferable because it also shortens the cleaning time. In particular, in the cleaning after CMP, it is preferable to perform scrub cleaning using a resin brush. The material of the resin brush can be arbitrarily selected, but for example, PVA (polyvinyl alcohol) is preferably used.
更に、本発明による洗浄の前及び/又は後に、水の電気分解によって得られる電解イオン水、又は、水に水素ガスを溶存させた水素水による洗浄を組合わせてもよい。 Furthermore, before and / or after washing according to the present invention, washing with electrolytic ionic water obtained by electrolysis of water or hydrogen water in which hydrogen gas is dissolved in water may be combined.
洗浄液の温度は、通常は室温とされるが、性能を損なわない範囲で、40〜70℃程度に加温してもよい。 The temperature of the cleaning liquid is usually room temperature, but may be heated to about 40 to 70 ° C. within a range that does not impair the performance.
次に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。 EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited by the following Examples, unless the summary is exceeded.
<実施例1〜12及び比較例1〜6>
(スクラブ式洗浄によるパーティクル汚染の洗浄性評価)
Cu膜付きの8インチシリコン基板を、ベンゾトリアゾール系防食剤入りCMP用スラリー(酸性、SiO2粒子含有)で1分間研磨後、17秒間水研磨を行った。このCMP研磨後の基板を、表1に示す配合の洗浄液を用いて、マルチスピンナー((株)カイジョー製「KSSP−201」)により、PVA製のブラシを用いてブラシスクラブ洗浄し、パーティクルを除去した。洗浄液による洗浄は、室温で30秒間実施し、この後、基板を超純水で10秒間又は30秒間リンスし、スピン乾燥して、洗浄済みの基板を得た。
<Examples 1-12 and Comparative Examples 1-6>
(Evaluation of cleanability of particle contamination by scrub cleaning)
An 8-inch silicon substrate with a Cu film was polished with a slurry for CMP containing a benzotriazole-based anticorrosive agent (acidic, containing SiO 2 particles) for 1 minute, followed by water polishing for 17 seconds. The substrate after the CMP polishing is subjected to brush scrub cleaning using a PVA brush by a multi-spinner (“KSSP-201” manufactured by Kaijo Co., Ltd.) using a cleaning liquid having the composition shown in Table 1 to remove particles. did. The cleaning with the cleaning liquid was performed at room temperature for 30 seconds, and then the substrate was rinsed with ultrapure water for 10 seconds or 30 seconds and spin-dried to obtain a cleaned substrate.
その後、レーザー表面検査装置(日立電子エンジニアリング社製「LS−6600」)を用いて、基板表面に付着したパーティクル数(粒径0.35μm以上)を測定し、結果を表1に示した。 Thereafter, the number of particles (particle size of 0.35 μm or more) adhering to the substrate surface was measured using a laser surface inspection device (“LS-6600” manufactured by Hitachi Electronics Engineering Co., Ltd.). The results are shown in Table 1.
なお、表1中、洗浄液中の各成分の略号は次の通りである。後掲の表2〜6においても同様である。
TMAH:テトラメチルアンモニウムヒドロキシド
N(Et)3:トリエチルアミン
コリン:トリメチル(ヒドロキシエチル)アンモニウムヒドロキシド
NH3:アンモニア
DBS:ドデシルベンゼンスルホン酸
DPDSA:ドデシルジフェニルエーテルジスルホン酸ジアンモニウム塩
MMTA:N−ミリストイルメチルタウリンアンモニウム
MSA:メタンスルホン酸
IPA:イソプロピルアルコール
また、表1中、洗浄液中の金属不純物濃度は、洗浄液中に含まれるNa,Mg,Al,K,Ca,Fe,Cu,Pb,Znの各濃度を表す。後掲の表2〜6においても同様である。
In Table 1, the abbreviations of the components in the cleaning liquid are as follows. The same applies to Tables 2 to 6 below.
TMAH: Tetramethylammonium hydroxide N (Et) 3: Triethylamine Choline: Trimethyl (hydroxyethyl) ammonium hydroxide NH3: Ammonia DBS: Dodecylbenzenesulfonic acid DPDSA: Dodecyldiphenyl ether disulfonic acid diammonium salt MMTA: N-myristoylmethyltauronium ammonium MSA: Methanesulfonic acid IPA: Isopropyl alcohol In Table 1, the concentration of metal impurities in the cleaning solution represents the concentration of Na, Mg, Al, K, Ca, Fe, Cu, Pb, and Zn contained in the cleaning solution. . The same applies to Tables 2 to 6 below.
表1より、本発明の半導体デバイス用基板洗浄液によれば、ベンゾトリアゾール系防食剤入りCMP用スラリー(酸性、SiO2粒子含有)で研磨した後のCu膜上のパーティクル汚染を防止して、高清浄に洗浄することができ、かつリンス時間も10秒と非常に短くできることが分かる。 From Table 1, according to the substrate cleaning solution for a semiconductor device of the present invention, particle contamination on the Cu film after polishing with a slurry for CMP (acid, containing SiO 2 particles) containing a benzotriazole anticorrosive is prevented. It can be seen that it can be cleaned cleanly and the rinsing time can be as short as 10 seconds.
なお、成分(a)の有機酸としてクエン酸の代りに酢酸や蓚酸を使用した場合でも、リンス性が向上し、同様の効果が得られることが確認された。 Even when acetic acid or succinic acid was used instead of citric acid as the organic acid of component (a), it was confirmed that the rinsing property was improved and the same effect was obtained.
<実施例13〜14>
(スクラブ式洗浄によるパーティクル汚染の洗浄性評価)
Cu膜付きの8インチシリコン基板を、防食剤入りCMP用スラリー(アルカリ性、SiO2粒子含有)で1分間研磨後、17秒間水研磨を行った。このCMP研磨後の基板を、表2に示す配合の洗浄液を用いて、マルチスピンナー((株)カイジョー製「KSSP−201」)により、PVA製のブラシを用いてブラシスクラブ洗浄し、パーティクルを除去した。洗浄液による洗浄は、室温で30秒間実施し、この後、基板を超純水で30秒間リンスし、スピン乾燥して、洗浄済みの基板を得た。
<Examples 13 to 14>
(Evaluation of cleanability of particle contamination by scrub cleaning)
An 8-inch silicon substrate with a Cu film was polished with a slurry for CMP containing an anticorrosive agent (alkaline, containing SiO 2 particles) for 1 minute, followed by water polishing for 17 seconds. The substrate after CMP polishing is subjected to brush scrub cleaning with a multi-spinner (“KSSP-201” manufactured by Kaijo Co., Ltd.) using a cleaning liquid having the composition shown in Table 2 to remove particles. did. The cleaning with the cleaning liquid was performed at room temperature for 30 seconds, and then the substrate was rinsed with ultrapure water for 30 seconds and spin-dried to obtain a cleaned substrate.
その後、レーザー表面検査装置(日立電子エンジニアリング社製「LS−6600」)を用いて、基板表面に付着したパーティクル数(粒径0.35μm以上)を測定し、結果を表2に示した。 Thereafter, the number of particles (particle size of 0.35 μm or more) adhering to the substrate surface was measured using a laser surface inspection device (“LS-6600” manufactured by Hitachi Electronics Engineering), and the results are shown in Table 2.
表2より、明らかなように、Cu膜上のパーティクル残存数はいずれも非常に少なく、本発明の半導体デバイス用基板洗浄液によれば、防食剤入りCMP用スラリー(アルカリ性、SiO2粒子含有)で研磨した後のCu膜上のパーティクル汚染を防止して、高清浄に洗浄することができることが分かる。 As is clear from Table 2, the number of remaining particles on the Cu film is very small, and according to the semiconductor device substrate cleaning liquid of the present invention, an anticorrosive-containing CMP slurry (alkaline, containing SiO 2 particles) is used. It can be seen that particle contamination on the Cu film after polishing can be prevented and cleaning can be performed highly cleanly.
<実施例15〜16>
(スクラブ式洗浄によるパーティクル汚染の洗浄性評価)
Cu膜付きの8インチシリコン基板を、ベンゾトリアゾール系防食剤入りCMP用スラリー(酸性、SiO2粒子含有)で1分間研磨後、水研磨を行わず研磨を終了し基板を取り外した。研磨パッド上にCu汚染を残留させた状態で、続けてLow−k膜(BLACK DIAMOND)膜付きの8インチシリコン基板をベンゾトリアゾール系防食剤入りCMP用スラリー(酸性、SiO2粒子)で1分間研磨後、17秒間水研磨を行った。このCMP研磨後のLow−k膜(BLACK DIAMOND)膜付き基板を、表3に示す配合の洗浄液を用いて、マルチスピンナー((株)カイジョー製「KSSP−201」)により、PVA製のブラシを用いてブラシスクラブ洗浄し、パーティクルを除去した。洗浄液による洗浄は、室温で30秒間実施し、この後、基板を超純水で30秒間又は60秒間リンスし、スピン乾燥して、洗浄済みの基板を得た。
<Examples 15 to 16>
(Evaluation of cleanability of particle contamination by scrub cleaning)
An 8-inch silicon substrate with a Cu film was polished for 1 minute with a CMP slurry (acidic, containing SiO 2 particles) containing a benzotriazole anticorrosive, and then the polishing was terminated without water polishing, and the substrate was removed. In a state where Cu contamination remains on the polishing pad, an 8-inch silicon substrate with a low-k film (BLACK DIAMOND) film is continuously placed in a CMP slurry (acidic, SiO 2 particles) containing a benzotriazole anticorrosive for 1 minute. After polishing, water polishing was performed for 17 seconds. The substrate with the low-k film (BLACK DIAMOND) film after the CMP polishing is subjected to a PVA brush by a multi-spinner (“KSSP-201” manufactured by Kaijo Co., Ltd.) using a cleaning liquid having the composition shown in Table 3. Using brush scrub cleaning, particles were removed. The cleaning with the cleaning liquid was performed at room temperature for 30 seconds, and then the substrate was rinsed with ultrapure water for 30 seconds or 60 seconds and spin-dried to obtain a cleaned substrate.
その後、レーザー表面検査装置(日立電子エンジニアリング社製「LS−6600」)を用いて、基板表面に付着したパーティクル数(粒径0.2μm以上)を測定し、結果を表3に示した。 Thereafter, the number of particles (particle size of 0.2 μm or more) adhering to the substrate surface was measured using a laser surface inspection device (“LS-6600” manufactured by Hitachi Electronics Engineering Co., Ltd.), and the results are shown in Table 3.
表3より、本発明の半導体デバイス用基板洗浄液によれば、通常は洗浄しにくいLow−k膜付き基板であっても、ベンゾトリアゾール系防食剤入りCMP用スラリー(酸性、SiO2粒子含有)で研磨した後のパーティクル汚染を防止して、高清浄に洗浄することができることが分かる。 From Table 3, according to the substrate cleaning solution for semiconductor devices of the present invention, even a substrate with a low-k film which is usually difficult to clean is a CMP slurry (acidic, containing SiO 2 particles) containing a benzotriazole anticorrosive. It can be seen that particle contamination after polishing can be prevented and cleaning can be performed with high cleanliness.
<実施例17〜18>
(スクラブ式洗浄によるパーティクル汚染の洗浄性評価)
Cu膜付きの8インチシリコン基板を、防食剤入りCMP用スラリー(アルカリ性、SiO2粒子含有)で1分間研磨後、水研磨を行わず研磨を終了し基板を取り外した。研磨パッド上にCu汚染を残留させた状態で、続けてLow−k膜(BLACK DIAMOND)膜付きの8インチシリコン基板を防食剤入りCMP用スラリー(アルカリ性、SiO2粒子)で1分間研磨後、17秒間水研磨を行った。このCMP研磨後のLow−k膜(BLACK DIAMOND)膜付き基板を、表4に示す配合の洗浄液を用いて、マルチスピンナー((株)カイジョー製「KSSP−201」)により、PVA製のブラシを用いてブラシスクラブ洗浄し、パーティクルを除去した。洗浄液による洗浄は、室温で30秒間実施し、この後、基板を超純水で30秒間リンスし、スピン乾燥して、洗浄済みの基板を得た。
<Examples 17-18>
(Evaluation of cleanability of particle contamination by scrub cleaning)
An 8-inch silicon substrate with a Cu film was polished with a slurry for CMP containing an anticorrosive agent (alkaline, containing SiO 2 particles) for 1 minute, and was then polished without water polishing, and the substrate was removed. With the Cu contamination remaining on the polishing pad, the 8-inch silicon substrate with the Low-k film (BLACK DIAMOND) film is polished for 1 minute with a slurry for CMP (alkaline, SiO 2 particles) containing an anticorrosive agent, Water polishing was performed for 17 seconds. The substrate with the low-k film (BLACK DIAMOND) film after the CMP polishing is subjected to a PVA brush by a multi-spinner (“KSSP-201” manufactured by Kaijo Co., Ltd.) using a cleaning liquid having the composition shown in Table 4. Using brush scrub cleaning, particles were removed. The cleaning with the cleaning liquid was performed at room temperature for 30 seconds, and then the substrate was rinsed with ultrapure water for 30 seconds and spin-dried to obtain a cleaned substrate.
その後、レーザー表面検査装置(日立電子エンジニアリング社製「LS−6600」)を用いて、基板表面に付着したパーティクル数(粒径0.2μm以上)を測定し、結果を表4に示した。 Thereafter, the number of particles (particle size of 0.2 μm or more) adhering to the substrate surface was measured using a laser surface inspection apparatus (“LS-6600” manufactured by Hitachi Electronics Engineering Co., Ltd.). The results are shown in Table 4.
表4より、本発明の半導体デバイス用基板洗浄液によれば、通常は洗浄しにくいLow−k膜付き基板であっても、防食剤入りCMP用スラリー(アルカリ性、SiO2粒子含有)で研磨した後のパーティクル汚染を防止して、高清浄に洗浄することができることが分かる。 From Table 4, according to the semiconductor device substrate cleaning liquid of the present invention, even a substrate with a low-k film that is usually difficult to clean is polished with an anticorrosive-containing CMP slurry (alkaline, containing SiO 2 particles). It can be seen that it is possible to prevent the contamination of the particles and clean the surface with high cleanliness.
表1〜4より、本発明の半導体デバイス用基板洗浄液によれば、Cu膜及びLow−k膜のいずれに対しても、またベンゾトリアゾール系防食剤入りCMP用スラリー(酸性、SiO2粒子含有)及び防食剤入りCMP用スラリー(アルカリ性、SiO2粒子含有)のいずれのスラリーで研磨した後であっても、パーティクル汚染を防止して、高清浄に洗浄することができることが分かる。また本発明の半導体デバイス用基板洗浄液は、リンス時間も従来より短縮できることが分かる。 From Tables 1 to 4, according to the semiconductor device substrate cleaning liquid of the present invention, both the Cu film and the Low-k film, CMP slurry containing benzotriazole-based anticorrosive agent (acidic, containing SiO 2 particles) It can be seen that even after polishing with any slurry of anti-corrosion agent-containing CMP slurry (alkaline, containing SiO 2 particles), particle contamination can be prevented and cleaning can be performed with high cleanliness. Moreover, it turns out that the rinse time for the substrate cleaning solution for semiconductor devices of the present invention can be shortened as compared with the conventional case.
<実施例19>
(スクラブ式洗浄による金属汚染の洗浄性評価)
Cu膜付きの8インチシリコン基板を、ベンゾトリアゾール系防食剤入りCMP用スラリー(酸性、SiO2粒子含有)で1分間研磨後、水研磨を行わず研磨を終了し基板を取り外した。研磨パッド上にCu汚染を残留させた状態で、続けてTEOS(テトラエトキシシラン)膜付きの8インチシリコン基板をベンゾトリアゾール系防食剤入りCMP用スラリー(酸性、SiO2粒子)で1分間研磨後、17秒間水研磨を行った。研磨後のTEOS膜付きの基板を、表5に示す洗浄液を用いて、マルチスピンナー((株)カイジョー製「KSSP−201」)により、PVA製のブラシを用いてブラシスクラブ洗浄し、金属汚染を除去した。洗浄液による洗浄は、室温で30秒間実施し、この後、基板を超純水で60秒間リンスし、スピン乾燥して、洗浄済みの基板を得た。
<Example 19>
(Evaluation of cleanability of metal contamination by scrub cleaning)
An 8-inch silicon substrate with a Cu film was polished for 1 minute with a CMP slurry (acidic, containing SiO 2 particles) containing a benzotriazole anticorrosive, and then the polishing was terminated without water polishing, and the substrate was removed. After the Cu contamination remains on the polishing pad, an 8-inch silicon substrate with a TEOS (tetraethoxysilane) film is polished for 1 minute with CMP slurry (acidic, SiO 2 particles) containing a benzotriazole anticorrosive. Then, water polishing was performed for 17 seconds. The substrate with the TEOS film after polishing is subjected to brush scrub cleaning using a PVA brush with a multi-spinner (“KSSP-201” manufactured by Kaijo Co., Ltd.) using the cleaning liquid shown in Table 5 to remove metal contamination. Removed. The cleaning with the cleaning liquid was performed at room temperature for 30 seconds, and then the substrate was rinsed with ultrapure water for 60 seconds and spin-dried to obtain a cleaned substrate.
この基板上の残留汚染金属(Fe、Cu)を、以下の方法で分析し、結果を表5に示した。 Residual contaminating metals (Fe, Cu) on this substrate were analyzed by the following method, and the results are shown in Table 5.
(残留汚染金属の分析方法)
基板表面にある金属を、フッ酸0.1重量%と過酸化水素1重量%を含む水溶液で、基板を処理することによって回収し、誘導結合プラズマ質量分析計(ICP−MS)を用いて該金属量を測定し、基板表面での金属濃度(×1010atoms/cm2)に換算した。
(Analyzing method for residual contaminated metals)
The metal on the surface of the substrate was recovered by treating the substrate with an aqueous solution containing 0.1% by weight of hydrofluoric acid and 1% by weight of hydrogen peroxide, and the inductively coupled plasma mass spectrometer (ICP-MS) was used to recover the metal. The amount of metal was measured and converted to a metal concentration (× 10 10 atoms / cm 2 ) on the substrate surface.
表5より、本発明の半導体デバイス用基板洗浄液によれば、金属汚染も防止して、高清浄に洗浄することができることが分かる。 From Table 5, it can be seen that the semiconductor device substrate cleaning liquid of the present invention can prevent metal contamination and can be cleaned with high cleanliness.
<実施例20及び比較例7>
(Cu膜エッチングレート評価)
Cu膜付きの8インチシリコン基板片(1.5cm×2cm)を、表6に示す洗浄液に3時間浸した。浸漬後の洗浄液のCu濃度(ppb)を誘導結合プラズマ質量分析計(ICP−MS)を用いて測定し、下記式により洗浄液のCuエッチングレート(nm/min)を計算した。
Cuエッチングレート(nm/min)=C×L/G/S/100/H
C:洗浄液のCu濃度(ppb)
L:洗浄液量(cm3)
G:Cuの密度(8.95g/cm3)
S:Cu基板片の面積(cm2)
H:浸漬時間(180min)
<Example 20 and Comparative Example 7>
(Cu film etching rate evaluation)
An 8-inch silicon substrate piece (1.5 cm × 2 cm) with a Cu film was immersed in the cleaning liquid shown in Table 6 for 3 hours. The Cu concentration (ppb) of the cleaning liquid after immersion was measured using an inductively coupled plasma mass spectrometer (ICP-MS), and the Cu etching rate (nm / min) of the cleaning liquid was calculated by the following formula.
Cu etching rate (nm / min) = C × L / G / S / 100 / H
C: Cu concentration (ppb) of the cleaning solution
L: Amount of cleaning liquid (cm 3 )
G: Cu density (8.95 g / cm 3 )
S: Area of the Cu substrate piece (cm 2 )
H: Immersion time (180 min)
表6より、本発明の半導体デバイス用基板洗浄液はCuエッチングレートが非常に低く、基板上の金属配線の腐食を防止しつつ、高清浄に洗浄できることが分かる。 From Table 6, it can be seen that the substrate cleaning solution for semiconductor devices of the present invention has a very low Cu etching rate, and can be cleaned highly clean while preventing corrosion of metal wiring on the substrate.
以上の結果から、本発明の洗浄液は、防食剤入りCMP用スラリーで研磨した後の、微粒子(パーティクル)の除去性に優れ、かつ短時間リンスによる洗浄性にも優れていることが明らかである。また、金属汚染の除去性や金属配線の腐食防止についても同様に優れた洗浄効果が奏されることが明らかである。 From the above results, it is clear that the cleaning liquid of the present invention is excellent in removal of fine particles (particles) after being polished with a slurry for CMP containing an anticorrosive agent, and is excellent in cleaning properties by rinsing for a short time. . In addition, it is clear that the excellent cleaning effect is similarly exhibited in terms of metal contamination removability and metal wiring corrosion prevention.
Claims (28)
成分(a):有機酸
成分(b):有機アルカリ成分
成分(c):界面活性剤
成分(d):水 A semiconductor device comprising a semiconductor device substrate cleaning liquid comprising the following components (a), (b), (c), and (d), and having a pH of 1.5 or more and less than 6.5: Substrate cleaning solution.
Component (a): Organic acid Component (b): Organic alkali component Component (c): Surfactant Component (d): Water
(R1)4N+OH− …(I)
(但し、R1は水素原子、或いは水酸基、アルコキシ基、又はハロゲンにて置換されていてもよいアルキル基を示し、4個のR1は全て同一でもよく、互いに異なっていてもよい。但し、全て同時に水素原子である場合を除く。) 6. The substrate cleaning liquid for a semiconductor device according to claim 1, wherein the component (b) is represented by the following general formula (I).
(R 1 ) 4 N + OH − (I)
(However, R 1 represents a hydrogen atom, a hydroxyl group, an alkoxy group, or an alkyl group which may be substituted with a halogen, and all four R 1 s may be the same or different from each other. (Except when all are hydrogen atoms at the same time.)
成分(a):有機酸
成分(b):有機アルカリ成分
成分(c):界面活性剤
成分(d):水 A semiconductor device substrate is cleaned using a liquid containing the following components (a), (b), (c), and (d) and having a pH of 1.5 or more and less than 6.5: A method for cleaning a semiconductor device substrate.
Component (a): Organic acid Component (b): Organic alkali component Component (c): Surfactant Component (d): Water
(R1)4N+OH− …(I)
(但し、R1は水素原子、或いは水酸基、アルコキシ基、又はハロゲンにて置換されていてもよいアルキル基を示し、4個のR1は全て同一でもよく、互いに異なっていてもよい。但し、全て同時に水素原子である場合を除く。) 20. The method for cleaning a semiconductor device substrate according to any one of claims 15 to 19, wherein the component (b) is represented by the following general formula (I).
(R 1 ) 4 N + OH − (I)
(However, R 1 represents a hydrogen atom, a hydroxyl group, an alkoxy group, or an alkyl group which may be substituted with a halogen, and all four R 1 s may be the same or different from each other. (Except when all are hydrogen atoms at the same time.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005023550A JP4736445B2 (en) | 2004-02-09 | 2005-01-31 | Substrate cleaning solution for semiconductor device and cleaning method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004032222 | 2004-02-09 | ||
JP2004032222 | 2004-02-09 | ||
JP2005023550A JP4736445B2 (en) | 2004-02-09 | 2005-01-31 | Substrate cleaning solution for semiconductor device and cleaning method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005260213A true JP2005260213A (en) | 2005-09-22 |
JP2005260213A5 JP2005260213A5 (en) | 2007-11-29 |
JP4736445B2 JP4736445B2 (en) | 2011-07-27 |
Family
ID=35085596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005023550A Expired - Fee Related JP4736445B2 (en) | 2004-02-09 | 2005-01-31 | Substrate cleaning solution for semiconductor device and cleaning method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4736445B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007184599A (en) * | 2005-12-30 | 2007-07-19 | Lam Res Corp | Substrate cleaning method and cleaning solution |
WO2007138921A1 (en) * | 2006-05-26 | 2007-12-06 | Wako Pure Chemical Industries, Ltd. | Etching solution for substrate |
JP2008066658A (en) * | 2006-09-11 | 2008-03-21 | Fujifilm Corp | Cleaning liquid and cleaning method using the same |
WO2008143187A1 (en) * | 2007-05-18 | 2008-11-27 | Mitsubishi Chemical Corporation | Substrate cleaning solution for semiconductor device and method for manufacturing semiconductor device |
EP2045318A1 (en) | 2007-09-28 | 2009-04-08 | FUJIFILM Corporation | Cleaning agent for semiconductor device and cleaning method using the same |
WO2009145124A1 (en) * | 2008-05-26 | 2009-12-03 | Kao Corporation | Cleaning solution for substrate for semiconductor device |
WO2010086893A1 (en) * | 2009-01-27 | 2010-08-05 | 三洋化成工業株式会社 | Cleaning agent for copper-wired semiconductor |
JP2011049508A (en) * | 2009-07-29 | 2011-03-10 | Novellus Systems Inc | Etching formulation for isotropic copper etching |
JP2012019219A (en) * | 2010-07-09 | 2012-01-26 | Air Products & Chemicals Inc | Method for wafer dicing and composition useful for dicing method |
JP2013008751A (en) * | 2011-06-22 | 2013-01-10 | Hitachi Chem Co Ltd | Cleaning fluid and method for polishing substrate |
US9074286B2 (en) | 2003-10-20 | 2015-07-07 | Novellus Systems, Inc. | Wet etching methods for copper removal and planarization in semiconductor processing |
US9074287B2 (en) | 2009-09-02 | 2015-07-07 | Novellus Systems, Inc. | Reduced isotropic etchant material consumption and waste generation |
JP2017011225A (en) * | 2015-06-25 | 2017-01-12 | 株式会社フジミインコーポレーテッド | Polishing method, composition for removing impurity, and substrate and method for manufacturing the same |
JPWO2017188325A1 (en) * | 2016-04-28 | 2019-02-28 | 富士フイルム株式会社 | Composition, composition container, and method for producing the composition |
JPWO2017208767A1 (en) * | 2016-06-03 | 2019-03-28 | 富士フイルム株式会社 | Processing solution, substrate cleaning method and resist removal method |
JP2020059853A (en) * | 2018-10-12 | 2020-04-16 | 株式会社フジミインコーポレーテッド | Composition for rinsing or cleaning surface having ceria particles adhering thereto |
KR20210038690A (en) * | 2018-08-28 | 2021-04-07 | 엔테그리스, 아이엔씨. | Cleaning composition after CMP for ceria particles |
WO2022264931A1 (en) * | 2021-06-14 | 2022-12-22 | 富士フイルム株式会社 | Cleaning composition, method for cleaning semiconductor substrate, and method for manufacturing semiconductor element |
US11693321B2 (en) | 2016-03-31 | 2023-07-04 | Fujifilm Corporation | Treatment liquid for manufacturing semiconductor, storage container storing treatment liquid for manufacturing semiconductor, pattern forming method, and method of manufacturing electronic device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0864594A (en) * | 1994-08-18 | 1996-03-08 | Sumitomo Metal Ind Ltd | Forming method of wiring |
JP2000319699A (en) * | 1999-05-07 | 2000-11-21 | Tama Kagaku Kogyo Kk | Precision detergent composition |
JP2002299300A (en) * | 2001-03-30 | 2002-10-11 | Kaijo Corp | Substrate treatment method |
JP2003076037A (en) * | 2001-08-31 | 2003-03-14 | Tokyo Ohka Kogyo Co Ltd | Removing liquid for photoresist |
JP2003289060A (en) * | 2002-01-28 | 2003-10-10 | Mitsubishi Chemicals Corp | Cleaning liquid for substrate for semiconductor device and cleaning method |
-
2005
- 2005-01-31 JP JP2005023550A patent/JP4736445B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0864594A (en) * | 1994-08-18 | 1996-03-08 | Sumitomo Metal Ind Ltd | Forming method of wiring |
JP2000319699A (en) * | 1999-05-07 | 2000-11-21 | Tama Kagaku Kogyo Kk | Precision detergent composition |
JP2002299300A (en) * | 2001-03-30 | 2002-10-11 | Kaijo Corp | Substrate treatment method |
JP2003076037A (en) * | 2001-08-31 | 2003-03-14 | Tokyo Ohka Kogyo Co Ltd | Removing liquid for photoresist |
JP2003289060A (en) * | 2002-01-28 | 2003-10-10 | Mitsubishi Chemicals Corp | Cleaning liquid for substrate for semiconductor device and cleaning method |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9074286B2 (en) | 2003-10-20 | 2015-07-07 | Novellus Systems, Inc. | Wet etching methods for copper removal and planarization in semiconductor processing |
US9447505B2 (en) | 2005-10-05 | 2016-09-20 | Novellus Systems, Inc. | Wet etching methods for copper removal and planarization in semiconductor processing |
JP2007184599A (en) * | 2005-12-30 | 2007-07-19 | Lam Res Corp | Substrate cleaning method and cleaning solution |
WO2007138921A1 (en) * | 2006-05-26 | 2007-12-06 | Wako Pure Chemical Industries, Ltd. | Etching solution for substrate |
JP2008066658A (en) * | 2006-09-11 | 2008-03-21 | Fujifilm Corp | Cleaning liquid and cleaning method using the same |
US7851426B2 (en) | 2006-09-11 | 2010-12-14 | Fujifilm Corporation | Cleaning liquid and cleaning method using the same |
WO2008143187A1 (en) * | 2007-05-18 | 2008-11-27 | Mitsubishi Chemical Corporation | Substrate cleaning solution for semiconductor device and method for manufacturing semiconductor device |
JP2009004759A (en) * | 2007-05-18 | 2009-01-08 | Mitsubishi Chemicals Corp | Substrate cleaning liquid for semiconductor device, cleaning method for substrate for semiconductor device, and manufacturing method for substrate for semiconductor device |
KR101097073B1 (en) | 2007-05-18 | 2011-12-22 | 미쓰비시 가가꾸 가부시키가이샤 | Substrate cleaning solution for semiconductor device and method for manufacturing semiconductor device |
TWI449091B (en) * | 2007-05-18 | 2014-08-11 | Mitsubishi Chem Corp | A substrate cleaning solution for a semiconductor device, and a substrate for a semiconductor device |
US8110534B2 (en) | 2007-05-18 | 2012-02-07 | Mitsubishi Chemical Corporation | Cleaning solution for substrate for semiconductor device and process for producing substrate for semiconductor device |
JP2009099945A (en) * | 2007-09-28 | 2009-05-07 | Fujifilm Corp | Cleaning agent for semiconductor device and cleaning method using the same |
EP2045318A1 (en) | 2007-09-28 | 2009-04-08 | FUJIFILM Corporation | Cleaning agent for semiconductor device and cleaning method using the same |
WO2009145124A1 (en) * | 2008-05-26 | 2009-12-03 | Kao Corporation | Cleaning solution for substrate for semiconductor device |
US8846533B2 (en) | 2008-05-26 | 2014-09-30 | Kao Corporation | Cleaning solution for substrate for semiconductor device |
WO2010086893A1 (en) * | 2009-01-27 | 2010-08-05 | 三洋化成工業株式会社 | Cleaning agent for copper-wired semiconductor |
JP2011049508A (en) * | 2009-07-29 | 2011-03-10 | Novellus Systems Inc | Etching formulation for isotropic copper etching |
US9074287B2 (en) | 2009-09-02 | 2015-07-07 | Novellus Systems, Inc. | Reduced isotropic etchant material consumption and waste generation |
JP2012019219A (en) * | 2010-07-09 | 2012-01-26 | Air Products & Chemicals Inc | Method for wafer dicing and composition useful for dicing method |
JP2013008751A (en) * | 2011-06-22 | 2013-01-10 | Hitachi Chem Co Ltd | Cleaning fluid and method for polishing substrate |
JP2017011225A (en) * | 2015-06-25 | 2017-01-12 | 株式会社フジミインコーポレーテッド | Polishing method, composition for removing impurity, and substrate and method for manufacturing the same |
US11693321B2 (en) | 2016-03-31 | 2023-07-04 | Fujifilm Corporation | Treatment liquid for manufacturing semiconductor, storage container storing treatment liquid for manufacturing semiconductor, pattern forming method, and method of manufacturing electronic device |
US11892775B2 (en) | 2016-03-31 | 2024-02-06 | Fujifilm Corporation | Storage container storing treatment liquid for manufacturing semiconductor |
JPWO2017188325A1 (en) * | 2016-04-28 | 2019-02-28 | 富士フイルム株式会社 | Composition, composition container, and method for producing the composition |
US11192786B2 (en) | 2016-04-28 | 2021-12-07 | Fujifilm Corporation | Composition, composition reservoir, and method for producing composition |
JPWO2017208767A1 (en) * | 2016-06-03 | 2019-03-28 | 富士フイルム株式会社 | Processing solution, substrate cleaning method and resist removal method |
US11899369B2 (en) | 2016-06-03 | 2024-02-13 | Fujifilm Corporation | Treatment liquid, method for washing substrate, and method for removing resist |
US11397383B2 (en) | 2016-06-03 | 2022-07-26 | Fujifilm Corporation | Treatment liquid, method for washing substrate, and method for removing resist |
KR20210038690A (en) * | 2018-08-28 | 2021-04-07 | 엔테그리스, 아이엔씨. | Cleaning composition after CMP for ceria particles |
JP7212764B2 (en) | 2018-08-28 | 2023-01-25 | インテグリス・インコーポレーテッド | Post-CMP cleaning composition for ceria particles |
KR102522365B1 (en) * | 2018-08-28 | 2023-04-18 | 엔테그리스, 아이엔씨. | Post-CMP Cleaning Composition for Ceria Particles |
JP2021536669A (en) * | 2018-08-28 | 2021-12-27 | インテグリス・インコーポレーテッド | CMP post-cleaning composition for ceria particles |
JP7364415B2 (en) | 2018-10-12 | 2023-10-18 | 株式会社フジミインコーポレーテッド | Composition for rinsing or cleaning surfaces with ceria particles attached |
JP2020059853A (en) * | 2018-10-12 | 2020-04-16 | 株式会社フジミインコーポレーテッド | Composition for rinsing or cleaning surface having ceria particles adhering thereto |
WO2022264931A1 (en) * | 2021-06-14 | 2022-12-22 | 富士フイルム株式会社 | Cleaning composition, method for cleaning semiconductor substrate, and method for manufacturing semiconductor element |
Also Published As
Publication number | Publication date |
---|---|
JP4736445B2 (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4736445B2 (en) | Substrate cleaning solution for semiconductor device and cleaning method | |
US7541322B2 (en) | Cleaning solution for substrate for semiconductor device and cleaning method | |
JP4304988B2 (en) | Semiconductor device substrate cleaning method | |
KR100913557B1 (en) | Liquid detergent for semiconductor device substrate and method of cleaning | |
EP1888735B1 (en) | Copper passivating post-chemical mechanical polishing cleaning composition and method of use | |
TWI726859B (en) | Post chemical mechanical polishing formulations and method of use | |
US6896744B2 (en) | Method for cleaning a surface of a substrate | |
JP6123334B2 (en) | Cleaning device for semiconductor device and method for cleaning substrate for semiconductor device | |
US20080076688A1 (en) | Copper passivating post-chemical mechanical polishing cleaning composition and method of use | |
JP6488740B2 (en) | Substrate cleaning liquid for semiconductor device and method for cleaning semiconductor device | |
JP2003221600A (en) | Substrate surface-cleaning solution and method of cleaning the same | |
KR20100100841A (en) | Method and solution for washing substrate for semiconductor device | |
JP5817310B2 (en) | Cleaning device and cleaning method for semiconductor device substrate | |
JP2003068696A (en) | Method for cleaning substrate surface | |
JP2009071165A (en) | Substrate cleaning liquid for semiconductor device | |
JP2003109930A (en) | Cleaning solution and method of cleaning board of semiconductor device | |
JP2003088817A (en) | Method for cleaning surface of substrate | |
EP2687589A2 (en) | Copper passivating post-chemical mechanical polishing cleaning composition and method of use | |
JP2012044118A (en) | Cleaning fluid and cleaning method for substrate for semiconductor device | |
JP2015203047A (en) | Substrate cleaning liquid for semiconductor device and method for cleaning substrate for semiconductor device | |
JP2012119513A (en) | Cleaning liquid and cleaning method of substrate for semiconductor device | |
JP2012049387A (en) | Cleaning fluid and cleaning method of substrate for semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071012 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100301 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110216 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110418 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4736445 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |