JP2005259966A - Method of forming thin film - Google Patents

Method of forming thin film Download PDF

Info

Publication number
JP2005259966A
JP2005259966A JP2004069142A JP2004069142A JP2005259966A JP 2005259966 A JP2005259966 A JP 2005259966A JP 2004069142 A JP2004069142 A JP 2004069142A JP 2004069142 A JP2004069142 A JP 2004069142A JP 2005259966 A JP2005259966 A JP 2005259966A
Authority
JP
Japan
Prior art keywords
substrate
gas
inert gas
supplied
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004069142A
Other languages
Japanese (ja)
Other versions
JP4283140B2 (en
Inventor
Kazutoshi Murata
和俊 村田
Nozomi Hattori
望 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004069142A priority Critical patent/JP4283140B2/en
Publication of JP2005259966A publication Critical patent/JP2005259966A/en
Application granted granted Critical
Publication of JP4283140B2 publication Critical patent/JP4283140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a film consisting of metal oxide and metal nitride more quickly, while retaining high-quality characteristics, generated by atomic layer growing method, as they are. <P>SOLUTION: After an SiCl<SB>4</SB>molecular layer (adsorption layer) 102 is formed, oxidizing gas 113, such as H<SB>2</SB>O, is introduced into a reaction vessel to obtain a condition such that the oxidizing gas 113 is supplied on the surface of the silicon substrate, whereby a molecule (SiCl<SB>4</SB>molecular layer 102), adhered to the surface of the silicon substrate 101, is oxidized; and turns into the condition where silicon oxide layer 103 of one silicon molecular layer is formed on the surface of the silicon substrate 101. Thereafter, the inside of the reaction vessel is purged by an inert gas 112 heated to 700°C to obtain a condition that the inert gas 112 is supplied on the silicon substrate 101 and the oxidizing gas is removed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原子層成長方法により金属酸化膜もしくは金属窒化膜を形成する薄膜形成方法に関する。   The present invention relates to a thin film forming method for forming a metal oxide film or a metal nitride film by an atomic layer growth method.

液晶表示装置や有機ELを用いた表示装置などでは、ガラス基板の上に形成された薄膜トランジスタ(Thin Film Transistor:以下”TFT”と略す)をスイッチング素子として用いている。このTFTは、耐熱性の低いガラス基板の上に形成されるため、ゲート絶縁膜は、高温処理を行わないプラズマCVD(Chemical Vapor Deposition)法により形成されている。また、近年では、LSIの高密度化に伴いより高密度な集積化が要求される中で、より高い誘電率の材料によるゲート絶縁膜の開発が進められている。このような高誘電率の絶縁材料などを、原子層成長法により形成することが研究されている。   In a liquid crystal display device, a display device using an organic EL, or the like, a thin film transistor (hereinafter referred to as “TFT”) formed on a glass substrate is used as a switching element. Since this TFT is formed on a glass substrate having low heat resistance, the gate insulating film is formed by a plasma CVD (Chemical Vapor Deposition) method in which high-temperature treatment is not performed. Further, in recent years, development of a gate insulating film made of a material having a higher dielectric constant has been promoted as higher density integration is required as LSI density increases. It has been studied to form such an insulating material having a high dielectric constant by an atomic layer growth method.

ところが、プラズマCVD法により形成される膜は、膜中に多くの結晶欠陥を含んでおり、緻密性が十分でないなど、信頼性があまり高くない。また、膜の形成時に、プラズマ中の荷電粒子の影響により、半導体と絶縁膜との界面に損傷を受けるなどの問題もある。例えば、界面がプラズマにより損傷を受けるとトラップが形成され、性能を大きく低下させる。このように、電界効果型のトランジスタでは、ゲート絶縁膜をCVD法により形成すると、トランジスタの特性があまり良くないという問題を有していた。   However, a film formed by the plasma CVD method includes many crystal defects in the film, and is not very reliable, such as insufficient denseness. In addition, there is a problem that the interface between the semiconductor and the insulating film is damaged due to the influence of charged particles in the plasma when the film is formed. For example, when the interface is damaged by plasma, a trap is formed, which greatly reduces the performance. As described above, the field effect transistor has a problem that the characteristics of the transistor are not so good when the gate insulating film is formed by the CVD method.

上述した問題を解消するために、ゲート絶縁膜を原子層成長方法により形成する技術が提案されている(特許文献1,2参照)。原子層成長方法は、形成しようとする膜を構成する各元素の原料を基板に交互に供給することにより、原子層単位で薄膜を形成する技術である。   In order to solve the above-described problem, a technique for forming a gate insulating film by an atomic layer growth method has been proposed (see Patent Documents 1 and 2). The atomic layer growth method is a technique for forming a thin film in units of atomic layers by alternately supplying a raw material of each element constituting a film to be formed to a substrate.

原子層成長方法では、各元素の原料を供給している間に1層あるいはn層だけを表面に吸着させ、余分な原料は成長に寄与させないようにしている。これを、成長の自己停止作用という。原子層成長方法では、プラズマを利用することがないので、高品質な膜が形成できる。
このような特徴を有する原子層成長方法によれば、一般的なCVDと同様に高い形状適応性と膜厚制御性を併せ持っており、メモリ素子のキャパシタやhigh-kゲートと呼ばれる絶縁膜の形成への実用化が期待されている。
In the atomic layer growth method, only one layer or n layer is adsorbed on the surface while the raw materials for each element are being supplied, so that excess raw materials do not contribute to the growth. This is called self-stopping action of growth. Since the atomic layer growth method does not use plasma, a high-quality film can be formed.
According to the atomic layer growth method having such characteristics, it has both high shape adaptability and film thickness controllability, as in general CVD, and forms an insulating film called a capacitor of a memory element or a high-k gate. It is expected to be put to practical use.

なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。
特開平1−179423号公報 特開平5−160152号公報
The applicant has not yet found prior art documents related to the present invention by the time of filing other than the prior art documents specified by the prior art document information described in this specification.
JP-A-1-179423 JP-A-5-160152

しかしながら、原子層成長方法では、例えば、金属酸化物からなる膜の形成では、基板の表面に吸着した金属とこれを酸化するために導入されている酸化剤とが基板表面で反応する際、反応速度の向上と残留物を残さない完全な反応が求められる。これは、窒化膜の形成でも同様である。このため、膜を形成する速度(成膜速度)があまり速くなく、所望とする時間内に膜の形成が終了しない場合がある。成膜速度向上のために、酸化膜の形成などでは、反応性の高いオゾン(O3)などの利用が試みられているが、十分な成膜速度が得られていない。 However, in the atomic layer growth method, for example, in the formation of a film made of a metal oxide, when the metal adsorbed on the surface of the substrate reacts with the oxidant introduced to oxidize the metal reacts on the surface of the substrate. Increased speed and complete reaction without residue are required. The same applies to the formation of a nitride film. For this reason, the film forming speed (film forming speed) is not so high, and the film formation may not be completed within a desired time. In order to improve the deposition rate, use of highly reactive ozone (O 3 ) or the like has been attempted in the formation of an oxide film, but a sufficient deposition rate has not been obtained.

本発明は、以上のような問題点を解消するためになされたものであり、原子層成長法による高品質な特性を保持したまま、より迅速に金属酸化物や金属窒化物からなる膜が形成できるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and a film made of metal oxide or metal nitride can be formed more quickly while maintaining high quality characteristics by atomic layer growth. The purpose is to be able to.

本発明に係る薄膜形成方法は、所定の圧力に減圧された反応容器の内部で、金属の化合物から構成された原料ガスを第1温度に加熱した基板の表面に供給して、金属の化合物が基板の表面に吸着した吸着層が形成された状態とする第1工程と、原料ガスの供給を停止した後、基板の表面に不活性ガスを供給してパージする第2工程と、不活性ガスの供給を停止した後、基板の表面に酸化ガスを供給して吸着層を酸化し、基板の上に金属の酸化物から構成された金属酸化物層を形成する第3工程と、酸化ガスの供給を停止した後、基板の表面に不活性ガスを供給してパージする第4工程とを少なくとも備え、不活性ガス及び酸化ガスの少なくとも一方は、第1温度以上の第2温度、例えば500℃以上に加熱して基板の表面に供給するようにしたものである。
この方法によれば、原料ガスが供給されていないときに、供給された不活性ガスや酸化ガスにより、基板加熱温度以上に基板が加熱されるようになる。
In the thin film forming method according to the present invention, a source gas composed of a metal compound is supplied to a surface of a substrate heated to a first temperature inside a reaction vessel depressurized to a predetermined pressure. A first step in which an adsorption layer adsorbed on the surface of the substrate is formed; a second step of supplying and purging an inert gas to the surface of the substrate after stopping the supply of the source gas; and an inert gas A third step of supplying an oxidizing gas to the surface of the substrate to oxidize the adsorption layer and forming a metal oxide layer composed of a metal oxide on the substrate; And a fourth step of supplying and purging an inert gas to the surface of the substrate after stopping the supply, and at least one of the inert gas and the oxidizing gas is a second temperature not lower than the first temperature, for example, 500 ° C. So that it is heated and supplied to the surface of the substrate. It is intended.
According to this method, when the source gas is not supplied, the substrate is heated to the substrate heating temperature or higher by the supplied inert gas or oxidizing gas.

本発明に係る他の薄膜形成方法は、所定の圧力に減圧された反応容器の内部で、金属の化合物から構成された原料ガスを第1温度に加熱した基板の表面に供給して、金属の化合物が基板の表面に吸着した吸着層が形成された状態とする第1工程と、原料ガスの供給を停止した後、基板の表面に不活性ガスを供給してパージする第2工程と、不活性ガスの供給を停止した後、基板の表面に窒化ガスを供給して吸着層を窒化し、基板の上に金属の窒化物から構成された金属窒化物層を形成する第3工程と、窒化ガスの供給を停止した後、基板の表面に不活性ガスを供給してパージする第4工程とを少なくとも備え、不活性ガス及び窒化ガスの少なくとも一方は、第1温度以上の第2温度、例えば500℃以上に加熱して基板の表面に供給するようにしたものである。
この方法によれば、原料ガスが供給されていないときに、供給された不活性ガスや窒化ガスにより、基板加熱温度以上に基板が加熱されるようになる。
In another thin film forming method according to the present invention, a source gas composed of a metal compound is supplied to a surface of a substrate heated to a first temperature inside a reaction vessel depressurized to a predetermined pressure. A first step in which an adsorption layer in which a compound is adsorbed on the surface of the substrate is formed; a second step of purging by supplying an inert gas to the surface of the substrate after the supply of the source gas is stopped; After the supply of the active gas is stopped, a nitriding gas is supplied to the surface of the substrate to nitride the adsorption layer, and a metal nitride layer composed of a metal nitride is formed on the substrate; A fourth step of supplying and purging the surface of the substrate with an inert gas after stopping the supply of the gas, and at least one of the inert gas and the nitriding gas has a second temperature equal to or higher than the first temperature, for example, Supply to the surface of the substrate by heating to 500 ° C or higher One in which the.
According to this method, when the source gas is not supplied, the substrate is heated to a temperature higher than the substrate heating temperature by the supplied inert gas or nitriding gas.

以上説明したように、本発明では、原料ガスが存在していない状態で、供給されているガスにより基板が加熱されるようにしたので、基板の表面に既に形成されている層の反応がより迅速に進行するようになる。この結果、本発明によれば、原子層成長法による高品質な特性を保持したまま、より迅速に金属酸化物や金属窒化物からなる膜が形成できるという優れた効果が得られる。   As described above, in the present invention, since the substrate is heated by the supplied gas in the absence of the source gas, the reaction of the layer already formed on the surface of the substrate is further improved. Proceeds quickly. As a result, according to the present invention, it is possible to obtain an excellent effect that a film made of a metal oxide or a metal nitride can be formed more rapidly while maintaining high quality characteristics by the atomic layer growth method.

以下、本発明の実施の形態について図を参照して説明する。
図1は、本発明の実施の形態における薄膜形成方法を説明するための工程図である。
まず、図1(a)に示すように、所定の反応容器の内部にシリコン基板101を固定し、所定の排気機構により反応容器内を2〜3Pa程度の圧力とする。なお、シリコン基板101の主表面は、面方位が(100)である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a process diagram for explaining a thin film forming method according to an embodiment of the present invention.
First, as shown in FIG. 1A, a silicon substrate 101 is fixed inside a predetermined reaction vessel, and the pressure in the reaction vessel is set to about 2 to 3 Pa by a predetermined exhaust mechanism. The main surface of the silicon substrate 101 has a plane orientation of (100).

ついで、基板温度400℃の状態とし、反応容器内にSiCl4からなる原料ガス111を導入し、シリコン基板101の上に原料ガス111が供給された状態とする。原料ガス111の供給は、約30秒間行う。このことにより、シリコン基板101の上に原料であるSiCl4分子が吸着したSiCl4分子層(吸着層)102が形成された状態とする。 Next, the substrate temperature is set to 400 ° C., the source gas 111 made of SiCl 4 is introduced into the reaction vessel, and the source gas 111 is supplied onto the silicon substrate 101. The source gas 111 is supplied for about 30 seconds. As a result, a SiCl 4 molecular layer (adsorption layer) 102 in which SiCl 4 molecules as raw materials are adsorbed is formed on the silicon substrate 101.

次に、反応容器内への原料ガス111の導入を停止し、図1(b)に示すように、反応容器内に、例えば窒素ガスなどの不活性ガス112を700℃に加熱して導入し、高温に加熱された不活性ガス112により反応容器内をパージし、シリコン基板101に吸着したもの(SiCl4分子層102)以外の余剰ガスが反応容器から除去された状態とする。パージは、約30秒間行う。また、不活性ガス112の供給は、基板101の直上から垂直に行う。このとき、シリコン基板101は、原料ガス111がない状態で、300℃以上の高温に加熱された状態となる。 Next, the introduction of the source gas 111 into the reaction vessel is stopped, and as shown in FIG. 1B, an inert gas 112 such as nitrogen gas is heated to 700 ° C. and introduced into the reaction vessel. Then, the inside of the reaction vessel is purged with an inert gas 112 heated to a high temperature, and surplus gases other than those adsorbed on the silicon substrate 101 (SiCl 4 molecular layer 102) are removed from the reaction vessel. The purge is performed for about 30 seconds. Further, the inert gas 112 is supplied vertically from directly above the substrate 101. At this time, the silicon substrate 101 is heated to a high temperature of 300 ° C. or higher without the source gas 111.

次に、図1(c)に示すように、反応容器の内部に例えばH2Oなどの酸化ガス113を導入し、酸化ガス113がシリコン基板の表面に供給された状態とする。酸化ガス113の供給は、約30秒間行う。このことにより、シリコン基板101の表面に吸着している分子(SiCl4分子層102)が酸化され、図1(c)に示すように、シリコン基板101の表面にシリコン1原子層分の酸化シリコン層103が形成された状態とする。ここで、導入する酸化ガス113を、700℃程度に加熱しておいてもよい。 Next, as shown in FIG. 1C, an oxidizing gas 113 such as H 2 O is introduced into the reaction vessel, and the oxidizing gas 113 is supplied to the surface of the silicon substrate. The supply of the oxidizing gas 113 is performed for about 30 seconds. As a result, molecules (SiCl 4 molecular layer 102) adsorbed on the surface of the silicon substrate 101 are oxidized, and as shown in FIG. 1C, silicon oxide for one atomic layer of silicon is formed on the surface of the silicon substrate 101. It is assumed that the layer 103 is formed. Here, the introduced oxidizing gas 113 may be heated to about 700 ° C.

次に、反応容器の内部を700℃に加熱した不活性ガス112によってパージし、図1(d)に示すように、シリコン基板101の上に不活性ガス112が供給された状態とし、酸化ガスがシリコン基板101の上より除去された状態とする。パージは、約30秒間行う。このとき、シリコン基板101及び酸化シリコン層103は、原料ガス111がない状態で、300℃以上の高温に加熱された状態となる。   Next, the inside of the reaction vessel is purged with an inert gas 112 heated to 700 ° C., and the inert gas 112 is supplied onto the silicon substrate 101 as shown in FIG. Is removed from the silicon substrate 101. The purge is performed for about 30 seconds. At this time, the silicon substrate 101 and the silicon oxide layer 103 are heated to a high temperature of 300 ° C. or higher without the source gas 111.

次に、図1(e)に示すように、シリコン基板101の上にSiCl4からなる原料ガス111を供給し、酸化シリコン層103の上に新たなSiCl4分子層104が形成された状態とする。
この後、図1(b)〜図1(e)を用いて説明した工程を例えば20回繰り返すことで、膜厚2nm程度の酸化シリコン膜が形成された状態とする。
Next, as shown in FIG. 1E, a source gas 111 made of SiCl 4 is supplied onto the silicon substrate 101, and a new SiCl 4 molecular layer 104 is formed on the silicon oxide layer 103. To do.
Thereafter, the process described with reference to FIGS. 1B to 1E is repeated 20 times, for example, so that a silicon oxide film having a thickness of about 2 nm is formed.

次に、上述した原子層成長法で、加熱した不活性ガス112でパージを行う効果について説明する。
比較対象として、まず、基板温度を300℃とし、不活性ガスを加熱せずに用いたパージにより、上述した原子層成長方法で酸化シリコン膜を形成したサンプルAと、基板温度を400℃とし、不活性ガスを加熱せずに用いたパージにより、上述した原子層成長方法で酸化シリコン膜を形成したサンプルBと、基板温度を500℃とし、不活性ガスを加熱せずに用いたパージにより、上述した原子層成長方法で酸化シリコン膜を形成したサンプルCとを作製する。
Next, the effect of purging with the heated inert gas 112 by the above-described atomic layer growth method will be described.
As a comparison object, first, the substrate temperature was set to 300 ° C., the sample A in which the silicon oxide film was formed by the above-described atomic layer growth method by purging using an inert gas without heating, and the substrate temperature was set to 400 ° C. By purging using an inert gas without heating, sample B in which the silicon oxide film was formed by the above-described atomic layer growth method, and purging using a substrate temperature of 500 ° C. without heating the inert gas, A sample C on which a silicon oxide film is formed by the atomic layer growth method described above is manufactured.

図1に示した本実施の形態における製造方法により作成したサンプルDと、上述した各サンプルA、B、Cとを比較すると、図2の比較結果に示すように、1サイクル当たりの成膜速度が大きく異なり、本実施の形態によるサンプルDは、多のサンプルに比較して、成膜速度が速い。なお、サンプルD及びサンプルAの界面準位密度は、どちらも6×1010/cm2eVである。 When the sample D created by the manufacturing method in the present embodiment shown in FIG. 1 is compared with the samples A, B, and C described above, the film formation rate per cycle is shown in the comparison result of FIG. However, the sample D according to the present embodiment has a higher film formation speed than many samples. Note that the interface state densities of Sample D and Sample A are both 6 × 10 10 / cm 2 eV.

なお、上述では、酸化シリコン膜の形成を例に説明したが、これに限るものではない。ソースガスとして他の金属原料ガスを用いることで、他の金属酸化膜(金属酸化物層)の形成にも適用できる。また、酸化ガスではなく、窒化ガスを用いることで、金属窒化膜(金属窒化物層)を形成する場合にも適用できる。また、上述では、700℃にガスを加熱して供給するようにしたが、これに限るものではなく、原子層成長方法における基板温度よりも高い温度とすればよい。原子層成長方法による金属酸化膜や金属窒化膜の形成では、基板温度は最大でも500℃程度であるため、ガス温度は500℃以上に加熱して供給すればよい。   In the above description, the formation of the silicon oxide film has been described as an example. However, the present invention is not limited to this. By using another metal source gas as the source gas, it can be applied to the formation of other metal oxide films (metal oxide layers). Further, the present invention can be applied to the case where a metal nitride film (metal nitride layer) is formed by using a nitriding gas instead of an oxidizing gas. In the above description, the gas is heated to 700 ° C. and supplied. However, the present invention is not limited to this, and the temperature may be higher than the substrate temperature in the atomic layer growth method. In the formation of the metal oxide film or metal nitride film by the atomic layer growth method, the substrate temperature is about 500 ° C. at the maximum, so the gas temperature may be heated to 500 ° C. or higher for supply.

本実施の形態の製造方法は、原子層成長方法において、パージのための不活性ガス及び酸化ガスの少なくとも一方を、基板加熱温度以上に加熱して供給するようにしたものである。また、原子層成長方法において、パージのための不活性ガス及び窒化ガスの少なくとも一方を、基板加熱温度以上に加熱して供給するようにしたものである。   The manufacturing method of the present embodiment is an atomic layer growth method in which at least one of an inert gas and an oxidizing gas for purging is heated to be supplied at a temperature higher than the substrate heating temperature. Further, in the atomic layer growth method, at least one of an inert gas and a nitriding gas for purging is heated to a temperature equal to or higher than the substrate heating temperature and supplied.

本発明の実施の形態における薄膜形成方法を説明するための工程図である。It is process drawing for demonstrating the thin film formation method in embodiment of this invention. 従来技術で作製したサンプルとの比較結果を示す説明図である。It is explanatory drawing which shows the comparison result with the sample produced with the prior art.

符号の説明Explanation of symbols

101…シリコン基板、102…SiCl4分子層(吸着層)、103…酸化シリコン層、111…原料ガス、112…不活性ガス、113…酸化ガス。
101 ... silicon substrate, 102 ... SiCl 4 molecules layer (adsorption layer), 103 ... silicon oxide layer, 111 ... source gas, 112 ... inert gas, 113 ... oxidizing gas.

Claims (3)

所定の圧力に減圧された反応容器の内部で、金属の化合物から構成された原料ガスを第1温度に加熱した基板の表面に供給して、前記金属の化合物が前記基板の表面に吸着した吸着層が形成された状態とする第1工程と、
前記原料ガスの供給を停止した後、前記基板の表面に不活性ガスを供給してパージする第2工程と、
前記不活性ガスの供給を停止した後、前記基板の表面に酸化ガスを供給して前記吸着層を酸化し、前記基板の上に前記金属の酸化物から構成された金属酸化物層を形成する第3工程と、
前記酸化ガスの供給を停止した後、前記基板の表面に不活性ガスを供給してパージする第4工程と
を少なくとも備え、
前記不活性ガス及び前記酸化ガスの少なくとも一方は、前記第1温度以上の第2温度に加熱して前記基板の表面に供給する
ことを特徴とする薄膜形成方法。
In the reaction vessel depressurized to a predetermined pressure, a source gas composed of a metal compound is supplied to the surface of the substrate heated to the first temperature, and the metal compound is adsorbed on the surface of the substrate. A first step in which a layer is formed;
A second step of purging by supplying an inert gas to the surface of the substrate after stopping the supply of the source gas;
After the supply of the inert gas is stopped, an oxidizing gas is supplied to the surface of the substrate to oxidize the adsorption layer, and a metal oxide layer composed of the metal oxide is formed on the substrate. A third step;
And at least a fourth step of purging by supplying an inert gas to the surface of the substrate after stopping the supply of the oxidizing gas,
At least one of the inert gas and the oxidizing gas is heated to a second temperature not lower than the first temperature and supplied to the surface of the substrate.
所定の圧力に減圧された反応容器の内部で、金属の化合物から構成された原料ガスを第1温度に加熱した基板の表面に供給して、前記金属の化合物が前記基板の表面に吸着した吸着層が形成された状態とする第1工程と、
前記原料ガスの供給を停止した後、前記基板の表面に不活性ガスを供給してパージする第2工程と、
前記不活性ガスの供給を停止した後、前記基板の表面に窒化ガスを供給して前記吸着層を窒化し、前記基板の上に前記金属の窒化物から構成された金属窒化物層を形成する第3工程と、
前記窒化ガスの供給を停止した後、前記基板の表面に不活性ガスを供給してパージする第4工程と
を少なくとも備え、
前記不活性ガス及び前記窒化ガスの少なくとも一方は、前記第1温度以上の第2温度に加熱して前記基板の表面に供給する
ことを特徴とする薄膜形成方法。
In the reaction vessel depressurized to a predetermined pressure, a source gas composed of a metal compound is supplied to the surface of the substrate heated to the first temperature, and the metal compound is adsorbed on the surface of the substrate. A first step in which a layer is formed;
A second step of purging by supplying an inert gas to the surface of the substrate after stopping the supply of the source gas;
After the supply of the inert gas is stopped, a nitriding gas is supplied to the surface of the substrate to nitride the adsorption layer, and a metal nitride layer composed of the metal nitride is formed on the substrate. A third step;
A fourth step of supplying and purging an inert gas on the surface of the substrate after stopping the supply of the nitriding gas,
At least one of the inert gas and the nitriding gas is heated to a second temperature not lower than the first temperature and supplied to the surface of the substrate.
請求項1又は2記載の薄膜形成方法において、
前記第2温度は、500℃以上であることを特徴とする薄膜形成方法。
In the thin film formation method of Claim 1 or 2,
The method for forming a thin film, wherein the second temperature is 500 ° C. or higher.
JP2004069142A 2004-03-11 2004-03-11 Thin film formation method Expired - Fee Related JP4283140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069142A JP4283140B2 (en) 2004-03-11 2004-03-11 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004069142A JP4283140B2 (en) 2004-03-11 2004-03-11 Thin film formation method

Publications (2)

Publication Number Publication Date
JP2005259966A true JP2005259966A (en) 2005-09-22
JP4283140B2 JP4283140B2 (en) 2009-06-24

Family

ID=35085401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069142A Expired - Fee Related JP4283140B2 (en) 2004-03-11 2004-03-11 Thin film formation method

Country Status (1)

Country Link
JP (1) JP4283140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420552B2 (en) 2009-07-31 2013-04-16 Hitachi Kokusai Electric Inc. Method of manufacturing a semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188171A (en) * 2001-12-19 2003-07-04 Sony Corp Method for forming thin film
JP2004023043A (en) * 2002-06-20 2004-01-22 Toshiba Corp Method and system for deposition and method for manufacturing semiconductor device
JP2004079753A (en) * 2002-08-16 2004-03-11 Tokyo Electron Ltd Method of manufacturing semiconductor device
JP2005072490A (en) * 2003-08-27 2005-03-17 Semiconductor Leading Edge Technologies Inc High-permittivity-film forming method, semiconductor-device manufacturing method, and semiconductor manufacturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188171A (en) * 2001-12-19 2003-07-04 Sony Corp Method for forming thin film
JP2004023043A (en) * 2002-06-20 2004-01-22 Toshiba Corp Method and system for deposition and method for manufacturing semiconductor device
JP2004079753A (en) * 2002-08-16 2004-03-11 Tokyo Electron Ltd Method of manufacturing semiconductor device
JP2005072490A (en) * 2003-08-27 2005-03-17 Semiconductor Leading Edge Technologies Inc High-permittivity-film forming method, semiconductor-device manufacturing method, and semiconductor manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420552B2 (en) 2009-07-31 2013-04-16 Hitachi Kokusai Electric Inc. Method of manufacturing a semiconductor device
US8741731B2 (en) 2009-07-31 2014-06-03 Hitachi Kokusai Electric Inc. Method of manufacturing a semiconductor device

Also Published As

Publication number Publication date
JP4283140B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
KR100539274B1 (en) Method for depositing cobalt layer
JP2006245089A (en) Method for forming thin film
TW200843042A (en) Non-volatile memory device and method for fabricating the same
TW200408323A (en) Atomic layer deposition of high k metal oxides
JP2010506408A (en) ALD of metal silicate film
TW201511131A (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6745887B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2020133002A (en) Method for depositing hafnium lanthanum oxide film on substrate by circulation deposition process in reaction chamber
JP2018125416A (en) Method for manufacturing semiconductor device, substrate processing device and program
JP2006286711A (en) Method of forming silicon oxide film
US20060051506A1 (en) Nitridation of high-k dielectrics
JP2006269621A (en) Method and apparatus for thin film formation using ald
TW202202647A (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP4283140B2 (en) Thin film formation method
JP2021044486A (en) Semiconductor device and method for manufacturing the same
JP5177660B2 (en) Insulating film formation method
JP4032889B2 (en) Insulating film formation method
JP5409790B2 (en) Multilayer metal thin film manufacturing method and manufacturing apparatus thereof
JP2005303265A (en) Method of forming low temperature poly silicon tft gate oxide film
JP2006278486A (en) Thin film deposition element and method of manufacturing the same
JP2006032596A (en) Method for manufacturing gate insulating film
JP5039396B2 (en) Manufacturing method of semiconductor device
JP2006147896A (en) Forming method of thin film and manufacturing method of semiconductor device
JP4355672B2 (en) Thin film formation method
KR102603515B1 (en) Method for forming improved interfaces and thin films using high-density radicals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Ref document number: 4283140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees