JP2005259662A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2005259662A
JP2005259662A JP2004073376A JP2004073376A JP2005259662A JP 2005259662 A JP2005259662 A JP 2005259662A JP 2004073376 A JP2004073376 A JP 2004073376A JP 2004073376 A JP2004073376 A JP 2004073376A JP 2005259662 A JP2005259662 A JP 2005259662A
Authority
JP
Japan
Prior art keywords
rib
ribs
long
side separator
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004073376A
Other languages
Japanese (ja)
Other versions
JP4507650B2 (en
Inventor
Yasuyuki Asai
康之 浅井
Kazutomo Kato
千智 加藤
Koichiro Yamashita
浩一郎 山下
Yoshitaka Kino
喜隆 木野
Koichiro Kawakami
康一郎 川上
Hiroya Nakaji
宏弥 中路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004073376A priority Critical patent/JP4507650B2/en
Publication of JP2005259662A publication Critical patent/JP2005259662A/en
Application granted granted Critical
Publication of JP4507650B2 publication Critical patent/JP4507650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell capable of uniformizing distribution of face pressure in a cell face. <P>SOLUTION: (1) The fuel cell comprises an anode side separator 18A having a plurality of ribs 34 different in size from each other on a fuel gas passage, and a cathode side separator 18B having a plurality of ribs 34 different in size from each other on an oxidizer gas passage, and the ribs 34 of the anode side separator and the ribs 34 of the cathode side separator are arranged so that the distribution of the area of overlapped part becomes uniform on a cell face. (2) The short ribs 34S of the anode side separator 18A and the short ribs 34S of the cathode side separator 18B are overlapped at whole face of respective short ribs, and the long ribs 34L of the anode side separator 18A and the long ribs 34L of the cathode side separator 18B are overlapped only at a part of respective long ribs, and the area of respective overlapped parts of the long ribs are arranged so as to become almost the same as the area of the overlapped part of the short ribs. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は燃料電池に関し、とくに燃料電池のセパレータに関する。   The present invention relates to a fuel cell, and more particularly to a fuel cell separator.

燃料電池、たとえば固体高分子電解質型燃料電池は、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータとの積層体(ただし、積層方向は任意でよい)からなる。膜−電極アッセンブリは、イオン交換膜からなる電解質膜とこの電解質膜の一面に配置された触媒層からなる電極(アノード、燃料極)および電解質膜の他面に配置された触媒層からなる電極(カソード、空気極)とからなる。膜−電極アッセンブリとセパレータとの間には、アノード側、カソード側にそれぞれ拡散層が設けられる。アノード側セパレータには、アノードに燃料ガス(水素)を供給するための燃料ガス流路が形成され、カソード側セパレータには、カソードに酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路が形成されている。膜−電極アッセンブリとセパレータを重ねてセルを構成し、少なくとも1つのセルからモジュールを構成し、モジュールを積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル、インシュレータ、エンドプレートを配置し、セル積層体をセル積層方向に締め付け、セル積層方向に延びる締結部材(たとえば、テンションプレート)、ボルト・ナットにて固定して、燃料電池スタックを構成する。
各セルの、アノード側では、水素を水素イオン(プロトン)と電子にする電離反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水を生成するつぎの反応が行われ、かくして発電が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
2. Description of the Related Art A fuel cell, for example, a solid polymer electrolyte fuel cell includes a laminated body of a membrane-electrode assembly (MEA) and a separator (however, the laminating direction may be arbitrary). The membrane-electrode assembly includes an electrolyte membrane composed of an ion exchange membrane, an electrode composed of a catalyst layer disposed on one surface of the electrolyte membrane (anode, fuel electrode), and an electrode composed of a catalyst layer disposed on the other surface of the electrolyte membrane ( Cathode, air electrode). Between the membrane-electrode assembly and the separator, diffusion layers are provided on the anode side and the cathode side, respectively. A fuel gas flow path for supplying fuel gas (hydrogen) to the anode is formed in the anode side separator, and an oxidizing gas for supplying oxidizing gas (oxygen, usually air) to the cathode in the cathode side separator. A flow path is formed. A cell is formed by stacking a membrane-electrode assembly and a separator, a module is formed from at least one cell, a module is stacked to form a cell stack, and terminals, insulators, end plates are formed at both ends of the cell stack in the cell stacking direction. The cell stack is fastened in the cell stacking direction and fixed with a fastening member (for example, a tension plate), bolts and nuts extending in the cell stacking direction to constitute a fuel cell stack.
On the anode side of each cell, an ionization reaction in which hydrogen is converted into hydrogen ions (protons) and electrons is performed. The hydrogen ions move through the electrolyte membrane to the cathode side, and on the cathode side, oxygen, hydrogen ions, and electrons (adjacent to the adjacent cells). The electrons generated at the anode of the MEA come through the separator, or the electrons generated at the anode of the cell at one end in the cell stacking direction come to the cathode of the other end cell through an external circuit) Thus, power generation is performed.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O

特開2003−45453号公報は、直線部とコーナ部(Uターン部)とを含むガス流路を備え、ガス流路の直線部に長リブを配置し、ガス流路のコーナ部に短リブを配置し、リブ間にMEAと拡散層を挟む構造のセパレータを開示している。直線部のリブを長リブとしたことによって、連続リブとほぼ同じ程度の集電性が得られるとともに、長リブ間に排水路ができることによって良好な排水性が得られ、集電性と排水性を両立させた燃料電池が得られる。   Japanese Patent Application Laid-Open No. 2003-45453 includes a gas flow path including a straight line part and a corner part (U-turn part), a long rib is disposed in the straight line part of the gas flow path, and a short rib is provided in the corner part of the gas flow path. And a separator having a structure in which the MEA and the diffusion layer are sandwiched between the ribs is disclosed. By making the straight ribs long ribs, current collection performance is almost the same as continuous ribs, and drainage is made between the long ribs to provide good drainage performance. Can be obtained.

しかし、特開2003−45453号公報の燃料電池にも、つぎの問題がある。
長リブと短リブという大きさの異なる複数種のリブを有することによって、セパレータの拡散層、MEAとの面圧分布がセル面内で不均一となる。この場合、長リブ部の面圧が短リブ部の面圧に比べて高くなる。その結果、出力がセル面内で不均一となる。
そして、面圧の高い長リブ部に対応する部分で表面が粗な拡散層がMEAを強く押し、その部分のMEAが傷つきやすく、MEAが傷つくと燃料電池の耐久性は低下する。
特開2003−45453号公報
However, the fuel cell disclosed in Japanese Patent Application Laid-Open No. 2003-45453 has the following problem.
By having a plurality of types of ribs having different sizes such as long ribs and short ribs, the surface pressure distribution between the separator diffusion layer and the MEA becomes non-uniform in the cell plane. In this case, the surface pressure of the long rib portion is higher than the surface pressure of the short rib portion. As a result, the output becomes non-uniform in the cell plane.
A diffusion layer having a rough surface strongly presses the MEA at a portion corresponding to the long rib portion having a high surface pressure, and the MEA in the portion is easily damaged. When the MEA is damaged, the durability of the fuel cell decreases.
JP 2003-45453 A

本発明が解決しようとする問題点は、ガス流路に大きさの異なる複数種のリブを有するセパレータをもつ燃料電池における、面圧分布の不均一と、面圧の高い部分におけるMEAの劣化である。
本発明の目的は、ガス流路に大きさの異なる複数種のリブを有するセパレータをもつ燃料電池であって、面圧分布がセル面内で均一化でき、これによって面圧の高い部分があると生じやすいMEAの劣化も抑制できる燃料電池を提供することにある。
The problems to be solved by the present invention are the nonuniform surface pressure distribution and the deterioration of MEA in the high surface pressure portion in the fuel cell having separators having a plurality of types of ribs with different sizes in the gas flow path. is there.
An object of the present invention is a fuel cell having a separator having a plurality of types of ribs having different sizes in a gas flow path, and the surface pressure distribution can be made uniform in the cell surface, whereby there is a portion having a high surface pressure. An object of the present invention is to provide a fuel cell capable of suppressing the deterioration of MEA that is likely to occur.

上記課題を解決する、そして上記目的を達成する、本発明はつぎの通りである。
(1) 電解質膜の一側に配置された、燃料ガス流路に大きさの異なる複数種のリブを有するアノード側セパレータと、
電解質膜の他側に配置された、酸化ガス流路に大きさの異なる複数種のリブを有するカソード側セパレータと、
を備えた燃料電池であって、
アノード側セパレータのリブとカソード側セパレータのリブとは、セル面内方向と直交する方向に互いに重なる部分の面積分布がセル面内でほぼ均一になるように配置されている、燃料電池。
(2) アノード側セパレータのリブは長リブと短リブを含み、カソード側セパレータのリブは長リブと短リブを含み、
アノード側セパレータの短リブとカソード側セパレータの短リブとは、各短リブの全面でセル面内方向と直交する方向に互いに重なり、
アノード側セパレータの長リブとカソード側セパレータの長リブとは、各長リブが一部のみでセル面内方向と直交する方向に互いに重なり、かつ、各重なり部の面積が短リブの重なり部の面積とほぼ同じ面積となるように、配置されている、(1)記載の燃料電池。
(3) 燃料ガス流路は直線部とコーナ部を含み、燃料ガス流路の直線部に長リブが、燃料ガス流路のコーナ部に短リブが配置されており、
酸化ガス流路は直線部とコーナ部を含み、酸化ガス流路の直線部に長リブが、酸化ガス流路のコーナ部に短リブが配置されており、
アノード側セパレータの短リブとカソード側セパレータの短リブとは、各短リブの全面でセル面内方向と直交する方向に互いに重なるように配置されており、
アノード側セパレータの長リブとカソード側セパレータの長リブとは、長リブ長手方向にずらされて各長リブが一部のみでセル面内方向と直交する方向に互いに重なり、かつ、各重なり部の面積が前記短リブの重なり部の面積とほぼ同じ面積となるように、配置されている、(1)記載の燃料電池。
(4) リブは長リブを含み、該長リブがレンガ積み状に配置されている(1)記載の燃料電池。
(5) リブは長リブを含み、該長リブが四角格子状に配置されている(1)記載の燃料電池。
The present invention for solving the above problems and achieving the above object is as follows.
(1) an anode separator having a plurality of types of ribs having different sizes in a fuel gas flow path, which is disposed on one side of an electrolyte membrane;
A cathode-side separator disposed on the other side of the electrolyte membrane and having a plurality of types of ribs having different sizes in the oxidizing gas flow path;
A fuel cell comprising:
The fuel cell, wherein the ribs of the anode-side separator and the ribs of the cathode-side separator are arranged so that the area distribution of portions overlapping each other in a direction orthogonal to the cell plane direction is substantially uniform in the cell plane.
(2) The rib of the anode side separator includes a long rib and a short rib, and the rib of the cathode side separator includes a long rib and a short rib,
The short rib of the anode side separator and the short rib of the cathode side separator overlap each other in the direction perpendicular to the cell in-plane direction on the entire surface of each short rib,
The long rib of the anode side separator and the long rib of the cathode side separator are partially overlapped with each other in the direction perpendicular to the cell in-plane direction, and the area of each overlapping portion is an overlap of the short rib. The fuel cell according to (1), wherein the fuel cell is disposed so as to have substantially the same area.
(3) The fuel gas flow path includes a straight part and a corner part, a long rib is disposed in the straight part of the fuel gas flow path, and a short rib is disposed in the corner part of the fuel gas flow path,
The oxidizing gas flow path includes a straight portion and a corner portion, a long rib is disposed in the straight portion of the oxidizing gas flow path, and a short rib is disposed in the corner portion of the oxidizing gas flow path,
The short rib of the anode side separator and the short rib of the cathode side separator are arranged so as to overlap each other in the direction perpendicular to the cell in-plane direction on the entire surface of each short rib,
The long rib of the anode side separator and the long rib of the cathode side separator are shifted in the longitudinal direction of the long rib so that each of the long ribs overlaps with each other in a direction perpendicular to the cell in-plane direction. The fuel cell according to (1), wherein the fuel cell is disposed so that an area thereof is substantially the same as an area of the overlapping portion of the short ribs.
(4) The fuel cell according to (1), wherein the rib includes a long rib, and the long rib is arranged in a brick pile shape.
(5) The fuel cell according to (1), wherein the rib includes a long rib, and the long rib is arranged in a square lattice shape.

上記(1)の燃料電池によれば、アノード側セパレータのリブとカソード側セパレータのリブとは、セル面内方向と直交する方向に互いに重なる部分(この重なる部分でMEAおよび拡散層にリブからの面圧がかかる)の面積分布がセル面内でほぼ均一になるように配置されているので、面圧分布がセル面内で均一化され、これによって面圧の高い部分があると生じやすいMEAの劣化も抑制できる。
上記(2)の燃料電池によれば、アノード側セパレータの長リブとカソード側セパレータの長リブとは、各長リブが一部のみでセル面内方向と直交する方向に互いに重なり、かつ、各重なり部の面積が短リブの重なり部の面積とほぼ同じ面積となるように、配置されているので、重なり部の分布と面積が、したがって、面圧分布が、ガス流路の直線部とコーナ部とで、ほぼ同じになり、面圧分布がセル面内で均一化される。これによって面圧の高い部分があると生じやすいMEAの劣化も抑制できる。
上記(3)の燃料電池によれば、アノード側セパレータの短リブとカソード側セパレータの短リブとは、各短リブの全面でセル面内方向と直交する方向に互いに重なるように配置されており、アノード側セパレータの長リブとカソード側セパレータの長リブとは、長リブ長手方向にずらされて各長リブが一部のみでセル面内方向と直交する方向に互いに重なり、かつ、各重なり部の面積が前記短リブの重なり部の面積とほぼ同じ面積となるように、配置されているので、重なり部の分布と面積が、したがって、面圧分布が、長リブのある直線部と短リブのあるコーナ部とで、ほぼ同じになり、面圧分布がセル面内で均一化される。これによって面圧の高い部分があると生じやすいMEAの劣化も抑制できる。
上記(4)の燃料電池によれば、リブは長リブを含み、該長リブがレンガ積み状に配置されているので、ガス配分が連続リブと同じ程度に良好に維持されたまま、連続リブに比べて、排水性が向上される。
上記(5)の燃料電池によれば、リブは長リブを含み、該長リブが四角格子状に配置されているので、連続リブに比べて、排水性が向上される。
According to the fuel cell of the above (1), the rib of the anode separator and the rib of the cathode separator overlap each other in a direction orthogonal to the cell in-plane direction (in this overlapping portion, the MEA and the diffusion layer are separated from the rib by the rib). Is arranged so that the area distribution of the surface pressure is substantially uniform in the cell plane, the surface pressure distribution is uniformed in the cell plane, and this is likely to occur if there is a portion with a high surface pressure. Degradation can be suppressed.
According to the fuel cell of (2), the long rib of the anode side separator and the long rib of the cathode side separator overlap each other in a direction orthogonal to the cell in-plane direction, with each long rib being a part, and each Since the area of the overlapping portion is arranged so as to be substantially the same as the area of the overlapping portion of the short ribs, the distribution and area of the overlapping portion, and hence the surface pressure distribution, are the same as the straight portion of the gas flow path and the corner. Therefore, the surface pressure distribution is made uniform in the cell plane. As a result, it is possible to suppress the deterioration of MEA that is likely to occur when there is a portion having a high surface pressure.
According to the fuel cell of the above (3), the short rib of the anode side separator and the short rib of the cathode side separator are arranged so as to overlap each other in the direction orthogonal to the cell in-plane direction on the entire surface of each short rib. The long rib of the anode side separator and the long rib of the cathode side separator are shifted in the longitudinal direction of the long rib so that each of the long ribs overlaps with each other in a direction orthogonal to the cell in-plane direction. Are arranged so that the area of the overlapping portion is substantially the same as the area of the overlapping portion of the short ribs. It becomes almost the same at the corner portion where there is, and the surface pressure distribution is made uniform in the cell plane. As a result, it is possible to suppress the deterioration of MEA that is likely to occur when there is a portion having a high surface pressure.
According to the fuel cell of the above (4), the rib includes the long rib, and the long rib is arranged in a brick shape, so that the gas distribution is maintained as well as the continuous rib, and the continuous rib is maintained. Compared with, drainage is improved.
According to the fuel cell of the above (5), since the rib includes a long rib and the long rib is arranged in a square lattice shape, the drainage is improved as compared with the continuous rib.

以下に、本発明の燃料電池を図1〜図6を参照して説明する。図中、図1は本発明の実施例1にも実施例2にも適用できる本発明の特徴を有する構造を示し、図2は本発明の実施例1を示し、図3は本発明の実施例2を示し、図4〜図6は本発明の実施例1にも実施例2にも適用可能な一般構成を示す。本発明の実施例1、実施例2に共通する部分には、実施例1、実施例2にわたって同じ符号を付してある。
まず、本発明の実施例1、実施例2に共通する部分を、図1、図2、図4〜図6を参照して説明する。
Below, the fuel cell of this invention is demonstrated with reference to FIGS. In the figure, FIG. 1 shows a structure having the features of the present invention that can be applied to both the first and second embodiments of the present invention, FIG. 2 shows the first embodiment of the present invention, and FIG. 3 shows the implementation of the present invention. Example 2 is shown, and FIGS. 4 to 6 show general configurations applicable to Example 1 and Example 2 of the present invention. Portions common to the first and second embodiments of the present invention are denoted by the same reference numerals throughout the first and second embodiments.
First, parts common to the first and second embodiments of the present invention will be described with reference to FIGS. 1, 2, and 4 to 6.

本発明の燃料電池は、たとえば固体高分子電解質型燃料電池10である。該燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
図4〜図6に示すように、固体高分子電解質型燃料電池10は、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータ18との積層体からなる。積層方向は任意である。膜−電極アッセンブリは、イオン交換膜からなる電解質膜11と、この電解質膜の一面に配置された触媒層12を有する電極(アノード、燃料極)14および電解質膜11の他面に配置された触媒層15を有する電極(カソード、空気極)17とからなる。膜−電極アッセンブリとセパレータ18との間には、アノード側、カソード側に、それぞれ、リブ下にもガスを流通させ拡散させるために拡散層13、16が設けられる。ガス拡散層13、16は、カーボンを主成分とする、ガス透過性をもつ層であり、たとえば、カーボン繊維を樹脂バンダで結合したものからなる。
膜−電極アッセンブリとセパレータ18を重ねてセル(単セル)19を構成し、少なくとも1つのセルからモジュールを構成し、モジュールを積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル20、インシュレータ(電気絶縁体)21、エンドプレート22を配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート24)、ボルト・ナット25にて固定して、燃料電池スタック23を構成する。
The fuel cell of the present invention is, for example, a solid polymer electrolyte fuel cell 10. The fuel cell 10 is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.
As shown in FIGS. 4 to 6, the solid polymer electrolyte fuel cell 10 includes a laminate of a membrane-electrode assembly (MEA) and a separator 18. The stacking direction is arbitrary. The membrane-electrode assembly includes an electrolyte membrane 11 made of an ion exchange membrane, an electrode (anode, fuel electrode) 14 having a catalyst layer 12 disposed on one surface of the electrolyte membrane, and a catalyst disposed on the other surface of the electrolyte membrane 11. It comprises an electrode (cathode, air electrode) 17 having a layer 15. Diffusion layers 13 and 16 are provided between the membrane-electrode assembly and the separator 18 on the anode side and the cathode side, respectively, in order to circulate and diffuse the gas also below the ribs. The gas diffusion layers 13 and 16 are gas permeable layers containing carbon as a main component, and are made of, for example, carbon fibers bonded with a resin bander.
A cell (single cell) 19 is configured by stacking the membrane-electrode assembly and the separator 18, a module is configured from at least one cell, the modules are stacked to form a cell stack, and both ends of the cell stack in the cell stacking direction, A terminal 20, an insulator (electrical insulator) 21, and an end plate 22 are arranged, the cell stack is clamped in the cell stacking direction, a fastening member (for example, a tension plate 24) extending in the cell stacking direction outside the cell stack, and a bolt The fuel cell stack 23 is configured by fixing with the nut 25.

セパレータ18は、導電性を有し、カーボンセパレータ、またはメタルセパレータ、または導電性樹脂セパレータ、またはメタルセパレータと中抜きの樹脂フレームとの組み合わせ、などからなる。
MEAを挟む一対のセパレータ18のうち、アノード側セパレータ18Aには、MEAに対向する側に、アノード14に燃料ガス(水素)を供給するための燃料ガス流路27が形成され、カソード側セパレータ18Bには、MEAに対向する側に、カソード17に酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路28が形成されている。また、セパレータ18のガス流路27、28と反対側の面には冷媒(通常、冷却水)を流すための冷媒流路26が形成される。燃料電池のうちガス流路27、28とMEAの両方が存在する領域が、セル19の発電領域を構成する。
The separator 18 has conductivity, and is made of a carbon separator, a metal separator, a conductive resin separator, or a combination of a metal separator and a hollow resin frame.
Of the pair of separators 18 sandwiching the MEA, the anode-side separator 18A has a fuel gas passage 27 for supplying fuel gas (hydrogen) to the anode 14 on the side facing the MEA, and the cathode-side separator 18B. Is formed with an oxidizing gas passage 28 for supplying an oxidizing gas (oxygen, usually air) to the cathode 17 on the side facing the MEA. In addition, a coolant channel 26 for flowing a coolant (usually cooling water) is formed on the surface of the separator 18 opposite to the gas channels 27 and 28. A region where both the gas flow paths 27 and 28 and the MEA exist in the fuel cell constitutes a power generation region of the cell 19.

セル19には、セル積層方向に延びる燃料ガスマニホールド30、酸化ガスマニホールド31、冷媒マニホールド29が形成される。燃料ガスマニホールド30は燃料ガス流路27に接続しており、燃料ガス流路27に燃料ガスを供給・排出する。酸化ガスマニホールド31は酸化ガス流路28に接続しており、酸化ガス流路28に酸化ガスを供給・排出する。冷媒マニホールド29は冷媒流路26に接続しており、冷媒流路26に冷媒を供給・排出する。   In the cell 19, a fuel gas manifold 30, an oxidizing gas manifold 31, and a refrigerant manifold 29 extending in the cell stacking direction are formed. The fuel gas manifold 30 is connected to the fuel gas passage 27, and the fuel gas is supplied to and discharged from the fuel gas passage 27. The oxidizing gas manifold 31 is connected to the oxidizing gas channel 28, and supplies and discharges the oxidizing gas to and from the oxidizing gas channel 28. The refrigerant manifold 29 is connected to the refrigerant flow path 26 and supplies / discharges the refrigerant to / from the refrigerant flow path 26.

セル19のMEAを挟んで対向する一対のセパレータ18同士は、セル外周部およびマニホールド29、30、31まわりで、電気絶縁材である接着剤33によりシール接着されている。接着剤33は膜11とその両側のセパレータ18との間もシール接着している。セル19同士は、セル外周部およびマニホールド29、30、31まわりで、ガスケット(ゴムガスケット)32によりシールされている。   The pair of separators 18 facing each other across the MEA of the cell 19 is sealed and bonded with an adhesive 33 which is an electrical insulating material around the outer periphery of the cell and the manifolds 29, 30 and 31. The adhesive 33 also seal-bonds between the film 11 and the separators 18 on both sides thereof. The cells 19 are sealed with a gasket (rubber gasket) 32 around the outer periphery of the cell and the manifolds 29, 30, and 31.

アノード側セパレータ18A、カソード側18BのMEAに対向する側の面には、凸部であるリブ34がセパレータ18に一体に形成され、リブ34とリブ34との間の凹(溝)部が、ガス流路27、28を形成する。リブ34はリブ頂面(リブ先端面)で、拡散層13、16を介してMEAを押す。したがって、スタック締結状態では、リブ34はリブ頂面でセル積層方向に拡散層13、16に押しつけられる。   On the surface of the anode side separator 18A and the cathode side 18B facing the MEA, a rib 34 as a convex portion is formed integrally with the separator 18, and a concave (groove) portion between the rib 34 and the rib 34 is formed. Gas flow paths 27 and 28 are formed. The rib 34 is a rib top surface (rib tip surface) and pushes the MEA through the diffusion layers 13 and 16. Therefore, in the stack fastening state, the rib 34 is pressed against the diffusion layers 13 and 16 in the cell stacking direction at the rib top surface.

電解質膜11の一側に配置されたアノード側セパレータ18Aは、その燃料ガス流路27に、リブ34を有し、リブ34は、大きさの異なる複数種のリブを含む。
同様に、電解質膜11の他側に配置されたカソード側セパレータ18Bは、その酸化ガス流路28に、リブ34を有し、リブ34は、大きさの異なる複数種のリブを含む。
アノード側セパレータ18Aのリブ34とカソード側セパレータ18Bのリブ34とは、セル面内方向と直交する方向に互いに重なる部分(図2、図3で斜線を施した部分)の面積分布が、(ガス流路27、28の直線部もコーナ部も含めて)セル面内でほぼ均一になるように配置されている。
The anode separator 18A disposed on one side of the electrolyte membrane 11 has ribs 34 in the fuel gas flow path 27, and the ribs 34 include a plurality of types of ribs having different sizes.
Similarly, the cathode separator 18B disposed on the other side of the electrolyte membrane 11 has ribs 34 in the oxidizing gas flow path 28, and the ribs 34 include a plurality of types of ribs having different sizes.
The rib 34 of the anode-side separator 18A and the rib 34 of the cathode-side separator 18B have an area distribution of portions overlapping each other in the direction orthogonal to the in-plane direction of the cell (the portion shaded in FIGS. 2 and 3) (gas The flow passages 27 and 28 are arranged so as to be substantially uniform in the cell plane (including the straight portion and the corner portion).

より詳しくは、アノード側セパレータ18Aのリブ34は長リブ34Lと短リブ34Sを含み、カソード側セパレータのリブ18Bは長リブ34Lと短リブ34Sを含む。長リブ34Lの方が短リブ34Sより大きさが大であり、長リブ34Lと短リブ34Sは大きさの異なる複数種のリブを構成する。たとえば、「大きさ」が「長さ」の場合(ただし、「大きさ」は「長さ」に限るものではなく、面積である場合もある、以下では「大きさ」が「長さ」の場合を例にとる)長リブ34Lの方が短リブ34Sより長さが長く、長リブ34Lの幅と短リブ34Sの幅は同じかまたはほぼ同じである。
アノード側セパレータ18Aの短リブ34Sとカソード側セパレータ18Bの短リブ34Sとは、各短リブ34Sの全面(各リブの頂面の全面)でセル面内方向と直交する方向に互いに重なっている。
アノード側セパレータ18Aの長リブ34Lとカソード側セパレータ18Bの長リブ34Lとは、各長リブ34が一部のみでセル面内方向と直交する方向に互いに重なり(図2、図3で重なり部に斜線を施してある)、かつ、各重なり部の面積が短リブ34Sの重なり部の面積とほぼ同じ面積となるように、配置されている。
More specifically, the rib 34 of the anode side separator 18A includes a long rib 34L and a short rib 34S, and the rib 18B of the cathode side separator includes a long rib 34L and a short rib 34S. The long rib 34L is larger in size than the short rib 34S, and the long rib 34L and the short rib 34S constitute a plurality of types of ribs having different sizes. For example, when “size” is “length” (however, “size” is not limited to “length”, it may be an area. In the following, “size” is “length”. Taking the case as an example) The long rib 34L is longer than the short rib 34S, and the width of the long rib 34L and the width of the short rib 34S are the same or substantially the same.
The short ribs 34S of the anode side separator 18A and the short ribs 34S of the cathode side separator 18B overlap each other in the direction perpendicular to the in-cell direction on the entire surface of each short rib 34S (the entire top surface of each rib).
The long ribs 34L of the anode side separator 18A and the long ribs 34L of the cathode side separator 18B overlap each other in a direction perpendicular to the cell in-plane direction with only a part of each long rib 34 (in FIG. 2 and FIG. In addition, they are arranged so that the area of each overlapping portion is substantially the same as the area of the overlapping portion of the short ribs 34S.

より詳しくは、燃料ガス流路27は直線部27Aとコーナ部(Uターン部)27Bを含み、燃料ガス流路27の直線部27Aに長リブ34Lが、燃料ガス流路27のコーナ部27Bに短リブ34Sが配置されている。
同様に、酸化ガス流路28は直線部28Aとコーナ部(Uターン部)28Bを含み、酸化ガス流路28の直線部28Aに長リブ34Lが、酸化ガス流路28のコーナ部28Bに短リブ34Sが配置されている。
アノード側セパレータ18Aの燃料ガス流路27のコーナ部27Bの短リブ34Sとカソード側セパレータ18Bの酸化ガス流路28のコーナ部28Bの短リブ34Sとは、各短リブ34の全面(各リブ頂面の全面)でセル面内方向と直交する方向に互いに重なるように配置されている。
同様に、アノード側セパレータ18Aの燃料ガス流路27の直線部27Aの長リブ34Lとカソード側セパレータ18Bの酸化ガス流路28の直線部28Aの長リブ34Lとは、長リブ長手方向にずらされて各長リブ34Lが各長リブ34Lの一部のみでセル面内方向と直交する方向に互いに重なり、かつ、各重なり部(図2、図3で斜線を施した部分)の面積が短リブ34Sの重なり部の面積とほぼ同じ面積となるように、配置されている。
More specifically, the fuel gas passage 27 includes a straight portion 27A and a corner portion (U-turn portion) 27B, and a long rib 34L is provided on the straight portion 27A of the fuel gas passage 27, and on the corner portion 27B of the fuel gas passage 27. Short ribs 34S are arranged.
Similarly, the oxidizing gas flow path 28 includes a straight portion 28A and a corner portion (U-turn portion) 28B. A long rib 34L is formed in the straight portion 28A of the oxidizing gas flow channel 28 and a short portion is formed in the corner portion 28B of the oxidizing gas flow channel 28. Ribs 34S are arranged.
The short rib 34S of the corner portion 27B of the fuel gas flow path 27 of the anode separator 18A and the short rib 34S of the corner portion 28B of the oxidation gas flow path 28 of the cathode side separator 18B are the entire surface of each short rib 34 (the top of each rib). Are arranged so as to overlap each other in a direction orthogonal to the cell in-plane direction.
Similarly, the long rib 34L of the straight portion 27A of the fuel gas flow path 27 of the anode side separator 18A and the long rib 34L of the straight portion 28A of the oxidation gas flow path 28 of the cathode side separator 18B are shifted in the long rib longitudinal direction. The long ribs 34L overlap each other in a direction perpendicular to the cell in-plane direction by only a part of the long ribs 34L, and the area of each overlapping portion (the hatched portion in FIGS. 2 and 3) is short. They are arranged so as to have substantially the same area as the area of the overlapping portion of 34S.

たとえば、短リブ34Sが、一辺がdの正方形で、短リブ間流路の幅がdとなるように配置されている。また、長リブ34Lが幅がd、長さが3dの矩形リブであり、長リブ間流路の幅がdとなるように配置されている。その場合、燃料ガス流路27の直線部27Aの長リブ34Lと酸化ガス流路28の直線部28Aの長リブ34Lを、長リブ長手方向に2dずらすと、長リブ34Lの重なり部(斜線を施した部分)は、各長リブ34Lの両端部の長さdの部分に現れ、各重なり部は、一辺がdの正方形で、隣り合う重なり部とdだけ離れる分布を呈す。この長リブ34Lの重なり部の分布は、短リブ34Sの重なり部の分布(短リブ34Sの重なり部は、一辺がdの正方形で、隣り合う重なり部とdだけ離れた分布となっている)と同じである。   For example, the short ribs 34 </ b> S are arranged such that each side is a square having a d and the width of the flow path between the short ribs is d. Further, the long rib 34L is a rectangular rib having a width d and a length 3d, and is arranged so that the width of the flow path between the long ribs is d. In that case, when the long rib 34L of the straight portion 27A of the fuel gas flow path 27 and the long rib 34L of the straight portion 28A of the oxidizing gas flow path 28 are shifted by 2d in the longitudinal direction of the long rib, (Applied part) appears in the part of length d at both ends of each long rib 34L, and each overlapping part is a square with one side d, and exhibits a distribution that is separated by d from the adjacent overlapping part. The distribution of the overlapping portions of the long ribs 34L is the distribution of the overlapping portions of the short ribs 34S (the overlapping portion of the short ribs 34S is a square having one side d and is separated from the adjacent overlapping portions by d). Is the same.

つぎに、本発明の各実施例に共通な部分の作用・効果を説明する。
本発明の燃料電池では、アノード側セパレータ18Aのリブ34とカソード側セパレータ18Bのリブ34とは、セル面内方向と直交する方向に互いに重なる部分を有し(この重なる部分でMEAおよび拡散層にリブ34からの面圧がかかる)、この重なる部分の面積分布がセル面内でほぼ均一になるように配置されているので、リブ34からMEAおよび拡散層にかかる面圧の分布がセル面内で均一化される。これによって、面圧の高い部分があると生じやすいMEAの劣化も抑制できる。すなわち、面圧の分布が不均一であると、面圧が大きい部分で、セパレータリブ部で強く押された拡散層がMEAにくい込んで膜11の傷つきや孔あきを起こしやすいが、本発明では各リブからの面圧分布が均一化されているので、MEAや膜11の損傷が起こりにくい。膜11に孔があくと、水素がエアと混合して燃焼し、膜11を益々損傷し、燃料電池の寿命が終了するが、このような現象が生じにくいため、燃料電池の寿命が延びる。
Next, operations and effects of parts common to the embodiments of the present invention will be described.
In the fuel cell of the present invention, the ribs 34 of the anode side separator 18A and the ribs 34 of the cathode side separator 18B have portions that overlap each other in the direction orthogonal to the in-plane direction of the cell (the overlapping portions serve as the MEA and the diffusion layer). Since the surface pressure from the rib 34 is applied), the area distribution of the overlapping portion is arranged so as to be substantially uniform in the cell surface, so that the surface pressure distribution from the rib 34 to the MEA and the diffusion layer is in the cell surface. It is made uniform with. Accordingly, it is possible to suppress the deterioration of MEA that easily occurs when there is a portion having a high surface pressure. That is, if the distribution of the surface pressure is not uniform, the diffusion layer that is strongly pressed by the separator rib portion in the portion where the surface pressure is large is difficult to be MEA, and the membrane 11 is easily damaged or perforated. Since the surface pressure distribution from each rib is made uniform, the MEA and the film 11 are hardly damaged. If the membrane 11 is perforated, hydrogen mixes with air and burns, damaging the membrane 11 and ending the life of the fuel cell. However, this phenomenon is unlikely to occur, so the life of the fuel cell is extended.

より詳しくは、本発明の燃料電池では、アノード側セパレータ18Aの長リブ34Lとカソード側セパレータ18Bの長リブ34Lとは、各長リブが一部のみでセル面内方向と直交する方向に互いに重なり、かつ、各重なり部(図2、図3で斜線を施した部分)の面積が短リブ34Sの重なり部の面積とほぼ同じ面積となるように、配置されているので、重なり部の分布と面積が、したがって、面圧分布が、ガス流路27、28の直線部27A、28Aとコーナ部27B、28Bとで、ほぼ同じになり、面圧分布がセル面内で均一化される。これによって面圧の高い部分があると生じやすいMEAの劣化も抑制できる。   More specifically, in the fuel cell of the present invention, the long ribs 34L of the anode side separator 18A and the long ribs 34L of the cathode side separator 18B overlap each other in a direction orthogonal to the cell in-plane direction with only a part of each long rib. In addition, since each overlapping portion (the hatched portion in FIG. 2 and FIG. 3) is arranged so that the area of the overlapping portion is substantially the same as the area of the overlapping portion of the short rib 34S, The area, and therefore the surface pressure distribution is substantially the same in the straight portions 27A and 28A and the corner portions 27B and 28B of the gas flow paths 27 and 28, and the surface pressure distribution is made uniform in the cell plane. As a result, it is possible to suppress the deterioration of MEA that is likely to occur when there is a portion having a high surface pressure.

より詳しくは、本発明の燃料電池では、アノード側セパレータ18Aの短リブ34Sとカソード側セパレータ18Bの短リブ34Sとは、各短リブ34Sの全面(各短リブ34Sの頂面の全面)でセル面内方向と直交する方向に互いに重なるように配置されており、アノード側セパレータ18Aの長リブ34Lとカソード側セパレータ18Bの長リブ34Lとは、長リブ長手方向にずらされていて各長リブ34Lが一部のみ(各長リブ34Lの両端部のみ)でセル面内方向と直交する方向に互いに重なり、かつ、各重なり部の面積が短リブ34Sの重なり部の面積とほぼ同じ面積となるように、配置されているので、重なり部の分布と面積が、したがって、面圧分布が、長リブ34Lのある直線部27A、28Aと短リブ34Sのあるコーナ部27B、28Bとで、ほぼ同じになり、面圧分布がセル面内で均一化される。これによって面圧の高い部分があると生じやすいMEAの劣化も抑制できる。   More specifically, in the fuel cell of the present invention, the short rib 34S of the anode side separator 18A and the short rib 34S of the cathode side separator 18B are formed on the entire surface of each short rib 34S (the entire top surface of each short rib 34S). The long ribs 34L of the anode side separator 18A and the long ribs 34L of the cathode side separator 18B are shifted in the longitudinal direction of the long ribs so as to overlap each other in the direction orthogonal to the in-plane direction. Are partially (only at both ends of each long rib 34L) and overlap each other in the direction orthogonal to the cell in-plane direction, and the area of each overlapping portion is substantially the same as the area of the overlapping portion of the short rib 34S. Therefore, the distribution and the area of the overlapping portion, and hence the surface pressure distribution, are the corners having the straight portions 27A and 28A having the long ribs 34L and the short ribs 34S. 27B, in the 28B, becomes substantially the same, surface pressure distribution is uniform in the cell surface. As a result, it is possible to suppress the deterioration of MEA that is likely to occur when there is a portion having a high surface pressure.

つぎに、本発明の各実施例に特有な部分を説明する。
〔実施例1〕
本発明の実施例1では、図2に示すように、長リブ34Lがレンガ積み状に配置されている。燃料ガス流路27の直線部27Aの長リブ34Lも、酸化ガス流路28の直線部28Aの長リブ34Lも、それぞれ、レンガ積み状に配置されている。ただし、アノード側セパレータ18Aの長リブ34Lとカソード側セパレータ18Bの長リブ34Lとは、長リブ長手方向にずらされていて各長リブ34Lが一部のみ(各長リブ34Lの両端部のみ)でセル面内方向と直交する方向に互いに重なり、かつ、各重なり部の面積が短リブ34Sの重なり部の面積とほぼ同じ面積となるように、配置されている。
たとえば、短リブ34Sが、一辺がdの正方形で、短リブ間流路の幅がdとなるように配置されている。また、長リブ34Lが幅がd、長さが3dの矩形リブであり、長リブ間流路の幅がdとなるように配置されている。燃料ガス流路27の直線部27Aの長リブ34Lと酸化ガス流路28の直線部28Aの長リブ34Lを、長リブ長手方向に2dずらす。その結果、長リブ34Lの重なり部(斜線を施した部分)は、各長リブ34Lの両端部の長さdの部分に現れ、各重なり部は、一辺がdの正方形で、隣り合う重なり部とdだけ離れる分布を呈す。この長リブ34Lの重なり部の分布は、短リブ34Sの重なり部の分布(短リブ34Sの重なり部は、一辺がdの正方形で、隣り合う重なり部とdだけ離れた分布となっている)と同じである。ただし、リブ配置はこの例に限るものではない。
Next, parts specific to each embodiment of the present invention will be described.
[Example 1]
In Example 1 of this invention, as shown in FIG. 2, the long rib 34L is arrange | positioned at the brick pile shape. Both the long rib 34L of the straight portion 27A of the fuel gas passage 27 and the long rib 34L of the straight portion 28A of the oxidizing gas passage 28 are arranged in a brick shape. However, the long ribs 34L of the anode side separator 18A and the long ribs 34L of the cathode side separator 18B are shifted in the longitudinal direction of the long ribs, and each of the long ribs 34L is only a part (only both ends of each long rib 34L). They are arranged so that they overlap each other in the direction orthogonal to the cell in-plane direction, and the area of each overlapping part is substantially the same as the area of the overlapping part of the short ribs 34S.
For example, the short ribs 34 </ b> S are arranged so that each side is a square with a side d and the width of the flow path between the short ribs is d. Further, the long rib 34L is a rectangular rib having a width d and a length 3d, and is arranged so that the width of the flow path between the long ribs is d. The long rib 34L of the straight portion 27A of the fuel gas passage 27 and the long rib 34L of the straight portion 28A of the oxidizing gas passage 28 are shifted by 2d in the longitudinal direction of the long rib. As a result, the overlapping portions (hatched portions) of the long ribs 34L appear in the length d portions at both ends of each long rib 34L, and each overlapping portion is a square having one side d and adjacent overlapping portions. And a distribution separated by d. The distribution of the overlapping portions of the long ribs 34L is the distribution of the overlapping portions of the short ribs 34S (the overlapping portion of the short ribs 34S is a square having one side d and is separated from the adjacent overlapping portions by d). Is the same. However, the rib arrangement is not limited to this example.

本発明の実施例1の作用・効果については、長リブ34Lがレンガ積み状に配置されていることによって、直線部27A、28Aを流れるガスが、長リブ34Lの長手方向に平行に流れやすくなり、長リブ34Lの長手方向と直交する方向には、流れにくくなる。これは、長リブ34Lと長リブ34Lとの間の隙間を通って長リブ34Lの長手方向と直交する方向に流れても長リブ34Lと衝突して長リブ34L長手方向に整流されるためである。その結果、長リブ34Lに沿ってガスがセル面全域に配分され、流れやすい領域のみに偏流することがなくなり、ガス配分が連続リブと同じ程度に良好に維持される。連続リブの場合は連続リブで水分が下方に流れるのが阻止されるため、排水性が悪いが、本発明では、長リブ34L間に隙間があって、その隙間を通って水が下方に短絡して流れるので、連続リブの場合に比べて、生成水の排水性が向上される。   Regarding the operation and effect of the first embodiment of the present invention, the long ribs 34L are arranged in a brick shape so that the gas flowing through the straight portions 27A and 28A easily flows in parallel to the longitudinal direction of the long ribs 34L. In the direction perpendicular to the longitudinal direction of the long rib 34L, it becomes difficult to flow. This is because even if it flows in the direction perpendicular to the longitudinal direction of the long rib 34L through the gap between the long rib 34L and the long rib 34L, it collides with the long rib 34L and is rectified in the longitudinal direction of the long rib 34L. is there. As a result, the gas is distributed over the entire cell surface along the long rib 34L, so that it does not drift to only the region where it easily flows, and the gas distribution is maintained as good as the continuous rib. In the case of continuous ribs, water is prevented from flowing downward by the continuous ribs, so drainage is poor. However, in the present invention, there is a gap between the long ribs 34L, and water is short-circuited downward through the gaps. Therefore, the drainage of generated water is improved as compared with the case of continuous ribs.

〔実施例2〕
本発明の実施例2では、図3に示すように、長リブ34Lが四角格子状に配置されている。燃料ガス流路27の直線部27Aの長リブ34Lも、酸化ガス流路28の直線部28Aの長リブ34Lも、それぞれ、四角格子状に配置されている。ただし、アノード側セパレータ18Aの長リブ34Lとカソード側セパレータ18Bの長リブ34Lとは、長リブ長手方向にずらされていて各長リブ34Lが一部のみ(各長リブ34Lの両端部のみ)でセル面内方向と直交する方向に互いに重なり、かつ、各重なり部の面積が短リブ34Sの重なり部の面積とほぼ同じ面積となるように、配置されている。
たとえば、短リブ34Sが、一辺がdの正方形で、短リブ間流路の幅がdとなるように配置されている。また、長リブ34Lが幅がd、長さが3dの矩形リブであり、長リブ間流路の幅がdとなるように配置されている。燃料ガス流路27の直線部27Aの長リブ34Lと酸化ガス流路28の直線部28Aの長リブ34Lを、長リブ長手方向に2dずらす。その結果、長リブ34Lの重なり部(斜線を施した部分)は、各長リブ34Lの両端部の長さdの部分に現れ、各重なり部は、一辺がdの正方形で、隣り合う重なり部とdだけ離れる分布を呈す。この長リブ34Lの重なり部の分布は、短リブ34Sの重なり部の分布(短リブ34Sの重なり部は、一辺がdの正方形で、隣り合う重なり部とdだけ離れた分布となっている)と同じである。ただし、リブ配置はこの例に限るものではない。
[Example 2]
In Embodiment 2 of the present invention, as shown in FIG. 3, the long ribs 34L are arranged in a square lattice shape. Both the long ribs 34L of the straight portion 27A of the fuel gas flow path 27 and the long ribs 34L of the straight portion 28A of the oxidizing gas flow path 28 are arranged in a square lattice shape. However, the long ribs 34L of the anode side separator 18A and the long ribs 34L of the cathode side separator 18B are shifted in the longitudinal direction of the long ribs, and each of the long ribs 34L is only a part (only both ends of each long rib 34L). They are arranged so that they overlap each other in the direction orthogonal to the cell in-plane direction, and the area of each overlapping part is substantially the same as the area of the overlapping part of the short ribs 34S.
For example, the short ribs 34 </ b> S are arranged so that each side is a square with a side d and the width of the flow path between the short ribs is d. Further, the long rib 34L is a rectangular rib having a width d and a length 3d, and is arranged so that the width of the flow path between the long ribs is d. The long rib 34L of the straight portion 27A of the fuel gas passage 27 and the long rib 34L of the straight portion 28A of the oxidizing gas passage 28 are shifted by 2d in the longitudinal direction of the long rib. As a result, the overlapping portions (hatched portions) of the long ribs 34L appear in the length d portions at both ends of each long rib 34L, and each overlapping portion is a square having one side d and adjacent overlapping portions. And a distribution separated by d. The distribution of the overlapping portions of the long ribs 34L is the distribution of the overlapping portions of the short ribs 34S (the overlapping portion of the short ribs 34S is a square having one side d and is separated from the adjacent overlapping portions by d). Is the same. However, the rib arrangement is not limited to this example.

本発明の実施例2の作用・効果については、長リブ34L間に隙間があって、その隙間を通って水が下方に短絡して流れるので、連続リブの場合に比べて、生成水の排水性が向上される。   Regarding the operation and effect of the second embodiment of the present invention, there is a gap between the long ribs 34L, and the water flows through the gap while being short-circuited downward. Is improved.

本発明の実施例1および実施例2の燃料電池の一部の拡大断面図である。It is a partial expanded sectional view of the fuel cell of Example 1 and Example 2 of this invention. 本発明の実施例1の燃料電池の一部の拡大平面図である。It is a one part enlarged plan view of the fuel cell of Example 1 of this invention. 本発明の実施例2の燃料電池の一部の拡大平面図である。It is a one part enlarged plan view of the fuel cell of Example 2 of the present invention. 本発明の燃料電池スタックの側面図である。It is a side view of the fuel cell stack of the present invention. 図4の燃料電池の一部の断面図である。FIG. 5 is a partial cross-sectional view of the fuel cell of FIG. 4. 本発明の燃料電池の正面図である。It is a front view of the fuel cell of the present invention.

符号の説明Explanation of symbols

10 (固体高分子電解質型)燃料電池
11 電解質膜
12、15 触媒層
13、16 拡散層
14 電極(アノード、燃料極)
17 電極(カソード、空気極)
18 セパレータ
18A アノード側ガスケット
18B カソード側ガスケット
19 セル
20 ターミナル
21 インシュレータ
22 エンドプレート
23 スタック
24 締結部材(テンションプレート)
25 ボルト
26 冷媒流路(冷却水流路)
27 燃料ガス流路
27A 燃料ガス流路の直線部
27B 燃料ガス流路のコーナ部
28 酸化ガス流路
28A 酸化ガス流路の直線部
28B 酸化ガス流路のコーナ部
29 冷媒マニホールド(冷却水マニホールド)
30 燃料ガスマニホールド
31 酸化ガスマニホールド
32 ガスケット
33 接着剤(接着剤層)
34 リブ
34L 長リブ
34S 短リブ
10 (Solid Polymer Electrolyte Type) Fuel Cell 11 Electrolyte Membrane 12, 15 Catalyst Layer 13, 16 Diffusion Layer 14 Electrode (Anode, Fuel Electrode)
17 electrodes (cathode, air electrode)
18 Separator 18A Anode side gasket 18B Cathode side gasket 19 Cell 20 Terminal 21 Insulator 22 End plate 23 Stack 24 Fastening member (tension plate)
25 Bolt 26 Refrigerant flow path (cooling water flow path)
27 Fuel gas channel 27A Fuel gas channel linear portion 27B Fuel gas channel corner portion 28 Oxidizing gas channel 28A Oxidizing gas channel linear portion 28B Oxidizing gas channel corner portion 29 Refrigerant manifold (cooling water manifold)
30 Fuel gas manifold 31 Oxidizing gas manifold 32 Gasket 33 Adhesive (adhesive layer)
34 rib 34L long rib 34S short rib

Claims (5)

電解質膜の一側に配置された、燃料ガス流路に大きさの異なる複数種のリブを有するアノード側セパレータと、
電解質膜の他側に配置された、酸化ガス流路に大きさの異なる複数種のリブを有するカソード側セパレータと、
を備えた燃料電池であって、
アノード側セパレータのリブとカソード側セパレータのリブとは、セル面内方向と直交する方向に互いに重なる部分の面積分布がセル面内でほぼ均一になるように配置されている、燃料電池。
An anode-side separator disposed on one side of the electrolyte membrane and having a plurality of types of ribs having different sizes in the fuel gas flow path;
A cathode-side separator disposed on the other side of the electrolyte membrane and having a plurality of types of ribs having different sizes in the oxidizing gas flow path;
A fuel cell comprising:
The fuel cell, wherein the ribs of the anode-side separator and the ribs of the cathode-side separator are arranged so that the area distribution of portions overlapping each other in a direction orthogonal to the cell plane direction is substantially uniform in the cell plane.
アノード側セパレータのリブは長リブと短リブを含み、カソード側セパレータのリブは長リブと短リブを含み、
アノード側セパレータの短リブとカソード側セパレータの短リブとは、各短リブの全面でセル面内方向と直交する方向に互いに重なり、
アノード側セパレータの長リブとカソード側セパレータの長リブとは、各長リブが一部のみでセル面内方向と直交する方向に互いに重なり、かつ、各重なり部の面積が短リブの重なり部の面積とほぼ同じ面積となるように、配置されている、請求項1記載の燃料電池。
The rib of the anode side separator includes a long rib and a short rib, and the rib of the cathode side separator includes a long rib and a short rib,
The short rib of the anode side separator and the short rib of the cathode side separator overlap each other in the direction perpendicular to the cell in-plane direction on the entire surface of each short rib,
The long rib of the anode side separator and the long rib of the cathode side separator are partially overlapped with each other in the direction perpendicular to the cell in-plane direction, and the area of each overlapping portion is an overlap of the short rib. The fuel cell according to claim 1, wherein the fuel cell is disposed so as to have substantially the same area.
燃料ガス流路は直線部とコーナ部を含み、燃料ガス流路の直線部に長リブが、燃料ガス流路のコーナ部に短リブが配置されており、
酸化ガス流路は直線部とコーナ部を含み、酸化ガス流路の直線部に長リブが、酸化ガス流路のコーナ部に短リブが配置されており、
アノード側セパレータの短リブとカソード側セパレータの短リブとは、各短リブの全面でセル面内方向と直交する方向に互いに重なるように配置されており、
アノード側セパレータの長リブとカソード側セパレータの長リブとは、長リブ長手方向にずらされて各長リブが一部のみでセル面内方向と直交する方向に互いに重なり、かつ、各重なり部の面積が前記短リブの重なり部の面積とほぼ同じ面積となるように、配置されている、請求項1記載の燃料電池。
The fuel gas flow path includes a straight part and a corner part, a long rib is disposed in the straight part of the fuel gas flow path, and a short rib is disposed in the corner part of the fuel gas flow path,
The oxidizing gas flow path includes a straight portion and a corner portion, a long rib is disposed in the straight portion of the oxidizing gas flow path, and a short rib is disposed in the corner portion of the oxidizing gas flow path,
The short rib of the anode side separator and the short rib of the cathode side separator are arranged so as to overlap each other in the direction perpendicular to the cell in-plane direction on the entire surface of each short rib,
The long rib of the anode side separator and the long rib of the cathode side separator are shifted in the longitudinal direction of the long rib so that each of the long ribs overlaps with each other in a direction perpendicular to the cell in-plane direction. The fuel cell according to claim 1, wherein the fuel cell is arranged so that an area thereof is substantially the same as an area of the overlapping portion of the short ribs.
リブは長リブを含み、該長リブがレンガ積み状に配置されている請求項1記載の燃料電池。   The fuel cell according to claim 1, wherein the rib includes a long rib, and the long rib is arranged in a brick pile shape. リブは長リブを含み、該長リブが四角格子状に配置されている請求項1記載の燃料電池。   The fuel cell according to claim 1, wherein the rib includes a long rib, and the long rib is arranged in a square lattice shape.
JP2004073376A 2004-03-15 2004-03-15 Fuel cell Expired - Lifetime JP4507650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073376A JP4507650B2 (en) 2004-03-15 2004-03-15 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073376A JP4507650B2 (en) 2004-03-15 2004-03-15 Fuel cell

Publications (2)

Publication Number Publication Date
JP2005259662A true JP2005259662A (en) 2005-09-22
JP4507650B2 JP4507650B2 (en) 2010-07-21

Family

ID=35085155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073376A Expired - Lifetime JP4507650B2 (en) 2004-03-15 2004-03-15 Fuel cell

Country Status (1)

Country Link
JP (1) JP4507650B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198393A (en) * 2007-02-08 2008-08-28 Nissan Motor Co Ltd Fuel cell
JP2010153157A (en) * 2008-12-25 2010-07-08 Hitachi Ltd Fuel cell separator
JP2013191502A (en) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd Fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913637A (en) * 1972-03-24 1974-02-06
JPH0398269A (en) * 1989-09-12 1991-04-23 Hitachi Ltd Fuel cell
JPH04289672A (en) * 1991-03-13 1992-10-14 Yamaha Motor Co Ltd Fuel battery
JPH0594831A (en) * 1991-10-03 1993-04-16 Honda Motor Co Ltd Fuel cell
JP2003197224A (en) * 2001-10-16 2003-07-11 Matsushita Electric Ind Co Ltd High polymer electrolyte fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913637A (en) * 1972-03-24 1974-02-06
JPH0398269A (en) * 1989-09-12 1991-04-23 Hitachi Ltd Fuel cell
JPH04289672A (en) * 1991-03-13 1992-10-14 Yamaha Motor Co Ltd Fuel battery
JPH0594831A (en) * 1991-10-03 1993-04-16 Honda Motor Co Ltd Fuel cell
JP2003197224A (en) * 2001-10-16 2003-07-11 Matsushita Electric Ind Co Ltd High polymer electrolyte fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198393A (en) * 2007-02-08 2008-08-28 Nissan Motor Co Ltd Fuel cell
JP2010153157A (en) * 2008-12-25 2010-07-08 Hitachi Ltd Fuel cell separator
JP2013191502A (en) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd Fuel cell

Also Published As

Publication number Publication date
JP4507650B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4747486B2 (en) Fuel cell
JP2006260916A (en) Fuel cell
JP2007250353A (en) Fuel cell
CA2456846C (en) Separator passage structure of fuel cell
JP2007200674A (en) Fuel cell stack
JP2007200674A5 (en)
JP4165876B2 (en) Fuel cell stack
JP2005123114A (en) Fuel cell stack
JP2005166304A (en) Fuel cell stack
JP4042547B2 (en) Fuel cell seal structure
JP4650424B2 (en) Fuel cell
JP2005293944A (en) Fuel cell
JP4507650B2 (en) Fuel cell
JP2003086229A (en) Stack structure of fuel cell
JP4569084B2 (en) Fuel cell stack structure
US11217807B2 (en) Fuel cell
JP2003297395A (en) Fuel cell
JP4539069B2 (en) Fuel cell
JP4127034B2 (en) Fuel cell
JP2004342442A (en) Fuel cell separator
JP2006156176A (en) Fuel cell
JP2005166420A (en) Fuel cell stack
US11728499B2 (en) Fuel cell
JP2006012462A (en) Sealing structure for fuel cell
JP2008218197A (en) Fuel cell and fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4507650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3