JP2005259467A - Secondary battery and manufacturing method of secondary battery - Google Patents

Secondary battery and manufacturing method of secondary battery Download PDF

Info

Publication number
JP2005259467A
JP2005259467A JP2004067950A JP2004067950A JP2005259467A JP 2005259467 A JP2005259467 A JP 2005259467A JP 2004067950 A JP2004067950 A JP 2004067950A JP 2004067950 A JP2004067950 A JP 2004067950A JP 2005259467 A JP2005259467 A JP 2005259467A
Authority
JP
Japan
Prior art keywords
secondary battery
active material
electrolyte
layer
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004067950A
Other languages
Japanese (ja)
Inventor
Noboru Masuda
昇 桝田
Masaru Watanabe
勝 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004067950A priority Critical patent/JP2005259467A/en
Publication of JP2005259467A publication Critical patent/JP2005259467A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a secondary battery having high permeability of an electrolyte into an electrode plate and enhancing battery characteristics. <P>SOLUTION: The electrode of the secondary battery is equipped with current collectors 1, 5, active material layers 2, 6 applied to the current collectors 1, 5, and electrolyte layers 3, 7 formed on the surfaces on the opposite side of the current collectors 1, 5 of the active material layers 2, 6, the electrolyte layers 3, 7 have recessed and projecting parts on the surfaces of the active material layers 2, 6, or on the opposite side of the active material layers 2, 6, and the depth of the recessed part is 1-50 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二次電池、及び二次電池の製造方法に関するものである。   The present invention relates to a secondary battery and a method for manufacturing the secondary battery.

従来の二次電池としては、例えば特許文献1に記載されているものがあった。図5は、前記特許文献1に記載された従来のリチウムイオン二次電池の電極・電解質積層体の断面を示すものである。   As a conventional secondary battery, for example, there is one described in Patent Document 1. FIG. 5 shows a cross section of an electrode / electrolyte laminate of a conventional lithium ion secondary battery described in Patent Document 1.

図5に示す様に、従来のリチウムイオン二次電池は、絶縁体層503と、絶縁体層503の片面に形成された負極集電体層504と、反対面に形成された正極集電体層502とを備えている。   As shown in FIG. 5, a conventional lithium ion secondary battery includes an insulator layer 503, a negative electrode current collector layer 504 formed on one surface of the insulator layer 503, and a positive electrode current collector formed on the opposite surface. Layer 502.

又、正極集電体層502の絶縁体層503の反対面には、正極合剤層501が形成されており、負極集電体層504の絶縁体層503の反対面には、負極合剤層505が形成されている。又、負極合剤層505の負極集電体層504の反対面には、電解質層506が形成されている(これら正極合剤層501、正極集電体層502、絶縁体層503、負極集電体層504、負極合剤層505、電解質層506が積層されたものを電極・電解質積層体と呼ぶ。)
特開平10−189050号公報(例えば、第3頁、図1)
A positive electrode mixture layer 501 is formed on the opposite surface of the positive electrode current collector layer 502 to the insulator layer 503, and a negative electrode mixture is formed on the opposite surface of the negative electrode collector layer 504 to the insulator layer 503. Layer 505 is formed. An electrolyte layer 506 is formed on the surface of the negative electrode mixture layer 505 opposite to the negative electrode current collector layer 504 (the positive electrode mixture layer 501, the positive electrode current collector layer 502, the insulator layer 503, the negative electrode current collector layer 504). (A laminate of the electric conductor layer 504, the negative electrode mixture layer 505, and the electrolyte layer 506 is referred to as an electrode / electrolyte laminate).
JP-A-10-189050 (for example, page 3, FIG. 1)

しかしながら、前記従来の構成では、テープ状とした電極・電解質膜席層体を渦巻状に卷回してアルミケース等の缶へ挿入して電解液を注液させた場合、電解質層506と正極もしくは負極合剤層501、505のいずれかの組み合わせで、正極もしくは負極合剤層への電解液の浸透性を評価したところ、50〜70%程度の浸透性であることが判った。   However, in the conventional configuration, when the electrode / electrolyte membrane seat layer in the form of a tape is wound in a spiral shape and inserted into a can such as an aluminum case to inject an electrolyte, the electrolyte layer 506 and the positive electrode or When the permeability of the electrolytic solution into the positive electrode or the negative electrode mixture layer was evaluated by any combination of the negative electrode mixture layers 501 and 505, it was found that the permeability was about 50 to 70%.

この電池を用い電池特性として、レート特性、放電容量、サイクル特性等を評価した結果、いずれも低下するという電池特性上致命的な欠陥となることが確認された。   As a result of evaluating rate characteristics, discharge capacity, cycle characteristics, and the like as battery characteristics using this battery, it was confirmed that all of the battery characteristics were fatal defects in terms of battery characteristics.

これは、前記従来の構成の電解質膜506では、電極間の距離を常に安定な距離に保つために充分な機械的強度を有する必要性があり、又電極との密着性が非常に良いために電極への電解液の浸透性が悪くなっていた。   This is because the electrolyte membrane 506 of the conventional configuration needs to have sufficient mechanical strength to keep the distance between the electrodes at a stable distance, and the adhesion with the electrodes is very good. The permeability of the electrolyte solution to the electrode was poor.

上記従来の課題を考慮して、本発明の目的は、極板への電解液の浸透性がより良好であるため、電池特性をより向上することが可能な二次電池、及び二次電池の製造方法を提供することである。   In view of the above-described conventional problems, an object of the present invention is to provide a secondary battery capable of further improving battery characteristics and a secondary battery, because the electrolyte has better permeability to the electrode plate. It is to provide a manufacturing method.

上記目的を達成するために、第1の本発明は、
集電体と、
前記集電体に塗布形成された活物質層と、
前記活物質層の前記集電体と反対側の表面に設けられた電解質層とを備え、
前記電解質層は、前記活物質層側、又は前記活物質層の反対側の表面に凹凸を有している、二次電池である。
In order to achieve the above object, the first present invention provides:
A current collector,
An active material layer coated on the current collector;
An electrolyte layer provided on the surface of the active material layer opposite to the current collector,
The electrolyte layer is a secondary battery having irregularities on the surface of the active material layer side or the opposite side of the active material layer.

又、第2の本発明は、
前記活物質層は、前記集電体の両面に形成され、
前記電解質層は、2つの前記活物質層の前記集電体と反対側の表面に設けられ、
少なくとも1つの前記電解質層は、前記凹凸を有している、第1の本発明の二次電池である。
The second aspect of the present invention is
The active material layer is formed on both sides of the current collector,
The electrolyte layer is provided on the surface of the two active material layers opposite to the current collector,
At least one of the electrolyte layers is the secondary battery according to the first aspect of the present invention having the irregularities.

又、第3の本発明は、
前記凹部の深さは、1μm以上、50μm以下である、第1の本発明の二次電池である。
The third aspect of the present invention
In the secondary battery according to the first aspect of the present invention, the depth of the recess is 1 μm or more and 50 μm or less.

又、第4の本発明は、
前記凹凸は、粒子によって形成されており、
前記粒子の径は、1μm以上、50μm以下である、第1の本発明の二次電池である。
The fourth aspect of the present invention is
The unevenness is formed by particles,
In the secondary battery according to the first aspect of the present invention, the particle diameter is 1 μm or more and 50 μm or less.

又、第5の本発明は、
前記粒子は、前記電解質層の表面に分散されており、
前記粒子の間隔は、5μm以上、100μm以下である、第4の本発明の二次電池である。
The fifth aspect of the present invention is
The particles are dispersed on the surface of the electrolyte layer;
In the secondary battery according to the fourth aspect of the present invention, the interval between the particles is 5 μm or more and 100 μm or less.

又、第6の本発明は、
前記電解質層の前記活物質層と接触していない側の表面に形成されているセパレータを更に備えた、第1の本発明の二次電池である。
The sixth aspect of the present invention
The secondary battery according to the first aspect of the present invention further includes a separator formed on a surface of the electrolyte layer that is not in contact with the active material layer.

又、第7の本発明は、
集電体の表面に活物質層を塗布形成する工程と、
所定の大きさの粒子を電解質用の塗料に分散させる工程と、
前記粒子が分散された塗料を前記活物質層上に塗布することにより電解質層を形成する工程とを備えた、二次電池の製造方法である。
The seventh aspect of the present invention
Applying and forming an active material layer on the surface of the current collector;
A step of dispersing particles of a predetermined size in an electrolyte coating;
And a step of forming an electrolyte layer by applying a coating material in which the particles are dispersed on the active material layer.

本発明によれば、極板への電解液の浸透性がより良好であるため、電池特性をより向上することが可能な二次電池、及び二次電池の製造方法を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, since the permeability of the electrolyte solution to an electrode plate is more favorable, the secondary battery which can improve a battery characteristic more, and the manufacturing method of a secondary battery can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。ただし、以下の実施の形態は本発明の好ましい一実施の形態にすぎず、本発明が下記の実施の形態に限られるわけではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the following embodiment is merely a preferred embodiment of the present invention, and the present invention is not limited to the following embodiment.

(実施の形態1)
図1(a)は、本発明にかかる実施の形態1におけるリチウムイオン二次電池の電極・電解質積層体の断面図である。又、図1(b)は、本発明にかかる実施の形態1におけるリチウムイオン二次電池の外観図である。尚、図1(b)のS部の拡大図が、図1(a)に相当する。
(Embodiment 1)
FIG. 1A is a cross-sectional view of an electrode / electrolyte laminate of a lithium ion secondary battery according to Embodiment 1 of the present invention. Moreover, FIG.1 (b) is an external view of the lithium ion secondary battery in Embodiment 1 concerning this invention. An enlarged view of the S part in FIG. 1B corresponds to FIG.

図1に示す様に、本実施の形態1のリチウムイオン二次電池は、本発明の集電体の一例であるアルミ箔等の正極集電体1と、正極集電体1の表及び裏面に形成されている、本発明の活物質層の一例であるLiCoO2等の正極活物質層2とを備えている。この2つの正極活物質層2の表面にはフッ素系樹脂等の材料からなる、本発明の電解質層の一例である正極側電解質層3が形成されている。又、一方の正極側電解質層3の表面には、正負極からのイオン伝導を行うための所定の空隙が設けられた絶縁体であるポリエチレン製等のセパレータ4が設置されている。 As shown in FIG. 1, the lithium ion secondary battery of Embodiment 1 includes a positive electrode current collector 1 such as an aluminum foil, which is an example of the current collector of the present invention, and the front and back surfaces of the positive electrode current collector 1. And a positive electrode active material layer 2 such as LiCoO 2 which is an example of the active material layer of the present invention. On the surface of the two positive electrode active material layers 2, a positive electrode side electrolyte layer 3, which is an example of the electrolyte layer of the present invention, is formed of a material such as a fluorine-based resin. Further, a separator 4 made of polyethylene or the like, which is an insulator provided with a predetermined gap for conducting ion conduction from the positive and negative electrodes, is provided on the surface of one positive electrode side electrolyte layer 3.

上記正極集電体1、正極活物質層2、正極側電解質層3と同様の構成が、セパレータ4を挟んで負極側でも形成されている。この負極側は、本発明の集電体の一例である負極集電体5、本発明の活物質層の一例である負極活物質層6、本発明の電解質層の一例である負極側電解質層3、7により構成されている。尚、負極集電体5は、銅箔等であり、負極活物質層6は炭素材等から構成されている。又、負極側電解質層3、7の上部には、更にセパレータ8が設置されている。   A configuration similar to that of the positive electrode current collector 1, the positive electrode active material layer 2, and the positive electrode side electrolyte layer 3 is also formed on the negative electrode side with the separator 4 interposed therebetween. This negative electrode side includes a negative electrode current collector 5 which is an example of the current collector of the present invention, a negative electrode active material layer 6 which is an example of the active material layer of the present invention, and a negative electrode side electrolyte layer which is an example of the electrolyte layer of the present invention. 3 and 7. The negative electrode current collector 5 is a copper foil or the like, and the negative electrode active material layer 6 is made of a carbon material or the like. Further, a separator 8 is further provided above the negative electrode side electrolyte layers 3 and 7.

又、正極活物質層2、負極活物質層6の表面に設けられている正極及び負極側電解質層3、7の表面に微小な凹凸が形成されている。   In addition, minute irregularities are formed on the surfaces of the positive electrode and negative electrode side electrolyte layers 3 and 7 provided on the surfaces of the positive electrode active material layer 2 and the negative electrode active material layer 6.

上述した様に積層された正極集電体1、正極活物質層2、正極側電解質層3、セパレータ4、負極集電体5、負極活物質層6、負極側電解質層3、7、及びセパレータ8によって電極・電解質積層体9が構成されている。図1(b)に示す様に、本実施の形態1におけるリチウムイオン二次電池は、巻回された電極・電解質積層体9がアルミケース等の缶へ挿入された構造であり、この缶には、電解液が注液されている。   Positive electrode current collector 1, positive electrode active material layer 2, positive electrode side electrolyte layer 3, separator 4, negative electrode current collector 5, negative electrode active material layer 6, negative electrode side electrolyte layers 3 and 7, and separator laminated as described above 8 is an electrode / electrolyte laminate 9. As shown in FIG. 1B, the lithium ion secondary battery according to Embodiment 1 has a structure in which a wound electrode / electrolyte laminate 9 is inserted into a can such as an aluminum case. The electrolyte is injected.

以下に、本発明の二次電池の製造方法の一例である、上記構成のリチウムイオン二次電池の製造方法について述べる。   Below, the manufacturing method of the lithium ion secondary battery of the said structure which is an example of the manufacturing method of the secondary battery of this invention is described.

正極側を例に挙げると、アルミ箔等の正極集電体1の表裏に、LiCoO2等の正極活物質層2を塗布形成する。 Taking the positive electrode side as an example, the front and back of the cathode current collector 1 of aluminum foil or the like, is formed by coating a positive electrode active material layer 2 such as LiCoO 2.

次に、正極電解質層3の表面に微小な凹凸を設ける方法としては、例えば、平均粒子径が1〜50μm程度の樹脂等の粉末を電解質塗料にビーズ等の媒体を用いたミル等により、均一に分散させる。そしてダイやグラビア等の各種塗工装置を用いて、正極活物質層2上に塗布形成する。このとき、正極電解質層3の表面積に分散されている粒子の間隔は、5〜100μmである。   Next, as a method of providing minute irregularities on the surface of the positive electrode electrolyte layer 3, for example, a powder such as a resin having an average particle diameter of about 1 to 50 μm is uniformly obtained by a mill using a medium such as beads as an electrolyte paint. To disperse. And it forms on the positive electrode active material layer 2 using various coating apparatuses, such as a die | dye and a gravure. At this time, the interval between the particles dispersed in the surface area of the positive electrode electrolyte layer 3 is 5 to 100 μm.

又、平均粒子径が1〜50μm程度の粉末のみをスプレー装置等により、活物質上に吹き付けた後、極低圧力でロールプレスまたは平板プレスにより正極活物質層2上に設けることもできる。ロールプレスや平板プレスは、熱処理させても良い。   Moreover, after spraying only the powder with an average particle diameter of about 1-50 micrometers on an active material with a spray apparatus etc., it can also provide on the positive electrode active material layer 2 by a roll press or a flat plate press at a very low pressure. The roll press or flat plate press may be heat-treated.

又、正極電解質層3表面の微小な凹凸の高さを1μm以上、50μm以下にすることは重要となる。正極電解質層3表面の微小な凹凸の高さが1μm以下の場合、凹凸が小さく正極電解質層3と対向する部分との密着性が良くなるため、電極への電解液の浸透性が著しく悪くなることにより、電池特性が低下する。   In addition, it is important that the height of minute irregularities on the surface of the positive electrode electrolyte layer 3 is 1 μm or more and 50 μm or less. When the height of the minute unevenness on the surface of the positive electrode electrolyte layer 3 is 1 μm or less, the unevenness is small and the adhesion with the portion facing the positive electrode electrolyte layer 3 is improved, so that the permeability of the electrolytic solution to the electrode is remarkably deteriorated. As a result, battery characteristics deteriorate.

又、正極側電解質層3表面の微小な凹凸の高さが50μm以上の場合、正極側電解質層3表面と対向する部分の空隙が大きくなるため、導電性が悪くなることにより、電池特性が低下する。   In addition, when the height of the minute unevenness on the surface of the positive electrode side electrolyte layer 3 is 50 μm or more, the gap in the portion facing the surface of the positive electrode side electrolyte layer 3 becomes large, so that the conductivity deteriorates and the battery characteristics deteriorate. To do.

尚、負極側も上記正極側と同様に製造され、2つの負極電解質層7の表面に微小な凹凸が形成されている。   The negative electrode side is also manufactured in the same manner as the positive electrode side, and minute irregularities are formed on the surfaces of the two negative electrode electrolyte layers 7.

上記正極側と負極側とセパレータ4、8を積層し、電極・電解質積層体9を形成する。そして、電極・電解質積層体9を巻回し、アルミケース等の缶に挿入し、電解液を注液する。   The positive electrode side, the negative electrode side, and the separators 4 and 8 are laminated to form an electrode / electrolyte laminate 9. Then, the electrode / electrolyte laminate 9 is wound, inserted into a can such as an aluminum case, and the electrolytic solution is injected.

最後に、正極と繋がれた封口板等によって上部を閉じることによって、リチウムイオン二次電池が作製される。   Finally, the upper part is closed by a sealing plate or the like connected to the positive electrode, whereby a lithium ion secondary battery is produced.

上記の様に、正極及び負極側電解質層3、7の表面を微小な凹凸を設けることにより、卷回してアルミケース等の缶へ電極を挿入する場合に、電解質層表面と対向する部分に微小な空隙が生じることとなり、その微小な空隙にも電解液が注液されて、活物質中への電解液の浸透性が格段に向上することができる。   As described above, by providing minute irregularities on the surfaces of the positive electrode and negative electrode side electrolyte layers 3 and 7, when the electrode is inserted into a can such as an aluminum case by winding, the surface facing the electrolyte layer surface is minute. As a result, an electrolyte solution is injected into the minute space, and the permeability of the electrolyte solution into the active material can be significantly improved.

又、本発明の二次電池として、本実施の形態1ではリチウムイオン二次電池を例に挙げて説明しているが、本発明の構成はリチウムイオン二次電池に限らず、例えばニッケル水素二次電池に対しても適用することが出来る。要するに、集電体と活物質層と電解質層を備えた二次電池に対して本発明は適用することが出来る。   Further, as the secondary battery of the present invention, the lithium ion secondary battery is described as an example in the first embodiment. However, the configuration of the present invention is not limited to the lithium ion secondary battery, for example, nickel-hydrogen secondary battery. It can also be applied to secondary batteries. In short, the present invention can be applied to a secondary battery including a current collector, an active material layer, and an electrolyte layer.

又、正極を例に挙げると、本実施の形態1の電極は、2つの正極側電解質層3の双方に微小な凹凸が形成されているが、片方の電解質層だけに微小な凹凸を形成しても良い。この場合、本実施の形態1に比べて電解液の浸透性は悪くなるものの、従来と比較すると電解液の浸透性は増している。尚、負極も同様である。   Taking the positive electrode as an example, the electrode according to the first embodiment has fine irregularities formed on both of the two positive electrode-side electrolyte layers 3, but the minute irregularities are formed only on one electrolyte layer. May be. In this case, the permeability of the electrolytic solution is worse than that of the first embodiment, but the permeability of the electrolytic solution is increased as compared with the conventional case. The same applies to the negative electrode.

又、正極活物質層2と正極側電解質層3の間に微小な凹凸を設けても良いが、本実施の形態1の様にセパレータ4、8と正極及び負極側電解質層3、7の間に設けた方が製造が簡易なため好ましい。尚、負極も同様に、負極活物質層6と負極側電解質層3、7の間に設けても良い。又、微小な凹凸を電解質層のセパレータ側と活物質層側の双方に設けた場合は、導電性が悪くなることがあるため微小な凹凸の高さを考慮する必要がある。   In addition, minute irregularities may be provided between the positive electrode active material layer 2 and the positive electrode side electrolyte layer 3, but as in the first embodiment, between the separators 4 and 8 and the positive electrode and negative electrode side electrolyte layers 3 and 7. It is preferable to provide it because it is easy to manufacture. Similarly, the negative electrode may be provided between the negative electrode active material layer 6 and the negative electrode side electrolyte layers 3 and 7. In addition, when minute irregularities are provided on both the separator side and the active material layer side of the electrolyte layer, the conductivity may be deteriorated, so the height of the minute irregularities needs to be considered.

又、本実施の形態1の電極は、正極、負極ともに集電体の両面に活物質層が形成されているが、図5に示す従来の電極の様に、片面にのみ活物質層を形成する構成であっても良い。この場合、電解質層506の負極合剤層505側、及び/又は負極合剤層505の反対側の面に微小な凹凸を形成すればよい。   In the electrode of the first embodiment, the active material layer is formed on both sides of the current collector for both the positive electrode and the negative electrode, but the active material layer is formed only on one side as in the conventional electrode shown in FIG. It may be configured to do so. In this case, minute irregularities may be formed on the surface of the electrolyte layer 506 on the negative electrode mixture layer 505 side and / or on the opposite side of the negative electrode mixture layer 505.

又、本実施の形態1では、図1(a)に示す様に、円柱形のアルミケースに卷回した電極を挿入し、円柱型電池を作製したが、円柱形に限らず角型のアルミケース等に電極を挿入した角型電池であってもよい。   Further, in the first embodiment, as shown in FIG. 1A, a cylindrical battery is manufactured by inserting a wound electrode into a cylindrical aluminum case. A square battery in which an electrode is inserted into a case or the like may be used.

次に、本実施の形態1を実施例1にて、より具体的に説明する。   Next, the first embodiment will be described more specifically in Example 1.

(実施例1)
負極としては、負極集電体5が厚み10μm、幅500mmの銅箔、負極活物質層6を形成する負極用ペーストは炭素材、CMC及び水を混練したものを用いて、塗工、乾燥した。
(Example 1)
As the negative electrode, the negative electrode current collector 5 is a copper foil having a thickness of 10 μm and a width of 500 mm, and the negative electrode paste for forming the negative electrode active material layer 6 is coated and dried using a kneaded carbon material, CMC and water. .

又、正極としては、正極集電体1が厚み20μm、幅500mmのアルミ箔、正極活物質層2を形成する正極用ペーストはLiCoO、導電性カーボンブラック、フッ素系樹脂、CMC及び水を混練したものを用いた。又、アンカー剤としては、導電性カーボンブラック、結着剤及び水を混練、分散したものを用いて、塗工、乾燥した。 Further, as the positive electrode, the positive electrode current collector 1 is an aluminum foil having a thickness of 20 μm and a width of 500 mm, and the positive electrode paste forming the positive electrode active material layer 2 is kneaded with LiCoO 2 , conductive carbon black, fluorine resin, CMC and water. What was done was used. Also, as the anchor agent, conductive carbon black, a binder and water were kneaded and dispersed, and then coated and dried.

又、正極及び負極側電解質層3、7としては、平均粒子径1〜50μmの樹脂等の粒子を均一に分散させたフッ素系樹脂を正極活物質層2及び負極活物質層6の表面に厚み5μmで塗布形成した。   Further, as the positive electrode and negative electrode side electrolyte layers 3 and 7, a fluorine resin in which particles such as resin having an average particle diameter of 1 to 50 μm are uniformly dispersed is formed on the surfaces of the positive electrode active material layer 2 and the negative electrode active material layer 6. The coating was formed at 5 μm.

又、セパレータ4、8としては、セラミック材料を用いた厚み25μmのセパレータを使用し、正極側電解質層3と負極側電解質層7の間と、負極側電解質層7の正極側電解質層3と反対側の表面とに設置した。   The separators 4 and 8 are ceramic separators having a thickness of 25 μm, and are opposite to the positive electrode side electrolyte layer 3 between the positive electrode side electrolyte layer 3 and the negative electrode side electrolyte layer 7 and the negative electrode side electrolyte layer 7. Installed on the side surface.

得られた電極・電解質積層体9を所定の厚みに圧延した後、所定の幅にスリットした。そして、実施の形態1において説明したように、巻回してアルミケース等の缶に挿入した。その後、電解液を注液し、リチウムイオン二次電池を作製した。   The obtained electrode / electrolyte laminate 9 was rolled to a predetermined thickness and then slit to a predetermined width. And as demonstrated in Embodiment 1, it wound and inserted in cans, such as an aluminum case. Thereafter, an electrolytic solution was injected to prepare a lithium ion secondary battery.

(比較例1)
比較例として、図5に示した従来の構成の電極を用いて、得られた正極及び負極板を所定の厚みに圧延した後、所定の幅にスリットし、巻回して円筒形のアルミケース等の缶に挿入した。その後、電解液を注液し、従来の電極を用いた比較例1のリチウムイオン二次電池を作製した。
(Comparative Example 1)
As a comparative example, using the electrode having the conventional configuration shown in FIG. 5, the obtained positive and negative plates were rolled to a predetermined thickness, then slit to a predetermined width, and wound to form a cylindrical aluminum case, etc. Inserted into the can. Thereafter, an electrolytic solution was injected to prepare a lithium ion secondary battery of Comparative Example 1 using a conventional electrode.

上記電池に対して以下の評価を行い本発明の二次電池の効果を確認した。   The following evaluation was performed on the above battery to confirm the effect of the secondary battery of the present invention.

(1)放電容量
常温において、一定電流(160mA)、終止電圧(4.2V)で充電を完了した、実施例1及び比較例1の2種類の2次電池を、一定電流(160mAから3200mA)で放電して、放電開始から低下する電圧が終止電圧(3V)に達したときの放電容量で、比較した。結果を図2に示す。図2のグラフの横軸は放電電流(mA)を示し、縦軸は放電容量(mAh)を示している。又、実線が、実施例1を示し、点線が比較例1を示している。図2に示す様に、実施例1による電池の放電容量は従来例による電池に比べて明らかにアップしている。
(1) Discharge capacity The two types of secondary batteries of Example 1 and Comparative Example 1 that have been charged with a constant current (160 mA) and a final voltage (4.2 V) at room temperature are constant currents (160 mA to 3200 mA). The discharge capacity was compared when the voltage dropped from the start of discharge reached the end voltage (3 V). The results are shown in FIG. The horizontal axis of the graph in FIG. 2 indicates the discharge current (mA), and the vertical axis indicates the discharge capacity (mAh). In addition, the solid line indicates Example 1, and the dotted line indicates Comparative Example 1. As shown in FIG. 2, the discharge capacity of the battery according to Example 1 is clearly higher than that of the battery according to the conventional example.

(2)サイクル特性
常温において一定条件(放電:電流2000mA、終止電圧3V、充電:電流160mA、終止電圧4.2V)充放電を繰り返して放電容量を測定し、初期放電容量の90%になったときの充放電回数(サイクル)で実施例1と比較例1の二次電池の比較を行った。結果を図3に示す。図3のグラフの横軸はサイクル回数を示し、縦軸は、放電容量(mAh)を示している。図3に示す様に、本実施例1による電池はサイクル特性が従来例による電池に比べて明らかにアップしている。
(2) Cycle characteristics Constant conditions at normal temperature (discharge: current 2000 mA, final voltage 3 V, charge: current 160 mA, final voltage 4.2 V) The charge capacity was measured repeatedly, and the discharge capacity was 90% of the initial capacity. The secondary batteries of Example 1 and Comparative Example 1 were compared by the number of times of charge / discharge (cycle). The results are shown in FIG. The horizontal axis of the graph in FIG. 3 indicates the number of cycles, and the vertical axis indicates the discharge capacity (mAh). As shown in FIG. 3, the battery according to the first embodiment has clearly improved cycle characteristics as compared with the battery according to the conventional example.

(3)レート特性
常温において、放電時間30分(2C)と放電時間5時間(0.2C)との割合によって実施例1と比較例1の二次電池との比較を行った。結果を図4に示す。図4のグラフの縦軸は0.2Cの時の放電容量に対する2Cの時の放電容量の割合を示している。図4に示す様に、実施例1の値はほぼ1.0を示しており、比較例1に比べて高い値を示している。これは実施例1の二次電池は、高負荷時(2C)の時にも、低負荷時(0.2C)と同等の放電容量が得られることを示しており、比較例1による二次電池に比べてレート特性が明らかにアップしていることがわかる。
(3) Rate characteristics At normal temperature, the secondary battery of Example 1 and Comparative Example 1 were compared according to the ratio of the discharge time of 30 minutes (2C) and the discharge time of 5 hours (0.2C). The results are shown in FIG. The vertical axis of the graph in FIG. 4 indicates the ratio of the discharge capacity at 2C to the discharge capacity at 0.2C. As shown in FIG. 4, the value of Example 1 is almost 1.0, which is higher than that of Comparative Example 1. This indicates that the secondary battery of Example 1 can obtain a discharge capacity equivalent to that at the time of low load (0.2 C) even at the time of high load (2 C). It can be seen that the rate characteristics are clearly improved compared to.

上述した様に、本発明の二次電池用電極を用いることによって、活物質中への電解液の浸透性が格段に向上することができ、電池特性として、レート特性、放電容量、サイクル特性等が格段に向上した。   As described above, by using the secondary battery electrode of the present invention, the permeability of the electrolytic solution into the active material can be remarkably improved. As battery characteristics, rate characteristics, discharge capacity, cycle characteristics, etc. Has improved dramatically.

(実施例2)
実施例1と同様の構成であるが、正極及び負極の電解質層3、7の表面に形成された微小な凹凸の高さが、それぞれ、0.8、1.0、5.0、25、50、60μmの6種類の二次電池用電極を用いて二次電池を作製した。この6種類の二次電池について、上記(1)の試験を行った。その結果を(表1)に示す。
(Example 2)
The configuration is the same as that of Example 1, but the heights of minute irregularities formed on the surfaces of the positive and negative electrode electrolyte layers 3 and 7 are 0.8, 1.0, 5.0, 25, 50, and 60 μm, respectively. A secondary battery was prepared using the secondary battery electrode. The six types of secondary batteries were tested in the above (1). The results are shown in (Table 1).

Figure 2005259467
Figure 2005259467

この(表1)のデータから、凹凸の高さが1.0μmより小さい、又50μmより大きい場合、放電容量の値が急に下がることがわかる。従って、電解質層上に形成する微小な凹凸の高さは、1.0μm以上、50μm以下であることが好ましい。 From the data in Table 1, it can be seen that when the height of the unevenness is smaller than 1.0 μm or larger than 50 μm, the value of the discharge capacity is suddenly decreased. Therefore, the height of the minute irregularities formed on the electrolyte layer is preferably 1.0 μm or more and 50 μm or less.

(実施例3)
実施例1と同様の構成であるが、正極及び負極の電解質層3、7の表面の微小な凹凸を形成する分散された粒子の間隔が、それぞれ、4.0、5.0、15、50、100、120μmの6種類の二次電池用電極を用いて二次電池を作製した。この6種類の二次電池について、上記(1)の試験を行った。その結果を(表2)に示す。
(Example 3)
The structure is the same as that of Example 1, but the intervals between dispersed particles forming minute irregularities on the surfaces of the positive and negative electrode electrolyte layers 3 and 7 are 4.0, 5.0, 15, 50, 100, and 120 μm, respectively. A secondary battery was manufactured using the six types of secondary battery electrodes. The six types of secondary batteries were tested in the above (1). The results are shown in (Table 2).

Figure 2005259467
Figure 2005259467

この(表2)のデータから、粒子の間隔が5μmより小さい、100μmより大きい場合、放電容量の値が急に下がることがわかる。従って、粒子の間隔は、5.0μm以上、100μm以下であることが好ましい。   From the data in this (Table 2), it can be seen that when the particle spacing is smaller than 5 μm or larger than 100 μm, the value of the discharge capacity suddenly decreases. Accordingly, the particle spacing is preferably 5.0 μm or more and 100 μm or less.

本発明の二次電池は、極板への電解液の浸透性がより良好であるため、電池特性がより向上する効果を有し、リチウムイオン二次電池、ニッケル水素二次電池等として有用である。   The secondary battery of the present invention has an effect of improving the battery characteristics because the electrolyte has better permeability to the electrode plate, and is useful as a lithium ion secondary battery, a nickel hydride secondary battery, or the like. is there.

(a)本発明にかかる実施の形態1におけるリチウムイオン二次電池の電極・電解質積層体を示す断面図(b)本発明にかかる実施の形態1におけるリチウムイオン二次電池の外観図(A) Sectional drawing which shows the electrode and electrolyte laminated body of the lithium ion secondary battery in Embodiment 1 concerning this invention (b) The external view of the lithium ion secondary battery in Embodiment 1 concerning this invention 本発明にかかる実施例1におけるリチウムイオン二次電池と比較例1におけるリチウムイオン二次電池のリチウム放電容量の測定結果のグラフを示す図The figure which shows the graph of the measurement result of the lithium discharge capacity of the lithium ion secondary battery in Example 1 concerning this invention, and the lithium ion secondary battery in the comparative example 1 本発明にかかる実施例1におけるリチウムイオン二次電池と比較例1におけるリチウムイオン二次電池のサイクル特性の測定結果のグラフを示す図The figure which shows the graph of the measurement result of the cycle characteristic of the lithium ion secondary battery in Example 1 concerning this invention, and the lithium ion secondary battery in the comparative example 1 本発明にかかる実施例1におけるリチウムイオン二次電池と比較例1におけるリチウムイオン二次電池のレート特性の測定結果のグラフを示す図The figure which shows the graph of the measurement result of the rate characteristic of the lithium ion secondary battery in Example 1 concerning this invention, and the lithium ion secondary battery in the comparative example 1 従来のリチウムイオン二次電池の電極・電解質積層体を示す断面図Sectional drawing which shows the electrode and electrolyte laminated body of the conventional lithium ion secondary battery

符号の説明Explanation of symbols

1 正極集電体
2 正極活物質層
3 正極側電解質層
4 セパレータ
5 負極集電体
6 負極活物質層
7 負極側電解質層
8 セパレータ
9 電極・電解質積層体
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode active material layer 3 Positive electrode side electrolyte layer 4 Separator 5 Negative electrode collector 6 Negative electrode active material layer 7 Negative electrode side electrolyte layer 8 Separator 9 Electrode / electrolyte laminated body

Claims (7)

集電体と、
前記集電体に塗布形成された活物質層と、
前記活物質層の前記集電体と反対側の表面に設けられた電解質層とを備え、
前記電解質層は、前記活物質層側、又は前記活物質層の反対側の表面に凹凸を有している、二次電池。
A current collector,
An active material layer coated on the current collector;
An electrolyte layer provided on the surface of the active material layer opposite to the current collector,
The said electrolyte layer is a secondary battery which has an unevenness | corrugation in the surface of the said active material layer side or the other side of the said active material layer.
前記活物質層は、前記集電体の両面に形成され、
前記電解質層は、2つの前記活物質層の前記集電体と反対側の表面に設けられ、
少なくとも1つの前記電解質層は、前記凹凸を有している、請求項1記載の二次電池。
The active material layer is formed on both sides of the current collector,
The electrolyte layer is provided on the surface of the two active material layers opposite to the current collector,
The secondary battery according to claim 1, wherein at least one of the electrolyte layers has the unevenness.
前記凹部の深さは、1μm以上、50μm以下である、請求項1記載の二次電池。   The secondary battery according to claim 1, wherein a depth of the recess is 1 μm or more and 50 μm or less. 前記凹凸は、粒子によって形成されており、
前記粒子の径は、1μm以上、50μm以下である、請求項1記載の二次電池。
The unevenness is formed by particles,
The secondary battery according to claim 1, wherein the particle diameter is 1 μm or more and 50 μm or less.
前記粒子は、前記電解質層の表面に分散されており、
前記粒子の間隔は、5μm以上、100μm以下である、請求項4記載の二次電池。
The particles are dispersed on the surface of the electrolyte layer;
The secondary battery according to claim 4, wherein an interval between the particles is 5 μm or more and 100 μm or less.
前記電解質層の前記活物質層と接触していない側の表面に形成されているセパレータを更に備えた、請求項1記載の二次電池。   The secondary battery according to claim 1, further comprising a separator formed on a surface of the electrolyte layer that is not in contact with the active material layer. 集電体の表面に活物質層を塗布形成する工程と、
所定の大きさの粒子を電解質用の塗料に分散させる工程と、
前記粒子が分散された塗料を前記活物質層上に塗布することにより電解質層を形成する工程とを備えた、二次電池の製造方法。
Applying and forming an active material layer on the surface of the current collector;
A step of dispersing particles of a predetermined size in an electrolyte coating;
And a step of forming an electrolyte layer by applying a paint in which the particles are dispersed on the active material layer.
JP2004067950A 2004-03-10 2004-03-10 Secondary battery and manufacturing method of secondary battery Withdrawn JP2005259467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067950A JP2005259467A (en) 2004-03-10 2004-03-10 Secondary battery and manufacturing method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067950A JP2005259467A (en) 2004-03-10 2004-03-10 Secondary battery and manufacturing method of secondary battery

Publications (1)

Publication Number Publication Date
JP2005259467A true JP2005259467A (en) 2005-09-22

Family

ID=35084992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067950A Withdrawn JP2005259467A (en) 2004-03-10 2004-03-10 Secondary battery and manufacturing method of secondary battery

Country Status (1)

Country Link
JP (1) JP2005259467A (en)

Similar Documents

Publication Publication Date Title
JP5085651B2 (en) Capacitor-battery hybrid electrode assembly
KR101149966B1 (en) Polarizable electrode member, process for producing the same, and electrochemical capacitor utilizing the member
JP2010113966A (en) Lithium secondary cell and its utilization
KR102517364B1 (en) All-solid-state battery and production method of the same
JP2008010253A (en) Electrode for lithium secondary battery, manufacturing method therefor, and the lithium secondary battery
US9806337B2 (en) Electrode structure having alternating composite layers
EP3767709A1 (en) Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
KR20140051325A (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
EP3933961A1 (en) Secondary battery
JP2009252670A (en) Method for manufacturing all-solid lithium secondary battery
US8351182B2 (en) Electric double layer capacitor
JPWO2011048769A1 (en) Flat secondary battery electrode group, method for manufacturing the same, and flat secondary battery electrode group provided with flat secondary battery electrode group
JP2002008730A (en) Lithium secondary battery
JP2013073928A (en) Method for manufacturing negative electrode for lithium ion secondary battery, and negative electrode for lithium ion secondary battery
JP2018074117A (en) Current collector for power storage device, electrode for power storage device, lithium ion capacitor, and method for manufacturing electrode for power storage device
WO2014156053A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
JP2014204069A (en) Electrode for power storage device and lithium ion capacitor
KR20190030973A (en) Energy storage device
JP2015023001A (en) Porous current collector for power storage device, electrode and power storage device
JP4849856B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP2005259467A (en) Secondary battery and manufacturing method of secondary battery
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
JP6394986B2 (en) Method for manufacturing battery electrode
US9799458B2 (en) Electrode for capacitor and capacitor using same
JP6284492B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605