JP2005259380A - Ultraviolet ray irradiation treatment device - Google Patents

Ultraviolet ray irradiation treatment device Download PDF

Info

Publication number
JP2005259380A
JP2005259380A JP2004066110A JP2004066110A JP2005259380A JP 2005259380 A JP2005259380 A JP 2005259380A JP 2004066110 A JP2004066110 A JP 2004066110A JP 2004066110 A JP2004066110 A JP 2004066110A JP 2005259380 A JP2005259380 A JP 2005259380A
Authority
JP
Japan
Prior art keywords
discharge lamp
reflector
electrode
ultraviolet light
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004066110A
Other languages
Japanese (ja)
Inventor
Kazuya Hatase
和也 畑瀬
Shingo Ezaki
江崎  真伍
Kenichi Hata
憲一 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2004066110A priority Critical patent/JP2005259380A/en
Publication of JP2005259380A publication Critical patent/JP2005259380A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraviolet ray irradiation treatment device for dispensing with a light take-out window having front glass and greatly improving the utilization efficiency of ultraviolet rays. <P>SOLUTION: In the ultraviolet ray irradiation treatment device for irradiating an object to be treated with ultraviolet rays, the device has a discharge lamp and a reflector. The discharge lamp has a first mesh-like electrode and a second one that oppose each other. The first mesh-like electrode is arranged at the side of the object to be treated. The reflector is arranged at the side of the second mesh-like electrode so that a space section is formed at an area to the discharge lamp. Gas jetting out of a gas jet-out hole provided at the reflector is introduced to the space section. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は光洗浄、光灰化等の分野で紫外線光源として利用される真空紫外域に発光を有するエキシマランプとそれを用いた紫外線照射処理装置の改良に関する。   The present invention relates to an excimer lamp that emits light in the vacuum ultraviolet region, which is used as an ultraviolet light source in the fields of photocleaning, photoashing, and the like, and an ultraviolet irradiation treatment apparatus using the excimer lamp.

無声放電方式のエキシマランプはキセノン(Xe)やクリプトン(Kr)などの放電ガスが充填された放電容器に一対の対向する電極が設けられ、その電極の両方ともが放電ガスと非接触あるいは一方が接触する方式でガス特有の紫外線を高効率で放射させることのできる光源である。   Silent discharge excimer lamps are provided with a pair of opposed electrodes in a discharge vessel filled with a discharge gas such as xenon (Xe) or krypton (Kr), both of which are not in contact with the discharge gas or one of them is It is a light source that can radiate ultraviolet rays peculiar to gas with high efficiency in a contact manner.

従来は、Xe2から放射される波長172nmの真空紫外光を利用するエキシマランプ照射装置においては、窒素等の真空紫外光の透過率が良好なガス(保護ガス)を満たした箱状のランプハウス内にXe2エキシマランプ及び光反射板を設け、そのランプハウスの光取り出し面に合成石英ガラス等の真空紫外光に対して透過率が良好な光取り出し窓を取り付け、その窓から放射される光を被照射物に照射していた。 Conventionally, in an excimer lamp irradiation apparatus using vacuum ultraviolet light having a wavelength of 172 nm emitted from Xe 2 , a box-shaped lamp house filled with a gas (protective gas) having good transmittance of vacuum ultraviolet light such as nitrogen A Xe 2 excimer lamp and a light reflector are installed inside, and a light extraction window with good transmittance for vacuum ultraviolet light, such as synthetic quartz glass, is attached to the light extraction surface of the lamp house. Was irradiated on the irradiated object.

すなわち、窒素ガス等に完全置換されたランプハウスの中に光反射板とランプを設置することで真空紫外光の利用効率を改善していた。本発明に関連した技術としては、外形が概略円筒状の放電ランプを、光取り出し窓を設けたランプハウス内に窒素ガスを充満させて収納させるものがある(例えば、特許文献1)。   That is, the utilization efficiency of vacuum ultraviolet light has been improved by installing a light reflector and a lamp in a lamp house completely replaced with nitrogen gas or the like. As a technique related to the present invention, there is a technique in which a discharge lamp having a substantially cylindrical outer shape is filled with nitrogen gas in a lamp house provided with a light extraction window (for example, Patent Document 1).

図3は特許文献1に示された構成を示す図で、円筒状の誘電体バリア放電ランプ(エキシマランプ)41a、41bおよび41cはランプハウス21内に収容されている。前記ランプハウス21には光取り出し窓20が設けられ、前記誘電体バリア放電ランプ41a、41bおよび41cと光取り出し窓20との間の空間26は窒素ガスで満たされている。   FIG. 3 is a diagram showing the configuration disclosed in Patent Document 1. Cylindrical dielectric barrier discharge lamps (excimer lamps) 41 a, 41 b and 41 c are accommodated in the lamp house 21. The lamp house 21 is provided with a light extraction window 20, and a space 26 between the dielectric barrier discharge lamps 41a, 41b and 41c and the light extraction window 20 is filled with nitrogen gas.

このような構成にすると、前記誘電体バリア放電ランプ41a、41bおよび41cから放出される真空紫外光のうち、隣接する誘電体バリア放電ランプに向かう部分は、V字形の光反射板43および45に当たって反射され、光の進行方向が下向きに方向転換され、光取り出し窓20から放出される。この場合、誘電体バリア放電ランプ41a、41bおよび41cから放出された真空紫外光は誘電体バリア放電ランプ41a、41bおよび41cと光取り出し窓20との間の空間26を通過するが、この空間26は窒素ガスで満たされているので、吸収による光強度の減衰はほとんど生じない。   With such a configuration, the part of the vacuum ultraviolet light emitted from the dielectric barrier discharge lamps 41a, 41b and 41c toward the adjacent dielectric barrier discharge lamp hits the V-shaped light reflectors 43 and 45. The light is reflected, the traveling direction of the light is changed downward, and is emitted from the light extraction window 20. In this case, the vacuum ultraviolet light emitted from the dielectric barrier discharge lamps 41a, 41b and 41c passes through the space 26 between the dielectric barrier discharge lamps 41a, 41b and 41c and the light extraction window 20, and this space 26 Is filled with nitrogen gas, there is almost no attenuation of light intensity due to absorption.

したがって、光取り出し窓20からは誘電体バリア放電ランプ41a、41bおよび41cから放出された真空紫外光の横方向の光反射板43および45に向かう部分と直接被照射体に向かう部分の合計が放出され、前記光取り出し窓20は実質的に面状の真空紫外光源となる。   Accordingly, the light extraction window 20 emits the total of the portion of the vacuum ultraviolet light emitted from the dielectric barrier discharge lamps 41a, 41b and 41c toward the light reflecting plates 43 and 45 in the horizontal direction and the portion directly directed to the irradiated object. The light extraction window 20 becomes a substantially planar vacuum ultraviolet light source.

また、従来の他の方法としては、図4に示すように、薄箱状の放電容器を有するエキシマランプを使用し、ランプから放射される真空紫外光は、前面ガラスおよび窒素ガス等を介さずに直接被照射物に照射していた。例えば、このような従来例としては特開2000−260396号公報(特許文献2)に記載されている。図4において、12は放電容器、13は紫外光照射面、14は放電容器の一面のほぼ全面を覆うように配置された据付電極(ベタ状電極)、15は放電用ガス、16はメッシュ状電極、17は点灯用の高周波電圧である。この方法では、ランプの真空紫外光を取り出す面はほぼ平板状で、被照射物との間隔は、空気の層が存在すると真空紫外光が吸収されるため、極力小さくすることが望まれる。   As another conventional method, as shown in FIG. 4, an excimer lamp having a thin box-like discharge vessel is used, and vacuum ultraviolet light radiated from the lamp does not pass through the front glass and nitrogen gas. The object was irradiated directly. For example, such a conventional example is described in Japanese Patent Laid-Open No. 2000-260396 (Patent Document 2). In FIG. 4, 12 is a discharge vessel, 13 is an ultraviolet light irradiation surface, 14 is a stationary electrode (solid electrode) arranged so as to cover almost the entire surface of the discharge vessel, 15 is a discharge gas, and 16 is a mesh shape. An electrode 17 is a high-frequency voltage for lighting. In this method, the surface of the lamp from which the vacuum ultraviolet light is extracted is substantially flat, and the distance from the object to be irradiated is desired to be as small as possible because the vacuum ultraviolet light is absorbed when an air layer is present.

日本国登録特許第2854255号公報Japanese Registered Patent No. 2854255 特開2000−260396号公報JP 2000-260396 A

ところで、特許文献1に記載の従来方法では、設備が大型となり、前面ガラスが高価であること、また真空紫外光の照射による劣化のために前面ガラスを定期的に交換する必要があるなどコスト面で問題があった。   By the way, in the conventional method described in Patent Document 1, the equipment is large in size, the front glass is expensive, and the front glass needs to be periodically replaced due to deterioration due to irradiation with vacuum ultraviolet light. There was a problem.

また、特許文献2に記載されたランプは、被照射物に対向する面にはメッシュ状電極、その反対側の面には光が全く透過しないベタ状電極(ランプの一面のほぼ全域に付設された金属製の電極で、紫外光に対しては非透過性の電極のこと)を設ける。例えば、真空紫外光の利用効率を稼ぐために、Al等の真空紫外光の反射率が良好な金属をベタ状電極に用いて反射面を兼ねる場合、放電ランプを構成する石英等の誘電体表面に蒸着等の手段により電極を直接形成するか、あるいは金属板を誘電体表面にあてがう方式がとられる。   In addition, the lamp described in Patent Document 2 has a mesh electrode on the surface facing the object to be irradiated, and a solid electrode that does not transmit any light on the opposite surface (attached to almost the entire area of one surface of the lamp. A metal electrode that is not transparent to ultraviolet light). For example, in order to increase the utilization efficiency of vacuum ultraviolet light, when a metal having a good reflectivity of vacuum ultraviolet light such as Al is used for a solid electrode and also serves as a reflection surface, a dielectric surface such as quartz constituting a discharge lamp In this method, electrodes are directly formed by means such as vapor deposition, or a metal plate is applied to the dielectric surface.

前者では電極と誘電体との剥離が問題となり、後者では電極と誘電体との接触距離が問題となる。   In the former, peeling between the electrode and the dielectric becomes a problem, and in the latter, the contact distance between the electrode and the dielectric becomes a problem.

すなわち、前者では電極膜として基本的に膜厚の薄い蒸着膜を使用するので、点灯時に発生する活性酸素による酸化・劣化により膜が消失した場合、電極としての機能を果たさなくなる可能性がある。さらに、蒸着膜が反射面を兼ねている場合には反射率が低下し、反射面としての機能を果たさなくなる可能性もある。   That is, in the former, a vapor deposition film having a thin film thickness is basically used as the electrode film. Therefore, when the film disappears due to oxidation / degradation due to active oxygen generated at the time of lighting, the function as an electrode may not be achieved. Furthermore, when the vapor deposition film also serves as a reflecting surface, the reflectance is lowered, and the function as the reflecting surface may not be achieved.

具体例をあげると、特に誘電体材料が石英である場合には、石英と電極材料であるアルミニウムの熱膨張率が合わないため、アルミニウムを直接蒸着したとしても、点灯−消灯によるヒートサイクルで電極が誘電体から脱落するという問題がある。   As a specific example, especially when the dielectric material is quartz, the thermal expansion coefficient of the aluminum that is quartz and the electrode material does not match. Has a problem of falling off the dielectric.

一方、後者では電極材料のスパッタによる誘電体表面の汚染、あるいは放電ランプで発生する熱により電極が変形した場合に、電極として機能しないばかりか、変形により生じた空隙に存在する空気により真空紫外光が吸収され、反射板としての機能を果さなくなるという問題がある。   On the other hand, in the latter case, when the electrode is deformed due to contamination of the dielectric material due to sputtering of the electrode material or heat generated in the discharge lamp, not only does it function as an electrode, but also vacuum ultraviolet light is generated by the air present in the voids generated by the deformation. Is absorbed, and the function as a reflector is not achieved.

このように、放電ランプに反射機能を兼ねた電極を直接蒸着あるいは接触させる場合、様々な問題が生じる可能性がある。   As described above, when an electrode having a reflection function is directly deposited or contacted with the discharge lamp, various problems may occur.

本発明はこれらの問題を発生させることなく、真空紫外光の利用効率を大幅に改善したコンパクトで低コストの紫外線照射処理装置を提供する。   The present invention provides a compact and low-cost ultraviolet irradiation processing apparatus that greatly improves the utilization efficiency of vacuum ultraviolet light without causing these problems.

本発明に係る紫外線照射処理装置は、被処理物に紫外線を照射するための紫外線照射処理装置において、前記紫外線照射処理装置は放電ランプと反射器具とを備えており、前記放電ランプは対向する第1のメッシュ状電極と第2のメッシュ状電極とを有しており、前記第1のメッシュ状電極は被処理物側に配されたものであり、前記反射器具は、前記第2のメッシュ状電極側に、前記放電ランプとの間に空間部を形成するよう配されたものであり、前記空間部には、前記反射器具に設けられたガス噴出孔から噴出したガスが導入されるよう構成されたことを特徴としている。   An ultraviolet irradiation processing apparatus according to the present invention is an ultraviolet irradiation processing apparatus for irradiating a workpiece with ultraviolet rays, wherein the ultraviolet irradiation processing apparatus includes a discharge lamp and a reflector, and the discharge lamp faces the first. A first mesh electrode and a second mesh electrode, wherein the first mesh electrode is disposed on an object to be processed, and the reflector is the second mesh electrode. It is arranged on the electrode side so as to form a space portion with the discharge lamp, and the space portion is configured such that gas ejected from a gas ejection hole provided in the reflector is introduced. It is characterized by that.

すなわち、本発明の紫外線照射処理装置は、第1図に示すように放電ランプの照射面側には第1のメッシュ状電極を、その反対側(非照射面側)には第2のメッシュ状電極を設け、前記放電ランプの非照射面側に適当な間隔dを空けて真空紫外光を反射する反射器具7を設ける。そして、反射器具7は放電ランプ2と反射器具7との空間における空気をガスで置換するためのガス噴出孔9を備えている。さらに、放電ランプ形状及びガスの流量に応じて放電ランプ2と反射器具7との間隔dを最適化する。これにより非照射面側からランプ外に放射された真空紫外光はほとんど減衰することなく反射器具7に到達し、反射面で反射したのち再びガス層を通過して放電ランプ内に入射し、照射面側から放射される。   That is, the ultraviolet irradiation processing apparatus of the present invention has a first mesh electrode on the irradiation surface side of the discharge lamp and a second mesh shape on the opposite side (non-irradiation surface side) as shown in FIG. An electrode is provided, and a reflector 7 for reflecting vacuum ultraviolet light is provided on the non-irradiation surface side of the discharge lamp with an appropriate interval d. The reflector 7 includes a gas ejection hole 9 for replacing air in the space between the discharge lamp 2 and the reflector 7 with gas. Further, the distance d between the discharge lamp 2 and the reflecting fixture 7 is optimized according to the shape of the discharge lamp and the gas flow rate. As a result, the vacuum ultraviolet light emitted from the non-irradiated surface side to the outside of the lamp reaches the reflector 7 with almost no attenuation, is reflected by the reflective surface, passes through the gas layer again, enters the discharge lamp, and is irradiated. Radiated from the surface side.

本発明は上記の方法により、前面ガラスを有する光取り出し窓を設ける必要がなく、照射面側とは反対方向に放射される真空紫外光の進行方向を180°反転させて、真空紫外光の利用効率を大幅に改善したコンパクトで低コストの紫外線照射処理装置を提供するものである。   The present invention eliminates the need for providing a light extraction window having a front glass by the above method, and reverses the traveling direction of the vacuum ultraviolet light emitted in the direction opposite to the irradiation surface side by 180 ° to use the vacuum ultraviolet light. The present invention provides a compact and low-cost ultraviolet irradiation processing apparatus with greatly improved efficiency.

本発明の紫外線照射処理装置は、放電ランプの紫外光照射面側とは反対方向に放射される真空紫外光を有効に利用できるので、真空紫外光の利用効率の大幅な改善が可能である。さらに、前面ガラスを有し窒素ガスを充満したランプハウスを必要としないので、装置をコンパクトで低コストなものとすることができる。また、放電ランプと反射器具とは直接接触していないので、反射面の剥がれや変形の問題がなく、信頼性の高い紫外線照射処理装置を提供することができる。   Since the ultraviolet irradiation processing apparatus of the present invention can effectively use the vacuum ultraviolet light emitted in the direction opposite to the ultraviolet light irradiation surface side of the discharge lamp, the utilization efficiency of the vacuum ultraviolet light can be greatly improved. Furthermore, since a lamp house having a front glass and filled with nitrogen gas is not required, the apparatus can be made compact and inexpensive. Further, since the discharge lamp and the reflector are not in direct contact with each other, there is no problem of peeling or deformation of the reflecting surface, and a highly reliable ultraviolet irradiation processing apparatus can be provided.

本発明の紫外線照射処理装置を図面を参照しながら説明する。第1図は本発明の紫外線照射処理装置を示す断面図である。第1図に示すように放電ランプ2は最長軸方向に垂直な面における断面形状が略長方形で、真空紫外光を取り出す側である照射面側には第1のメッシュ状電極4が形成され、その面とは反対側である非照射面側には第2のメッシュ状電極3を形成する。放電ランプ2の材質は真空紫外光をよく透過するものとしてMgFや合成石英等が用いられる。放電ランプ2の厚さは普通1〜2mm程度のものが使用され、放電ランプ2内には放電用の封入ガスとして、例えばXe系のガスを封入する。封入ガスがXe系ガスの場合には中心波長が172nmの真空紫外光が得られる。 The ultraviolet irradiation processing apparatus of this invention is demonstrated referring drawings. FIG. 1 is a sectional view showing an ultraviolet irradiation treatment apparatus of the present invention. As shown in FIG. 1, the discharge lamp 2 has a substantially rectangular cross-sectional shape in a plane perpendicular to the longest axis direction, and a first mesh electrode 4 is formed on the irradiation surface side from which vacuum ultraviolet light is extracted. A second mesh electrode 3 is formed on the non-irradiated surface side opposite to the surface. The material of the discharge lamp 2 is MgF 2 , synthetic quartz, or the like as a material that transmits vacuum ultraviolet light well. The thickness of the discharge lamp 2 is normally about 1 to 2 mm. The discharge lamp 2 is filled with, for example, a Xe-based gas as a discharge gas. When the sealed gas is a Xe-based gas, vacuum ultraviolet light having a center wavelength of 172 nm is obtained.

その他、放電用ガスとしては、Kr系、Ar/F系、Kr/Cl系あるいはKr/F系などが使用できる。そして、これらの放電用ガスを用いた場合、Kr、ArF、KrClおよびKrFに由来する中心波長がそれぞれ146nm、193nm、222nmおよび248nmの紫外光が得られる。このように放電用ガスの種類によって得られる紫外光の波長が異なるので、目的に合わせて封入ガスを選択すればよい。 In addition, as the discharge gas, Kr, Ar / F, Kr / Cl, Kr / F, or the like can be used. When these discharge gases are used, ultraviolet light having center wavelengths derived from Kr 2 , ArF, KrCl, and KrF having 146 nm, 193 nm, 222 nm, and 248 nm, respectively, is obtained. As described above, the wavelength of the ultraviolet light obtained varies depending on the type of the discharge gas, and therefore the sealed gas may be selected in accordance with the purpose.

放電ランプ2を合成石英で構成し、例えば電極に蒸着膜を使用する場合には、先ず合成石英面にクロムを蒸着し、次いでその上に白金、金またはニッケル等を蒸着する。これにより、ランプから放出される真空紫外光で発生する活性酸素の雰囲気中でも、安定性のある電極が形成できる。該電極薄膜を例えば酸によるエッチングにより、メッシュパターンを形成すればメッシュ状電極を完成させることができる。   When the discharge lamp 2 is made of synthetic quartz and a vapor deposition film is used as an electrode, for example, chromium is vapor-deposited on the synthetic quartz surface, and then platinum, gold, nickel, or the like is vapor-deposited thereon. Thereby, a stable electrode can be formed even in an atmosphere of active oxygen generated by vacuum ultraviolet light emitted from the lamp. A mesh electrode can be completed by forming a mesh pattern on the electrode thin film by etching with an acid, for example.

このように構成した放電ランプ2と、反射器具7を組み合わせて図1のような紫外線照射処理装置を完成させる。すなわち、放電ランプ2の非照射面側に適当な間隔dを空けて真空紫外光の透過率が良好な保護ガス、例えば窒素ガス6を噴出する機能を備えた反射器具7を配設する。そして、放電ランプ2と反射器具7とで挟まれた空間における空気を窒素ガスで置換するように、前記放電ランプ2の形状と窒素ガスの流量に応じて間隔dを最適化する。これにより第2のメッシュ状電極3を有する非照射面側から放電ランプ外に放射された真空紫外光は、ほとんど減衰することなく反射器具7に到達し、反射板8で反射したのち再び窒素ガス層を通過して放電ランプ2内に入射し、第1のメッシュ状電極4を有する照射面側から放射される。   The ultraviolet irradiation processing apparatus as shown in FIG. 1 is completed by combining the discharge lamp 2 configured as described above and the reflector 7. That is, a reflector 7 having a function of ejecting a protective gas having a good vacuum ultraviolet light transmittance, for example, nitrogen gas 6, is disposed on the non-irradiated surface side of the discharge lamp 2 at an appropriate interval d. Then, the interval d is optimized according to the shape of the discharge lamp 2 and the flow rate of the nitrogen gas so that the air in the space between the discharge lamp 2 and the reflector 7 is replaced with nitrogen gas. Thereby, the vacuum ultraviolet light radiated out of the discharge lamp from the non-irradiated surface side having the second mesh electrode 3 reaches the reflector 7 with almost no attenuation, and is reflected by the reflector 8 and then again nitrogen gas. The light passes through the layers, enters the discharge lamp 2, and is emitted from the irradiation surface side having the first mesh electrode 4.

このように、本発明に係る紫外線照射処理装置は、従来のように光取り出し窓を有し窒素ガスで充満したランプハウスを用いる必要がなく、照射面側とは反対方向に放射される真空紫外光の進行方向を180°反転させて、照射面側から取り出すことができるので、真空紫外光の利用効率は大幅に改善でき、しかも装置は非常にコンパクトで低コストなものにできる。さらに、放電ランプと反射器具とは直接接触していないので、反射面の剥がれや変形の問題がなく、信頼性の高い紫外線照射処理装置を提供することができる。   Thus, the ultraviolet irradiation processing apparatus according to the present invention does not require the use of a lamp house having a light extraction window and filled with nitrogen gas as in the prior art, and vacuum ultraviolet radiation emitted in the direction opposite to the irradiation surface side. Since the light traveling direction can be reversed 180 ° and taken out from the irradiation surface side, the utilization efficiency of vacuum ultraviolet light can be greatly improved, and the apparatus can be made very compact and low cost. Furthermore, since the discharge lamp and the reflector are not in direct contact, there is no problem of peeling or deformation of the reflecting surface, and a highly reliable ultraviolet irradiation processing apparatus can be provided.

図1において、放電ランプ2の断面における寸法は肉厚約2mm、外側寸法における幅約35mm、同高さ約12mm、および紙面とは垂直方向における長さは約420mmである。また、反射器具7の寸法として、電解研磨したアルミニウム板からなる反射板8の幅は約40mmとした。保護ガス6には窒素ガスを用い、反射板8には径約5mmの窒素ガス噴出孔9をランプの幅方向のほぼ中心部に約30mmの間隔でランプ長手方向に配列させた。そして、反射板8と放電ランプ2との間隔dと窒素ガス流量とをそれぞれ変化させた時の紫外光相対強度を測定する実験を行った。なお、窒素ガス流量は各噴出孔に流れる流量として0〜10リッター/分の範囲で変化させた。以上の条件でランプを点灯し、放電ランプ2の紫外線照射面から2mmの距離における被照射面の紫外光相対照度を測定した。   In FIG. 1, the dimension of the discharge lamp 2 in the cross section is about 2 mm thick, the width of the outer dimension is about 35 mm, the height is about 12 mm, and the length in the direction perpendicular to the paper surface is about 420 mm. In addition, as a dimension of the reflector 7, the width of the reflector 8 made of an electrolytically polished aluminum plate was about 40 mm. Nitrogen gas was used as the protective gas 6, and the nitrogen gas ejection holes 9 having a diameter of about 5 mm were arranged in the reflector plate 8 in the longitudinal direction of the lamp at approximately 30 mm intervals in the center of the lamp in the width direction. An experiment was conducted to measure the relative intensity of ultraviolet light when the distance d between the reflecting plate 8 and the discharge lamp 2 and the nitrogen gas flow rate were changed. The nitrogen gas flow rate was changed in the range of 0 to 10 liters / minute as the flow rate flowing through each ejection hole. The lamp was turned on under the above conditions, and the relative illuminance of ultraviolet light on the irradiated surface at a distance of 2 mm from the ultraviolet irradiation surface of the discharge lamp 2 was measured.

被照射面における紫外光相対照度の測定結果を図2に示す。図2は反射板8と放電ランプ2との間隔dをパラメーターとして、被照射面における波長が172nmの真空紫外光の相対照度とガス流量との関係を示している。図2より反射板8と放電ランプ2との間隔dが小さくなるほど、また保護ガスの流量が増すほど放射照度が増加することがわかる。   The measurement result of the ultraviolet relative illuminance on the surface to be irradiated is shown in FIG. FIG. 2 shows the relationship between the relative illuminance of vacuum ultraviolet light having a wavelength of 172 nm on the irradiated surface and the gas flow rate, with the distance d between the reflector 8 and the discharge lamp 2 as a parameter. 2 that the irradiance increases as the distance d between the reflector 8 and the discharge lamp 2 decreases and the flow rate of the protective gas increases.

特に、反射板8と放電ランプ2との間隔dを6mm以下、好ましくは4mm以下とすることにより高い放射照度を得ることができる。さらに、ガス流量は放射照度を増加させる効果の現れる2リッター/分以上、好ましくは6リッター/分以上とすれば、真空紫外光の利用効率は大きく増加して、約40%の改善が可能である。ただし、ガス流量をむやみに増加させても放射照度は飽和して変わらなくなる。よって、ガス流量はガスの無駄を無くすために、放射照度の飽和する近辺における値に設定するのが賢明である。   In particular, high irradiance can be obtained by setting the distance d between the reflecting plate 8 and the discharge lamp 2 to 6 mm or less, preferably 4 mm or less. Furthermore, if the gas flow rate is 2 liters / minute or more, and preferably 6 liters / minute or more, in which the effect of increasing irradiance is exhibited, the utilization efficiency of vacuum ultraviolet light is greatly increased and can be improved by about 40%. is there. However, even if the gas flow rate is increased excessively, the irradiance is saturated and does not change. Therefore, it is wise to set the gas flow rate to a value in the vicinity of saturation of irradiance in order to eliminate waste of gas.

本発明に係る紫外線照射処理装置を示す断面図である。It is sectional drawing which shows the ultraviolet irradiation processing apparatus which concerns on this invention. 本発明に係る紫外線照射処理装置において、ガス流量と被照射面における紫外光相対照度との関係を示すグラフである。In the ultraviolet irradiation processing apparatus which concerns on this invention, it is a graph which shows the relationship between a gas flow rate and the ultraviolet light relative illumination intensity in a to-be-irradiated surface. 従来の紫外線照射処理装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional ultraviolet irradiation processing apparatus. 従来の真空紫外光源の一例を示す外観図である。It is an external view which shows an example of the conventional vacuum ultraviolet light source.

符号の説明Explanation of symbols

1 放電ガス
2 放電ランプ
3 第2のメッシュ状電極
4 第1のメッシュ状電極
5 被処理物
6 保護ガス
7 反射器具
8 反射板
12 放電ランプ
13 紫外線照射面
14 ベタ状電極
16 メッシュ状電極
41 エキシマランプ
20 紫外線取り出し用窓
22 照射器具
24 ガス導入孔
25 ガス排出孔
DESCRIPTION OF SYMBOLS 1 Discharge gas 2 Discharge lamp 3 2nd mesh electrode 4 1st mesh electrode 5 To-be-processed object 6 Protective gas 7 Reflector 8 Reflector 12 Discharge lamp 13 Ultraviolet irradiation surface 14 Solid electrode 16 Mesh electrode 41 Excimer Lamp 20 UV extraction window 22 Irradiation tool 24 Gas introduction hole 25 Gas discharge hole

Claims (1)

被処理物に紫外線を照射するための紫外線照射処理装置において、前記紫外線照射処理装置は放電ランプと反射器具とを備えており、前記放電ランプは対向する第1のメッシュ状電極と第2のメッシュ状電極とを有しており、
前記第1のメッシュ状電極は被処理物側に配されたものであり、前記反射器具は、前記第2のメッシュ状電極側に、前記放電ランプとの間に空間部を形成するよう配されたものであり、前記空間部には、前記反射器具に設けられたガス噴出孔から噴出したガスが導入されるよう構成されたことを特徴とする、紫外線照射処理装置。
In an ultraviolet irradiation processing apparatus for irradiating an object to be processed with ultraviolet rays, the ultraviolet irradiation processing apparatus includes a discharge lamp and a reflector, and the discharge lamp has a first mesh electrode and a second mesh facing each other. And an electrode
The first mesh electrode is disposed on the workpiece side, and the reflector is disposed on the second mesh electrode side so as to form a space between the discharge lamp and the discharge lamp. The ultraviolet irradiation processing apparatus is characterized in that a gas ejected from a gas ejection hole provided in the reflector is introduced into the space portion.
JP2004066110A 2004-03-09 2004-03-09 Ultraviolet ray irradiation treatment device Pending JP2005259380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066110A JP2005259380A (en) 2004-03-09 2004-03-09 Ultraviolet ray irradiation treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066110A JP2005259380A (en) 2004-03-09 2004-03-09 Ultraviolet ray irradiation treatment device

Publications (1)

Publication Number Publication Date
JP2005259380A true JP2005259380A (en) 2005-09-22

Family

ID=35084916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066110A Pending JP2005259380A (en) 2004-03-09 2004-03-09 Ultraviolet ray irradiation treatment device

Country Status (1)

Country Link
JP (1) JP2005259380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847564A (en) * 2009-03-23 2010-09-29 优志旺电机株式会社 Excimer lamp
TWI485746B (en) * 2011-03-18 2015-05-21 Ushio Electric Inc Long arc metal halogen lamp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847564A (en) * 2009-03-23 2010-09-29 优志旺电机株式会社 Excimer lamp
JP2010225343A (en) * 2009-03-23 2010-10-07 Ushio Inc Excimer lamp
KR101301806B1 (en) 2009-03-23 2013-08-29 우시오덴키 가부시키가이샤 Excimer lamp
TWI485746B (en) * 2011-03-18 2015-05-21 Ushio Electric Inc Long arc metal halogen lamp

Similar Documents

Publication Publication Date Title
US9922814B2 (en) Apparatus and a method for operating a sealed beam lamp containing an ionizable medium
JP2006040867A (en) Excimer lamp apparatus
JP2009532829A5 (en)
JP6217146B2 (en) Light source device, light irradiation device equipped with the light source device, and patterning method of self-assembled monolayer using the light irradiation device
JP2008191252A (en) Light source for exposure and exposure apparatus using the same
US20170040153A1 (en) Apparatus and a Method for Operating a Variable Pressure Sealed Beam Lamp
JP2004111326A (en) Excimer lamp
US7085076B2 (en) Aperture stop assembly for high power laser beams
JP2005259380A (en) Ultraviolet ray irradiation treatment device
JP2001185089A (en) Excimer irradiation device
JP2001300451A (en) Ultraviolet irradiation device
JP2005302551A (en) Excimer lamp and ultraviolet ray irradiation apparatus
JP2005222905A (en) Excimer lamp
JP5148803B2 (en) Silent discharge lamp
JP2002298790A (en) Excimer lighting system
KR20020067426A (en) Substrate processing apparatus using dielectric barrier discharge lamp
JP2003080191A (en) Light irradiation device
JP2004119942A (en) Ultraviolet irradiation device
JPH07288109A (en) Xenon radiation device and object surface quality improving device using it
JPH08124540A (en) Xenon irradiation device and object surface reforming device using the irradiation device
JP2002168999A (en) Light radiation device using dielectric barrier discharge lamp
JP6440102B2 (en) Laser drive lamp
JPH08153492A (en) Dielectric barrier discharge lamp device
JP2017220439A (en) Laser-driving light source device
JP3533918B2 (en) Light source device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213