JP2005257274A - Method and device for detecting interaction of biomolecule using near field light - Google Patents

Method and device for detecting interaction of biomolecule using near field light Download PDF

Info

Publication number
JP2005257274A
JP2005257274A JP2004064932A JP2004064932A JP2005257274A JP 2005257274 A JP2005257274 A JP 2005257274A JP 2004064932 A JP2004064932 A JP 2004064932A JP 2004064932 A JP2004064932 A JP 2004064932A JP 2005257274 A JP2005257274 A JP 2005257274A
Authority
JP
Japan
Prior art keywords
biomolecule
specimen
field light
substrate
interaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004064932A
Other languages
Japanese (ja)
Inventor
Katsutoshi Takahashi
勝利 高橋
Satomi Yoshino
里美 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004064932A priority Critical patent/JP2005257274A/en
Priority to PCT/JP2005/003962 priority patent/WO2005085801A1/en
Publication of JP2005257274A publication Critical patent/JP2005257274A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/12Fluid environment
    • G01Q30/14Liquid environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/20Fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting a weak interaction of a biomolecule and a specimen, and to provide a detection device therefor. <P>SOLUTION: The method for detecting the interaction of the biomolecule fixed to a substrate and the specimen labelled with fluorescence using near field light includes a process for bringing the biomolecule and the specimen into contact with each other in a liquid, a process for irradiating the surface of the biomolecule with near field light using an SNOM probe in the liquid and a process for detecting the fluorescence by near field light. The device for detecting the interaction of the biomolecule fixed to the substrate and the specimen labelled with fluorescent using the near field light is equipped with an irradiation means for irradiating the surface of the biomolecule coming into contact with the specimen in the liquid with the field light and a detection means for detecting the fluorescence excited by the field light. Further, a substrate to which at least one biomolecule is fixed can be also used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、生体分子と検体との、液体中における相互作用を検出する方法および装置に関する。   The present invention relates to a method and apparatus for detecting an interaction between a biomolecule and an analyte in a liquid.

ポストゲノム時代を迎えた今日、タンパク質、糖鎖などの生体分子の機能解明についての研究が盛んに行われている。そして、これらの生体分子と検体との相互作用を検出することは、生体分子の機能解明に重要なことである。特に、癌や糖尿病などの疾患については、タンパク質への糖鎖の付加が関与すると報告されており、糖鎖の付加によるタンパク質の機能解明が重要視されている。そして、タンパク質への糖鎖の付加による生体機能解明には、どのようなタンパク質にどのような糖鎖が付加するのかの糖鎖解析をする必要がある。しかし、糖鎖については、DNAやタンパク質の解析に用いられるシークエンサーや合成機などのデバイスが開発途上にあり、糖鎖の配列決定や試料の増幅を簡易に行えないのが現状である。このため、微量の試料を用いた解析が必要となる。   Today, in the post-genomic era, research on the elucidation of the functions of biomolecules such as proteins and sugar chains has been actively conducted. And detecting the interaction between these biomolecules and the specimen is important for elucidating the functions of the biomolecules. In particular, for diseases such as cancer and diabetes, it has been reported that addition of sugar chains to proteins is involved, and elucidation of protein functions by addition of sugar chains is regarded as important. In order to elucidate biological functions by adding sugar chains to proteins, it is necessary to analyze sugar chains to determine what kind of sugar chains are added to what proteins. However, with regard to sugar chains, devices such as sequencers and synthesizers used for DNA and protein analysis are still under development, and the current situation is that sugar chain sequencing and sample amplification cannot be easily performed. For this reason, analysis using a very small amount of sample is required.

さらに、DNA同士やDNAと検体との相互作用は一般に強いものである一方、タンパク質と検体との相互作用には非常に弱いものがある。例えば、レクチンと糖鎖は、その解離定数が10−6M程度であり、生体内で最も弱い結合であるとされている。このように弱い相互作用を検出するためには、タンパク質および検体の双方が活性を維持しており、且つバインディングフリーでない液体中で測定する必要がある。 Furthermore, while the interaction between DNAs or between DNA and a sample is generally strong, the interaction between proteins and the sample is very weak. For example, a lectin and a sugar chain have a dissociation constant of about 10 −6 M, and are considered to be the weakest bond in vivo. In order to detect such a weak interaction, it is necessary to measure in a liquid in which both the protein and the analyte maintain the activity and are not binding free.

ここで、微量の生体分子と検体との相互作用を検出する方法としては、表面プラズモン共鳴を用いた検出方法が知られている。   Here, a detection method using surface plasmon resonance is known as a method for detecting the interaction between a trace amount of biomolecules and a specimen.

また、微量の生体分子と検体との相互作用を検出する他の方法としては、光の全反射により発生するエバネッセント光を用いるものが知られている(特許文献1参照)。   In addition, as another method for detecting the interaction between a trace amount of biomolecules and a specimen, a method using evanescent light generated by total reflection of light is known (see Patent Document 1).

一方、近接場光顕微鏡(SNOM)プローブを用いた遺伝子解析方法が、知られている(特許文献2参照)。
特開平10−2860号公報 特開2001−165840号公報
On the other hand, a gene analysis method using a near-field light microscope (SNOM) probe is known (see Patent Document 2).
Japanese Patent Laid-Open No. 10-2860 JP 2001-165840 A

しかし、上記の表面プラズモン共鳴を用いた方法では、通常分子量の小さい基質を基板に固定しておき、これに分子量の大きいタンパク質等を結合させ、それによる屈折率の変化を捉えることにより、タンパク質等と基質との相互作用を検出している。従って、例えば、分子量の大きなタンパク質を基板に固定しておいて、これに分子量の小さな糖鎖が相互作用したときには、その屈折率の変化が小さく、検出が難しくなるという問題がある。このため、既知の特定のタンパク質と相互作用する糖鎖をスクリーニングする目的には、表面プラズモン共鳴を用いることは難しい。   However, in the method using surface plasmon resonance, a substrate having a low molecular weight is usually fixed on a substrate, a protein having a high molecular weight is bound to the substrate, and a change in the refractive index caused thereby is detected. It detects the interaction between and the substrate. Therefore, for example, when a protein having a large molecular weight is immobilized on a substrate and a sugar chain having a small molecular weight interacts with this, there is a problem that the change in the refractive index is small and the detection becomes difficult. For this reason, it is difficult to use surface plasmon resonance for the purpose of screening for sugar chains that interact with known specific proteins.

また、上記のエバネッセント光を用いた方法は、生体分子を固定した基板の裏側から光を全反射させて基板表面にエバネッセント光を発生させるものであり、その照射範囲は基板上の数100nmの距離にとどまる。このため、生体分子をこの数100nm以内に平らに固定することが必要となるが、これを精密に制御して固定することは容易ではない。さらに、基板上面に水などの液体が存在する場合は、光を全反射させることが難しく、エバネッセント光を発生させにくいという問題がある。   The above-described method using evanescent light is one in which light is totally reflected from the back side of the substrate on which a biomolecule is fixed to generate evanescent light on the surface of the substrate, and its irradiation range is a distance of several hundred nm on the substrate. Stay on. For this reason, it is necessary to fix the biomolecule flat within this several hundred nm, but it is not easy to precisely control and fix this. Further, when a liquid such as water is present on the upper surface of the substrate, there is a problem that it is difficult to totally reflect light and it is difficult to generate evanescent light.

さらに、上記のSNOMプローブを用いた遺伝子解析方法は、上述のように強い相互作用を示すDNA鎖を対象として、遺伝子地図を解析するために用いられるものであり、タンパク質等による弱い相互作用を検出するものではない。   Furthermore, the gene analysis method using the SNOM probe described above is used for analyzing a genetic map for a DNA strand exhibiting a strong interaction as described above, and detects weak interactions due to proteins or the like. Not what you want.

本発明の課題は、生体分子と検体との弱い相互作用を検出することができる方法および装置を提供することにある。   An object of the present invention is to provide a method and apparatus capable of detecting a weak interaction between a biomolecule and an analyte.

本発明は、基板に固定した生体分子と、蛍光標識した検体との相互作用を、近接場光を用いて検出する方法であって、液体中において前記生体分子と前記検体とを接触させる工程と、液体中において前記生体分子表面にSNOMプローブを用いて近接場光を照射する工程と、前記近接場光により励起された蛍光を検出する工程と、を含むことを特徴とする、前記方法である。
また、本発明は、生体分子が、タンパク質および/または糖鎖である、上記の方法である。
さらに、本発明は、検体が、タンパク質および/または糖鎖である、上記の方法である。
これらの発明により、生体分子と検体との弱い相互作用を検出することが可能となる。
The present invention is a method for detecting the interaction between a biomolecule immobilized on a substrate and a fluorescently labeled specimen using near-field light, the method comprising contacting the biomolecule and the specimen in a liquid; The method includes the steps of: irradiating the surface of the biomolecule with a near-field light in a liquid using a SNOM probe; and detecting fluorescence excited by the near-field light. .
The present invention is also the above method, wherein the biomolecule is a protein and / or a sugar chain.
Furthermore, the present invention is the above method, wherein the specimen is a protein and / or sugar chain.
According to these inventions, it is possible to detect a weak interaction between a biomolecule and a specimen.

また、本発明は、1種または2種以上の生体分子を固定した基板を用いることを特徴とする、上記の方法である。
この発明により、一つの基板において複数の生体分子について、検体との相互作用を検出することが可能となる。
In addition, the present invention is the method described above, wherein a substrate on which one or more biomolecules are immobilized is used.
According to the present invention, it is possible to detect an interaction with a specimen for a plurality of biomolecules on one substrate.

さらに、本発明は、基板に固定した生体分子と、蛍光標識した検体との相互作用を、近接場光を用いて検出する装置であって、前記検体と液体中において接触した前記生体分子の表面に、近接場光を照射する照射手段と、前記近接場光により励起された蛍光を検出する検出手段と、を備えることを特徴とする、前記装置である。
また、本発明は、前記生体分子が、タンパク質および/または糖鎖である、上記の装置である。
さらに、本発明は、前記検体が、タンパク質および/または糖鎖である、上記の装置である。
これらの発明により、生体分子と検体との弱い相互作用を検出することが可能となる。
Furthermore, the present invention is an apparatus for detecting the interaction between a biomolecule immobilized on a substrate and a fluorescently labeled specimen using near-field light, and the surface of the biomolecule in contact with the specimen in a liquid In addition, the apparatus includes: an irradiation unit that irradiates near-field light; and a detection unit that detects fluorescence excited by the near-field light.
The present invention is also the above device, wherein the biomolecule is a protein and / or a sugar chain.
Furthermore, the present invention is the above apparatus, wherein the specimen is a protein and / or a sugar chain.
According to these inventions, it is possible to detect a weak interaction between a biomolecule and a specimen.

また、本発明は、1種または2種以上の生体分子を固定した基板を用いることを特徴とする、上記の装置である。
この発明により、一つの基板において複数の生体分子について、検体との相互作用を検出することが可能となる。
In addition, the present invention is the apparatus described above, wherein a substrate on which one or more types of biomolecules are fixed is used.
According to the present invention, it is possible to detect an interaction with a specimen for a plurality of biomolecules on one substrate.

本発明により、生体分子と検体との弱い相互作用を検出することが可能となる。また、本発明により、一つの基板において複数の生体分子について、検体との相互作用を検出することが可能となる。   According to the present invention, it is possible to detect a weak interaction between a biomolecule and a specimen. In addition, according to the present invention, it is possible to detect an interaction with a specimen for a plurality of biomolecules on one substrate.

以下、本発明の実施の形態について、図面を参照して説明する。
図1は、本発明の検出方法および検出装置を模式的に示す図である。
図1において、生体分子5は、基板1に固定されている。この基板1は、蛍光標識12により標識された検体10を含む液体8の中におかれている。これにより生体分子5と検体10とが接触することとなる。そして、SNOMプローブ20の先端に近接場光30を発生させ、SNOMプローブ20によりAFMモードで基板表面(生体分子表面)を走査する(図1(a))。検体10と生体分子5が相互作用している箇所にSNOMプローブが到達すると、蛍光標識12が近接場光30により励起され、蛍光40が発生することとなる(図1(b))。この発生した蛍光40を検出することにより、生体分子5と検体10との相互作用を検出することが可能となる。なお、ここでSNOMプローブは、本発明の近接場光を照射する照射手段を構成する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram schematically showing a detection method and a detection apparatus of the present invention.
In FIG. 1, the biomolecule 5 is fixed to the substrate 1. The substrate 1 is placed in a liquid 8 containing a specimen 10 labeled with a fluorescent label 12. Thereby, the biomolecule 5 and the specimen 10 come into contact. Then, near-field light 30 is generated at the tip of the SNOM probe 20, and the substrate surface (biomolecule surface) is scanned in the AFM mode by the SNOM probe 20 (FIG. 1A). When the SNOM probe reaches the location where the specimen 10 and the biomolecule 5 interact, the fluorescent label 12 is excited by the near-field light 30 and the fluorescence 40 is generated (FIG. 1B). By detecting the generated fluorescence 40, the interaction between the biomolecule 5 and the specimen 10 can be detected. Here, the SNOM probe constitutes an irradiation means for irradiating the near-field light of the present invention.

このとき、生体分子5と相互作用していない検体については、近接場光30が照射されないため、蛍光を発生することがなく、目的の生体分子5と相互作用している検体のみを検出することが可能となる。   At this time, the specimen that does not interact with the biomolecule 5 is not irradiated with the near-field light 30, so that only the specimen that interacts with the target biomolecule 5 is detected without generating fluorescence. Is possible.

発生した蛍光を検出する手段としては、蛍光を検出できるものであれば特に制限はないが、例えば、光センサを基板1の上部若しくは基板1の裏側に設置することにより、蛍光を検出するものを用いることができる。   The means for detecting the generated fluorescence is not particularly limited as long as it can detect fluorescence. For example, a means for detecting fluorescence by installing an optical sensor on the top of the substrate 1 or on the back side of the substrate 1 can be used. Can be used.

また、蛍光を検出する他の手段としては、例えば、図2に示すように、SNOMプローブにより、蛍光を検出するものでもよい。即ち、図2において、レーザ発生器50で発生したレーザ光52は、ダイクロイックミラー55を介してSNOMプローブ20に入射し、その先端部分で図示しない近接場光が発生する。この近接場光が検体10を標識した蛍光標識12に照射され、蛍光40が発生する。発生した蛍光40の一部は、SNOMプローブ20、ダイクロイックミラー55を介して、光センサ60に到達し、蛍光が検出される。   Further, as another means for detecting fluorescence, for example, as shown in FIG. 2, fluorescence may be detected by an SNOM probe. That is, in FIG. 2, the laser light 52 generated by the laser generator 50 enters the SNOM probe 20 via the dichroic mirror 55, and near-field light (not shown) is generated at the tip portion thereof. This near-field light is applied to the fluorescent label 12 that labels the specimen 10 to generate fluorescence 40. Part of the generated fluorescence 40 reaches the optical sensor 60 via the SNOM probe 20 and the dichroic mirror 55, and the fluorescence is detected.

なお、本発明の検出装置において、液体中で各々の処理を行うための液体貯留手段をさらに備えてもよい。   Note that the detection apparatus of the present invention may further include liquid storage means for performing each processing in the liquid.

本発明に用いる生体分子としては、検体と相互作用するものであれば特に制限はないが、例えば、タンパク質、糖鎖等を挙げることができる。また、本発明に用いる検体としては、生体分子と相互作用するものであれば特に制限はないが、例えば、糖鎖、タンパク質等を挙げることができる。さらに、生体分子と検体との組み合わせの具体例としては、例えば、レクチンと糖鎖等を挙げることができる。これらのレクチンと糖鎖との結合は非常に弱いことが知られており、このような弱い相互作用も、本発明によって検出することが可能となる。   The biomolecule used in the present invention is not particularly limited as long as it interacts with a specimen, and examples thereof include proteins and sugar chains. The specimen used in the present invention is not particularly limited as long as it interacts with a biomolecule, and examples thereof include sugar chains and proteins. Furthermore, specific examples of combinations of biomolecules and specimens include lectins and sugar chains, for example. It is known that the binding between these lectins and sugar chains is very weak, and such a weak interaction can be detected by the present invention.

本発明に用いられる、検体への蛍光標識としては、蛍光を発生するものであれば特に制限はないが、例えば、GFP(Green Fluorescence Protein)やカルシウム指示タンパク質試薬(cameleon)などの蛍光タンパク質を挙げることができる。   The fluorescent label used for the present invention is not particularly limited as long as it generates fluorescence, and examples thereof include fluorescent proteins such as GFP (Green Fluorescence Protein) and calcium indicator protein reagent (cameleon). be able to.

本発明に用いられる基板としては、生体分子を固定できるものであれば特に制限はないが、例えば、ニトロセルロース膜、PVDE膜、金属、ガラスなどから成るものを挙げることができる。特に、ガラス等の透明の材料を用いた場合には、基板の裏面から蛍光を検出することが可能となる。   The substrate used in the present invention is not particularly limited as long as it can fix a biomolecule, and examples thereof include a substrate made of a nitrocellulose film, a PVDE film, a metal, glass or the like. In particular, when a transparent material such as glass is used, fluorescence can be detected from the back surface of the substrate.

基板に生体分子を固定する方法としては、基板に生体分子を固定できるものであれば特に制限はないが、例えば、アミノ結合させる方法、物理的吸着をさせる方法、チオール結合させる方法、抗原抗体反応をさせる方法等を挙げることができる。   The method for immobilizing the biomolecule on the substrate is not particularly limited as long as it can immobilize the biomolecule on the substrate. For example, amino bonding method, physical adsorption method, thiol bonding method, antigen-antibody reaction The method etc. which are made can be mentioned.

本発明に用いられる液体としては、生体分子と検体との相互作用を検出できるものであれば特に制限はないが、例えば、緩衝液等を挙げることができる。緩衝液を用いることにより、生体分子および検体の活性を失うことなく、これらの相互作用を検出することが可能となる。   The liquid used in the present invention is not particularly limited as long as it can detect the interaction between the biomolecule and the specimen, and examples thereof include a buffer solution. By using a buffer solution, it is possible to detect these interactions without losing the activity of the biomolecule and the analyte.

本発明における生体分子と検体とを接触させる方法としては、生体分子と検体が接触できるものであれば特に制限はないが、例えば、検体を含む液体中に、生体分子を固定した基板を浸漬する方法を挙げることができる。これにより、検体が生体分子と接触し、相互作用が比較的強い場合は、より多くの検体が生体分子に吸着または結合することとなる。また、これらの相互作用が比較的弱い場合は、より少ない検体が生体分子に吸着または結合することとなる。   The method for bringing the biomolecule and the specimen into contact in the present invention is not particularly limited as long as the biomolecule and the specimen can be brought into contact with each other. For example, a substrate on which the biomolecule is fixed is immersed in a liquid containing the specimen. A method can be mentioned. As a result, when the specimen comes into contact with the biomolecule and the interaction is relatively strong, more specimen is adsorbed or bound to the biomolecule. In addition, when these interactions are relatively weak, fewer analytes are adsorbed or bound to biomolecules.

本発明に用いられるSNOMプローブとしては、近接場光を発生させることができるものであれば特に制限はない。SNOMプローブ先端では、半径約数10nmの範囲において近接場光を発生させることができ、標的とする生体分子付近の微小領域のみにおいて、検体との相互作用を検出することが可能となる。   The SNOM probe used in the present invention is not particularly limited as long as it can generate near-field light. At the tip of the SNOM probe, near-field light can be generated within a radius of about several tens of nanometers, and the interaction with the specimen can be detected only in a minute region near the target biomolecule.

この場合、生体分子を固定したスポットについて、SNOMプローブを走査させて、検出することが好ましい。なお、生体分子を基板に平坦に固定することは容易ではないため、SNOMプローブを走査させる方法としては、AFMモードによることが好ましい。AFMモードによれば、基板に固定した生体分子のスポットが平坦でない場合でも、その凹凸に応じて、SNOMプローブと、生体分子または検体とを等距離に保つことができ、精度よく検体と生体分子との相互作用を検出することが可能となる。   In this case, it is preferable to detect the spot on which the biomolecule is fixed by scanning the SNOM probe. In addition, since it is not easy to fix a biomolecule to a board | substrate flatly, it is preferable to use the AFM mode as a method of scanning a SNOM probe. According to the AFM mode, even when the spot of the biomolecule fixed on the substrate is not flat, the SNOM probe and the biomolecule or the specimen can be kept equidistant according to the unevenness, and the specimen and the biomolecule can be accurately maintained. It becomes possible to detect the interaction.

本発明に用いられる生体分子を固定した基板としては、1種類の生体分子を固定したもののほか、例えば、図3に示すような、2種以上の生体分子を固定したものを挙げることができる。即ち、図3において、複数の生体分子5は、各々異なる種類のものが基板1に固定されている。この基板1を、検体を含む液体中に浸漬し、SNOMプローブを走査させることにより、各々のスポットの生体分子について、検体との相互作用を検出することが可能となる。これによって、1つの検体について、複数種類の生体分子との相互作用を1つの基板を用いることにより、検出することが可能となる。   Examples of the substrate on which the biomolecules used in the present invention are fixed include those in which two or more types of biomolecules are fixed as shown in FIG. 3 in addition to those in which one type of biomolecule is fixed. That is, in FIG. 3, different types of the plurality of biomolecules 5 are fixed to the substrate 1. By immersing this substrate 1 in a liquid containing the specimen and scanning the SNOM probe, it is possible to detect the interaction of the biomolecules at each spot with the specimen. Thereby, it is possible to detect the interaction with a plurality of types of biomolecules for one specimen by using one substrate.

図1は、本発明の検出方法および検出装置の概略を示す模式図である。FIG. 1 is a schematic diagram showing an outline of a detection method and a detection apparatus of the present invention. 図2は、本発明に用いる蛍光の検出方法および検出装置の1例を示す図である。FIG. 2 is a diagram showing an example of a fluorescence detection method and detection apparatus used in the present invention. 図3は、2種以上の生体分子を固定した基板の例である。FIG. 3 is an example of a substrate on which two or more kinds of biomolecules are immobilized.

符号の説明Explanation of symbols

1 基板
5 生体分子
8 液体
10 検体
12 蛍光標識
20 SNOMプローブ
30 近接場光
40 蛍光
50 レーザ発生器
52 レーザ光
55 ダイクロイックミラー
60 光センサ
DESCRIPTION OF SYMBOLS 1 Substrate 5 Biomolecule 8 Liquid 10 Specimen 12 Fluorescent label 20 SNOM probe 30 Near field light 40 Fluorescence 50 Laser generator 52 Laser light 55 Dichroic mirror 60 Optical sensor

Claims (8)

基板に固定した生体分子と、蛍光標識した検体との相互作用を、近接場光を用いて検出する方法であって、
液体中において前記生体分子と前記検体とを接触させる工程と、
液体中において前記生体分子表面にSNOMプローブを用いて近接場光を照射する工程と、
前記近接場光により励起された蛍光を検出する工程と、
を含むことを特徴とする、前記方法。
A method for detecting the interaction between a biomolecule immobilized on a substrate and a fluorescently labeled specimen using near-field light,
Contacting the biomolecule with the analyte in a liquid;
Irradiating near-field light on the surface of the biomolecule in a liquid using a SNOM probe;
Detecting fluorescence excited by the near-field light;
The method comprising the steps of:
前記生体分子が、タンパク質および/または糖鎖である、請求項1に記載の方法。 The method according to claim 1, wherein the biomolecule is a protein and / or a sugar chain. 前記検体が、タンパク質および/または糖鎖である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the specimen is a protein and / or a sugar chain. 1種または2種以上の生体分子を固定した基板を用いることを特徴とする、請求項1ないし3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein a substrate on which one or more kinds of biomolecules are immobilized is used. 基板に固定した生体分子と、蛍光標識した検体との相互作用を、近接場光を用いて検出する装置であって、
前記検体と液体中において接触した前記生体分子の表面に、近接場光を照射する照射手段と、
前記近接場光により励起された蛍光を検出する検出手段と、
を備えることを特徴とする、前記装置。
An apparatus for detecting the interaction between a biomolecule immobilized on a substrate and a fluorescently labeled specimen using near-field light,
An irradiation means for irradiating the surface of the biomolecule in contact with the specimen in a liquid with near-field light;
Detecting means for detecting fluorescence excited by the near-field light;
The apparatus comprising:
前記生体分子が、タンパク質および/または糖鎖である、請求項5に記載の装置。 The device according to claim 5, wherein the biomolecule is a protein and / or a sugar chain. 前記検体が、タンパク質および/または糖鎖である、請求項5または6に記載の装置。 The apparatus according to claim 5 or 6, wherein the specimen is a protein and / or a sugar chain. 1種または2種以上の生体分子を固定した基板を用いることを特徴とする、請求項5ないし7のいずれかに記載の装置。
The apparatus according to any one of claims 5 to 7, wherein a substrate on which one kind or two or more kinds of biomolecules are fixed is used.
JP2004064932A 2004-03-09 2004-03-09 Method and device for detecting interaction of biomolecule using near field light Pending JP2005257274A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004064932A JP2005257274A (en) 2004-03-09 2004-03-09 Method and device for detecting interaction of biomolecule using near field light
PCT/JP2005/003962 WO2005085801A1 (en) 2004-03-09 2005-03-08 Method and apparatus for detection of biomolecular interaction using near-field light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064932A JP2005257274A (en) 2004-03-09 2004-03-09 Method and device for detecting interaction of biomolecule using near field light

Publications (1)

Publication Number Publication Date
JP2005257274A true JP2005257274A (en) 2005-09-22

Family

ID=34918208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064932A Pending JP2005257274A (en) 2004-03-09 2004-03-09 Method and device for detecting interaction of biomolecule using near field light

Country Status (2)

Country Link
JP (1) JP2005257274A (en)
WO (1) WO2005085801A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808762B1 (en) 2006-07-06 2008-02-29 충북대학교 산학협력단 Detecting Method For Nano Bio-Chip
EP2028252A1 (en) 2007-08-22 2009-02-25 Chisso Corporation Liquid crystal compound having chloronaphthalene moiety, liquid crystal composition, and optical device
JP2009098010A (en) * 2007-10-17 2009-05-07 Fujifilm Corp Cantilever for near-field optical microscope, plasma enhanced fluorescence microscope using the same, and fluorescence detection method
KR101158362B1 (en) * 2011-04-20 2012-06-22 한국과학기술원 Method for analyzing single protein-protein interactions in whole cell lysates
KR101285363B1 (en) 2011-04-20 2013-07-11 한국과학기술원 Apparatus for analyzing single protein-protein interactions in whole cell lysates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3764779B2 (en) * 1996-03-30 2006-04-12 株式会社東北テクノアーチ Analysis method using convex regions
JP4475478B2 (en) * 1999-12-07 2010-06-09 セイコーインスツル株式会社 Gene analysis method and apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808762B1 (en) 2006-07-06 2008-02-29 충북대학교 산학협력단 Detecting Method For Nano Bio-Chip
EP2028252A1 (en) 2007-08-22 2009-02-25 Chisso Corporation Liquid crystal compound having chloronaphthalene moiety, liquid crystal composition, and optical device
US7704409B2 (en) 2007-08-22 2010-04-27 Chisso Corporation Liquid crystal compound having chloronaphthalene moiety, liquid crystal composition, and optical device
JP2009098010A (en) * 2007-10-17 2009-05-07 Fujifilm Corp Cantilever for near-field optical microscope, plasma enhanced fluorescence microscope using the same, and fluorescence detection method
KR101285363B1 (en) 2011-04-20 2013-07-11 한국과학기술원 Apparatus for analyzing single protein-protein interactions in whole cell lysates
CN103582817A (en) * 2011-04-20 2014-02-12 韩国科学技术院 Method for analyzing protein-protein interactions at the single molecule level in a cellular environment, and method for determining the density of proteins activated in the cytosol
KR101167649B1 (en) * 2011-04-20 2012-07-20 한국과학기술원 Apparatus for analyzing single protein-protein interactions in whole cell lysates
WO2012144861A3 (en) * 2011-04-20 2013-03-07 한국과학기술원 Method for analyzing protein-protein interaction on single-molecule level in cell environment, and method for measuring density of protein activated in cytosol
WO2012144859A3 (en) * 2011-04-20 2013-03-21 한국과학기술원 Method and apparatus for analyzing protein-protein interaction on single-molecule level within the cellular environment
KR101249456B1 (en) * 2011-04-20 2013-04-03 한국과학기술원 Method for analyzing single protein-protein interactions in whole cell lysates
KR101158362B1 (en) * 2011-04-20 2012-06-22 한국과학기술원 Method for analyzing single protein-protein interactions in whole cell lysates
US10401367B2 (en) 2011-04-20 2019-09-03 Korea Advanced Institute Of Science And Technology Method and apparatus for analyzing protein-protein interaction on single molecule level within the cellular environment
KR101339819B1 (en) * 2011-04-20 2013-12-10 한국과학기술원 Method for analyzing single protein-protein interactions in whole cell lysates, and Method for Measuring Activated Protein's Concentration in Cell Solution
KR101162919B1 (en) 2011-04-20 2012-07-05 한국과학기술원 Method for analyzing single protein-protein interactions in whole cell lysates, and method for measuring activated protein's concentration in cell solution
JP2014512537A (en) * 2011-04-20 2014-05-22 コリア アドバンスト インスティテュート オブ サイエンスアンド テクノロジー Method for analyzing protein-protein interaction at a single molecule level in a cellular environment and method for measuring activated protein concentration in a cell solution
JP2014514569A (en) * 2011-04-20 2014-06-19 コリア アドバンスト インスティテュート オブ サイエンスアンド テクノロジー Method and apparatus for analyzing protein-protein interaction at a single molecule level in a cellular environment
US9377462B2 (en) 2011-04-20 2016-06-28 Korea Advanced Institute Of Science And Technology Method for analyzing protein-protein interaction on single-molecule level in cell environment, and method for measuring density of protein activated in cytosol
US9423400B2 (en) 2011-04-20 2016-08-23 Korea Advanced Institute Of Science And Technology Method and apparatus for analyzing protein-protein interaction on single-molecule level within the cellular environment
CN105928915A (en) * 2011-04-20 2016-09-07 韩国科学技术院 Method and device for analyzing protein-protein interactions in a cellular environment at the single molecule level
US9733255B2 (en) 2011-04-20 2017-08-15 Korea Advanced Institute Of Science And Technology Method and apparatus for analyzing protein-protein interaction on single-molecule level within the cellular environment
US9964544B2 (en) 2011-04-20 2018-05-08 Korea Advanced Institute Of Science And Technology Method and apparatus for analyzing protein-protein interaction on single-molecule level within the cellular environment
CN105928915B (en) * 2011-04-20 2019-05-28 韩国科学技术院 Method and device for analyzing protein-protein interactions in a cellular environment at the single molecule level
WO2013165065A1 (en) * 2012-05-03 2013-11-07 한국과학기술원 Device for analyzing protein-protein interactions at single molecular level in cell environment

Also Published As

Publication number Publication date
WO2005085801A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
Mori et al. A pretreatment‐free, polymer‐based platform prepared by molecular imprinting and post‐imprinting modifications for sensing intact exosomes
EP2171431B1 (en) Microelectronic sensor device for optical examinations on a wetted surface
US20040091862A1 (en) Method and device for detecting temperature-dependent parameters, such as the association/dissociation parameters and/or the equilibrium constant of complexes comprising at least two components
JP5230149B2 (en) Surface plasmon resonance sensor and biochip
JP5295149B2 (en) Biological material analysis method and biological material analysis cell, chip and apparatus used therefor
CN107075575B (en) Systems and methods for high throughput analysis of conformation in biological entities
JP2007218900A (en) Element for detecting target substance
JP4972295B2 (en) Immunoassay method and biochip
JP2006010534A (en) Core-shell type magnetic particle sensor
CA2829178A1 (en) Rapid quantification of biomolecules in a selectively functionalized nanofluidic biosensor and method thereof
EP1969352A2 (en) Method for increasing signal intensity in an optical waveguide sensor
WO2005085801A1 (en) Method and apparatus for detection of biomolecular interaction using near-field light
JP2007003401A (en) Sample analyzer
EP2224241B1 (en) Carrier for use in measurement of analyte, and method for production thereof
JP5749010B2 (en) Sensor
KR101066598B1 (en) Method of Multiplex Detecting on Microfluidic Chip
JP2006275599A (en) Microsample holder, sensor set for microsample and method of detecting microsample
US7829349B2 (en) Base carrier for detecting target substance, element for detecting target substance, method for detecting target substance using the element, and kit for detecting target substance
KR100808762B1 (en) Detecting Method For Nano Bio-Chip
JP3969361B2 (en) Quantification method for immobilized substances
JP2011107099A (en) Electrochemical analysis chip and electrochemical analysis method
JP2008032420A (en) Method and member for weakening background fluorescence in evernescent wave exciting fluorescence observation
JP4127813B2 (en) Analysis apparatus and analysis method
Sun Label-free sensing on microarrays
US12111316B2 (en) Reference cassette for fluorescence immunoassay diagnostic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120