JP2005256847A - Bearing unit for wheel - Google Patents

Bearing unit for wheel Download PDF

Info

Publication number
JP2005256847A
JP2005256847A JP2002052580A JP2002052580A JP2005256847A JP 2005256847 A JP2005256847 A JP 2005256847A JP 2002052580 A JP2002052580 A JP 2002052580A JP 2002052580 A JP2002052580 A JP 2002052580A JP 2005256847 A JP2005256847 A JP 2005256847A
Authority
JP
Japan
Prior art keywords
mounting
peripheral surface
outer peripheral
inner ring
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002052580A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Sakamoto
潤是 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002052580A priority Critical patent/JP2005256847A/en
Priority to AU2003211730A priority patent/AU2003211730A1/en
Priority to PCT/JP2003/002148 priority patent/WO2003072973A1/en
Publication of JP2005256847A publication Critical patent/JP2005256847A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/581Raceways; Race rings integral with other parts, e.g. with housings or machine elements such as shafts or gear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/123Discs; Drums for disc brakes comprising an annular disc secured to a hub member; Discs characterised by means for mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/134Connection
    • F16D2065/1376Connection inner circumference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/134Connection
    • F16D2065/1384Connection to wheel hub

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the runout of a rotor 2 fixed to an attachment surface 14 of an attachment flange 13, and thereby to suppress judder generated during braking operation. <P>SOLUTION: Attachment holes 15 are formed in a plurality of locations in the circumferential direction of the attachment flange 13. Recessed parts 38 are formed in opening edge circumferential parts of the respective attachment holes 15 over the entire opening edge of the attachment holes 15 so as to be depressed from the attachment surface 14 and to be coaxial with the attachment holes 15. When it is assumed that the inner diameter of each recesses part 38 and the inner diameter of each attachment hole 15 are D and (d), respectively, an equation D=d+(5 to 40 mm) is satisfied. This structure prevents deformation caused by the pressure fitting of a stud 9 into the attachment hole 15 from reaching the attachment surface 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、自動車の車輪並びにロータ或はドラム等の制動用回転体を支持する為の車輪用軸受ユニットの改良に関する。
【0002】
【従来の技術】
自動車の車輪を構成するホイール1及び制動装置であるディスクブレーキを構成するロータ2は、例えば本発明の実施の形態の第1例を示す図1の様な構造により、懸架装置を構成するナックル3に回転自在に支承している。即ち、このナックル3に形成した円形の支持孔4部分に、車輪用軸受ユニット5を構成する、使用時にも回転しない静止側部材である外輪6を、複数本のボルト7により固定している。一方、上記車輪用軸受ユニット5を構成する、使用時に回転する回転側部材であるハブ8に上記ホイール1及びロータ2を、複数本のスタッド9とナット10とにより結合固定している。
【0003】
上記外輪6の内周面には、それぞれが静止側軌道である複列の外輪軌道11a、11bを、外周面中間部には結合フランジ12を、それぞれ形成している。この様な外輪6は、この結合フランジ12を上記ナックル3に、上記各ボルト7で結合する事により、このナックル3に対し固定している。これに対して、上記ハブ8の外周面の一部で、上記外輪6の外端開口(軸方向に関して外とは、自動車への組み付け状態で幅方向外側となる部分を言い、図3を除く各図の左側。反対に、自動車への組み付け状態で幅方向中央側となる、図3を除く各図の右側を、軸方向に関する内と言う。)から突出した部分には、取付フランジ13を形成している。
【0004】
上記ホイール1及びロータ2は、この取付フランジ13の片側面(図示の例では外側面)に設けた取付面14に結合固定している。この為に、上記取付フランジ13の円周方向複数個所で、上記ハブ8の中心軸をその中心とする同一円周上には、それぞれ上記取付フランジ13の両側面を貫通する取付孔15を形成している。又、上記各スタッド9の基端部(図1の右端部)の外周面にセレーション部16を、先半部(図1の左半部)の外周面に雄ねじ部17(後述する図2、4、5参照)を、それぞれ形成している。そして、上記各スタッド9のセレーション部16を上記各取付孔15に圧入する事により、上記各スタッド9の基端部を上記取付フランジ13に、この取付フランジ13に対する回転を阻止した状態で固定している。
【0005】
そして、上記取付面14に上記ロータ2を重ね合わせ、更に、このロータ2の片側面に上記ホイール1を重ね合わせている。この状態で上記各スタッド9の先端部を、上記ホイール1及びロータ2にそれぞれ設けた通孔18、19に挿通して、上記ホイール1の片側面から突出させている。そして、このホイール1の片側面から突出させた、上記スタッド9の先端部に設けた雄ねじ部17に、上記ナット10を螺合し、更に緊締している。この構成により、上記ホイール1及びロータ2を、上記取付フランジ13の取付面14に結合固定している。
【0006】
又、上記ハブ8は、ハブ本体20と内輪21とを組み合わせて成る。このうちのハブ本体20の中間部外周面で、上記複列の外輪軌道11a、11bのうちの外側の外輪軌道11aに対向する部分には、回転側軌道である第一の内輪軌道22を、上記ハブ本体20に対し直接形成している。更に、このハブ本体20の内端部外周面に形成した小径段部23に上記内輪21を外嵌固定して、上記ハブ8を構成している。そして、この内輪21の外周面に形成した、やはり回転側軌道である第二の内輪軌道24を、上記複列の外輪軌道11a、11bのうちの内側の外輪軌道11bに対向させている。又、図示の例の場合、上記ハブ本体20の内端部を径方向外方に塑性変形させて成るかしめ部25により上記内輪21の内端面を抑え付けて、この内輪21を上記ハブ本体20に対し固定している。
【0007】
又、上記各外輪軌道11a、11bと上記第一、第二の内輪軌道22、24との間には、それぞれが転動体である玉26、26を複数個ずつ、それぞれ保持器27、27により保持した状態で転動自在に設けている。この構成により、背面組み合わせである複列アンギュラ型の玉軸受を構成し、前記外輪6の内側に上記ハブ8を、回転自在に、且つ、ラジアル荷重及びスラスト荷重を支承自在に支持している。尚、上記外輪6の両端部内周面と、上記ハブ8の中間部外周面及び上記内輪21の内端部外周面との間には、それぞれシールリング28a、28bを設けて、上記各玉26、26を設けた内部空間と外部とを遮断している。更に、図示の例は、駆動輪(FR車及びRR車の後輪、FF車の前輪、4WD車の全輪)用の車輪用軸受ユニット5である為、上記ハブ本体20の中心部に、スプライン孔29を形成している。そして、このスプライン孔29に、等速ジョイント30に付属のスプライン軸31を挿入している。
【0008】
上述の様な車輪用転がり軸受ユニット5の使用時には、図1に示す様に、外輪6をナックル3に固定すると共に、ハブ8の取付フランジ13に、図示しないタイヤを組み合わせたホイール1及び制動用回転体であるロータ2を固定する。又、このうちのロータ2と、上記ナックル3に固定した、図示しないサポート及びキャリパとを組み合わせて、制動用のディスクブレーキを構成する。制動時には、上記ロータ2を挟んで設けた1対のパッドを、このロータ2の制動用摩擦面である両側面に押し付ける。尚、本明細書中で制動用摩擦面とは、制動用回転体がロータである場合には、このロータの軸方向両側面を言い、制動用回転体がドラムである場合には、このドラムの内周面を言う。
【0009】
ところで、自動車の制動時にしばしば、ジャダーと呼ばれる、不快な騒音を伴う振動が発生する事が知られている。この様な振動の原因としては、ロータ2の側面とパッドのライニングとの摩擦状態の不均一等、各種の原因が知られているが、上記ロータ2の振れも、大きな原因となる事が知られている。即ち、このロータ2の側面はこのロータ2の回転中心に対して、本来直角となるべきものであるが、不可避な製造誤差等により、完全に直角にする事は難しい。この結果、自動車の走行時に上記ロータ2の側面は、多少とは言え、回転軸方向(図1の左右方向)に振れる事が避けられない。
【0010】
この様な振れ(図1の左右方向への変位量)が大きくなると、制動の為に1対のパッドのライニングを上記ロータ2の両側面に押し付けた場合に、上記ジャダーが発生する。又、上記取付フランジ13の側面にドラムブレーキを構成するドラムを固定した場合に、このドラムの内周面がドラムの回転中心に対して完全に平行でなければ、シューをこの内周面に押し付けた場合にやはりジャダーの如き振動が発生する。この様な原因で発生するジャダーを抑える為には、上記ロータ2の側面の軸方向の振れ(アキシアル振れ)、又はドラムの内周面の径方向の振れを抑える(向上させる)事が重要となる。
【0011】
【発明が解決しようとする課題】
ところが、従来の車輪用軸受ユニットの場合、以下の理由により、上述の様な制動用回転体の制動用摩擦面(ロータ2の側面又はドラムの内周面)の振れが生じ易くなる可能性がある。
先ず、前述の図1に示す様な、ハブ8の中間部外周面に第一の内輪軌道22を直接形成する、所謂第三世代の車輪用軸受ユニット5の場合、第一、第二の内輪軌道22、24の平行度の確保が面倒になる。即ち、ハブ本体に1対の内輪を外嵌固定する、所謂第二世代の車輪用軸受ユニットの場合には、これら1対の内輪を外嵌する為にハブ本体に形成した幅広の小径段部の外周面は、これら両内輪を外嵌する部分のほぼ全長に亙って直径が変化しない、単一円筒面である。この様な単一円筒面は比較的加工が容易であり、従って、上記小径段部に互いに同径である1対の内輪を外嵌する事により、上記ハブの外周面に第一、第二の内輪軌道を設けた場合、これら1対の内輪の精度さえ確保できれば、回転中心に対するこれら両内輪軌道の平行度を確保し易い。
【0012】
これに対して、上記第三世代の車輪用軸受ユニットの場合には、ハブ本体20の軸方向中間部で上記第一の内輪軌道22を形成した部分と、第二の内輪軌道24を設けた内輪21を外嵌固定する為の小径段部23とが段付形状となる。従って、上記第二世代の車輪用軸受ユニットに比べ、上記第一、第二の内輪軌道22、24の平行度の悪化に基づく、上記制動用回転体の制動用摩擦面の振れが生じ易くなる可能性がある。
【0013】
又、上記図1に示す様な、ハブ本体20の内端部を径方向外方に塑性変形させて成るかしめ部25により内輪21の内端面を抑え付けて、この内輪21を上記ハブ本体20に対し固定する構造の場合、このかしめ部25を形成する際のこのハブ本体20の固定方法によっては、取付フランジ13が微妙に変形する可能性がある。即ち、上記かしめ部25を形成する際、上記取付フランジ13を支持固定した状態で、上記ハブ本体20の内端部に、この内端部を塑性変形すべく大きな荷重が加わると、この荷重に基づいて上記取付フランジ13の片側面に設けた取付面14が、微妙に変形する可能性がある。そしてこの結果、この取付面14に重ね合わせて固定する上記制動用回転体の制動用摩擦面が、振れ易くなる可能性がある。
【0014】
更に、上記図1に示す様な構造の場合、上記制動用回転体を支持する複数本のスタッド9を、上記取付フランジ13に設けた各取付孔15に圧入固定する。この為、この圧入に伴って、上記取付面14の一部でこれら各取付孔15の開口縁周囲部分が、この取付孔15の内周面と上記スタッド9のセレーション部16との係合に基づいて、上記取付面14に対して凸となる方向に微妙に突出する可能性がある。特に、この様な各取付孔15の開口縁周囲部分の突出量が、これら各取付孔15毎に異なる場合には、上記取付面14に重ね合わせる状態で結合固定する上記制動用回転体の制動用摩擦面が振れ易くなり、好ましくない。
上述の様に、第一の内輪軌道22をハブ本体20に直接形成し、しかもこのハブ本体20の内端部にかしめ部25を形成する場合には、上記制動用回転体の制動用摩擦面が振れ易くなる為、上述の様なスタッド9の圧入に基づく制動用摩擦面の振れを抑える事が、特に重要となる。
本発明の車輪用軸受ユニットは、この様な事情に鑑みて、スタッドの圧入に基づく制動用摩擦面の振れ、延いてはこの制動用摩擦面の振れに基づくジャダーの発生を防止できる構造を実現すべく発明したものである。
【0015】
【課題を解決するための手段】
本発明の車輪用軸受ユニットは、複列の静止側軌道を有し、使用時にも回転しない静止側部材と、複列の回転側軌道を有し、使用時に回転する回転側部材と、この回転側部材の外周面に設けられた取付フランジと、この取付フランジを軸方向に貫通する状態で形成された複数の取付孔と、これら各取付孔にそれぞれの基端部を圧入する事により、上記取付フランジに固定された複数本のスタッドと、上記各静止側軌道と各回転側軌道との間にそれぞれ設けられた複数個の転動体とを備える。
又、上記静止側部材と上記回転側部材とのうちの径方向内方に位置する一方の部材は、外周面の軸方向中間部に直接形成された上記静止側軌道又は回転側軌道である第一の内輪軌道と、外周面の軸方向一端部に形成された小径段部と、この小径段部に外嵌固定した内輪とを備えたものである。そして、この内輪は、外周面に上記静止側軌道又は回転側軌道である第二の内輪軌道を形成すると共に、上記一方の部材の一端部を径方向外方に塑性変形させて成るかしめ部によりその一端面を抑え付けられたものである。
又、使用時に、上記各スタッド及びこれら各スタッドに螺合したナットにより制動用回転体を、上記取付フランジの片側面に設けた取付面に重ね合わせる状態で結合固定している。
【0016】
特に、本発明の車輪用軸受ユニットに於いては、上記取付面の一部で上記各取付孔の開口縁周囲部分に凹部を、この取付面から凹入する状態でこの取付孔と実質的に同心に、この取付孔の開口縁全周に亙って設けている。そして、上記凹部の内径をDとし、上記取付孔の内径をdとした場合に、D=d+(5〜40mm)としている。
【0017】
【作用】
上述の様に構成する本発明の車輪用軸受ユニットによれば、制動時にジャダーを発生しにくくできる。即ち、各スタッドの圧入の際に、これら各スタッドの外周面と各取付孔の内周面との係合に基づいて、これら各取付孔の開口縁周囲部分が取付面に対して凸となる方向に突出した場合でも、この突出はこの開口縁周囲部分に設けた凹部内で生じる。この為、この突出に基づいて上記取付面が変形する事を防止でき、この取付面に重ね合わせて固定する制動用回転体の制動用摩擦面が振れにくくなる。しかも、上記各取付孔毎に突出量が異なる場合でも、上述の様にこの様な突出は上記各凹部内で生じる為、この様な突出量の差に基づく上記制動用回転体の制動用摩擦面の振れも抑える事ができる。この結果、この様な制動用摩擦面の振れに基づく上記ジャダーを発生しにくくできる。
【0018】
又、上記凹部の内径をDとし、上記取付孔の内径をdとした場合に、D=d+(5〜40mm)としている為、上述の様な突出に基づく上記取付面の変形を抑えつつ、この取付面と制動用回転体との接触面積を確保して、この制動用回転体を安定して(がたつきなく)支持する事ができる。尚、上記凹部の内径Dがd+5mm未満(D<d+5mm)の場合には、上記スタッドの圧入に基づく上記取付面の変形により、上記制動用回転体の制動用摩擦面の振れが大きくなって、上記ジャダーが発生し易くなる。一方、上記凹部の内径Dがd+40mmを超える(D>d+40mm)場合には、上記取付面と制動用回転体との接触面積を確保しにくくなる。特に、上記スタッドに螺合したナットを緊締した場合に於ける、上記制動用回転体の変形が大きくなって、この制動用回転体の支持が不安定に(がたつきが生じ易く)なる。この結果、この制動用回転体の制動用摩擦面の振れが大きくなって、上記ジャダーが発生し易くなる。
【0019】
次の表は、本発明者が、図1に示す様な車輪用軸受ユニットを使用して、上記凹部の内径Dの大きさとジャダーの発生との関係を知る為に行なった実験の結果を示している。
【表1】

Figure 2005256847
尚、この表1中、「〇」印はジャダーの発生が殆どなかった事を、「×」印はジャダーが問題となる程発生した事を、それぞれ示している。この表1の記載から明らかな様に、上記凹部の内径Dを、取付孔の内径d+5mm以上(D≧d+5mm)とすれば、ジャダーの発生を抑えられる。言い換えれば、上記スタッドの圧入に基づく上記各取付孔の開口縁周囲部分の変形は、これら各取付孔の開口縁から2.5mm以上の範囲に及ばない事が分かる。
【0020】
【発明の実施の形態】
図1〜3は、本発明の実施の形態の第1例を示している。尚、本発明の特徴は、回転側部材であるハブ8の外周面に設けた取付フランジ13の片側面である、取付面14の面精度を十分に確保して、この取付面14に結合固定する制動用回転体であるロータ2の振れを抑える点にある。その他の車輪用軸受ユニット5の基本的構成及び作用に就いては、前述の[従来の技術]の項で上記図1を用いて説明した通りであるから、重複する説明は省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。
【0021】
ハブ8を構成するハブ本体20の外周面には、車輪を構成するホイール1、及び、制動用回転体である上記ロータ2を固定する為の取付フランジ13を設けている。この取付フランジ13の円周方向複数個所で、上記ハブ8の回転中心をその中心とする同一円周上には、複数(本例の場合は5個)の取付孔15、15を5等間隔で形成し、これら各取付孔15、15に、それぞれスタッド9の基端部を圧入固定している。これら各スタッド9は、基端面に外向フランジ状の鍔部32を、外周面の基端寄り部分にセレーション部16を、同じく先半部にナット10を固定する為の雄ねじ部17を、それぞれ形成している。
【0022】
特に、本例の場合には、上記取付面14の一部で上記各取付孔15、15の開口縁周囲部分に凹部38、38を、この取付面14から軸方向に凹入する状態で、これら各取付孔15、15と同心に、これら各取付孔15、15の開口縁全周に亙って設けている。そして、上記各凹部38、38の内径をDとし、上記各取付孔15、15の内径をdとした場合に、D=d+(5〜40mm)としている。尚、上記各凹部38、38の軸方向深さhは、上記各スタッド9の圧入に伴う上記取付面14の変形量(0.1〜0.2mm程)以上とするが、余裕を持たせても0.5mm程度設ければ十分(0.2mm≦h≦0.5mm)である。上記各凹部38、38の深さhを、最大でも0.5mm程度に抑えれば、これら各凹部38、38の形成に伴う前記取付フランジ13の強度低下は、殆ど無視できる。
【0023】
上述の様に構成する本例の車輪用軸受ユニットによれば、制動時にジャダーを発生しにくくできる。即ち、上記各スタッド9の圧入の際に、これら各スタッド9の外周面と各取付孔15、15の内周面との係合に基づいて、これら各取付孔15、15の開口縁周囲部分が上記取付面14に対して凸となる方向に突出した場合でも、この突出はこの開口縁周囲部分に設けた上記凹部38、38内で生じる。この為、この突出に基づいて上記取付面14が変形する事を防止でき、この取付面14に重ね合わせて固定する制動用回転体の制動用摩擦面(ロータ2の側面又はドラムの内周面)が振れにくくなる。しかも、上記各取付孔15、15毎に突出量が異なる場合でも、上述の様にこの様な突出は上記各凹部38、38内で生じる為、この様な突出量の差に基づく上記制動用回転体の制動用摩擦面の振れも抑える事ができる。この結果、この様な制動用摩擦面の振れに基づく上記ジャダーを発生しにくくできる。
【0024】
又、上記各凹部38、38の内径をDとし、上記取付孔15、15の内径をdとした場合に、D=d+(5〜40mm)としている為、上述の様な突出に基づく上記取付面14の変形を抑えつつ、この取付面14と制動用回転体との接触面積を確保して、この制動用回転体を安定して(がたつきなく)支持する事ができる。尚、上記各凹部38、38の内径Dがd+5mm未満(D<d+5mm)の場合には、上記スタッド9の圧入に基づく上記取付面14の変形により、上記制動用回転体の制動用摩擦面の振れが大きくなって、上記ジャダーが発生し易くなる。一方、上記各凹部38、38の内径Dがd+40mmを超える(D>d+40mm)場合には、上記取付面14と制動用回転体との接触面積を確保しにくくなって、この制動用回転体の支持が不安定に(がたつきが生じ易く)なる。この結果、この制動用回転体の制動用摩擦面の振れが大きくなって、上記ジャダーが発生し易くなる。
【0025】
尚、本例の場合、上記スタッド9に設けたセレーション部16の外周面を上記取付孔15に係合させる事により、このスタッド9をこの取付孔15に圧入固定しているが、この様な構造に限定されるものではない。例えば、上記スタッドと取付孔とを締り嵌めのみにより圧入固定したり、この取付孔を非円形とすると共に、上記スタッドの外周面のうちのこの取付孔の内周面と整合する部分を同じく非円形とし、これら非円形部分同士を締り嵌めにより圧入固定したりしても良い。要は、上記スタッドを上記取付孔に圧入固定して、ナットの緊締時にも共回りを防止できる構造であれば、何れの構造の場合でも、本発明を適用できる。
【0026】
次に、図4は、本発明の実施の形態の第2例を示している。上述した第1例の場合が、外輪6の内端部内周面と内輪21の内端部外周面との間にシールリング28b(図1)を設けているのに対して、本例の場合には、外輪6の内端部内周面と内輪21の内端部外周面との間に回転速度検出装置を構成するエンコーダ33を設けている。即ち、本例の場合は、上記内輪21の内端部外周面に上記エンコーダ33を、締り嵌めにより外嵌固定している。このエンコーダ33は、断面L字状の芯金34の内側面に、フェライト粉末や希土類磁石粉末等を混入したゴム磁石であるエンコーダ本体35を、全周に亙って添着して成る。このエンコーダ本体35は軸方向に着磁されており、着磁方向は円周方向に関して交互に且つ等間隔に変化させている。従って上記エンコーダ33の軸方向内側面にはS極とN極とが、円周方向に関して交互に且つ等間隔で配置されている。
【0027】
そして、このエンコーダ本体35に微小隙間を介して対向させた、図示しない回転検出センサの検出面の近傍を、このエンコーダ本体35を構成する上記ゴム磁石のN極とS極とが交互に通過すると、上記回転検出センサ内を流れる磁束の密度が変化し、この回転検出センサの出力が変化する。この出力が変化する周波数は、車輪の回転速度に比例するので、この出力信号を図示しない制御器に送れば、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)を適正に制御できる。その他の構成及び作用に就いては、前述した第1例の場合と同様である。
【0028】
次に、図5は、本発明の実施の形態の第3例を示している。前述した第1例並びに上述した第2例が、駆動輪(FR車及びRR車の後輪、FF車の前輪、4WD車の前輪)を支持する為の構造で、且つ、使用時にも回転しない静止側部材を外輪6とし、この外輪6の径方向内方に、使用時に回転する回転側部材であるハブ8を設けた構造を示している。これに対して、本例の場合には、従動輪(FR車及びRR車の前輪、FF車の後輪)を支持する為の構造で、且つ、静止側部材を内径側に位置する支持軸36とすると共に、この支持軸36の径方向外方に回転側部材であるハブ8aを設けた構造を示している。即ち、本例の場合は、懸架装置を構成する図示しない車軸の端部に結合固定自在の上記支持軸36に、それぞれが静止側軌道である第一、第二の内輪軌道22、24を設けている。このうちの第一の内輪軌道22は、上記支持軸36の中間部外周面に直接形成している。又、これと共に、この支持軸36の外端部外周面に形成した小径段部23aに、上記第二の内輪軌道24を外周面に形成した内輪21aを、外嵌固定している。そして、上記支持軸36の外端部を径方向外方に塑性変形させて成るかしめ部25aにより、上記内輪21aの外端面を抑え付けている。
【0029】
一方、上記支持軸36の径方向外方には、回転側部材である上記ハブ8aを設けている。このハブ8aの内周面には、それぞれが回転側軌道である複列の外輪軌道11a、11bを、外周面には取付フランジ13を、それぞれ形成している。車輪を構成するホイール1は、制動装置を構成する為のロータ2(図1参照)と共に、上記取付フランジ13の取付面14に、この取付フランジ13に設けた各取付孔15に圧入固定したスタッド9とこのスタッド9に螺着するナット10(図1参照)とにより結合固定する。そして、上記各外輪軌道11a、11bと、上記第一、第二の内輪軌道22、24との間には、それぞれが転動体である玉26、26を複数個ずつ、それぞれ保持器27、27により保持した状態で転動自在に設けている。又、上記ハブ8aの外端開口部をキャップ37により塞ぐと共に、このハブ8aの内端部内周面と上記支持軸36の中間外周面との間をシールリング28aにより塞ぎ、上記各玉26、26を設けた空間に異物が侵入する事を防止している。その他の構成及び作用に就いては、前述した第1〜2例の場合と同様である。
【0030】
【発明の効果】
本発明の車輪用軸受ユニットは、以上に述べた通り構成され作用するので、制動時に発生する不快な騒音や振動を十分に抑制できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を、ホイール及びロータを取り付けた状態で示す断面図。
【図2】図1のA部に相当する拡大断面図。
【図3】ハブ本体を取り出して図1の左方から見た図。
【図4】本発明の実施の形態の第2例を示す断面図。
【図5】同第3例を示す断面図。
【符号の説明】
1 ホイール
2 ロータ
3 ナックル
4 支持孔
5 車輪用軸受ユニット
6 外輪
7 ボルト
8、8a ハブ
9 スタッド
10 ナット
11a、11b 外輪軌道
12 結合フランジ
13 取付フランジ
14 取付面
15 取付孔
16 セレーション部
17 雄ねじ部
18 通孔
19 通孔
20 ハブ本体
21、21a 内輪
22 第一の内輪軌道
23、23a 小径段部
24 第二の内輪軌道
25、25a かしめ部
26 玉
27 保持器
28a、28b シールリング
29 スプライン孔
30 等速ジョイント
31 スプライン軸
32 鍔部
33 エンコーダ
34 芯金
35 エンコーダ本体
36 支持軸
37 キャップ
38 凹部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a wheel bearing unit for supporting a vehicle wheel and a braking rotator such as a rotor or a drum.
[0002]
[Prior art]
A wheel 1 constituting a wheel of an automobile and a rotor 2 constituting a disc brake as a braking device have, for example, a knuckle 3 constituting a suspension device having a structure as shown in FIG. 1 showing a first example of an embodiment of the present invention. It is supported rotatably. That is, an outer ring 6 that is a stationary member that does not rotate during use and constitutes the wheel bearing unit 5 is fixed to the circular support hole 4 portion formed in the knuckle 3 by a plurality of bolts 7. On the other hand, the wheel 1 and the rotor 2 are coupled and fixed by a plurality of studs 9 and nuts 10 to a hub 8 that constitutes the wheel bearing unit 5 and is a rotating side member that rotates during use.
[0003]
Double-row outer ring raceways 11a and 11b, each of which is a stationary side raceway, are formed on the inner peripheral surface of the outer ring 6, and a coupling flange 12 is formed at an intermediate portion of the outer peripheral surface. Such an outer ring 6 is fixed to the knuckle 3 by connecting the connecting flange 12 to the knuckle 3 with the bolts 7. On the other hand, a part of the outer peripheral surface of the hub 8 is an outer end opening of the outer ring 6 (outside with respect to the axial direction means a portion that is on the outer side in the width direction when assembled to an automobile, and excludes FIG. 3. The left side of each figure, on the contrary, the right side of each figure excluding FIG. Forming.
[0004]
The wheel 1 and the rotor 2 are coupled and fixed to a mounting surface 14 provided on one side surface (an outer surface in the illustrated example) of the mounting flange 13. For this purpose, mounting holes 15 penetrating both side surfaces of the mounting flange 13 are formed on the same circumference around the central axis of the hub 8 at a plurality of locations in the circumferential direction of the mounting flange 13. doing. Further, the serration portion 16 is provided on the outer peripheral surface of the base end portion (right end portion in FIG. 1) of each stud 9, and the male screw portion 17 (FIG. 2, which will be described later) is provided on the outer peripheral surface of the front half portion (left half portion in FIG. 1). 4, 5). Then, by pressing the serration portion 16 of each stud 9 into each mounting hole 15, the base end portion of each stud 9 is fixed to the mounting flange 13 while preventing rotation with respect to the mounting flange 13. ing.
[0005]
The rotor 2 is overlaid on the mounting surface 14, and the wheel 1 is overlaid on one side of the rotor 2. In this state, the leading end portion of each stud 9 is inserted into through holes 18 and 19 provided in the wheel 1 and the rotor 2, respectively, and protrudes from one side surface of the wheel 1. Then, the nut 10 is screwed into a male screw portion 17 provided at the front end portion of the stud 9 that protrudes from one side surface of the wheel 1 and further tightened. With this configuration, the wheel 1 and the rotor 2 are coupled and fixed to the mounting surface 14 of the mounting flange 13.
[0006]
The hub 8 is a combination of a hub body 20 and an inner ring 21. The first inner ring raceway 22 which is the rotation side raceway is formed on the outer peripheral surface of the intermediate portion of the hub body 20 on the portion facing the outer outer raceway 11a of the double row outer ring raceways 11a and 11b. The hub body 20 is formed directly. Further, the hub 8 is configured by externally fixing the inner ring 21 to a small diameter step portion 23 formed on the outer peripheral surface of the inner end portion of the hub body 20. And the 2nd inner ring track 24 which is the rotation side track again formed in the outer peripheral surface of this inner ring 21 is made to face inner ring race 11b among the above-mentioned double row outer ring tracks 11a and 11b. In the case of the illustrated example, the inner end surface of the inner ring 21 is held down by a caulking portion 25 formed by plastically deforming the inner end portion of the hub main body 20 in the radially outward direction. It is fixed against.
[0007]
Also, between the outer ring raceways 11a and 11b and the first and second inner ring raceways 22 and 24, a plurality of balls 26 and 26, each of which is a rolling element, are provided by retainers 27 and 27, respectively. It is provided so that it can roll while being held. With this configuration, a double-row angular type ball bearing which is a rear combination is configured, and the hub 8 is supported inside the outer ring 6 so as to be rotatable and to be able to support radial load and thrust load. Seal rings 28a and 28b are provided between the inner peripheral surface of both ends of the outer ring 6 and the outer peripheral surface of the intermediate part of the hub 8 and the outer peripheral surface of the inner end of the inner ring 21, respectively. , 26 is cut off from the internal space and the outside. Further, since the illustrated example is a wheel bearing unit 5 for driving wheels (rear wheels of FR and RR vehicles, front wheels of FF vehicles, all wheels of 4WD vehicles), A spline hole 29 is formed. The spline shaft 31 attached to the constant velocity joint 30 is inserted into the spline hole 29.
[0008]
When the wheel rolling bearing unit 5 as described above is used, as shown in FIG. 1, the outer ring 6 is fixed to the knuckle 3 and the mounting flange 13 of the hub 8 is combined with a tire 1 (not shown) and the brake 1. The rotor 2 which is a rotating body is fixed. A brake disc brake is configured by combining the rotor 2 and the support and caliper (not shown) fixed to the knuckle 3. At the time of braking, a pair of pads provided with the rotor 2 interposed therebetween are pressed against both side surfaces which are the frictional surfaces for braking of the rotor 2. In this specification, the braking friction surface means both axial surfaces of the rotor when the braking rotator is a rotor, and this drum when the braking rotator is a drum. Say the inner surface.
[0009]
By the way, it is known that vibration accompanied by unpleasant noise, called judder, often occurs during braking of an automobile. There are various known causes of such vibration, such as uneven friction between the side surface of the rotor 2 and the lining of the pad. However, it is known that the vibration of the rotor 2 is also a major cause. It has been. That is, the side surface of the rotor 2 should be perpendicular to the rotation center of the rotor 2, but it is difficult to make it completely perpendicular due to inevitable manufacturing errors. As a result, it is inevitable that the side surface of the rotor 2 swings in the direction of the rotation axis (left-right direction in FIG. 1), although it is somewhat, when the automobile is running.
[0010]
When such deflection (the amount of displacement in the left-right direction in FIG. 1) increases, the judder occurs when the lining of a pair of pads is pressed against both side surfaces of the rotor 2 for braking. Further, when the drum constituting the drum brake is fixed to the side surface of the mounting flange 13, the shoe is pressed against the inner peripheral surface unless the inner peripheral surface of the drum is completely parallel to the rotation center of the drum. If this happens, vibration like judder will occur. In order to suppress judder caused by such a cause, it is important to suppress (improve) axial runout (axial runout) of the side surface of the rotor 2 or radial runout of the inner peripheral surface of the drum. Become.
[0011]
[Problems to be solved by the invention]
However, in the case of the conventional wheel bearing unit, the vibration of the braking friction surface (the side surface of the rotor 2 or the inner peripheral surface of the drum) of the braking rotor as described above may easily occur due to the following reasons. is there.
First, in the case of the so-called third-generation wheel bearing unit 5 in which the first inner ring raceway 22 is directly formed on the outer peripheral surface of the intermediate portion of the hub 8 as shown in FIG. 1, the first and second inner rings Ensuring the parallelism of the tracks 22 and 24 becomes troublesome. That is, in the case of a so-called second-generation wheel bearing unit in which a pair of inner rings are fitted and fixed to the hub body, a wide, small-diameter step formed on the hub body to fit the pair of inner rings. The outer peripheral surface is a single cylindrical surface whose diameter does not change over almost the entire length of the portion where both the inner rings are fitted. Such a single cylindrical surface is relatively easy to process. Accordingly, by fitting a pair of inner rings having the same diameter to the small diameter step portion, the first and second outer surfaces of the hub are first and second. When the inner ring raceways are provided, it is easy to ensure the parallelism of these inner ring raceways with respect to the center of rotation as long as the accuracy of the pair of inner rings can be ensured.
[0012]
On the other hand, in the case of the third-generation wheel bearing unit, a portion in which the first inner ring raceway 22 is formed in the axial intermediate portion of the hub body 20 and a second inner ring raceway 24 are provided. A small-diameter step portion 23 for externally fixing the inner ring 21 has a stepped shape. Therefore, compared to the second generation wheel bearing unit, the braking friction surface of the braking rotating body is likely to be shaken based on the deterioration of the parallelism of the first and second inner ring raceways 22 and 24. there is a possibility.
[0013]
Further, as shown in FIG. 1, the inner end surface of the inner ring 21 is held down by a caulking portion 25 formed by plastically deforming the inner end portion of the hub body 20 radially outward, and the inner ring 21 is attached to the hub body 20. In the case of the structure that is fixed to the mounting flange 13, the mounting flange 13 may be slightly deformed depending on the fixing method of the hub body 20 when the caulking portion 25 is formed. That is, when the caulking portion 25 is formed, if a large load is applied to the inner end portion of the hub body 20 in a state where the mounting flange 13 is supported and fixed, the inner end portion is plastically deformed. Based on this, the mounting surface 14 provided on one side of the mounting flange 13 may be slightly deformed. As a result, there is a possibility that the braking friction surface of the braking rotating body that is fixed to the mounting surface 14 in an overlapping manner is likely to swing.
[0014]
Further, in the case of the structure as shown in FIG. 1, a plurality of studs 9 that support the braking rotating body are press-fitted and fixed in the respective mounting holes 15 provided in the mounting flange 13. For this reason, along with this press-fitting, the peripheral portion of the opening edge of each of the mounting holes 15 in part of the mounting surface 14 is engaged with the inner peripheral surface of the mounting hole 15 and the serration portion 16 of the stud 9. On the basis of this, there is a possibility of slightly protruding in a direction that is convex with respect to the mounting surface 14. In particular, when the amount of protrusion around the opening edge of each mounting hole 15 is different for each mounting hole 15, the braking rotating body that is coupled and fixed in a state of being superimposed on the mounting surface 14 is braked. This is not preferable because the friction surface for use tends to shake.
As described above, when the first inner ring raceway 22 is formed directly on the hub main body 20 and the caulking portion 25 is formed on the inner end portion of the hub main body 20, the braking friction surface of the braking rotating body is used. Therefore, it is particularly important to suppress the vibration of the braking friction surface based on the press-fitting of the stud 9 as described above.
In view of such circumstances, the wheel bearing unit of the present invention realizes a structure capable of preventing the occurrence of vibration of the frictional surface for braking based on the press-fitting of the stud, and hence the occurrence of judder based on the vibration of the frictional surface for braking. Invented as much as possible.
[0015]
[Means for Solving the Problems]
The wheel bearing unit of the present invention has a stationary side track that does not rotate even when in use, a stationary side member that does not rotate even when in use, a rotating side member that has a double sided rotation side track and rotates during use, and this rotation By mounting a mounting flange provided on the outer peripheral surface of the side member, a plurality of mounting holes formed in a state of passing through the mounting flange in the axial direction, and press-fitting the respective base end portions into these mounting holes, A plurality of studs fixed to the mounting flange, and a plurality of rolling elements provided between the stationary track and the rotating track, respectively.
One of the stationary side member and the rotational side member located radially inward is the stationary side track or the rotational side track formed directly on the axially intermediate portion of the outer peripheral surface. One inner ring raceway, a small-diameter step portion formed at one axial end portion of the outer peripheral surface, and an inner ring that is externally fitted and fixed to the small-diameter step portion. The inner ring forms a second inner ring raceway which is the stationary side raceway or the rotation side raceway on the outer peripheral surface, and a caulking portion formed by plastically deforming one end portion of the one member radially outward. The one end surface is suppressed.
In use, the rotating body for braking is coupled and fixed in a state of being overlapped on the mounting surface provided on one side surface of the mounting flange by the studs and nuts screwed to the studs.
[0016]
In particular, in the wheel bearing unit of the present invention, a recess is formed around the opening edge of each mounting hole in a part of the mounting surface, and the mounting hole is substantially in a state of being recessed from the mounting surface. Concentrically, it is provided over the entire periphery of the opening edge of the mounting hole. When the inner diameter of the recess is D and the inner diameter of the mounting hole is d, D = d + (5 to 40 mm).
[0017]
[Action]
According to the wheel bearing unit of the present invention configured as described above, judder is less likely to occur during braking. That is, when the studs are press-fitted, the peripheral portion of the opening edge of each mounting hole is convex with respect to the mounting surface based on the engagement between the outer peripheral surface of each stud and the inner peripheral surface of each mounting hole. Even when projecting in the direction, this projection occurs in a recess provided around the opening edge. For this reason, it is possible to prevent the mounting surface from being deformed based on this protrusion, and it is difficult for the braking friction surface of the braking rotor to be overlapped and fixed to the mounting surface to swing. Moreover, even if the amount of protrusion differs for each mounting hole, such a protrusion occurs in each of the recesses as described above. Therefore, the braking friction of the brake rotating body based on such a difference in the amount of protrusion. Surface deflection can also be suppressed. As a result, it is possible to make it difficult to generate the judder based on the vibration of the braking friction surface.
[0018]
Further, when the inner diameter of the recess is D and the inner diameter of the mounting hole is d, D = d + (5 to 40 mm), so that the deformation of the mounting surface due to the protrusion as described above is suppressed, A contact area between the mounting surface and the braking rotator can be secured, and the braking rotator can be supported stably (without rattling). When the inner diameter D of the recess is less than d + 5 mm (D <d + 5 mm), the deformation of the mounting surface due to the press-fitting of the stud increases the vibration of the braking friction surface of the braking rotor. The judder is likely to occur. On the other hand, when the inner diameter D of the recess exceeds d + 40 mm (D> d + 40 mm), it is difficult to ensure a contact area between the mounting surface and the braking rotator. In particular, when the nut screwed to the stud is tightened, the deformation of the braking rotator becomes large, and the support of the braking rotator becomes unstable (rattle easily occurs). As a result, the vibration of the braking friction surface of the braking rotator becomes large and the judder is likely to occur.
[0019]
The following table shows the results of experiments conducted by the present inventor in order to know the relationship between the size of the inner diameter D of the recess and the occurrence of judder using the wheel bearing unit as shown in FIG. ing.
[Table 1]
Figure 2005256847
In Table 1, “◯” indicates that judder is hardly generated, and “x” indicates that judder is problematic. As is apparent from the description in Table 1, the occurrence of judder can be suppressed by setting the inner diameter D of the recess to be equal to or larger than the inner diameter d + 5 mm (D ≧ d + 5 mm) of the mounting hole. In other words, it can be seen that the deformation of the periphery of the opening edge of each mounting hole due to the press-fitting of the stud does not reach a range of 2.5 mm or more from the opening edge of each mounting hole.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show a first example of an embodiment of the present invention. The feature of the present invention is that the mounting surface 14, which is one side surface of the mounting flange 13 provided on the outer peripheral surface of the hub 8 that is the rotation side member, has sufficient surface accuracy to be coupled and fixed to the mounting surface 14. It is in the point which suppresses the shake of the rotor 2 which is a rotating body for braking. Since the basic configuration and operation of the other wheel bearing unit 5 are the same as those described with reference to FIG. 1 in the above-mentioned [Prior Art] section, overlapping descriptions are omitted or simplified. Hereinafter, the characteristic part of the present invention will be mainly described.
[0021]
On the outer peripheral surface of the hub main body 20 constituting the hub 8, there are provided a mounting flange 13 for fixing the wheel 1 constituting the wheel and the rotor 2 which is a braking rotator. At a plurality of locations in the circumferential direction of the mounting flange 13, a plurality (5 in this example) of mounting holes 15, 15 are arranged at equal intervals on the same circumference centered on the rotation center of the hub 8. The base end portion of the stud 9 is press-fitted and fixed in each of the mounting holes 15, 15. Each of these studs 9 is formed with an outward flange-shaped flange portion 32 on the base end surface, a serration portion 16 on the proximal end portion of the outer peripheral surface, and a male screw portion 17 for fixing the nut 10 to the front half portion. doing.
[0022]
In particular, in the case of this example, in a state where the concave portions 38 and 38 are recessed from the mounting surface 14 in the axial direction in a part of the mounting surface 14 around the opening edge of the mounting holes 15 and 15, These mounting holes 15 and 15 are provided concentrically over the entire periphery of the opening edge of each of the mounting holes 15 and 15. When the inner diameter of each of the recesses 38 and 38 is D and the inner diameter of each of the mounting holes 15 and 15 is d, D = d + (5 to 40 mm). The depth h in the axial direction of each of the recesses 38 is equal to or greater than the amount of deformation (about 0.1 to 0.2 mm) of the mounting surface 14 caused by the press-fitting of the studs 9, but with a margin. However, it is sufficient to provide about 0.5 mm (0.2 mm ≦ h ≦ 0.5 mm). If the depth h of each of the concave portions 38, 38 is suppressed to about 0.5 mm at the maximum, a decrease in strength of the mounting flange 13 due to the formation of the concave portions 38, 38 can be almost ignored.
[0023]
According to the wheel bearing unit of the present example configured as described above, judder can be hardly generated during braking. That is, when the studs 9 are press-fitted, portions around the opening edges of the mounting holes 15 and 15 based on the engagement between the outer peripheral surfaces of the studs 9 and the inner peripheral surfaces of the mounting holes 15 and 15. Even if it protrudes in a direction that is convex with respect to the mounting surface 14, this protrusion occurs in the recesses 38, 38 provided around the opening edge. For this reason, it is possible to prevent the mounting surface 14 from being deformed based on this protrusion, and the braking friction surface (the side surface of the rotor 2 or the inner peripheral surface of the drum) of the braking rotating body fixed to the mounting surface 14 in an overlapping manner. ) Becomes difficult to shake. In addition, even if the amount of protrusion differs for each of the mounting holes 15 and 15, such protrusions occur in the recesses 38 and 38 as described above. The vibration of the braking friction surface of the rotating body can also be suppressed. As a result, it is possible to make it difficult to generate the judder based on the vibration of the braking friction surface.
[0024]
Further, when the inner diameter of each of the recesses 38 and 38 is D and the inner diameter of the mounting holes 15 and 15 is d, D = d + (5 to 40 mm). While suppressing the deformation of the surface 14, a contact area between the mounting surface 14 and the braking rotator can be ensured, and the braking rotator can be supported stably (without rattling). When the inner diameter D of each of the recesses 38 is less than d + 5 mm (D <d + 5 mm), the deformation of the mounting surface 14 due to the press-fitting of the stud 9 causes deformation of the braking friction surface of the braking rotor. The deflection becomes large and the judder is likely to occur. On the other hand, when the inner diameter D of each of the recesses 38 is greater than d + 40 mm (D> d + 40 mm), it is difficult to secure a contact area between the mounting surface 14 and the braking rotator. Support becomes unstable (rattle easily occurs). As a result, the vibration of the braking friction surface of the braking rotator becomes large and the judder is likely to occur.
[0025]
In this example, the stud 9 is press-fitted and fixed in the mounting hole 15 by engaging the outer peripheral surface of the serration portion 16 provided in the stud 9 with the mounting hole 15. The structure is not limited. For example, the stud and the mounting hole are press-fitted and fixed only by an interference fit, or the mounting hole is made non-circular, and the portion of the outer peripheral surface of the stud that is aligned with the inner peripheral surface of the mounting hole is also not A circular shape may be used, and these non-circular portions may be press-fitted and fixed by an interference fit. In short, the present invention can be applied to any structure as long as the stud can be press-fitted and fixed in the mounting hole to prevent co-rotation even when the nut is tightened.
[0026]
Next, FIG. 4 shows a second example of the embodiment of the present invention. In the case of the first example described above, the seal ring 28 b (FIG. 1) is provided between the inner peripheral surface of the inner end portion of the outer ring 6 and the outer peripheral surface of the inner end portion of the inner ring 21. The encoder 33 is provided between the inner peripheral surface of the inner end portion of the outer ring 6 and the outer peripheral surface of the inner end portion of the inner ring 21. That is, in the case of this example, the encoder 33 is externally fixed to the outer peripheral surface of the inner end portion of the inner ring 21 by an interference fit. The encoder 33 is formed by attaching an encoder main body 35, which is a rubber magnet mixed with ferrite powder, rare earth magnet powder, or the like, to the inner surface of an L-shaped cored bar 34 over the entire circumference. The encoder body 35 is magnetized in the axial direction, and the magnetization direction is changed alternately and at equal intervals in the circumferential direction. Accordingly, the south pole and the north pole are alternately arranged at equal intervals in the circumferential direction on the inner side surface of the encoder 33 in the axial direction.
[0027]
When the N pole and the S pole of the rubber magnet constituting the encoder body 35 alternately pass through the vicinity of the detection surface of a rotation detection sensor (not shown) opposed to the encoder body 35 through a minute gap. The density of the magnetic flux flowing through the rotation detection sensor changes, and the output of the rotation detection sensor changes. Since the frequency at which the output changes is proportional to the rotational speed of the wheel, the antilock brake system (ABS) and the traction control system (TCS) can be appropriately controlled by sending this output signal to a controller (not shown). Other configurations and operations are the same as those of the first example described above.
[0028]
Next, FIG. 5 shows a third example of the embodiment of the present invention. The first example described above and the second example described above are structures for supporting the driving wheels (the rear wheels of the FR and RR vehicles, the front wheels of the FF vehicle, the front wheels of the 4WD vehicle), and do not rotate even when used. A structure is shown in which the stationary side member is an outer ring 6 and a hub 8 that is a rotating side member that rotates in the radial direction of the outer ring 6 in use is provided. On the other hand, in the case of this example, it is a structure for supporting the driven wheel (the front wheel of the FR vehicle and the RR vehicle, the rear wheel of the FF vehicle), and the support shaft that positions the stationary member on the inner diameter side. 36, and a hub 8a which is a rotation side member is provided on the outer side in the radial direction of the support shaft 36. That is, in the case of this example, the first and second inner ring raceways 22 and 24, each of which is a stationary side raceway, are provided on the support shaft 36 that can be coupled and fixed to the end portion of the axle (not shown) constituting the suspension device. ing. Of these, the first inner ring raceway 22 is formed directly on the outer peripheral surface of the intermediate portion of the support shaft 36. At the same time, an inner ring 21 a having the second inner ring raceway 24 formed on the outer peripheral surface is externally fitted and fixed to a small diameter step portion 23 a formed on the outer peripheral surface of the outer end portion of the support shaft 36. The outer end surface of the inner ring 21a is held down by a caulking portion 25a formed by plastic deformation of the outer end portion of the support shaft 36 radially outward.
[0029]
On the other hand, the hub 8a which is a rotation side member is provided outside the support shaft 36 in the radial direction. Double-row outer ring raceways 11a and 11b, each of which is a rotation side raceway, are formed on the inner peripheral surface of the hub 8a, and a mounting flange 13 is formed on the outer peripheral surface. A wheel 1 constituting a wheel, together with a rotor 2 (see FIG. 1) for constituting a braking device, is a stud that is press-fitted and fixed to each mounting hole 15 provided in the mounting flange 13 on a mounting surface 14 of the mounting flange 13. 9 and a nut 10 (see FIG. 1) that is screwed onto the stud 9. And between each said outer ring track 11a, 11b, and said 1st, 2nd inner ring track 22, 24, the ball | bowl 26, 26 which is each a rolling element, respectively, respectively, the holder | retainer 27, 27, respectively. It is provided so as to be able to roll while being held by. Further, the outer end opening of the hub 8a is closed with a cap 37, and the gap between the inner peripheral surface of the hub 8a and the intermediate outer peripheral surface of the support shaft 36 is closed with a seal ring 28a. The foreign matter is prevented from entering the space provided with 26. About another structure and effect | action, it is the same as that of the case of the 1st-2nd example mentioned above.
[0030]
【The invention's effect】
Since the wheel bearing unit of the present invention is configured and operates as described above, unpleasant noise and vibration generated during braking can be sufficiently suppressed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first example of an embodiment of the present invention with a wheel and a rotor attached.
FIG. 2 is an enlarged cross-sectional view corresponding to part A in FIG.
FIG. 3 is a view of the hub body taken out and viewed from the left side of FIG.
FIG. 4 is a sectional view showing a second example of the embodiment of the present invention.
FIG. 5 is a sectional view showing the third example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wheel 2 Rotor 3 Knuckle 4 Support hole 5 Wheel bearing unit 6 Outer ring 7 Bolt 8, 8a Hub 9 Stud 10 Nut 11a, 11b Outer raceway 12 Coupling flange 13 Mounting flange 14 Mounting surface 15 Mounting hole 16 Serration part 17 Male thread part 18 Through hole 19 Through hole 20 Hub body 21, 21a Inner ring 22 First inner ring raceway 23, 23a Small diameter step 24 Second inner ring raceway 25, 25a Caulking part 26 Ball 27 Cage 28a, 28b Seal ring 29 Spline hole 30 etc. Speed joint 31 Spline shaft 32 Hook 33 Encoder 34 Core 35 Encoder body 36 Support shaft 37 Cap 38 Recess

Claims (1)

複列の静止側軌道を有し、使用時にも回転しない静止側部材と、複列の回転側軌道を有し、使用時に回転する回転側部材と、この回転側部材の外周面に設けられた取付フランジと、この取付フランジを軸方向に貫通する状態で形成された複数の取付孔と、これら各取付孔にそれぞれの基端部を圧入する事により、上記取付フランジに固定された複数本のスタッドと、上記各静止側軌道と各回転側軌道との間にそれぞれ設けられた複数個の転動体とを備え、
上記静止側部材と上記回転側部材とのうちの径方向内方に位置する一方の部材は、外周面の軸方向中間部に直接形成された上記静止側軌道又は回転側軌道である第一の内輪軌道と、外周面の軸方向一端部に形成された小径段部と、この小径段部に外嵌固定した内輪とを備えたものであり、この内輪は、外周面に上記静止側軌道又は回転側軌道である第二の内輪軌道を形成すると共に、上記一方の部材の一端部を径方向外方に塑性変形させて成るかしめ部によりその一端面を抑え付けられたものであり、
使用時に、上記各スタッド及びこれら各スタッドに螺合したナットにより制動用回転体を、上記取付フランジの片側面に設けた取付面に重ね合わせる状態で結合固定する車輪用軸受ユニットに於いて、
上記取付面の一部で上記各取付孔の開口縁周囲部分に凹部を、この取付面から凹入する状態でこの取付孔と実質的に同心に、この取付孔の開口縁全周に亙って設けており、この凹部の内径をDとし、上記取付孔の内径をdとした場合に、D=d+(5〜40mm)とした事を特徴とする車輪用軸受ユニット。
A stationary member having a double-row stationary side track that does not rotate even when in use, a rotating side member having a double-row rotating side track that rotates during use, and provided on the outer peripheral surface of the rotating side member A mounting flange, a plurality of mounting holes formed in a state of passing through the mounting flange in the axial direction, and a plurality of fixing holes fixed to the mounting flange by press-fitting respective base end portions into the mounting holes. A stud, and a plurality of rolling elements provided between each stationary side track and each rotating side track,
One member located radially inward of the stationary member and the rotating member is the first stationary track or the rotating track formed directly on the axially intermediate portion of the outer peripheral surface. An inner ring raceway, a small-diameter step portion formed at one end of the outer peripheral surface in the axial direction, and an inner ring that is externally fitted and fixed to the small-diameter step portion, the inner ring is provided on the outer peripheral surface with the stationary side track or The second inner ring raceway that is the rotation side raceway is formed, and the one end surface of the one member is suppressed by a caulking portion that is plastically deformed radially outward.
In a wheel bearing unit that, in use, is coupled and fixed in a state where the rotating body for braking is overlapped with a mounting surface provided on one side surface of the mounting flange by the studs and nuts screwed to the studs.
A recess is formed in a part of the mounting surface around the opening edge of each mounting hole, and substantially recessed concentrically with the mounting hole in a state of being recessed from the mounting surface, over the entire opening edge of the mounting hole. The wheel bearing unit is characterized in that D = d + (5 to 40 mm), where D is the inner diameter of the recess and d is the inner diameter of the mounting hole.
JP2002052580A 2002-02-28 2002-02-28 Bearing unit for wheel Pending JP2005256847A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002052580A JP2005256847A (en) 2002-02-28 2002-02-28 Bearing unit for wheel
AU2003211730A AU2003211730A1 (en) 2002-02-28 2003-02-26 Bearing unit for wheels
PCT/JP2003/002148 WO2003072973A1 (en) 2002-02-28 2003-02-26 Bearing unit for wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052580A JP2005256847A (en) 2002-02-28 2002-02-28 Bearing unit for wheel

Publications (1)

Publication Number Publication Date
JP2005256847A true JP2005256847A (en) 2005-09-22

Family

ID=27764340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052580A Pending JP2005256847A (en) 2002-02-28 2002-02-28 Bearing unit for wheel

Country Status (3)

Country Link
JP (1) JP2005256847A (en)
AU (1) AU2003211730A1 (en)
WO (1) WO2003072973A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074357A (en) * 2006-09-25 2008-04-03 Jtekt Corp Hub unit
JP2021063564A (en) * 2019-10-16 2021-04-22 日本精工株式会社 Hub unit bearing with power generator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157202A (en) * 1989-11-14 1991-07-05 Nissan Motor Co Ltd Bolt press-in part structure for hub
JPH0550177U (en) * 1991-12-13 1993-07-02 桐生機械株式会社 Disk rotor device
JP3091990B2 (en) * 1993-12-10 2000-09-25 光洋精工株式会社 Fastening structure
JPH10181304A (en) * 1996-12-25 1998-07-07 Toyota Motor Corp Hub unit bearing for wheel
JP2000038004A (en) * 1998-07-22 2000-02-08 Koyo Seiko Co Ltd Hub unit for vehicle
FR2807431B1 (en) * 2000-04-06 2002-07-19 Adir NOVEL PROCESS FOR THE SYNTHESIS OF PERINDOPRIL AND ITS PHARMACEUTICALLY ACCEPTABLE SALTS
JP3773025B2 (en) * 2000-05-29 2006-05-10 株式会社ジェイテクト Axle bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074357A (en) * 2006-09-25 2008-04-03 Jtekt Corp Hub unit
JP2021063564A (en) * 2019-10-16 2021-04-22 日本精工株式会社 Hub unit bearing with power generator
JP7251440B2 (en) 2019-10-16 2023-04-04 日本精工株式会社 Hub unit bearing with generator

Also Published As

Publication number Publication date
AU2003211730A1 (en) 2003-09-09
WO2003072973A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
JP3580002B2 (en) Rolling bearing unit with rotation speed detector
WO2002090133A1 (en) Rotary support for wheel with encoder
JP3656530B2 (en) Combination seal ring with encoder and rolling bearing unit for wheel support incorporating this
JP2000234624A (en) Bearing unit for wheel and manufacture thereof
US7802363B2 (en) Method for forming a wheel bearing unit
JP2003294048A (en) Sealing device
JP4175139B2 (en) Manufacturing method of wheel bearing unit
JP2007100789A (en) Wheel bearing device with rotation speed detector
JP2005256847A (en) Bearing unit for wheel
JPWO2003072974A1 (en) Wheel bearing unit
JP2000006610A (en) Rolling bearing unit combining with another article
JP2003002003A (en) Bearing unit for wheel
JP2003130069A (en) Rolling bearing unit for driving wheel with encoder
JP2003279425A (en) Roller bearing unit for wheel support
JP2004176730A (en) Roller bearing unit for wheel with encoder
JP2002187406A (en) Wheel driving gear
JP2007292092A (en) Seal ring with encoder and rolling bearing unit with encoder
JP2004098885A (en) Vehicular rolling bearing device
JP2004019934A (en) Roller bearing unit for wheels
JP4656917B2 (en) Wheel bearing device with rotation speed detector
JP2006132547A (en) Wheel bearing unit
JP3491394B2 (en) Rolling bearing unit with tone wheel
JP2004255893A (en) Bearing unit for vehicle wheel
JPH08278318A (en) Rotary sensor for wheel support bearing
JP2004332938A (en) Assembled seal ring with encoder and rolling bearing unit supporting axle assembling the same