JP2005256114A - Method for producing high wear resistant and high corrosion resistant stainless steel material - Google Patents

Method for producing high wear resistant and high corrosion resistant stainless steel material Download PDF

Info

Publication number
JP2005256114A
JP2005256114A JP2004071110A JP2004071110A JP2005256114A JP 2005256114 A JP2005256114 A JP 2005256114A JP 2004071110 A JP2004071110 A JP 2004071110A JP 2004071110 A JP2004071110 A JP 2004071110A JP 2005256114 A JP2005256114 A JP 2005256114A
Authority
JP
Japan
Prior art keywords
stainless steel
steel material
less
corrosion resistance
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004071110A
Other languages
Japanese (ja)
Other versions
JP4383210B2 (en
Inventor
Shuhei Tsutsumi
修平 堤
Yuji Ikegami
雄二 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2004071110A priority Critical patent/JP4383210B2/en
Publication of JP2005256114A publication Critical patent/JP2005256114A/en
Application granted granted Critical
Publication of JP4383210B2 publication Critical patent/JP4383210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily produce a material having wear resistance and corrosion resistance required for parts of weaving machine etc. <P>SOLUTION: A slab of stainless steel material, composed of 0.03-0.30% C, ≤3.0% Si, ≤3.0% Mn, 5.0-20.0% Ni, >15.0%-30.0% Cr, ≤0.030% N and the balance Fe with inevitable impurities, is prepared. After applying hot-rolling to the slab, a solid solution heat-treatment is performed and successively, cold-rolling is performed and further, the carbide and the carbonitride are precipitated by applying continuous annealing in the temperature range of 700-950°C, and thereafter, a process for finish cold-rolling is provided as the producing method for the stainless steel material excellent in the wear resistance and the corrosion resistance. Further, the cold-rolling is performed and successively, the precipitation of the carbide by applying the continuous annealing in the temperature range of 700-950°C, is repeated at one or more times and thereafter, the finish cold-rolling is applied. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐摩耗性及び耐食性が要求されるステンレス鋼材に関する。詳細には、耐摩耗性及び耐食性を要求される、例えば、筬羽、ヘルド等のような機料品用途に適した高強度ステンレス鋼材に関する。   The present invention relates to a stainless steel material that requires wear resistance and corrosion resistance. More specifically, the present invention relates to a high-strength stainless steel material that is required for wear resistance and corrosion resistance and that is suitable for use in equipment such as wings and healds.

図6の織機の模式図を用いて機織の基本動作について説明する。図6中の筬羽、ヘルドは、それぞれ経糸、緯糸をガイドするために用いられるものである。緯糸は、ヘルドによって支えられて交互に上下運動し、等間隔に配列された筬羽の間を通過する。一方、経糸は、緯糸が交互に上下運動する毎に、例えばエアージェットやウオータージェットの動力により駆動され、緯糸の間を通過する。次に、経糸の通過後に筬羽が前後に動いて、緯糸、経糸が織物へと織られる。   The basic operation of the loom will be described with reference to the schematic diagram of the loom of FIG. The wings and healds in FIG. 6 are used to guide the warp and the weft, respectively. The weft is supported by the heald and moves up and down alternately and passes between the wings arranged at equal intervals. On the other hand, the warp is driven by the power of, for example, an air jet or a water jet each time the wefts alternately move up and down, and passes between the wefts. Next, after the warp passes, the wings move back and forth, and the weft and the warp are woven into a woven fabric.

機織時には糸は高速で通過するので、上記のように緯糸、経糸と接触している筬羽、ヘルドは一定期間使用すると摩耗してくる。筬羽、ヘルドが摩耗すると、摩耗部が糸切れや毛羽立ちの原因となるため、そのつど交換が必要となる。そのため、筬羽、ヘルドの糸に対する耐摩耗性は、筬羽、ヘルドの寿命を決定する最も重要な品質の一つと言える。   Since the yarn passes at high speed during weaving, the weft, the cocoon and the heald that are in contact with the warp, as described above, wear out when used for a certain period of time. When the wings and healds wear, the worn parts cause thread breakage and fluffing, and therefore must be replaced each time. Therefore, it can be said that the wear resistance of the wing and heald yarn is one of the most important qualities that determine the life of the wing and heald.

機織時の周囲の雰囲気は、ウオータージェット方式の織機では常時湿潤環境にある。また、エアージェット方式の織機の場合でも、染料などにより腐食環境にさらされる場合が多い。そのため、筬羽、ヘルドに錆が発生した場合には、摩耗を受けた場合と同様、錆発生箇所が糸切れや毛羽立ちの原因となる。従って、筬羽、ヘルドについては、耐食性も要求される。   The ambient atmosphere at the time of weaving is always a moist environment in a water jet loom. Even in the case of an air jet loom, it is often exposed to a corrosive environment by a dye or the like. For this reason, when rust is generated on the wings and healds, the rusted portion causes thread breakage and fluffing as in the case of wear. Therefore, corrosion resistance is also required for wings and healds.

従って、機織部品には、SUS301ハード材に代表されるオーステナイト系ステンレス鋼や、SUS420J2に代表される炭化物を含有するマルテンサイト系ステンレス鋼などの、高強度ステンレス鋼が用いられている。
特開2003−105504号公報 特開2003−147493号公報
Therefore, high strength stainless steel such as austenitic stainless steel represented by SUS301 hard material and martensitic stainless steel containing carbide represented by SUS420J2 is used for the weaving parts.
JP 2003-105504 A JP 2003-147493 A

ところで、前記SUS301ハード材は耐食性を有しているが、機織部品用には耐磨耗性が不十分である。そのため、セラミックコーティング方法等により、磨耗を受ける表層部を硬質化させる対応策がとられてきた。ところが、このような表面処理方法は製造コストが高くなるという問題点があった。   By the way, although the SUS301 hard material has corrosion resistance, the wear resistance is insufficient for the weaving parts. For this reason, measures have been taken to harden the surface layer portion that is subject to wear by a ceramic coating method or the like. However, such a surface treatment method has a problem that the manufacturing cost becomes high.

一方SUS420J2は耐摩耗性に優れるが、耐食性に有効なCr量が少ないため、耐食性に劣っている。また、強度を確保するために、焼入れや焼戻しを行うので製造コストが高くなるという問題点があった。   On the other hand, SUS420J2 is excellent in wear resistance, but is inferior in corrosion resistance due to a small amount of Cr effective for corrosion resistance. Moreover, in order to ensure intensity | strength, since hardening and tempering were performed, there existed a problem that manufacturing cost became high.

耐食性を保ちつつ耐摩耗性を向上させるには、オーステナイト系ステンレス鋼の耐摩耗性を向上させる方法が有効である。特開2003−105504号公報には、オーステナイト系ステンレス鋼において、圧延後に長時間熱処理を行うことにより、母相にCr炭窒化物を多量に析出させて耐摩耗性を向上させる内容の技術が記載されている。   In order to improve the wear resistance while maintaining the corrosion resistance, a method for improving the wear resistance of the austenitic stainless steel is effective. Japanese Patent Application Laid-Open No. 2003-105504 describes a technique for improving wear resistance by precipitating a large amount of Cr carbonitride in the parent phase by performing heat treatment for a long time after rolling in austenitic stainless steel. Has been.

しかし、この方法では、粗大なCr炭化物および炭窒化物が多量に析出し、これらを起点に冷間圧延時に耳割れが発生して、圧延時に破断の危険が高くなるという問題があった。さらに、耐食性に有効である母相中のCr量が炭化物および炭窒化物に取られることから、耐食性が劣化するという問題もあった。   However, this method has a problem that a large amount of coarse Cr carbides and carbonitrides are precipitated, and ear cracks occur during cold rolling starting from these, and the risk of breakage increases during rolling. Furthermore, since the amount of Cr in the matrix that is effective for corrosion resistance is taken by carbides and carbonitrides, there is also a problem that the corrosion resistance deteriorates.

従って本発明は、機織部品等に必要な耐摩耗性及び耐食性を具備した材料を、より容易に作製し、提供することにある。   Accordingly, it is an object of the present invention to more easily produce and provide a material having wear resistance and corrosion resistance necessary for a weaving part or the like.

前記課題を解決するために、本発明の第1の態様は、下記の工程を備えた(以下%はmass%を示す。)ことを特徴とする耐摩耗性及び耐食性に優れたステンレス鋼材の製造方法である。
(a)成分組成として、C:0.03〜0.30%、Si:3.0以下、Mn:3.0%以下、Ni:5.0〜20.0%、Cr:15.0越え〜30.0%以下、N:0.030%以下を含有し、かつ残部がFe及び不可避的不純物からなるステンレス鋼材のスラブを用意し、
(b)前記スラブに熱間圧延加工を行ってから、固溶化熱処理を施し、次いで冷間圧延を行い、
(c)引続いて、700〜950℃の温度範囲で連続焼鈍を施して炭化物および炭窒化物を析出させ、
(d)その後、仕上冷間圧延する。
In order to solve the above-mentioned problems, the first aspect of the present invention includes the following steps (hereinafter,% indicates mass%), and the production of a stainless steel material excellent in wear resistance and corrosion resistance: Is the method.
(A) As component composition, C: 0.03 to 0.30%, Si: 3.0 or less, Mn: 3.0% or less, Ni: 5.0 to 20.0%, Cr: more than 15.0 ~ 30.0% or less, N: 0.030% or less, and a slab of stainless steel material comprising the balance Fe and unavoidable impurities,
(B) Hot rolling is performed on the slab, followed by a solution heat treatment, followed by cold rolling,
(C) Subsequently, continuous annealing is performed in a temperature range of 700 to 950 ° C. to precipitate carbide and carbonitride,
(D) Thereafter, finish cold rolling is performed.

本発明の第2の態様は、前記の、冷間圧延を行い、引続いて、700〜950℃の温度範囲で連続焼鈍を施して炭化物を析出させることを、1回以上繰り返し、その後、仕上冷間圧延することを特徴とする耐摩耗性及び耐食性に優れたステンレス鋼材の製造方法である。   In the second aspect of the present invention, the cold rolling is performed, followed by continuous annealing in a temperature range of 700 to 950 ° C. to precipitate carbides one or more times, and then finishing. A method for producing a stainless steel material having excellent wear resistance and corrosion resistance, characterized by cold rolling.

本発明の第3の態様は、前記冷間圧延の圧延率が30%以上であることを特徴とする耐摩耗性及び耐食性に優れたステンレス鋼材の製造方法である。   A third aspect of the present invention is a method for producing a stainless steel material having excellent wear resistance and corrosion resistance, wherein the rolling rate of the cold rolling is 30% or more.

本発明の第4の態様は、前記仕上冷間圧延の後に、200〜700℃の温度範囲で熱処理を行うことを特徴とする耐席耗性及び耐食性に優れたステンレス鋼材の製造方法である。   A fourth aspect of the present invention is a method for producing a stainless steel material excellent in wear resistance and corrosion resistance, characterized by performing heat treatment in a temperature range of 200 to 700 ° C. after the finish cold rolling.

本発明の第5の態様は、前記ステンレス鋼材は、成分組成として、さらにMoを4.0%以下含有することを特撤とする耐席耗性及び耐食性に優れたステンレス鋼材の製造方法である。   A fifth aspect of the present invention is a method for producing a stainless steel material excellent in wear resistance and corrosion resistance, wherein the stainless steel material further contains 4.0% or less of Mo as a component composition. .

本発明の第6の態様は、前記ステンレス鋼材は、成分組成として、さらにV:1.0%以下、Ti:1.0%以下、Nb:1.0%以下、Zr:1.0%以下のうちから選ばれる少なくとも1種以上を含有することを特徴とする耐磨耗性及び耐食性に優れたステンレス鋼材の製造方法である。   According to a sixth aspect of the present invention, the stainless steel material further includes, as a component composition, V: 1.0% or less, Ti: 1.0% or less, Nb: 1.0% or less, Zr: 1.0% or less. It is the manufacturing method of the stainless steel material excellent in abrasion resistance and corrosion resistance characterized by containing at least 1 or more types chosen from these.

本発明の第7の態様は、前記ステンレス鋼材の金属組織中に析出した炭化物及び炭窒化物の占める面積率が10%以上であり、かつ析出した炭化物及び炭窒化物の平均直径が1μm以下であることを特徴とする耐磨耗性及び耐食性に優れたステンレス鋼材の製造方法である。   In the seventh aspect of the present invention, the area ratio of the carbide and carbonitride precipitated in the metal structure of the stainless steel material is 10% or more, and the average diameter of the precipitated carbide and carbonitride is 1 μm or less. It is a method for producing a stainless steel material having excellent wear resistance and corrosion resistance.

本発明によれば、オーステナイトをベースに炭化物および炭窒化物を析出、分散させることで良好な耐摩耗性、耐食性および製造性を有するステンレス鋼を得ることができる。本発明品を用いることで、耐摩耗性および耐食性が要求される分野、例えば、筬羽、ヘルドなどの機料品、プレスプレート、スイッチコネクター、刃物等に使用すると寿命を延ばす等の効果があり、本発明鋼の存在は極めて有効である。   According to the present invention, stainless steel having good wear resistance, corrosion resistance and manufacturability can be obtained by precipitating and dispersing carbide and carbonitride based on austenite. By using the product of the present invention, it has the effect of extending the life when used in fields where wear resistance and corrosion resistance are required, for example, machine tools such as wings and healds, press plates, switch connectors, and blades. The presence of the steel of the present invention is extremely effective.

表面処理をしないで耐摩耗性を向上させるには、母相を硬質化すること、母相中に硬質な第2相粒子を均一に分散させること、が有効なことは周知である。本発明では、表面処理により表層を硬質化するのではなく、母相に硬質な炭化物及び炭窒化物を析出、分散させて耐摩耗性を向上させることを特徴とする。さらにそれをオーステナイト系ステンレス鋼で行って耐食性も確保することを特徴とする。   It is well known that to improve the wear resistance without surface treatment, it is effective to harden the matrix and uniformly disperse the hard second phase particles in the matrix. In the present invention, the surface layer is not hardened by surface treatment, but hard carbides and carbonitrides are precipitated and dispersed in the parent phase to improve wear resistance. Furthermore, it is characterized by performing corrosion resistance with austenitic stainless steel.

母相に析出させる硬質な炭化物及び炭窒化物は、粗大ではなく、微細に均一に分散させる。これより冷間圧延に耐えうる延性を保ち、さらに耐摩耗性を向上させ、また耐食性の劣化も防止できる。   Hard carbides and carbonitrides precipitated in the matrix are not coarse and are finely and uniformly dispersed. Accordingly, ductility that can withstand cold rolling can be maintained, wear resistance can be further improved, and deterioration of corrosion resistance can be prevented.

炭化物や炭窒化物の析出は、フェライト系ステンレス鋼やマルテンサイト系ステンレス鋼の一部鋼種で認められる。しかし、フェライト系ステンレス鋼では母相の硬質化が限られており、耐摩耗性には炭化物のみの効果しかないため、耐摩耗性の向上にはおのずと限界がある。   Precipitation of carbides and carbonitrides is recognized in some steel types such as ferritic stainless steel and martensitic stainless steel. However, in ferritic stainless steel, the hardening of the parent phase is limited, and wear resistance has only the effect of carbide, so there is a natural limit to improving wear resistance.

一方マルテンサイト系ステンレス鋼は、母相の硬度を確保することも可能であるが、マルテンサイト組織を得るためには耐食性に有効なCr量を増加することができないため、耐食性に問題がある。またその製造工程で焼入れ、焼戻し処理が必ず必要となるので、製造コストが高くなるということもある。   On the other hand, martensitic stainless steel can ensure the hardness of the parent phase, but there is a problem in corrosion resistance because the Cr amount effective for corrosion resistance cannot be increased in order to obtain a martensitic structure. Further, since the quenching and tempering processes are always required in the manufacturing process, the manufacturing cost may be increased.

そのため、オーステナイト系ステンレス鋼を用いた高耐磨耗性、高耐食性について検討を進め、ステンレス鋼に析出させることが容易であるCrを主体とする炭化物および炭窒化物を母相中に分散させることに着手した。   Therefore, we will investigate high wear resistance and high corrosion resistance using austenitic stainless steel, and disperse in the matrix the carbides and carbonitrides mainly composed of Cr that can be easily deposited on stainless steel. Started.

ところが、炭化物および炭窒化物の析出量を多くしすぎると、耐食性に有効である母相中のCrが析出物に取られてしまい、耐食性が劣化する。従って、耐磨耗性および耐食性の面から、炭化物および炭窒化物の析出量、すなわち面積率を規定する。   However, if the precipitation amount of carbide and carbonitride is excessively large, Cr in the parent phase effective for corrosion resistance is taken up by the precipitate, and the corrosion resistance is deteriorated. Therefore, the amount of precipitation of carbides and carbonitrides, that is, the area ratio, is defined from the aspects of wear resistance and corrosion resistance.

また、析出させる炭化物および炭窒化物が粗大であると、冷間圧延時に割れの起点となり、圧延破断の原因となる。従って、炭化物および炭窒化物は、その平均直径に上限を設ける。   Moreover, when the carbide | carbonized_material and carbonitride to precipitate are coarse, it will become a starting point of a crack at the time of cold rolling, and will cause a rolling fracture. Accordingly, carbides and carbonitrides place an upper limit on their average diameter.

析出させる炭化物および炭窒化物の析出量や大きさは、冷間圧延率およびその後の熱処理温度条件によって制御できる。本発明に言う30%以上の加工率で冷間圧延を行い、その後連続焼鈍による(短時間の)熱処理を行うことにより、炭化物および炭窒化物を均一かつ微細に分散させることができる。   The amount and size of the precipitated carbide and carbonitride can be controlled by the cold rolling rate and the subsequent heat treatment temperature conditions. Carbide rolling and carbonitride can be uniformly and finely dispersed by performing cold rolling at a processing rate of 30% or more according to the present invention and then performing heat treatment (continuous annealing) by continuous annealing.

本件発明では、下記成分組成および残部がFeおよび不可避不純物からなるステンレス鋼材のスラブを用意し、熱間圧延加工を行ってから、固溶化熱処理を施し、次いで冷間圧延を行い、引き続いて、700〜950℃の温度範囲で連続焼鈍を施して炭化物および炭窒化物を析出させ、その後、仕上冷間圧延することを特徴とする。   In the present invention, a slab of a stainless steel material having the following component composition and the balance of Fe and inevitable impurities is prepared, subjected to hot rolling, then subjected to solution heat treatment, then cold rolled, and subsequently 700 It is characterized in that continuous annealing is performed in a temperature range of ˜950 ° C. to precipitate carbides and carbonitrides, and then finish cold rolling is performed.

まず発明において、成分組成を限定する理由について以下に述べる。
C:0.03〜0.30%、Cは強力なオーステナイト形成元素であるばかりか、炭化物、炭窒化物を構成する元素であるため、耐摩耗性向上には多いほど好ましく、0.03wt%以上は必要である。しかしながら、0.30wt%を超えて含有すると、粗大な未固溶炭化物が生成し冷間圧延破断の危険が高まるばかりか、耐食性も劣化させるため、0.03〜0.30wt%、好ましくは0.05〜0.25wt%、より好ましくは0.10〜0.25wt%とする。
First, the reason for limiting the component composition in the invention will be described below.
C: 0.03 to 0.30%, C is not only a strong austenite-forming element, but also an element constituting carbide and carbonitride, so that it is preferable to increase the wear resistance. The above is necessary. However, if it contains more than 0.30 wt%, coarse undissolved carbides are generated and the risk of cold rolling breakage is increased, and corrosion resistance is also deteriorated, so 0.03 to 0.30 wt%, preferably 0 0.05 to 0.25 wt%, more preferably 0.10 to 0.25 wt%.

Si:3.0以下、Siは、脱酸に必要な元素であるとともに高強度化に有効な元素であるが、3.0wt%を超えて含有すると冷間圧延破断の危険が高まるため3.0wt%以下とする。   Si: 3.0 or less, Si is an element necessary for deoxidation and effective for increasing the strength. However, if it exceeds 3.0 wt%, the risk of cold rolling breakage increases. 0 wt% or less.

Mn:3.0%以下、MnもSi同様に脱酸に必要な元素であり、かつオーステナイト形成元素であるため、オーステナイト組織を得るのに必要であるが、3.0wt%を超えて含有すると焼鈍酸洗時に異常酸化の原因を招き、歩留まり低下につながるため3.0wt%以下とする。   Mn: 3.0% or less, Mn is an element necessary for deoxidation as well as Si, and is an austenite forming element. Therefore, it is necessary for obtaining an austenite structure. In order to cause abnormal oxidation during annealing pickling and lead to a decrease in yield, the content is set to 3.0 wt% or less.

Ni:5.0〜20.0%、Niは、強力なオーステナイト形成元素であり、5wt%以上必要である。しかしながら高価な元素であり、上限を20wt%とし、5.0〜20.0wt%、好ましくは5.0〜15.0wt%とする。   Ni: 5.0-20.0%, Ni is a strong austenite forming element, and 5 wt% or more is necessary. However, it is an expensive element, and the upper limit is 20 wt%, and is 5.0 to 20.0 wt%, preferably 5.0 to 15.0 wt%.

Cr:15.0越え〜30.0%以下、Crは、炭化物を形成する元素であり、かつ耐食性向上にも有効なことから、15.0wt%を超えて含有することが必要である。しかしながら30.0wt%を超えて含有すると、σ相が析出し、逆に耐食性を害するほか、製造性も劣化させるので上限を30.0wt%とし、15.0超え〜30.0wt%、好ましくは15.0超え〜25.0wt%とする。   Cr: more than 15.0 to 30.0% or less, Cr is an element that forms carbides and is also effective for improving corrosion resistance. Therefore, it is necessary to contain more than 15.0 wt%. However, if it contains more than 30.0 wt%, the σ phase precipitates, and conversely, corrosion resistance is impaired and manufacturability is also deteriorated, so the upper limit is made 30.0 wt%, more than 15.0 to 30.0 wt%, preferably Over 15.0 to 25.0 wt%.

N:0.030%以下、Nは、0.30wt%を超えて含有すると冷間圧延破断の危険が高まるため0.30wt%以下とする。ただし、高強度化や耐食性向上に有効であるため、これらの効果を必要とする場合には、好ましくは0.02〜0.25wt%、より好ましくは0.05〜0.20wt%とする。   N: 0.030% or less, N containing more than 0.30 wt%, the risk of cold rolling breakage is increased, so 0.30 wt% or less. However, since it is effective for increasing strength and improving corrosion resistance, when these effects are required, it is preferably 0.02 to 0.25 wt%, more preferably 0.05 to 0.20 wt%.

Pは、スクラップ中に含有する元素であり、かつ精錬での除去が困難な元素であるが、0.045%を超えて含有すると耐食性を劣化させるため、0.045wt%以下が望ましい。   P is an element contained in scrap and is an element that is difficult to remove by refining. However, if it exceeds 0.045%, corrosion resistance is deteriorated, so 0.045 wt% or less is desirable.

Sは、スクラップ中に含有する元素であり、精錬での除去にはコストがかかるが、0.01wt%を超えて含有すると耐食性を劣化させるほか、熱間加工性も劣化させるため、0.01wt%以下が望ましい。   S is an element contained in scrap, and it takes cost to remove it by refining. However, if it exceeds 0.01 wt%, corrosion resistance is deteriorated and hot workability is also deteriorated. % Or less is desirable.

本発明では、スラブに熱間圧延加工を行って所定の厚みの帯を得た後に、熱間圧延中に生成した粗大な炭化物および炭窒化物の母相への固溶、および熱間圧延中に生じた歪を除去するために固溶化熱処理を行う。温度範囲は1000〜1,150℃、時間は30秒〜10分が望ましい。炉は大気雰囲気の連続焼鈍炉を用いるのが適当である。   In the present invention, after a hot rolling process is performed on a slab to obtain a band having a predetermined thickness, solid carbides and carbonitrides generated during hot rolling are dissolved in the matrix and during hot rolling. A solution heat treatment is performed to remove the strain generated in the film. The temperature range is preferably 1000 to 1,150 ° C., and the time is preferably 30 seconds to 10 minutes. It is appropriate to use a continuous annealing furnace in the air atmosphere.

本発明では、冷間圧延での圧延率を大きくとることにより、後の連続焼鈍において、炭化物および炭窒化物の析出サイトが多くなり、微細な炭化物および炭窒化物を一様に分散させることが可能となる。   In the present invention, by increasing the rolling rate in cold rolling, the precipitation sites of carbide and carbonitride increase in the subsequent continuous annealing, and fine carbide and carbonitride can be uniformly dispersed. It becomes possible.

連続焼鈍については、連続焼鈍温度を低くしすぎると、析出に必要な駆動力が足りなく、十分な析出量に達しないだけでなく熱処理後に延性に乏しくなって、その後の圧延工程で破断の危険が高まる。従って、工業的には700℃以上で実施する必要がある。一方熱処理温度を高温に設定した場合、析出量は減少する。また炭化物および炭窒化物が母相へ再固溶して耐磨耗性が劣化するため、上限は950℃とした。なお好ましくは800〜900℃とする。   For continuous annealing, if the continuous annealing temperature is too low, the driving force necessary for precipitation is insufficient, and not only does not reach a sufficient amount of precipitation, but also the ductility becomes poor after heat treatment, and there is a risk of fracture in the subsequent rolling process. Will increase. Therefore, it is necessary to implement at 700 degreeC or more industrially. On the other hand, when the heat treatment temperature is set to a high temperature, the amount of precipitation decreases. Moreover, since carbide and carbonitride re-dissolved in the parent phase and the wear resistance deteriorates, the upper limit was set to 950 ° C. In addition, Preferably it is set as 800-900 degreeC.

焼鈍時間は30秒〜10分が望ましい。焼鈍時間が長いと炭化物および炭窒化物が粗大となり、圧延工程での破談の危険が高まるばかりか耐食性も劣化する。また、生産性が低下するということもある。焼鈍時間が短いと、析出に必要な駆動力が足りなく、十分な析出量に達しない。その結果、耐摩耗性が劣化する。   The annealing time is desirably 30 seconds to 10 minutes. If the annealing time is long, the carbides and carbonitrides become coarse, which increases the risk of breakage in the rolling process and also deteriorates the corrosion resistance. In addition, productivity may be reduced. If the annealing time is short, the driving force necessary for precipitation is insufficient, and a sufficient amount of precipitation is not achieved. As a result, the wear resistance is degraded.

焼鈍炉は、水素−窒素雰囲気で焼鈍を行う光輝焼鈍(BA)炉、または大気雰囲気にて焼鈍を行う連続焼鈍炉等をもちいることが望ましい。   The annealing furnace is desirably a bright annealing (BA) furnace that performs annealing in a hydrogen-nitrogen atmosphere or a continuous annealing furnace that performs annealing in an air atmosphere.

本発明では、前記の、冷間圧延を行い、引続いて、700〜950℃の温度範囲で連続焼鈍を施して炭化物を析出させることを、1回以上繰り返し、その後、仕上圧延する。   In the present invention, the above-described cold rolling is performed, followed by continuous annealing in a temperature range of 700 to 950 ° C. to precipitate carbides one or more times, and then finish rolling.

すなわち、上記の炭化物および炭窒化物は、Crを主体とする析出物である。前述のように炭化物および炭窒化物を形成するために、1回もしくは2回以上連続焼鈍を繰り返し炭化物を析出させる。   That is, the above carbides and carbonitrides are precipitates mainly composed of Cr. In order to form carbides and carbonitrides as described above, carbides are precipitated by repeating the continuous annealing once or twice or more.

例えば、長時間のバッチ焼鈍を行うと、析出炭化物および炭窒化物の量は増加し耐磨耗性は向上するが、粒径が粗大となって延性に乏しくなり、圧延破断の可能性が高まる。また、析出炭化物および炭窒化物量が多いと、母相中のCr量が滅少し耐食性も劣化する。このため炭化物析出熱処理は、バッチによる長時間熱処理は避け、冷間圧延および連続焼鈍による短時間熱処理を選択する。   For example, if batch annealing is performed for a long time, the amount of precipitated carbides and carbonitrides increases and wear resistance is improved, but the grain size becomes coarse and the ductility becomes poor, and the possibility of rolling breakage increases. . In addition, when the amount of precipitated carbide and carbonitride is large, the amount of Cr in the matrix is reduced and the corrosion resistance is also deteriorated. For this reason, the carbide precipitation heat treatment avoids long-time heat treatment by batch, and selects short-time heat treatment by cold rolling and continuous annealing.

冷間圧延と連続焼鈍を繰返すと、炭化物および炭窒化物が多量に析出するため耐摩耗性が向上する。しかし、繰返し数を多くすると、材料の靭性低下につながり、圧延破断の危険が高まる。また、母相中のCr量が低下するため耐食性の劣化も引き起こす。従って、繰返し数は、好ましくは1〜3回とする。   When cold rolling and continuous annealing are repeated, a large amount of carbide and carbonitride precipitates, so that wear resistance is improved. However, increasing the number of repetitions leads to a decrease in the toughness of the material and increases the risk of rolling breakage. Further, since the amount of Cr in the matrix is reduced, the corrosion resistance is also deteriorated. Therefore, the number of repetitions is preferably 1 to 3 times.

本発明では、前記冷間圧延の圧延率を30%以上とすることを特徴とする。すなわち、30%以上とする理由は、連続焼鈍工程での炭化物および炭窒化物の析出サイトが多くなり、微細な炭化物および炭窒化物を一様に分散させることが可能になるからである。30%を下回ると、連続焼鈍工程での炭化物および炭窒化物の析出サイトが少なく、炭化物および炭窒化物が粗大となり、析出量も少なくなる。   The present invention is characterized in that a rolling rate of the cold rolling is 30% or more. That is, the reason for setting it as 30% or more is that the precipitation site | part of the carbide | carbonized_material and carbonitride in a continuous annealing process increases, and it becomes possible to disperse | distribute fine carbide | carbonized_material and carbonitride uniformly. If it is less than 30%, there are few carbide and carbonitride precipitation sites in the continuous annealing step, and the carbides and carbonitrides become coarse and the amount of precipitation also decreases.

本発明では、前記仕上冷間圧延後、200〜700℃の温度範囲で応力除去熱処理を行うことを特徴とする。この応力除去熱処理を行うことにより、耐摩耗性の向上、および靭性を向上させることができ、その後の織機部品等への加工が容易となる。また、板の形状を修正するということもある。   In the present invention, after the finish cold rolling, a stress relief heat treatment is performed in a temperature range of 200 to 700 ° C. By performing this stress-relieving heat treatment, it is possible to improve wear resistance and toughness, and to facilitate subsequent processing into loom parts and the like. Also, the shape of the plate may be corrected.

本発明では、成分組成として、Moを添加しても良い。Moは、耐食性向上に有効な元素であるが、非常に高価な元素であるため、4.0wt%以下で含有しても構わないとする。   In the present invention, Mo may be added as a component composition. Mo is an element effective for improving the corrosion resistance, but is an extremely expensive element, so it may be contained at 4.0 wt% or less.

また、本発明では、V,Ti,Nb、Zrのいずれか1種以上を1.0wt%以下添加したステンレス鋼材のスラブを用いることができる。すなわち、V,Ti,Nb、ZrはCまたはNと結合し、安定な炭化物および炭窒化物を形成してオーステナイト組織を微細化する。   Moreover, in this invention, the slab of the stainless steel material which added 1.0 wt% or less of any 1 or more types of V, Ti, Nb, and Zr can be used. That is, V, Ti, Nb, and Zr combine with C or N to form stable carbides and carbonitrides and refine the austenite structure.

従って、本発明の炭化物および炭窒化物の析出熱処理を行った場合には、Cr炭化物および炭窒化物の生成サイトとなって、Cr炭化物および炭窒化物の形成に有利に作用するため、1.0wt%以下の範囲であれば添加してもかまわない。しかし、いずれの元素も高価であることや、1.0wt%を超えて添加すると、粗大な炭化物および炭窒化物を形成して製造性を害するため、1.0wt%以下、好ましくは0.5wt%以下の範囲であれば添加してもかまわない。   Therefore, when the precipitation heat treatment of the carbide and carbonitride of the present invention is performed, it becomes a Cr carbide and carbonitride production site and acts advantageously on the formation of Cr carbide and carbonitride. If it is in the range of 0 wt% or less, it may be added. However, since any element is expensive or added in excess of 1.0 wt%, coarse carbides and carbonitrides are formed to impair manufacturability. Therefore, 1.0 wt% or less, preferably 0.5 wt% If it is in the range of% or less, it may be added.

上記方法により得られたステンレス鋼材の組織は、オーステナイト、冷間圧延により形成された加工誘起マルテンサイト、それに連続焼鈍時に析出した炭化物及び炭窒化物からなる。本発明では、析出炭化物及び炭窒化物の占める面積率が10%以上となる。炭化物及び炭窒化物の析出により耐摩耗性は大幅に向上できるが、10%未満では効果が小さいので下限は10%である。   The structure of the stainless steel material obtained by the above method is composed of austenite, work-induced martensite formed by cold rolling, and carbides and carbonitrides precipitated during continuous annealing. In the present invention, the area ratio occupied by the precipitated carbide and carbonitride is 10% or more. The wear resistance can be greatly improved by precipitation of carbides and carbonitrides, but the effect is small at less than 10%, so the lower limit is 10%.

さらに、本発明では、析出炭化物および炭窒化物の平均直径が1μm以下となる。耐摩耗性が良好であるためには、析出炭化物および炭窒化物が微細に分散していることが望ましい。また、平均直径が1μmを超えると、析出炭化物および炭窒化物が冷間圧延破断の起点になり製造性を害するので、平均直径は1μm以下である。   Furthermore, in the present invention, the average diameter of the precipitated carbide and carbonitride is 1 μm or less. In order to have good wear resistance, it is desirable that the precipitated carbide and carbonitride are finely dispersed. On the other hand, if the average diameter exceeds 1 μm, the precipitated carbides and carbonitrides become the starting point of cold rolling breakage and impair manufacturability, so the average diameter is 1 μm or less.

ここで、析出炭化物および炭窒化物の面積率や直径は、電子顕微鏡により撮影した写真を用いて求めることができる。   Here, the area ratio and the diameter of the precipitated carbide and carbonitride can be obtained using a photograph taken with an electron microscope.

図1としての表1に示した組成のステンレス鋼材を用い、製造方法を変えて評価を行った。図2としての表2、及び図3としての表3に示したa〜dが本発明例である。板厚が3.5mmの熱間圧延板について、1100℃で1分間の固溶化熱処理を行った後、冷間圧延と炭化物化熱処理を繰り返し、仕上冷間圧延を行った後、各評価を行った。   Evaluation was performed using a stainless steel material having the composition shown in Table 1 as FIG. Examples a to d shown in Table 2 as FIG. 2 and Table 3 as FIG. 3 are examples of the present invention. For a hot-rolled sheet having a thickness of 3.5 mm, after performing a solution heat treatment at 1100 ° C. for 1 minute, repeated cold rolling and carbide heat treatment, and after finishing cold rolling, each evaluation was performed. It was.

表2、及び表3のe〜hは比較例である。eは、板厚が3.5mmの熱間圧延板について、固溶化熱処理と冷間圧延を擦り返して所定の板厚にするという、通常のステンレスハード材の製造工程を用いて製造した。f〜hの比較例は、熱間圧延板もしくは冷間圧延板に12〜36時間の長時間炭化物析出熱処理を施し、その後冷間圧延を行う工程を用いて製造した。   E to h in Table 2 and Table 3 are comparative examples. e was manufactured using a normal stainless steel hard material manufacturing process in which a solution thickness heat treatment and cold rolling were repeated to obtain a predetermined plate thickness for a hot rolled plate having a plate thickness of 3.5 mm. The comparative example of fh was manufactured using the process of giving a hot carbide precipitation heat processing for 12 to 36 hours to a hot rolled sheet or a cold rolled sheet, and performing cold rolling after that.

表3には評価結果をまとめて示した。まず、金属組織について説明する。得られた板材の組織は、オーステナイト、冷間圧延により形成された加工誘起マルテンサイト、それに熱処理によって析出した炭化執及び炭窒化物からなる。代表的な組織を図4としての写真に示した。写真中で白い点状に見えるものが炭化物および炭窒化物を示している。板材の組織観察は電子顕微鏡を用いて行った。なお、前処理は、製造した板材を圧延方向に直角に切断して表面研磨をし、次に塩酸とピクリン酸アルコールの混液を用いてエッチングして行った。   Table 3 summarizes the evaluation results. First, the metal structure will be described. The structure of the obtained plate material is composed of austenite, work-induced martensite formed by cold rolling, and carbonized and carbonitrides precipitated by heat treatment. A representative organization is shown in the photograph as FIG. The white spots in the photograph indicate carbides and carbonitrides. The structure of the plate material was observed using an electron microscope. The pretreatment was performed by cutting the manufactured plate material at a right angle to the rolling direction and polishing the surface, and then etching using a mixed solution of hydrochloric acid and picric acid alcohol.

次に、炭化物の面積率について説明する。炭化物の面積率は、電子顕微鏡により撮影した3000倍の写真を用い点算法で求める。具体的には、写夫視野上に縦、横が5mm間隔の桝目を設け、例えば縦に10個、横に10個、計100個の桝目の格子点に触れる、又は格子点上にある炭化執の数を求める。この作業を10視野繰り返し、その平均値を面積率とする。   Next, the area ratio of carbide will be described. The area ratio of carbide is obtained by a point calculation method using a 3000 times photograph taken with an electron microscope. Specifically, a grid having vertical and horizontal intervals of 5 mm is provided on the photographer's field of view, for example, 10 in the vertical direction, 10 in the horizontal direction, touching the grid points of a total of 100 grids, or carbonized on the grid points. Ask for the number of relics. This operation is repeated 10 times, and the average value is defined as the area ratio.

すなわち、面棟率は次の式で示されるものである。
n÷(p×f)×100=炭化物面積率(%)であり、n、p、fは以下を示す。
p:視野内の総格子点数
f:視野数
n:f個の視野における炭化物によって占められる格子点中心の数
That is, the area ratio is expressed by the following formula.
n ÷ (p × f) × 100 = Carbide area ratio (%), and n, p, and f indicate the following.
p: total number of lattice points in the field of view f: number of fields of view n: number of lattice point centers occupied by carbides in f fields of view

炭化物の大きさについては、電子顕微鏡により撮影した3000倍の写真を用い、写真視野内の粒子を選択して円相当直径を求め、この作業を10視野行いその平均値を求めて炭化物および炭窒化物粒径の平均値とした。硬さは、JISG0555に準じて求めたビッカース硬度とした。   For the size of the carbide, use a 3000 × photograph taken with an electron microscope, select the particles in the photographic field, determine the equivalent circle diameter, perform this work for 10 fields, determine the average value, and determine the carbide and carbonitride. The average value of the object particle diameters was used. The hardness was Vickers hardness obtained according to JISG0555.

耐摩耗性は、糸を一定張力(35g)で一定時間(5時間)供試材の表面を通過させて加速度的に磨耗を形成させ、形成した鹿耗痕の最大深さを表面租さ計(メーカー;(株)東京精密、型番:1400A−3DF)で求めた。その結果は、表3に合わせて示した。図5の、磨耗痕の最大深さ(μm)と炭化執面積率(%)との関係を示した.これから、炭化物面積率が高いほど、すなわち炭化物析出量が多いほど良好な耐摩耗性を示すことがわかる。特に炭化物の面積率が10%以上でその効果が大きい。本発明例では、磨耗痕深さは15μm以下であり、SUS301の23μmに比べて、耐磨耗性が優れており、もちろんSUS420J2の12μmと比べても遜色ない値である。   Abrasion resistance is determined by allowing the yarn to pass through the surface of the test material at a constant tension (35 g) for a certain period of time (5 hours) and forming abrasion at an accelerated rate. (Manufacturer; Tokyo Seimitsu Co., Ltd., model number: 1400A-3DF). The results are shown in Table 3. FIG. 5 shows the relationship between the maximum depth of wear scar (μm) and the carbonized area ratio (%). From this, it can be seen that the higher the carbide area ratio, that is, the higher the carbide precipitation amount, the better the wear resistance. In particular, the effect is large when the area ratio of carbide is 10% or more. In the example of the present invention, the wear scar depth is 15 μm or less, and the wear resistance is superior to 23 μm of SUS301. Of course, it is a value comparable to 12 μm of SUS420J2.

耐食性については、孔食電位測定(JISG0577に準じた方法)を求めて評価した。孔食電位が高いほど耐食性に優れることを意味する。本発明品は、いずれもSUS420Jに比べ優れた耐食性を示し、SUS301に比べても遜色がない。また発明品は、長時間の炭化物析出熱処理を行ったものより孔食電位が高く、以前の発明品と比較して耐磨耗性及び耐食性の双方が向上した。   The corrosion resistance was evaluated by obtaining a pitting potential measurement (method according to JISG0577). Higher pitting potential means better corrosion resistance. All of the products of the present invention exhibit excellent corrosion resistance compared to SUS420J, and are comparable to SUS301. In addition, the inventive product had a higher pitting corrosion potential than those subjected to a long-time carbide precipitation heat treatment, and both wear resistance and corrosion resistance were improved as compared with the previous invention product.

冷間圧延時の破断の危険性について、最大耳割れ長さにて評価を行った。耳割れは冷間圧延後に試験片の縁が割れてくる現象で、これが発生すると、耳割れが起点となり圧延破斬が起こる危険性が高まる。加工性に劣る材料ほど大きな耳割れが起こり、炭化物および炭窒化物の直径が大きいほど加工性に劣る。本発明品は冷間圧延工程での耳割れは発生しなく、製造上間遠はない。   The risk of breakage during cold rolling was evaluated by the maximum ear crack length. The edge crack is a phenomenon in which the edge of the test piece is cracked after cold rolling. If this occurs, the risk of rolling breakage increases due to the ear crack. A material with inferior processability has larger ear cracks, and the larger the diameter of carbide and carbonitride, the inferior processability. The product of the present invention does not cause ear cracks in the cold rolling process, and is not far from being manufactured.

耐摩耗性及び耐食性を要求される、例えば、筬羽、ヘルド等のような機料品に用いることができる。   For example, it can be used for equipment such as wings, healds, etc. that require wear resistance and corrosion resistance.

図1として示した表1であり、成分組成表である。It is Table 1 shown as FIG. 1, and is a component composition table | surface. 図2として示した表2であり、製造工程一覧表である。It is Table 2 shown as FIG. 2, and is a manufacturing process list. 図3として示した表3であり、試験結果一覧表である.It is Table 3 shown as FIG. 3, and is a list of test results. 本発明ステンレス鋼組織の代表写真である。It is a representative photograph of the stainless steel structure of the present invention. 磨耗長の最大深さと炭化物面積率との関係を示した図である。It is the figure which showed the relationship between the maximum depth of wear length, and a carbide | carbonized_material area rate. 織機の模式図である。It is a schematic diagram of a loom.

Claims (7)

下記の工程を備えた(以下%はmass%を示す。)ことを特徴とする耐摩耗性及び耐食性に優れたステンレス鋼材の製造方法。
(a)成分組成として、C:0.03〜0.30%、Si:3.0以下、Mn:3.0%以下、Ni:5.0〜20.0%、Cr:15.0越え〜30.0%以下、N:0.030%以下を含有し、かつ残部がFe及び不可避的不純物からなるステンレス鋼材のスラブを用意し、
(b)前記スラブに熱間圧延加工を行ってから、固溶化熱処理を施し、次いで冷間圧延を行い、
(c)引続いて、700〜950℃の温度範囲で連続焼鈍を施して炭化物および炭窒化物を析出させ、
(d)その後、仕上冷間圧延する。
The manufacturing method of the stainless steel material excellent in abrasion resistance and corrosion resistance characterized by providing the following process (Hereinafter,% shows mass%.).
(A) As component composition, C: 0.03 to 0.30%, Si: 3.0 or less, Mn: 3.0% or less, Ni: 5.0 to 20.0%, Cr: more than 15.0 ~ 30.0% or less, N: 0.030% or less, and a slab of stainless steel material comprising the balance Fe and unavoidable impurities,
(B) Hot rolling is performed on the slab, followed by a solution heat treatment, followed by cold rolling,
(C) Subsequently, continuous annealing is performed in a temperature range of 700 to 950 ° C. to precipitate carbide and carbonitride,
(D) Thereafter, finish cold rolling is performed.
前記の、冷間圧延を行い、引続いて、700〜950℃の温度範囲で連続焼鈍を施して炭化物を析出させることを、1回以上繰り返し、その後、仕上冷間圧延することを特徴とする請求項1に記載の耐摩耗性及び耐食性に優れたステンレス鋼材の製造方法。   The above-mentioned cold rolling is performed, and subsequently, continuous annealing is performed in a temperature range of 700 to 950 ° C. to precipitate carbides one or more times, and then finish cold rolling is performed. The manufacturing method of the stainless steel material excellent in abrasion resistance and corrosion resistance of Claim 1. 前記冷間圧延の圧延率が30%以上であることを特徴とする請求項1または2に記載の耐摩耗性及び耐食性に優れたステンレス鋼材の製造方法。   The method for producing a stainless steel material having excellent wear resistance and corrosion resistance according to claim 1 or 2, wherein a rolling rate of the cold rolling is 30% or more. 前記仕上冷間圧延の後に、200〜700℃の温度範囲で熱処理を行うことを特徴とする請求項1〜3のいずれかに記載の耐席耗性及び耐食性に優れたステンレス鋼材の製造方法。   The method for producing a stainless steel material having excellent wear resistance and corrosion resistance according to any one of claims 1 to 3, wherein heat treatment is performed in a temperature range of 200 to 700 ° C after the finish cold rolling. 前記ステンレス鋼材は、成分組成として、さらにMoを4.0%以下含有することを特撤とする請求項1〜4のいずれかに記載の耐席耗性及び耐食性に優れたステンレス鋼材の製造方法。   The method for producing a stainless steel material having excellent wear resistance and corrosion resistance according to any one of claims 1 to 4, wherein the stainless steel material further contains 4.0% or less of Mo as a component composition. . 前記ステンレス鋼材は、成分組成として、さらにV:1.0%以下、Ti:1.0%以下、Nb:1.0%以下、Zr:1.0%以下のうちから選ばれる少なくとも1種以上を含有することを特徴とする請求項1〜5のいずれかに記載の耐磨耗性及び耐食性に優れたステンレス鋼材の製造方法。   The stainless steel material has, as a component composition, at least one selected from V: 1.0% or less, Ti: 1.0% or less, Nb: 1.0% or less, Zr: 1.0% or less. The method for producing a stainless steel material having excellent wear resistance and corrosion resistance according to any one of claims 1 to 5. 前記ステンレス鋼材の金属組織中に析出した炭化物及び炭窒化物の占める面積率が10%以上であり、かつ析出した炭化物及び炭窒化物の平均直径が1μm以下であることを特徴とする請求項1〜6に記載の耐磨耗性及び耐食性に優れたステンレス鋼材の製造方法。   2. The area ratio of the carbide and carbonitride precipitated in the metal structure of the stainless steel material is 10% or more, and the average diameter of the precipitated carbide and carbonitride is 1 μm or less. The manufacturing method of the stainless steel material excellent in abrasion resistance and corrosion resistance of -6.
JP2004071110A 2004-03-12 2004-03-12 Manufacturing method of high wear and corrosion resistant stainless steel Expired - Lifetime JP4383210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071110A JP4383210B2 (en) 2004-03-12 2004-03-12 Manufacturing method of high wear and corrosion resistant stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071110A JP4383210B2 (en) 2004-03-12 2004-03-12 Manufacturing method of high wear and corrosion resistant stainless steel

Publications (2)

Publication Number Publication Date
JP2005256114A true JP2005256114A (en) 2005-09-22
JP4383210B2 JP4383210B2 (en) 2009-12-16

Family

ID=35082139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071110A Expired - Lifetime JP4383210B2 (en) 2004-03-12 2004-03-12 Manufacturing method of high wear and corrosion resistant stainless steel

Country Status (1)

Country Link
JP (1) JP4383210B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451568A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 High-carbon stainless steel material for impeller shafts and manufacturing method thereof
CN103451566A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 High-strength stainless steel material for pump shafts and manufacturing method thereof
CN103451569A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 Corrosion-resistant and high-strength stainless steel material for pump covers and manufacturing method thereof
KR20180072930A (en) * 2016-12-21 2018-07-02 한국기계연구원 Austenitic stainless steel with excellent anti-oxidation and method of manufacturing the same
CN114645113A (en) * 2022-03-04 2022-06-21 中国科学院金属研究所 Cold deformation process for regulating and controlling carbide form in high-Nb austenitic stainless steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451568A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 High-carbon stainless steel material for impeller shafts and manufacturing method thereof
CN103451566A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 High-strength stainless steel material for pump shafts and manufacturing method thereof
CN103451569A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 Corrosion-resistant and high-strength stainless steel material for pump covers and manufacturing method thereof
KR20180072930A (en) * 2016-12-21 2018-07-02 한국기계연구원 Austenitic stainless steel with excellent anti-oxidation and method of manufacturing the same
KR101877786B1 (en) * 2016-12-21 2018-07-16 한국기계연구원 Austenitic stainless steel with excellent anti-oxidation and method of manufacturing the same
CN114645113A (en) * 2022-03-04 2022-06-21 中国科学院金属研究所 Cold deformation process for regulating and controlling carbide form in high-Nb austenitic stainless steel

Also Published As

Publication number Publication date
JP4383210B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP5482971B2 (en) Steel wire or bar with excellent cold forgeability
CN104583440B (en) Corrosion resistant plate and manufacture method thereof
WO2007043318A9 (en) Dead-soft high-carbon hot-rolled steel sheet and process for producing the same
JP6880245B1 (en) High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts
JP2019014933A (en) Steel sheet and method of producing the same
CN111727269B (en) Martensitic stainless steel sheet, method for producing same, and spring member
JP2019039037A (en) Steel sheet and method for manufacturing the same
JP5235452B2 (en) Martensitic stainless steel for loom parts with excellent corrosion resistance and wear resistance and method for producing the steel strip
JP2008308717A (en) High-strength steel sheet, and method for producing the same
CN107208233A (en) High tensile steel silk
US9783866B2 (en) Method for producing steel for blades
JP4383210B2 (en) Manufacturing method of high wear and corrosion resistant stainless steel
KR20110045184A (en) A method for heat treating 17-4 precipitation hardening stainless steel
JP4825381B2 (en) Stainless steel material excellent in wear resistance and corrosion resistance and method for producing the same
JP2011089189A (en) Alloy steel for machine structural use
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
JP5100144B2 (en) Steel plate for spring, spring material using the same, and manufacturing method thereof
JP4221452B2 (en) Stainless steel material for wings or healds with excellent wear resistance and corrosion resistance
JP7422218B2 (en) Ferritic stainless steel cold-rolled steel sheet and method for producing ferritic stainless cold-rolled steel sheet
JP2024500865A (en) Martensitic stainless steel with improved strength and corrosion resistance and its manufacturing method
JP5364908B2 (en) Manufacturing method of loom parts
JP2002053936A (en) Austenitic stainless steel plate for continuously variable transmission belt metallic ring and its production method
JP2008261055A (en) High-toughness martensitic steel
JP2006265664A (en) Method for producing belt for continuously variable transmission
TWI815504B (en) Cold-rolled steel plate, steel parts, manufacturing method of cold-rolled steel plate, and manufacturing method of steel parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250