JP2005256104A - Fe-BASED AMORPHOUS ALLOY RIBBON HAVING SMALL OWN MAGNETOSTRICTION, AND IRON CORE MANUFACTURED WITH THE USE OF IT - Google Patents
Fe-BASED AMORPHOUS ALLOY RIBBON HAVING SMALL OWN MAGNETOSTRICTION, AND IRON CORE MANUFACTURED WITH THE USE OF IT Download PDFInfo
- Publication number
- JP2005256104A JP2005256104A JP2004070478A JP2004070478A JP2005256104A JP 2005256104 A JP2005256104 A JP 2005256104A JP 2004070478 A JP2004070478 A JP 2004070478A JP 2004070478 A JP2004070478 A JP 2004070478A JP 2005256104 A JP2005256104 A JP 2005256104A
- Authority
- JP
- Japan
- Prior art keywords
- magnetostriction
- flux density
- magnetic flux
- ribbon
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、電力トランス、高周波トランス、チョークコイル、リアクトルなどの鉄心に用いられる非晶質合金薄帯に関するものである。 The present invention relates to an amorphous alloy ribbon used for iron cores such as a power transformer, a high-frequency transformer, a choke coil, and a reactor.
合金を溶融状態から急冷することによって、連続的に薄帯や線を製造する方法として、遠心急冷法、単ロール法、双ロール法などが知られている。
これらの方法は、高速回転する金属製ドラムの内周面または外周面に溶融金属をオリフィスなどから噴出させることによって、急速に溶融金属を凝固させて薄帯や線を製造するものである。
さらに、合金組成を適正に選ぶことによって、液体金属に類似した非晶質合金を得ることができ、磁気的性質あるいは機械的性質に優れた材料を製造することができる。
この非晶質合金は、その優れた特性から多くの用途において、工業材料として有望視されている。その中でも、電力トランスや高周波トランスなどの鉄心材料の用途としては、鉄損が低く、かつ、飽和磁束密度や透磁率が高いことなどの理由からFe系非晶質合金薄帯、例えば、Fe−Si−B系が採用されている。
Centrifugal quenching methods, single roll methods, twin roll methods, and the like are known as methods for continuously producing ribbons and wires by rapidly cooling an alloy from a molten state.
In these methods, molten metal is ejected from an orifice or the like on the inner peripheral surface or outer peripheral surface of a metal drum that rotates at high speed, whereby the molten metal is rapidly solidified to produce a ribbon or wire.
Furthermore, by selecting an alloy composition appropriately, an amorphous alloy similar to a liquid metal can be obtained, and a material excellent in magnetic properties or mechanical properties can be produced.
This amorphous alloy is considered promising as an industrial material in many applications due to its excellent characteristics. Among them, as an application of iron core materials such as a power transformer and a high-frequency transformer, an Fe-based amorphous alloy ribbon, for example, Fe--, for example, has a low iron loss and a high saturation magnetic flux density and magnetic permeability. Si-B system is adopted.
しかし、Fe−Si−B系非晶質合金薄帯をコア材に用いたトランスは珪素鋼板をコア材に用いたトランスと比較して、鉄損を低くできるためエネルギー損失は低減できるものの、騒音が大きくなるということが指摘されている。
このような指摘があるにもかかわらず、非晶質合金薄帯をコア材に使用したトランス、あるいはチョークコイルなどの騒音低減に関する技術は、例えば、特許文献1に記載されているチョークコイルコアのギャップからの漏洩磁束による騒音を低減するために薄帯内に結晶層を有した薄帯を用いてギャップレス化することによって騒音を低減する方法が開示されている程度で、ほとんど無いのが現状である。
However, the transformer using the Fe-Si-B amorphous alloy ribbon as the core material can lower the iron loss compared to the transformer using the silicon steel plate as the core material, so the energy loss can be reduced. It has been pointed out that will grow.
In spite of such indications, a technique relating to noise reduction of a transformer or a choke coil using an amorphous alloy ribbon as a core material is disclosed in, for example, the choke coil core described in Patent Document 1. In order to reduce noise due to magnetic flux leaking from the gap, there is almost no method to reduce noise by making gapless using a ribbon with a crystal layer in the ribbon, and there is almost no current situation is there.
Fe−Si−B系非晶質合金薄帯の励磁電力に関しては、約0.3W/Kgを越えない鉄損および約1VA/Kgを越えない励磁電力を兼ね備えた薄帯が開示されている(特許文献2)。
また、合金組成を特定範囲に規定することによって、飽和磁化、キュリー温度、および結晶化温度が実用的にバランスされた約0.35W/Kg以下の鉄損と約1VA/Kg以下の励磁電力を有している優れた薄帯が開示されている(特許文献3)。
特許文献4には、板厚変動を10%以下にすることによって励磁電力が0.4〜0.5W/Kg程度であって、800A/mの磁場を印加した時の磁束密度が1.5 〜1.6T程度の特性を有する薄帯が開示されている。
騒音は薄帯の磁歪に大きく依存するが、特許文献2、特許文献3、および特許文献4には、騒音あるいは磁歪に関する記載は一切無い。
また、特許文献4には、励磁電力と磁束密度が記載されているが、記載されている磁束密度は800A/mの磁場印加時の磁束密度であって、非晶質合金薄帯の場合には、飽和磁束密度にほぼ等しいものである。
In addition, by defining the alloy composition within a specific range, an iron loss of about 0.35 W / Kg or less and an excitation power of about 1 VA / Kg or less in which saturation magnetization, Curie temperature, and crystallization temperature are practically balanced. The excellent thin ribbon which has is disclosed (patent document 3).
In Patent Document 4, the excitation power is about 0.4 to 0.5 W / Kg by setting the plate thickness variation to 10% or less, and the magnetic flux density when a magnetic field of 800 A / m is applied is 1.5. A ribbon having a characteristic of about ~ 1.6T is disclosed.
Noise greatly depends on the magnetostriction of the ribbon, but Patent Document 2, Patent Document 3 and Patent Document 4 have no description regarding noise or magnetostriction.
Patent Document 4 describes excitation power and magnetic flux density. The magnetic flux density described is the magnetic flux density when a magnetic field of 800 A / m is applied, and in the case of an amorphous alloy ribbon. Is approximately equal to the saturation magnetic flux density.
前述したように、Fe基非晶質合金薄帯をコアに用いたトランスの騒音を低減する技術は無いのも同然であった。
そこで、本発明は、薄帯の励磁電力VAおよび磁束密度B1を所定の範囲に制御することによって、薄帯の動作磁歪を6×10−6以下の低いレベルまで低減させ、その結果、電力トランス、高周波トランス、チョークコイル、リアクトルの低騒音化を可能にするFe基非晶質合金薄帯を提供することを目的とする。
As described above, it is obvious that there is no technique for reducing the noise of the transformer using the Fe-based amorphous alloy ribbon as the core.
Therefore, the present invention reduces the magnetostriction of the ribbon to a low level of 6 × 10 −6 or less by controlling the ribbon excitation power VA and the magnetic flux density B1 within a predetermined range. As a result, the power transformer An object of the present invention is to provide a Fe-based amorphous alloy ribbon that enables noise reduction of a high-frequency transformer, a choke coil, and a reactor.
本発明は、Fe基非晶質合金薄帯を使用したトランスの騒音を低減するために、その騒音の主要因と考えられる薄帯の動作磁歪を測定し、さらに、得られたデ−タを詳細に解析した結果、見出されたものである。
本発明の要旨は、以下の通りである。
In order to reduce the noise of the transformer using the Fe-based amorphous alloy ribbon, the present invention measures the magnetostriction of the ribbon, which is considered to be the main factor of the noise, and further obtains the obtained data. It was discovered as a result of detailed analysis.
The gist of the present invention is as follows.
(1)周波数50Hz、最大磁束密度1.3Tにおいて測定した励磁電力VAが1.5W/Kg以下であって、かつ、周波数50Hz、80A/mの磁場を印加したときの磁束密度B1が1.3T以上であることを特徴とする動作磁歪が小さなFe基非晶質合金薄帯。 (1) The excitation power VA measured at a frequency of 50 Hz and a maximum magnetic flux density of 1.3 T is 1.5 W / Kg or less, and the magnetic flux density B1 when a magnetic field of 50 Hz and 80 A / m is applied is 1. A Fe-based amorphous alloy ribbon having a small operating magnetostriction, characterized by being 3T or more.
(2)原子%で1%以上19%以下のSi、5%超19%以下のB、0.02%以上4%以下のC、0.01%以上12%以下のP、残部がFeおよび不可避的不純物からなることを特徴とする請求項1記載の動作磁歪が小さなFe基非晶質合金薄帯。 (2) Si of 1% to 19% in atomic%, B of more than 19% to 19% or less, C of 0.02% to 4%, P of 0.01% to 12%, the balance being Fe and 2. The Fe-based amorphous alloy ribbon having a small operating magnetostriction according to claim 1, wherein the ribbon is made of inevitable impurities.
(3)(1)または(2)記載のFe基非晶質合金薄帯をトロイダルに巻回したことを特徴とする交流における動作磁歪が小さな巻鉄心。 (3) A wound iron core having a small operating magnetostriction in alternating current, wherein the Fe-based amorphous alloy ribbon described in (1) or (2) is wound around a toroid.
(4)(1)または(2)記載のFe基非晶質合金薄帯を所定形状に打ち抜き、積層したことを特徴とする交流における動作磁歪が小さな積鉄心。 (4) An iron core having a small operating magnetostriction in alternating current, wherein the Fe-based amorphous alloy ribbon according to (1) or (2) is punched into a predetermined shape and laminated.
本発明によって、励磁電力VAを1.5W/Kg以下、かつ、80A/m の磁場を印加したときの磁束密度B1を1.3T以上の範囲に制御することによって、1.3Tの最大磁束密度で交流励磁した時の磁歪が6×10−6以下である動作磁歪が小さなFe基非晶質合金薄帯を得ることができる。
さらに、励磁電力VAを1.0W/Kg以下、かつ、磁束密度B1を1.4T以上に制御することによって、1.3Tの最大磁束密度で交流励磁した時の磁歪が5×10−6以下である動作磁歪が小さなFe基非晶質合金薄帯を得ることができる。
さらに、励磁電力VAを0.5W/Kg以下、かつ、磁束密度B1を1.5T以上に制御することによって、1.3Tの最大磁束密度で交流励磁した時の磁歪が3×10−6以下である動作磁歪が小さなFe基非晶質合金薄帯を得ることができる。
これらの動作磁歪を低減させたFe基非晶質合金薄帯を電力トランス、高周波トランス、チョークコイル、リアクトルなどの鉄心として用いる場合、騒音の主要因となっている薄帯の磁歪振動が低減するため、トランスなどに組み上げた際の騒音自体が低減するばかりでなく、騒音対策として用いられていた部品を減らすことが可能になるため、トランスなどの小型化、低コスト化が可能になる。
According to the present invention, the maximum magnetic flux density of 1.3 T is controlled by controlling the magnetic flux density B1 when the excitation power VA is 1.5 W / Kg or less and a magnetic field of 80 A / m 2 is applied to a range of 1.3 T or more. A Fe-based amorphous alloy ribbon having a small operating magnetostriction with a magnetostriction of 6 × 10 −6 or less when alternating-current excitation is performed in the above can be obtained.
Furthermore, by controlling the excitation power VA to 1.0 W / Kg or less and the magnetic flux density B1 to 1.4 T or more, the magnetostriction when AC excitation is performed at the maximum magnetic flux density of 1.3 T is 5 × 10 −6 or less. It is possible to obtain a Fe-based amorphous alloy ribbon having a small operating magnetostriction.
Furthermore, by controlling the excitation power VA to 0.5 W / Kg or less and the magnetic flux density B1 to 1.5 T or more, the magnetostriction when AC excitation is performed at the maximum magnetic flux density of 1.3 T is 3 × 10 −6 or less. It is possible to obtain a Fe-based amorphous alloy ribbon having a small operating magnetostriction.
When these Fe-based amorphous alloy ribbons with reduced operating magnetostriction are used as iron cores for power transformers, high-frequency transformers, choke coils, reactors, etc., the magnetostriction vibration of the ribbons, which is the main cause of noise, is reduced. Therefore, not only the noise itself when assembled in a transformer or the like is reduced, but also the parts used as noise countermeasures can be reduced, so that the transformer and the like can be reduced in size and cost.
本発明の特徴は、Fe基非晶質合金薄帯を所定の交流周波数、および、所定の動作磁束密度で励磁させた場合、そのときの励磁電力VAおよび80A/mの磁場を印加したときの磁束密度B1を特定範囲に制御することによって、薄帯自体に生じる磁歪(動作磁歪)を低減できたことにある。
ここで言う動作磁歪とは、薄帯に所定の交流周波数で、所定の磁束密度になる磁場を印加したときに薄帯の面内の所定の方向に生じる歪量(歪の最大振幅値)のことである。薄帯の長手方向における歪の最大振幅値で定義するのが好ましい。
A feature of the present invention is that when an Fe-based amorphous alloy ribbon is excited at a predetermined AC frequency and a predetermined operating magnetic flux density, the excitation power VA at that time and a magnetic field of 80 A / m are applied. By controlling the magnetic flux density B1 within a specific range, the magnetostriction (operating magnetostriction) generated in the ribbon itself can be reduced.
The operating magnetostriction here refers to the amount of strain (maximum amplitude value of strain) generated in a predetermined direction in the plane of the ribbon when a magnetic field having a predetermined magnetic flux density is applied to the ribbon at a predetermined AC frequency. That is. It is preferably defined by the maximum amplitude value of strain in the longitudinal direction of the ribbon.
励磁電力VAまたは磁束密度B1がそれぞれ単独で本発明範囲内に入っても、本発明の低い磁歪は得られない。励磁電力VAおよび磁束密度B1が同時に本発明範囲内に入ることによって初めて低い磁歪が得られる。
励磁電力VAおよび磁束密度B1は、薄帯の組成、薄帯のアニール条件によって制御することができる。
励磁電力VAは所定の磁束密度まで励磁する時に必要な電力であって、磁束密度B1とは、両者の単位からして異なることから全く別な次元のパラメータである。本発明者は、これらの別次元のパラメータを組み合わせることによって、動作磁歪を低く制御した薄帯を得ることに成功した。
Even if the excitation power VA or the magnetic flux density B1 is individually within the range of the present invention, the low magnetostriction of the present invention cannot be obtained. A low magnetostriction is obtained only when the excitation power VA and the magnetic flux density B1 are simultaneously within the scope of the present invention.
The excitation power VA and the magnetic flux density B1 can be controlled by the composition of the ribbon and the annealing conditions of the ribbon.
The excitation power VA is a power required when exciting up to a predetermined magnetic flux density, and is a parameter of a completely different dimension because it differs from the magnetic flux density B1 in terms of both units. The inventor has succeeded in obtaining a ribbon having a controlled operating magnetostriction by combining these parameters of different dimensions.
励磁電力VAを1.5W/Kg以下、かつ、磁束密度B1を1.3T以上に制御することによって、動作磁歪を6×10−6以下の低い値にすることが可能となる。
さらに、励磁電力VAを1.0W/Kg以下、かつ、磁束密度B1を1.4T以上に制御することによって、動作磁歪を5×10−6以下のさらに低い値にすることができる。
騒音がより厳しい環境で使用する場合には、励磁電力VAを0.5W/Kg以下、磁束密度B1を1.5T以上に制御することによって、3×10−6以下のさらに低い動作磁歪を得ることが可能になる。
すなわち、動作磁歪を5×10−6以下を得るために好ましくは励磁電力VAを1.0W/Kg以下、かつ、磁束密度B1を1.4T以上にすることが望ましく、更に、3×10−6以下のさらに低い動作磁歪を得るために、好ましくは励磁電力VAを0.5W/Kg以下、磁束密度B1を1.5T以上とすることが望ましい。
ここで、規定した励磁電力VAは、周波数50Hz、最大磁束密度1.3Tにおいて測定した励磁電力であり、磁束密度B1は、周波数50Hz、最大磁場80A/mで励磁した時の最大磁束密度である。ただし、磁束密度B1は、飽和磁束密度とは全く異なるものであるが、その飽和磁束密度より大きくなることはない。
By controlling the excitation power VA to 1.5 W / Kg or less and the magnetic flux density B1 to 1.3 T or more, the operating magnetostriction can be set to a low value of 6 × 10 −6 or less.
Further, by controlling the excitation power VA to 1.0 W / Kg or less and the magnetic flux density B1 to 1.4 T or more, the operating magnetostriction can be set to a lower value of 5 × 10 −6 or less.
When used in a more severe environment, lower operating magnetostriction of 3 × 10 −6 or less is obtained by controlling the excitation power VA to 0.5 W / Kg or less and the magnetic flux density B1 to 1.5 T or more. It becomes possible.
That is, preferably in order to obtain the operation magnetostrictive 5 × 10 -6 or less exciting power VA to 1.0 W / Kg or less, it is desirable that the magnetic flux density B1 above 1.4 T, further, 3 × 10 - In order to obtain a lower operating magnetostriction of 6 or less, it is preferable that the excitation power VA is 0.5 W / Kg or less and the magnetic flux density B1 is 1.5 T or more.
Here, the prescribed excitation power VA is the excitation power measured at a frequency of 50 Hz and a maximum magnetic flux density of 1.3 T, and the magnetic flux density B1 is the maximum magnetic flux density when excited at a frequency of 50 Hz and a maximum magnetic field of 80 A / m. . However, although the magnetic flux density B1 is completely different from the saturation magnetic flux density, it does not become larger than the saturation magnetic flux density.
本発明の低磁歪の薄帯は、Fe、Si、B、C、Pの主要元素および不可避的不純物から成る元素で構成させることができる。
Feは78原子%以上、86原子%以下の範囲が好ましい。なぜならば、Feが78原子%未満の場合には十分な磁束密度が得られなくなり、86原子%超の場合には非晶質形成が困難になって良好な磁気特性が得られなくなるからである。より好ましくは、Feを80原子%超、82原子%以下にすれば、十分な磁束密度を維持した状態で安定した非晶質化が可能となる。
The low magnetostrictive ribbon according to the present invention can be composed of elements composed of main elements of Fe, Si, B, C, and P and inevitable impurities.
Fe is preferably in the range of 78 atomic% to 86 atomic%. This is because when Fe is less than 78 atomic%, a sufficient magnetic flux density cannot be obtained, and when it exceeds 86 atomic%, amorphous formation becomes difficult and good magnetic properties cannot be obtained. . More preferably, when Fe is made more than 80 atomic% and 82 atomic% or less, stable amorphization can be achieved while maintaining a sufficient magnetic flux density.
Siは1原子%以上、19原子%以下の範囲が好ましい。Siが1原子%未満の場合には、非晶質が安定して形成され難くなり、Siが19原子%超では磁束密度が低下するからである。2原子%以上、5原子%未満のSiの範囲では非晶質化が安定し、磁束密度の低下も抑制されるためより好ましい。 Si is preferably in the range of 1 atomic% to 19 atomic%. This is because when Si is less than 1 atomic%, amorphous is hardly formed stably, and when Si exceeds 19 atomic%, the magnetic flux density decreases. A Si content of 2 atomic% or more and less than 5 atomic% is more preferable because amorphization is stable and a decrease in magnetic flux density is suppressed.
Bは5原子%超、19原子%以下の範囲が好ましい。Bが5原子%以下では非晶質が安定して形成され難くなり、19原子%超としても更なる非晶質形成能の向上は認められなくなるばかりか磁束密度も低下してしまう。
5原子%超、16原子%以下のBでは非晶質化が安定し、磁束密度の低下も抑制されるためより好ましい。14原子%以上、16原子%以下のBの範囲にすることによって、非晶質を更に安定化させることができる。
B is preferably in the range of more than 5 atomic% and 19 atomic% or less. If B is 5 atomic% or less, it is difficult to stably form amorphous, and even if it exceeds 19 atomic%, further improvement in the ability to form amorphous is not recognized, and the magnetic flux density also decreases.
B of more than 5 atomic% and 16 atomic% or less is more preferable because the amorphization is stable and the decrease in magnetic flux density is suppressed. By setting the content of B in the range of 14 atomic% to 16 atomic%, the amorphous can be further stabilized.
Cは薄帯の鋳造性に効果がある元素である。Cを含有させることによって、溶湯と冷却基板の濡性が向上して良好な薄帯を形成させることができる。
Cが0.02原子%未満の場合はこの効果が得られない。また、Cを4原子%超含有させてもこの効果の更なる向上は認められない。したがって、0.02原子%以上4原子%以下の範囲が好ましい。
C is an element having an effect on the castability of the ribbon. By containing C, the wettability between the molten metal and the cooling substrate is improved, and a good ribbon can be formed.
If C is less than 0.02 atomic%, this effect cannot be obtained. Further, even if C is contained more than 4 atomic%, no further improvement of this effect is recognized. Therefore, the range of 0.02 atomic% or more and 4 atomic% or less is preferable.
本発明者は、既に、特許文献5において、0.008質量%以上、0.1質量%(0.16原子%)以下のPは、MnとSの許容含有量を増加させて安価な鉄源の使用を可能にする効果があることを見出している。
さらに、特許文献6において、0.2原子%以上12原子%以下のPが磁束密度のばらつきを低減させる効果があることを見出している。
本発明では、Pを0.01原子%以上、12原子%以下の範囲で含有させることによって、前記Pの効果を得ることができる。
さらに、所定範囲のPを含有させることによって、励磁電力VA、および、磁束密度B1の制御が容易になる効果がある。
Pの範囲が、0.05原子%以上、12原子%以下であればより好ましい。Pの効果をより際立たせるためには、1原子%以上6原子%程度の範囲にすれば良い。
Further, in Patent Document 6, it has been found that P of 0.2 atomic% or more and 12 atomic% or less has an effect of reducing variation in magnetic flux density.
In the present invention, the effect of P can be obtained by containing P in the range of 0.01 atomic% or more and 12 atomic% or less.
Furthermore, the inclusion of a predetermined range of P has an effect of facilitating the control of the excitation power VA and the magnetic flux density B1.
More preferably, the range of P is 0.05 atomic% or more and 12 atomic% or less. In order to make the effect of P more prominent, it may be in the range of about 1 atomic% to 6 atomic%.
このような本発明のFe基非晶質合金薄帯を電力トランス、高周波トランス、チョークコイル、リアクトルなどの鉄心の素材として用いることによって、騒音を低減させることが可能になる。 By using such an Fe-based amorphous alloy ribbon of the present invention as a material for an iron core such as a power transformer, a high-frequency transformer, a choke coil, or a reactor, noise can be reduced.
本発明の薄帯は、所定の合金成分を溶解し、溶湯を移動している冷却基板上にスロットノズルを通して噴出させて、該合金を急冷凝固させる方法、例えば、単ロール法、双ロール法によって製造することができる。
単ロール装置にはドラムの内壁を使う遠心急冷装置、エンドレスタイプのベルトを使う装置、およびこれらの改良型である補助ロールを付属させたもの、減圧下あるいは真空中、または不活性ガス中での鋳造装置も含まれる。
The ribbon of the present invention melts a predetermined alloy component and ejects the molten metal through a slot nozzle onto a moving cooling substrate to rapidly solidify the alloy, for example, by a single roll method or a twin roll method. Can be manufactured.
Single roll equipment includes centrifugal quenching equipment that uses the inner wall of the drum, equipment that uses an endless type belt, and an auxiliary roll that is an improved version of these equipment, under reduced pressure or in vacuum, or in an inert gas A casting device is also included.
本発明では、薄帯の板厚、板幅、などの寸法は特に規定されないが、薄帯の板厚は、例えば、10μm以上100μm以下が好ましい。板幅は20mm以上が好ましい。
本発明の原料として、例えば、鉄鉱石を原料とした製鉄プロセスで生産される一部の鋼種を鉄源に使用することが可能である。
合金組成としては、例えば、Fe79Si3B15C1P2、 Fe81Si2.5B15C1P0.5、 Fe82Si2.2B15C0.5P0.3、 Fe84Si2.7B10C0.3P3、 Fe84.8Si2.5B7C0.7P5、 Fe81Si3B15C0.96P0.04等である。
In the present invention, the thickness, width, etc. of the ribbon are not particularly specified, but the ribbon thickness is preferably 10 μm or more and 100 μm or less, for example. The plate width is preferably 20 mm or more.
As a raw material of the present invention, for example, some steel types produced in an iron making process using iron ore as a raw material can be used as an iron source.
Examples of the alloy composition include Fe 79 Si 3 B 15 C 1 P 2 , Fe 81 Si 2.5 B 15 C 1 P 0.5 , Fe 82 Si 2.2 B 15 C 0.5 P 0.3 , Fe 84 Si 2.7 B 10 C 0.3 P 3 , Fe 84.8 Si 2.5 B 7 C 0.7 P 5 , Fe 81 Si 3 B 15 C 0.96 P 0.04, and the like.
励磁電力VA、磁束密度B1は、薄帯の組成、あるいは、薄帯の磁場中熱処理における磁場の大きさ、熱処理温度、時間によって制御することができる。
薄帯組成は前記した範囲であり、磁場中熱処理における磁場強度は100A/m〜10000A/mの範囲、熱処理温度は250℃〜結晶化温度以下の範囲、時間は0.1〜20時間であれば制御可能である。
励磁電力VAを低くしたい場合には、熱処理温度を高く、また、時間を長く設定すれば良い。磁束密度B1を大きくしたい場合には、Fe含有量を高めたり、磁場強度を大きくしたり、熱処理温度を高めたりすれば良い。
The excitation power VA and the magnetic flux density B1 can be controlled by the composition of the ribbon or the magnitude of the magnetic field, the heat treatment temperature, and the time in the heat treatment in the magnetic field of the ribbon.
The ribbon composition is in the above range, the magnetic field strength in the heat treatment in the magnetic field is in the range of 100 A / m to 10000 A / m, the heat treatment temperature is in the range of 250 ° C. to the crystallization temperature, and the time is in the range of 0.1 to 20 hours. Can be controlled.
When it is desired to lower the excitation power VA, the heat treatment temperature may be increased and the time may be set longer. In order to increase the magnetic flux density B1, the Fe content may be increased, the magnetic field strength may be increased, or the heat treatment temperature may be increased.
上記本発明薄帯をトロイダルに巻回した巻鉄心、あるいは、本発明薄帯を所定形状に打ち抜き、積層した積鉄心に前記した磁場中熱処理を施すことによって、交流における動作磁歪が小さな鉄心を得ることができる。 An iron core having a small operating magnetostriction in alternating current is obtained by subjecting the above-described inventive ribbon to a toroidal wound core, or by punching the inventive ribbon into a predetermined shape and subjecting the laminated core to the heat treatment in the magnetic field described above. be able to.
ところで、電力トランス、高周波トランス、チョークコイル、リアクトルでは、磁歪だけでなく鉄損も低いことが好ましい。特に、高周波領域においては、鉄損が大きい場合には発熱が問題となる場合がある。
周波数50Hz、最大磁束密度1.3Tでの単板測定による鉄損が0.15W/Kg以下であれば好ましい。さらに好ましくは、0.12W/Kgの鉄損であればエネルギー損失の優れたトランスなどを製造することが可能になる。
By the way, in a power transformer, a high frequency transformer, a choke coil, and a reactor, it is preferable that not only magnetostriction but also iron loss is low. In particular, in the high frequency region, heat generation may be a problem when the iron loss is large.
It is preferable if the iron loss by single plate measurement at a frequency of 50 Hz and a maximum magnetic flux density of 1.3 T is 0.15 W / Kg or less. More preferably, if the iron loss is 0.12 W / Kg, a transformer having excellent energy loss can be manufactured.
以下、本発明を実施例に基づいて詳細に説明する。
原子%でFebalSi2.6B15C1P0.1および0.2原子%のMn、S等の不純物を含む組成の母合金を製造した。
この母合金を石英ルツボ中で高周波溶解し、ルツボ先端に取り付けた開口形状が0.4mm×25mmの矩形状スロットノズルを通じてCu合金製冷却ロールの上に溶湯を噴出した。冷却ロールの直径は580mm、回転数は800rpmである。この鋳造によって、厚さ約27μm、幅25mmの非晶質薄帯が得られた。
薄帯の励磁電力VA、および磁束密度B1を種々の値に制御するために、薄帯を120mm長さに切断し、磁場中アニールを施した。
すなわち、本発明例ではアニールの温度を300〜380℃、時間を0.5〜3時間、磁場の強さは400〜4000A/mとした。
一方、比較例ではアニールの温度を250℃未満、時間を0.1時間以下、または磁場の強さを100A/m未満の少なくとも一条件を選び、それ以外は本発明例と同じ条件とする。磁場方向はいずれも薄帯長手方向とした。
これらの温度、時間、磁場強度によって、励磁電力VA、および磁束密度B1を制御した。
磁場中アニール後の試料をSST(単板磁気測定器)を用いて、周波数50Hz、最大磁束密度1.3Tで励磁した時の励磁電力VA、および、周波数50Hz、最大磁場80A/mで励磁した時の最大磁束密度B1、さらに、励磁電力VAと同一測定条件で鉄損を測定した。
動作磁歪λp-pは120mm長さの薄帯の片側を固定し、反対側に反射板を付けて、周波数は50Hz、最大磁束密度1.3Tで薄帯長手方向に交流励磁した状態において、レーザードップラー法を用いて測定した。
結果を表1に示す。
Hereinafter, the present invention will be described in detail based on examples.
A master alloy having a composition containing Fe bal Si 2.6 B 15 C 1 P 0.1 in atomic percent and impurities of 0.2 atomic percent such as Mn and S was manufactured.
The mother alloy was melted at high frequency in a quartz crucible, and the molten metal was jetted onto a Cu alloy cooling roll through a rectangular slot nozzle having an opening shape of 0.4 mm × 25 mm attached to the tip of the crucible. The diameter of the cooling roll is 580 mm, and the rotation speed is 800 rpm. By this casting, an amorphous ribbon having a thickness of about 27 μm and a width of 25 mm was obtained.
In order to control the excitation power VA of the ribbon and the magnetic flux density B1 to various values, the ribbon was cut into a length of 120 mm and annealed in a magnetic field.
That is, in the example of the present invention, the annealing temperature was 300 to 380 ° C., the time was 0.5 to 3 hours, and the magnetic field strength was 400 to 4000 A / m.
On the other hand, in the comparative example, at least one condition in which the annealing temperature is less than 250 ° C., the time is 0.1 hour or less, or the strength of the magnetic field is less than 100 A / m is selected, and the other conditions are the same as those in the present invention example. The magnetic field direction was the longitudinal direction of the ribbon.
Excitation power VA and magnetic flux density B1 were controlled by these temperature, time, and magnetic field strength.
The sample after annealing in a magnetic field was excited using a SST (single plate magnetometer) at an excitation power of VA when excited at a frequency of 50 Hz and a maximum magnetic flux density of 1.3 T, and at a frequency of 50 Hz and a maximum magnetic field of 80 A / m. The iron loss was measured under the same measurement conditions as the maximum magnetic flux density B1 and the excitation power VA.
The operating magnetostriction λp-p is fixed at one side of a 120 mm long ribbon, with a reflector on the opposite side, and with a frequency of 50 Hz and a maximum magnetic flux density of 1.3 T. Measurements were made using the Doppler method.
The results are shown in Table 1.
励磁電力VAが1.5W/Kg以下、および磁束密度B1が1.3T以上の本発明範囲であるNo.1〜No.18では、動作磁歪λp-pの値は全て6×10−6以下の低い値となっている。
特に、No.1〜No.13の励磁電力VAが1.0W/Kg以下、磁束密度B1が1.4T以上の場合にはλp-p は5×10−6以下とさらに低下している。
No.1〜No.7の励磁電力VAが0.5W/Kg以下、磁束密度B1が1.5T以上とさらに励磁電力VAが低下し、磁束密度B1が大きくなると、λp-pは3×10−6以下のさらに低い値となることがわかる。
鉄損は、No.1〜No.18の全てにおいて1.50W/Kg以下の低いものであった。
The excitation power VA is 1.5 W / Kg or less and the magnetic flux density B1 is 1.3T or more in the scope of the present invention. 1-No. 18, the values of the operating magnetostriction λp-p are all low values of 6 × 10 −6 or less.
In particular, no. 1-No. When the excitation power VA 13 is 1.0 W / Kg or less and the magnetic flux density B1 is 1.4 T or more, λp-p is further reduced to 5 × 10 −6 or less.
No. 1-No. When the excitation power VA of No. 7 is 0.5 W / Kg or less and the magnetic flux density B1 is 1.5 T or more and the excitation power VA is further reduced and the magnetic flux density B1 is increased, λp-p is further lowered to 3 × 10 −6 or less. It turns out that it becomes a value.
The iron loss is no. 1-No. In all 18, it was as low as 1.50 W / Kg or less.
比較例のNo.19、No.20の励磁電力VAは1.5W/Kg以下と本発明範囲にあるが、磁束密度B1が1.3Tより低く本発明範囲外となっている。
また、No.21、No.22の磁束密度B1は1.3T以上と本発明範囲内に入っているが、励磁電力VAが1.5W/Kgより大きく本発明範囲外となっている。
このようにNo.19〜No.22では、励磁電力VAと磁束密度B1の片方が本発明範囲外となっており、このような場合のλp-pは6×10−6以上の大きな値となってしまう。
No.23〜No.29では、励磁電力VA、磁束密度B1共に本発明範囲外であって、このような場合のλp-pは、6×10−6以上の大きな値となることがわかる。
Comparative Example No. 19, no. The excitation power VA of 20 is 1.5 W / Kg or less, which is within the scope of the present invention, but the magnetic flux density B1 is lower than 1.3 T and outside the scope of the present invention.
No. 21, no. Although the magnetic flux density B1 of 22 is within the range of the present invention as 1.3T or more, the excitation power VA is larger than 1.5 W / Kg and is outside the range of the present invention.
Thus, no. 19-No. 22, one of the excitation power VA and the magnetic flux density B1 is outside the range of the present invention, and in such a case, λp-p becomes a large value of 6 × 10 −6 or more.
No. 23-No. 29, both the excitation power VA and the magnetic flux density B1 are outside the scope of the present invention, and in this case, λp-p is a large value of 6 × 10 −6 or more.
原子%でFebalSi2.7B10.2C0.9P5.3および0.2原子%のMn、S等の不純物を含む組成の母合金を製造し、実施例1と同様な方法で非晶質薄帯に鋳造した。得られた薄帯の板厚は26μm、幅は25mmであった。
実施例1と同様に種々の磁場中アニール条件で熱処理して励磁電力VA、および磁束密度B1を制御した薄帯を得るとともに、SSTおよびレーザードップラー法で、励磁電力VA、磁束密度B1、λp-p、鉄損を評価した。
結果を表2に示す。
A master alloy having a composition containing Fe bal Si 2.7 B 10.2 C 0.9 P 5.3 at atomic percent and impurities such as 0.2 atomic percent of Mn, S and the like was manufactured. Cast into amorphous ribbon by the method. The obtained ribbon had a thickness of 26 μm and a width of 25 mm.
In the same manner as in Example 1, heat treatment was performed under various annealing conditions in a magnetic field to obtain a ribbon with controlled excitation power VA and magnetic flux density B1, and excitation power VA, magnetic flux density B1, λp− p, Iron loss was evaluated.
The results are shown in Table 2.
励磁電力VAが1.5W/Kg以下、および磁束密度B1が1.3T以上の本発明範囲であるNo. 30〜No.45では、動作磁歪λp-pの値は全て6×10−6以下の低い値となっている。
特に、No.30〜No.36の励磁電力VAが1.0W/Kg以下、磁束密度B1が1.4T以上の場合にはλp-pは5×10−6以下とさらに低下している。
No.30のように励磁電力VAが0.5W/Kg以下、磁束密度B1が1.5T以上とさらに励磁電力VAが低下し、磁束密度B1が大きくなると、λp-pは3×10−6以下のさらに低い値となることがわかる。
鉄損は、No.30〜No.45の全てにおいて1.50W/Kg以下の低いものであった。
比較例のNo.46〜No.48の励磁電力VAは1.5W/Kg以下と本発明範囲にあるが、磁束密度B1が1.3Tより低く本発明範囲外となっている。
また、No.49〜No.51の磁束密度B1は1.3T以上と本発明範囲内に入っているが、励磁電力VAが1.5W/Kgより大きく本発明範囲外となっている。
このようにNo.46〜No.51では、励磁電力VAと磁束密度B1の片方が本発明範囲外となっており、このような場合のλp-pは6×10−6以上の大きな値となることがわかる。
Excitation power VA is 1.5 W / Kg or less, and magnetic flux density B1 is 1.3T or more of the present invention range No. 30-No. In 45, the values of the operating magnetostriction λp-p are all low values of 6 × 10 −6 or less.
In particular, no. 30-No. When the excitation power VA of 36 is 1.0 W / Kg or less and the magnetic flux density B1 is 1.4 T or more, λp-p is further reduced to 5 × 10 −6 or less.
No. As shown in FIG. 30, when the excitation power VA is 0.5 W / Kg or less and the magnetic flux density B1 is 1.5 T or more and the excitation power VA further decreases and the magnetic flux density B1 increases, λp-p is 3 × 10 −6 or less. It can be seen that the value is even lower.
The iron loss is no. 30-No. In all 45, it was a low thing of 1.50 W / Kg or less.
Comparative Example No. 46-No. The excitation power VA of 48 is 1.5 W / Kg or less, which is within the scope of the present invention, but the magnetic flux density B1 is lower than 1.3 T and outside the scope of the present invention.
No. 49-No. The magnetic flux density B1 of 51 is within the range of the present invention as 1.3T or more, but the excitation power VA is larger than 1.5 W / Kg and is outside the range of the present invention.
Thus, no. 46-No. 51, one of the excitation power VA and the magnetic flux density B1 is outside the scope of the present invention, and it can be seen that λp-p in such a case is a large value of 6 × 10 −6 or more.
原子%でFebalSi2.4B13C0.8P0.9および0.2原子%のMn、S等の不純物を含む組成の母合金を製造し、実施例1と同様な方法で非晶質薄帯に鋳造した。得られた薄帯の板厚は27μm、幅は25mmであった。
実施例1と同様に種々の磁場中アニール条件で熱処理して励磁電力VA、および磁束密度B1を制御した薄帯を得るとともに、SSTおよびレーザードップラー法で、励磁電力VA、磁束密度B1、λp-p、鉄損を評価した。
結果を表3に示す。
A master alloy having a composition containing Fe bal Si 2.4 B 13 C 0.8 P 0.9 and 0.2 atomic% of impurities such as Mn and S in atomic% is manufactured. Cast into an amorphous ribbon. The obtained ribbon had a thickness of 27 μm and a width of 25 mm.
In the same manner as in Example 1, heat treatment was performed under various annealing conditions in a magnetic field to obtain a ribbon with controlled excitation power VA and magnetic flux density B1, and excitation power VA, magnetic flux density B1, λp− p, Iron loss was evaluated.
The results are shown in Table 3.
励磁電力VAが1.5W/Kg以下、および磁束密度B1が1.3T以上の本発明範囲であるNo. 52〜No. 57では、動作磁歪λp-pの値は全て6×10−6以下の低い値となっている。
特に、No.52〜No.54の励磁電力VAが1.0W/Kg以下、磁束密度B1が1.4T以上の場合にはλp-pは5×10−6以下とさらに低下しているのがわかる。
鉄損は、No.52〜No.57の全てにおいて1.50W/Kg以下の低いものであった。
比較例のNo.58、No.59では、磁束密度B1は1.3T以上と本発明範囲内に入っているが、励磁電力VAが1.5W/Kgより大きく本発明範囲外となっている。このようにNo.58、No.59では、励磁電力VAと磁束密度B1の片方が本発明範囲外となっており、このような場合のλp-pは6×10−6以上の大きな値となることがわかる。
In No. 52 to No. 57 in which the excitation power VA is 1.5 W / Kg or less and the magnetic flux density B1 is 1.3 T or more, the values of the operating magnetostriction λp-p are all 6 × 10 −6 or less. Is a low value.
In particular, no. 52-No. It can be seen that when the excitation power VA of 54 is 1.0 W / Kg or less and the magnetic flux density B1 is 1.4 T or more, λp-p further decreases to 5 × 10 −6 or less.
The iron loss is no. 52-No. In all 57, it was as low as 1.50 W / Kg or less.
Comparative Example No. 58, no. 59, the magnetic flux density B1 is 1.3 T or more and falls within the scope of the present invention, but the excitation power VA is larger than 1.5 W / Kg and is outside the scope of the present invention. Thus, no. 58, no. 59, one of the excitation power VA and the magnetic flux density B1 is outside the scope of the present invention, and it can be seen that λp-p in such a case is a large value of 6 × 10 −6 or more.
実施例1の試料5(本発明例)と試料28(比較例)の薄帯をそれぞれ、3m長さに切断し、外径60mmの石英ボビンに巻回してトロイダル鉄心を作製した。
この鉄心に励磁用コイルを巻いた後、鉄心の周方向に4000A/mの磁場を印加した状態で、360℃の温度、保定時間は2.5時間の磁場中アニールを行った。
アニール後、鉄心の最外周に歪ゲージを貼り付けて、周波数50Hz、最大磁束密度1.3Tの条件で鉄心の動作磁歪を測定した。その結果、本発明例の鉄心の動作磁歪は3.85×10−6、比較例の鉄心では9.62×10−6であり、本発明例の薄帯を使用することによって、動作磁歪が小さな巻鉄心を製造することができる。
The ribbons of sample 5 (invention example) and sample 28 (comparative example) of Example 1 were each cut to a length of 3 m and wound on a quartz bobbin having an outer diameter of 60 mm to produce a toroidal iron core.
After winding an exciting coil around the iron core, annealing was performed in a magnetic field at a temperature of 360 ° C. and a holding time of 2.5 hours with a magnetic field of 4000 A / m applied in the circumferential direction of the iron core.
After annealing, a strain gauge was attached to the outermost periphery of the iron core, and the operating magnetostriction of the iron core was measured under the conditions of a frequency of 50 Hz and a maximum magnetic flux density of 1.3T. As a result, the operating magnetostriction of the iron core of the present invention example is 3.85 × 10 −6 , and the iron core of the comparative example is 9.62 × 10 −6 , and the operating magnetostriction is reduced by using the ribbon of the present invention example. A small wound core can be manufactured.
同じく、実施例1の試料5(本発明例)と試料28(比較例)の薄帯をそれぞれ切断した後、積層し、長辺が100mm、短辺が50mmの矩形状の積鉄心を作製した。
この鉄心に励磁用コイルを巻いた後、コアの周方向に4000A/mの磁場を印加した状態で、360℃の温度、保定時間は2.5時間の磁場中アニールを行った。
アニール後、鉄心の上端面に歪ゲージを貼り付けて、周波数50Hz、最大磁束密度1.3Tの条件で鉄心の動作磁歪を測定した。その結果、本発明例の鉄心の動作磁歪は2.92×10−6、比較例の鉄心では8.89×10−6であり、本発明例の薄帯を使用することによって、動作磁歪が小さな巻鉄心を製造することができる。
Similarly, the ribbons of Sample 5 (Example of the present invention) and Sample 28 (Comparative Example) of Example 1 were cut and then laminated to produce a rectangular core having a long side of 100 mm and a short side of 50 mm. .
After winding an exciting coil around the iron core, annealing was performed in a magnetic field at a temperature of 360 ° C. and a holding time of 2.5 hours with a magnetic field of 4000 A / m applied in the circumferential direction of the core.
After annealing, a strain gauge was attached to the upper end surface of the iron core, and the operating magnetostriction of the iron core was measured under the conditions of a frequency of 50 Hz and a maximum magnetic flux density of 1.3 T. As a result, the operating magnetostriction of the iron core of the present invention example is 2.92 × 10 −6 , and the iron core of the comparative example is 8.89 × 10 −6 , and the operating magnetostriction is reduced by using the ribbon of the present invention example. A small wound core can be manufactured.
これらの動作磁歪を低減させたFe基非晶質合金薄帯を電力トランス、高周波トランス、チョークコイル、リアクトルなどの鉄心として用いる場合、騒音の主要因となっている薄帯の磁歪振動が低減するため、トランスなどに組み上げた際の騒音自体が低減するばかりでなく、騒音対策として用いられていた部品を減らすことが可能になるため、トランスなどの小型化、低コスト化が可能になる。 When these Fe-based amorphous alloy ribbons with reduced operating magnetostriction are used as iron cores for power transformers, high-frequency transformers, choke coils, reactors, etc., the magnetostriction vibration of the ribbons, which is the main cause of noise, is reduced. For this reason, not only the noise itself when assembled in a transformer or the like is reduced, but also the parts used as noise countermeasures can be reduced, so that the transformer and the like can be reduced in size and cost.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004070478A JP2005256104A (en) | 2004-03-12 | 2004-03-12 | Fe-BASED AMORPHOUS ALLOY RIBBON HAVING SMALL OWN MAGNETOSTRICTION, AND IRON CORE MANUFACTURED WITH THE USE OF IT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004070478A JP2005256104A (en) | 2004-03-12 | 2004-03-12 | Fe-BASED AMORPHOUS ALLOY RIBBON HAVING SMALL OWN MAGNETOSTRICTION, AND IRON CORE MANUFACTURED WITH THE USE OF IT |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010221029A Division JP2011049574A (en) | 2010-09-30 | 2010-09-30 | Fe GROUP AMORPHOUS ALLOY THIN BELT WITH SMALL OPERATING MAGNETOSTRICTION, AND IRON CORE MANUFACTURED USING THE SAME |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005256104A true JP2005256104A (en) | 2005-09-22 |
Family
ID=35082133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004070478A Pending JP2005256104A (en) | 2004-03-12 | 2004-03-12 | Fe-BASED AMORPHOUS ALLOY RIBBON HAVING SMALL OWN MAGNETOSTRICTION, AND IRON CORE MANUFACTURED WITH THE USE OF IT |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005256104A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007094502A1 (en) * | 2006-02-17 | 2007-08-23 | Nippon Steel Corporation | Amorphous alloy thin band excellent in magnetic characteristics and space factor |
WO2008105135A1 (en) * | 2007-02-28 | 2008-09-04 | Nippon Steel Corporation | Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS |
US8021498B2 (en) | 2005-03-29 | 2011-09-20 | Hitachi Metals, Ltd. | Magnetic core and applied product making use of the same |
CN106636982A (en) * | 2017-01-25 | 2017-05-10 | 青岛云路先进材料技术有限公司 | Iron-based amorphous alloy and preparation method thereof |
CN110195188A (en) * | 2019-06-11 | 2019-09-03 | 江苏中科启航新材料工业研究院有限公司 | A method of it reducing melt cast temperature and prepares iron-based amorphous alloy ribbon material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003085150A1 (en) * | 2002-04-05 | 2003-10-16 | Nippon Steel Corporation | Fe-BASE AMORPHOUS ALLOY THIN STRIP OF EXCELLENT SOFT MAGNETIC CHARACTERISTIC, IRON CORE PRODUCED THEREFROM AND MASTER ALLOY FOR QUENCH SOLIDIFICATION THIN STRIP PRODUCTION FOR USE THEREIN |
-
2004
- 2004-03-12 JP JP2004070478A patent/JP2005256104A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003085150A1 (en) * | 2002-04-05 | 2003-10-16 | Nippon Steel Corporation | Fe-BASE AMORPHOUS ALLOY THIN STRIP OF EXCELLENT SOFT MAGNETIC CHARACTERISTIC, IRON CORE PRODUCED THEREFROM AND MASTER ALLOY FOR QUENCH SOLIDIFICATION THIN STRIP PRODUCTION FOR USE THEREIN |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8021498B2 (en) | 2005-03-29 | 2011-09-20 | Hitachi Metals, Ltd. | Magnetic core and applied product making use of the same |
WO2007094502A1 (en) * | 2006-02-17 | 2007-08-23 | Nippon Steel Corporation | Amorphous alloy thin band excellent in magnetic characteristics and space factor |
US7988798B2 (en) | 2006-02-17 | 2011-08-02 | Nippon Steel Corporation | Amorphous alloy ribbon superior in magnetic characteristics and lamination factor |
WO2008105135A1 (en) * | 2007-02-28 | 2008-09-04 | Nippon Steel Corporation | Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS |
US7918946B2 (en) | 2007-02-28 | 2011-04-05 | Nippon Steel Corporation | Fe-based amorphous alloy excellent in soft magnetic properties |
CN106636982A (en) * | 2017-01-25 | 2017-05-10 | 青岛云路先进材料技术有限公司 | Iron-based amorphous alloy and preparation method thereof |
CN110195188A (en) * | 2019-06-11 | 2019-09-03 | 江苏中科启航新材料工业研究院有限公司 | A method of it reducing melt cast temperature and prepares iron-based amorphous alloy ribbon material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6849023B2 (en) | Manufacturing method of nanocrystal alloy magnetic core | |
US8414712B2 (en) | Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core | |
JP5182601B2 (en) | Magnetic core made of amorphous alloy ribbon, nanocrystalline soft magnetic alloy and nanocrystalline soft magnetic alloy | |
JP4771215B2 (en) | Magnetic core and applied products using it | |
JP5664934B2 (en) | Soft magnetic alloy and magnetic component using the same | |
JP5316920B2 (en) | Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components | |
JP6191908B2 (en) | Nanocrystalline soft magnetic alloy and magnetic component using the same | |
KR101837500B1 (en) | Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof | |
KR101837502B1 (en) | Ferromagnetic amorphous alloy ribbon reduced surface defects and application thereof | |
JP2013185162A (en) | ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD FOR PRODUCING THE SAME, AND MAGNETIC PART | |
JP2008231463A (en) | Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT | |
US5871593A (en) | Amorphous Fe-B-Si-C alloys having soft magnetic characteristics useful in low frequency applications | |
JP2008196006A (en) | Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT | |
JP5445891B2 (en) | Soft magnetic ribbon, magnetic core, and magnetic parts | |
JP2018123424A (en) | Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES | |
JP2008248380A (en) | Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS | |
JP2018083984A (en) | Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY RIBBON WITH EXCELLENT SOFT MAGNETIC PROPERTY | |
JP2007234714A (en) | Amorphous transformer for power distribution | |
JP6077445B2 (en) | Ferromagnetic amorphous alloy ribbons and their manufacture | |
JP2007305913A (en) | Core | |
JP2005256104A (en) | Fe-BASED AMORPHOUS ALLOY RIBBON HAVING SMALL OWN MAGNETOSTRICTION, AND IRON CORE MANUFACTURED WITH THE USE OF IT | |
JP2011049574A (en) | Fe GROUP AMORPHOUS ALLOY THIN BELT WITH SMALL OPERATING MAGNETOSTRICTION, AND IRON CORE MANUFACTURED USING THE SAME | |
JP5445924B2 (en) | Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon | |
JP2023124571A (en) | Iron-based nanocrystalline soft magnetic alloy magnetic core | |
JP4688029B2 (en) | Core for common mode choke coil and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090601 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100930 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20101020 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20101217 |