JP2005256062A - Bearing for compressor - Google Patents

Bearing for compressor Download PDF

Info

Publication number
JP2005256062A
JP2005256062A JP2004067824A JP2004067824A JP2005256062A JP 2005256062 A JP2005256062 A JP 2005256062A JP 2004067824 A JP2004067824 A JP 2004067824A JP 2004067824 A JP2004067824 A JP 2004067824A JP 2005256062 A JP2005256062 A JP 2005256062A
Authority
JP
Japan
Prior art keywords
bearing
compressor
particles
sintered alloy
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067824A
Other languages
Japanese (ja)
Other versions
JP4528542B2 (en
Inventor
Toru Okuda
徹 奥田
Naoki Motooka
直樹 本岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2004067824A priority Critical patent/JP4528542B2/en
Publication of JP2005256062A publication Critical patent/JP2005256062A/en
Application granted granted Critical
Publication of JP4528542B2 publication Critical patent/JP4528542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered alloy bearing which is excellent in wear resistance, is low in aggressiveness to a mating material and is low in price and is particularly suitable as a compressor performing compression of alternatives for fluorocarbon having problems in lubricity. <P>SOLUTION: The bearing for the compressor is formed by the sintered alloy dispersed with 0.3 to 3%, by weight ratio, rigid particles of Hv 800 to 1,100 in a pearlite base. The rigid particles are preferably Fe-Mo particles, and above all, the particles of 20 to 100 μm in average grain size and further the bearing integrally forming the housing of the compressor is preferably and previously subjected to a sealing treatment of sintering vacancies. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、焼結合金で形成されるコンプレッサ用軸受、特に、相手攻撃性を小さく抑えて耐摩耗性を高めたコンプレッサ用軸受に関する。   The present invention relates to a compressor bearing formed of a sintered alloy, and more particularly, to a compressor bearing having a high resistance to wear by suppressing the opponent attack.

周知の容積型コンプレッサのひとつに、図2に示すようなものがある。このコンプレッサは、ケーシング1内に回転軸2を有するロータ3を収納し、ベーン4をスプリング5で外周面に押し当てたこのロータ3を、軸受で支持された回転軸2を中心にして回転させる。回転軸2はロータ3の中心から偏心した位置にあり、ロータ3はこの回転軸2を中心にしてケーシング1の内周面上を摺動しながら回転し、これにより、吸入ポート6から吸い込まれた流体が圧縮されて吐出ポート7から吐出される。図3はコンプレッサの全体の分解斜視図である。図2に示したコンプレッサの構成要素は、回転軸2の両端をハウジング一体型軸受10で支持してメインケース11に組込まれる。   One known positive displacement compressor is shown in FIG. In this compressor, a rotor 3 having a rotating shaft 2 is housed in a casing 1 and the rotor 3 having a vane 4 pressed against an outer peripheral surface by a spring 5 is rotated around the rotating shaft 2 supported by a bearing. . The rotating shaft 2 is in an eccentric position from the center of the rotor 3, and the rotor 3 rotates while sliding on the inner peripheral surface of the casing 1 around the rotating shaft 2, and is thereby sucked from the suction port 6. The compressed fluid is compressed and discharged from the discharge port 7. FIG. 3 is an exploded perspective view of the entire compressor. The components of the compressor shown in FIG. 2 are assembled into the main case 11 with both ends of the rotating shaft 2 supported by the housing integrated bearing 10.

この種のコンプレッサは、空調用或いは冷凍冷蔵用の冷媒を圧縮するのに多用されている。   This type of compressor is often used to compress a refrigerant for air conditioning or freezing and refrigeration.

ところで、冷媒用コンプレッサの軸受材料として、これまでは、Fe−Cu−C系の焼結合金、具体的には、重量比で銅:1.0〜3.0%、炭素:0.5〜0.9%を含有し、残部が鉄と不可避不純物から成る焼結合金が使用されていた。ところが、この従来材には下記の問題がある。   By the way, as a bearing material of the compressor for refrigerants, so far, Fe—Cu—C-based sintered alloy, specifically, copper: 1.0 to 3.0% by weight ratio, carbon: 0.5 to A sintered alloy containing 0.9% and the balance being iron and inevitable impurities was used. However, this conventional material has the following problems.

今日、フロンに代わる冷媒として塩素を含まない代替フロン(例えばエステル系の冷媒)が使用されだしたが、塩素を含まない冷媒はフロンに比べて潤滑性に劣り、前述の従来材で形成された軸受は摩耗が著しくて使用できない。   As an alternative to CFCs, alternative CFCs that do not contain chlorine (for example, ester-based refrigerants) have started to be used. However, CFC-free refrigerants are inferior in lubricity compared to CFCs and are made of the aforementioned conventional materials. Bearings are extremely worn and cannot be used.

また、下記特許文献1は、耐摩耗性向上の要求に応えた圧縮機部品用の材料として、10μm以下の微細炭化物が析出したFeを主成分とする第1相と、Feを主成分とする第1相よりも軟質の第2相との混合組織からなる、鉄基基地組織を主とする鉄系焼結合金材を開示している。   Moreover, the following patent document 1 has a first phase mainly composed of Fe in which fine carbides of 10 μm or less are precipitated as a material for a compressor part that meets the demand for improved wear resistance, and Fe as a main component. An iron-based sintered alloy material mainly composed of an iron-based matrix structure, which is composed of a mixed structure with a softer second phase than the first phase is disclosed.

しかしながら、この材料、中でも、鉄基基地組織に硬質粒子を面積比で1〜20%分散させた材料は、軸受に適用すると相手攻撃性が大きすぎてコンプレッサの回転軸を摩耗させることが懸念される。
特開平11−140603号公報
However, there is a concern that this material, especially a material in which hard particles are dispersed in an iron base matrix structure by 1 to 20% in area ratio, is too counterattack when it is applied to a bearing and wears the rotary shaft of the compressor. The
Japanese Patent Laid-Open No. 11-140603

そこで、Fe−Cu−C系の従来材に代わる軸受材料として、機械部品に多用されているFe−Ni−Cu−Mo−C系の焼結合金に着目した。この材料は、Hv800〜1050程度の硬さを有し、潤滑性の悪い状況下で使用する軸受にも使用できる。   Therefore, attention has been paid to Fe—Ni—Cu—Mo—C based sintered alloys frequently used in machine parts as bearing materials to replace conventional Fe—Cu—C based materials. This material has a hardness of about Hv 800 to 1050, and can also be used for a bearing used in a situation where the lubricity is poor.

しかしながら、このFe−Ni−Cu−Mo−C系の焼結合金は、原料費が高くつく欠点がある。   However, this Fe—Ni—Cu—Mo—C based sintered alloy has a disadvantage that the raw material cost is high.

軸受や回転軸が摩耗すると、両者間のクリアランスが大きくなってロータががたつく。これにより、圧縮室のシール性が低下してコンプレッサの圧縮効率が低下し、運転中の騒音も大きくなる。   When the bearings and the rotating shaft are worn, the clearance between the two becomes large and the rotor rattles. Thereby, the sealing performance of the compression chamber is lowered, the compression efficiency of the compressor is lowered, and noise during operation is also increased.

従って、コンプレッサ用の軸受には、耐摩耗性に優れることと併せて相手攻撃性が低いことが要求される。また、量産品のコンプレッサ用軸受は特に、安価であることも要求される。   Accordingly, the bearing for the compressor is required to have excellent wear resistance and low opponent attack. In addition, mass-produced compressor bearings are particularly required to be inexpensive.

この発明は、上記の3つの要求を同時に満たす焼結合金製のコンプレッサ用軸受を実現して提供することを課題としている。   This invention makes it a subject to implement | achieve and provide the bearing for compressors made from the sintered alloy which satisfy | fills said three requirements simultaneously.

上記の課題を解決するため、この発明においては、パーライト基地にHv800〜1100の硬質粒子が重量比で0.3〜3%分散している焼結合金でコンプレッサ用軸受を形成した。   In order to solve the above-described problems, in the present invention, a compressor bearing is formed of a sintered alloy in which hard particles of Hv 800 to 1100 are dispersed in a pearlite matrix by 0.3 to 3% by weight.

前記硬質粒子は、Fe−Mo粒子が好ましい。また、この硬質粒子は、平均粒径が20μm〜100μm程度のものが好ましい。   The hard particles are preferably Fe-Mo particles. The hard particles preferably have an average particle size of about 20 μm to 100 μm.

さらに、この軸受は、コンプレッサのハウジングと一体に形成するものが考えられ、そのハウジング一体型の軸受については、焼結空孔の封孔処理を施しておくのがよい。   Further, this bearing may be formed integrally with the housing of the compressor, and the housing-integrated bearing may be subjected to a sealing hole sealing process.

この発明で用いる焼結合金は、パーライト基地にHv800以上の硬質粒子を重量比で0.3〜3%分散させており、この硬質粒子が軸受の耐摩耗性を向上させる。   In the sintered alloy used in the present invention, hard particles of Hv 800 or more are dispersed in a pearlite matrix by 0.3 to 3% by weight, and the hard particles improve the wear resistance of the bearing.

また、パーライト基地に分散させた硬質粒子はHv1100以下であり、その硬質粒子が軸受の摺動面に面積比で0.3〜3%以下の割合で分散した状況となるので、相手攻撃性も極端に高まらない。   Further, the hard particles dispersed in the pearlite base have a Hv of 1100 or less, and the hard particles are dispersed on the sliding surface of the bearing at an area ratio of 0.3 to 3% or less. Does not rise extremely.

コンプレッサの回転軸は、一般的にHv300〜400程度の鋳物が使用される。この回転軸に対する攻撃性を小さく抑えるためには、軸受の摺動面に現れる硬質粒子の硬度が高過ぎないこと、硬質粒子の量が多過ぎないことが重要になる。   As the rotation shaft of the compressor, a casting having a Hv of about 300 to 400 is generally used. In order to suppress the aggressiveness against the rotating shaft, it is important that the hardness of the hard particles appearing on the sliding surface of the bearing is not too high and the amount of the hard particles is not too large.

上記特許文献1の焼結合金材は、Hv700〜1500の硬質粒子を面積比で1〜20%分散させてもよいとしているが、この硬質粒子は、この発明で採用した硬質粒子に比べると、硬度の上限、分散量の上限がともに大き過ぎる。   The sintered alloy material of the above-mentioned patent document 1 is said to be able to disperse hard particles of Hv 700-1500 in an area ratio of 1-20%, but compared with the hard particles adopted in the present invention, Both the upper limit of hardness and the upper limit of dispersion amount are too large.

また、特許文献1の焼結合金材は、硬度の異なる第1相と第2相がまだら模様を描いて混在し、表面が相手を攻撃性し易い状況になっている。   Moreover, the sintered alloy material of patent document 1 is in the situation where the 1st phase and 2nd phase from which hardness differs draws a mottled pattern, and the surface is easy to attack an other party.

これに対し、この発明の軸受を構成する焼結合金は、フェライトとセメンタイトが層状に析出した指紋状パーライト組織の中に、Hv800〜1100の硬質粒子が3%以下の割合で分散した状況になる。そのため、摺動相手がHv300〜400程度の鋳物であっても相手を著しく攻撃することがない。   On the other hand, the sintered alloy constituting the bearing of the present invention is in a state in which hard particles of Hv 800 to 1100 are dispersed at a ratio of 3% or less in a fingerprint-like pearlite structure in which ferrite and cementite are deposited in layers. . Therefore, even if the sliding partner is a casting of about Hv 300 to 400, the opponent is not significantly attacked.

さらに、この焼結合金は、Niなどの高価な金属を含んでおらず、軸受のコスト上昇も抑えられる。   Furthermore, this sintered alloy does not contain an expensive metal such as Ni, so that an increase in the cost of the bearing can be suppressed.

なお、この発明で採用する硬質粒子は、安価で硬度も適正なFe−Mo粒子が特に適している。   The hard particles employed in the present invention are particularly suitable Fe-Mo particles that are inexpensive and have an appropriate hardness.

また、この硬質粒子は、平均粒径が20μm以上では軸受の焼結時に拡散し難く、耐摩耗性向上の効果を高め易い。また、その平均粒径が100μm以下では軸受の切削加工に悪影響を及ぼさず、従って、平均粒径が20μm〜100μm程度のものを用いるのが好ましい。   In addition, when the average particle diameter is 20 μm or more, the hard particles hardly diffuse during the sintering of the bearing, and the effect of improving the wear resistance is easily improved. In addition, when the average particle size is 100 μm or less, the cutting of the bearing is not adversely affected. Therefore, it is preferable to use those having an average particle size of about 20 μm to 100 μm.

さらに、コンプレッサのハウジングと一体に形成する軸受は、気密性が要求されるので、封孔処理を施したものがよい。その封孔は、焼結後に過熱水蒸気で処理するなどの方法で行える。   Further, since the bearing formed integrally with the compressor housing is required to be airtight, it is preferable that the bearing is subjected to sealing treatment. The sealing can be performed by a method such as treatment with superheated steam after sintering.

以下、この発明の軸受の実施の形態を説明する。図1は、図2、図3に示したコンプレッサのケーシング1の端部に取り付けるハウジング一体型軸受10を示している。   Hereinafter, embodiments of the bearing of the present invention will be described. FIG. 1 shows a housing-integrated bearing 10 attached to the end of the casing 1 of the compressor shown in FIGS.

このハウジング一体型軸受10は、ケーシング端を封鎖するフロントハウジング8に軸受9を一体に形成しており、その軸受9で図2、図3の回転軸2を支持する。   In the housing-integrated bearing 10, a bearing 9 is formed integrally with a front housing 8 that seals a casing end, and the bearing 9 supports the rotary shaft 2 shown in FIGS.

例示のハウジング一体型軸受10は、重量比で、C:0.5〜1.2%(より好ましくは0.7〜1.1%)、Cu:1.0〜5.0%(より好ましくは1.0〜3.0%)を含み、残部Fe及び不可避不純物のパーライト基地に、平均粒径が20μm〜100μmのFe−Mo粒子を0.3〜3%分散させた焼結合金で形成されている。また、焼結後に蒸気による酸化封孔処理が施され、表面の各部に著しく多孔の部分がない。   The exemplary housing-integrated bearing 10 has a weight ratio of C: 0.5 to 1.2% (more preferably 0.7 to 1.1%), Cu: 1.0 to 5.0% (more preferably). Is made of a sintered alloy in which Fe-Mo particles having an average particle size of 20 μm to 100 μm are dispersed in an amount of 0.3% to 3% on the pearlite base of the remaining Fe and inevitable impurities. Has been. Further, after the sintering, an oxidation sealing treatment with steam is performed, and there are no remarkably porous portions on each surface portion.

封孔処理は、低融点金属を溶浸させる方法などでも行えるが、過熱水蒸気による酸化処理の方が、実施し易くて経済的にも優れる。   The sealing treatment can be performed by a method of infiltrating a low melting point metal or the like, but the oxidation treatment with superheated steam is easier to implement and is economically superior.

なお、この発明は、代替フロン以外の流体を圧縮するコンプレッサの軸受にも適用できる。   Note that the present invention can also be applied to a compressor bearing that compresses a fluid other than an alternative chlorofluorocarbon.

以下に、より詳細な実施例を挙げる。   More detailed examples are given below.

重量比で、C:1.0%、Cu:2.0%、残部Fe及び不可避不純物の組成のパーライト基地に、Fe−Mo粒子を分散させた焼結合金で図1に示すハウジング一体型の軸受を作製した。材料の焼結合金に対するFe−Mo粒子の添加量は、表1に示すように変化させた。また、そのFe−Mo粒子は、平均粒径が50μmのものを用いた。   The housing-integrated type shown in FIG. 1 is a sintered alloy in which Fe—Mo particles are dispersed in a pearlite matrix having a composition of C: 1.0%, Cu: 2.0%, the balance Fe and inevitable impurities. A bearing was produced. The amount of Fe—Mo particles added to the sintered alloy of the material was changed as shown in Table 1. Further, the Fe—Mo particles having an average particle diameter of 50 μm were used.

上記の割合で配合した原料を混合し、プレス成形した後、非酸化性ガス雰囲気中、1100〜1150℃の温度で10〜25分間焼結した。   After mixing the raw materials mix | blended in said ratio and press-molding, it sintered for 10 to 25 minutes at the temperature of 1100-1150 degreeC in non-oxidizing gas atmosphere.

さらに、焼結後に、560〜600℃の温度で80〜120分間の蒸気酸化封孔処理を施した。   Furthermore, after sintering, steam oxidation sealing treatment was performed at a temperature of 560 to 600 ° C. for 80 to 120 minutes.

このようにして得られたハウジング一体型軸受10は、各部の密度が6.6g/cm3 以上ある。また、蒸気酸化封孔処理により表面にFe3 4 の酸化皮膜が生じて著しく多孔の部分がなく、ハウジングに要求される気密性が確保されている。 The housing-integrated bearing 10 thus obtained has a density of each part of 6.6 g / cm 3 or more. In addition, an oxide film of Fe 3 O 4 is formed on the surface by the steam oxidation sealing treatment, so that there is no extremely porous portion, and the airtightness required for the housing is ensured.

このハウジング一体型軸受10は、硬度がHv800〜1100、引っ張り強度が300MPa以上ある。   The housing integrated bearing 10 has a hardness of Hv 800 to 1100 and a tensile strength of 300 MPa or more.

次に、この試作品について摩耗焼き付き試験を行った。相手材は、Hv300〜400の鋳物(FC250)である。この相手材と擦り合わせて耐摩耗性と相手攻撃性を評価した。   Next, a wear seizure test was performed on this prototype. The counterpart material is a casting (FC250) of Hv 300 to 400. Abrasion resistance and opponent attack were evaluated by rubbing against this counterpart material.

その結果を表1に併せて示す。表1に、評価結果が非常に良かったものを◎で、評価結果が良かったものを○で、評価結果が悪かったものを×で各々示す。   The results are also shown in Table 1. Table 1 shows that the evaluation result was very good by ◎, that the evaluation result was good by ○, and that the evaluation result was bad by ×.

この試験結果から分かるように、Fe−Mo粒子の量が0.2重量%の焼結合金で形成した軸受は、相手攻撃性は小さいが耐摩耗性が良くない。   As can be seen from the test results, a bearing formed of a sintered alloy having an amount of Fe-Mo particles of 0.2% by weight has a low counterpart attack but a poor wear resistance.

また、Fe−Mo粒子の量が5重量%以上の焼結合金で形成した軸受は、耐摩耗性は満足するが相手攻撃性が高くて満足な結果が得られていない。   Further, a bearing formed of a sintered alloy having an amount of Fe—Mo particles of 5% by weight or more satisfies the wear resistance but has a high opponent attack property and does not provide a satisfactory result.

これに対し、Fe−Mo粒子の量が、0.3重量%、0.5重量%、1.0重量%、2.0重量%、及び3.0重量%の焼結合金で形成した軸受は、耐摩耗性と相手攻撃性の双方の要求を共に満たしている。   On the other hand, a bearing formed of a sintered alloy in which the amount of Fe—Mo particles is 0.3 wt%, 0.5 wt%, 1.0 wt%, 2.0 wt%, and 3.0 wt%. Satisfies both the requirements of wear resistance and opponent aggression.

また、ここで用いた焼結合金は、Fe−Cu−C系の安価な材料に安価なFe−Mo粒子を添加しており、軸受のコスト上昇も回避できる。   Further, the sintered alloy used here is obtained by adding inexpensive Fe-Mo particles to an Fe-Cu-C-based inexpensive material, thereby avoiding an increase in the cost of the bearing.

Figure 2005256062
Figure 2005256062

この発明の軸受の一例を示す斜視図The perspective view which shows an example of the bearing of this invention コンプレッサの一例の要部を簡略化して示す断面図Sectional drawing which simplifies and shows the principal part of an example of a compressor 容積型コンプレッサの一例の全体の概要を示す分解斜視図Exploded perspective view showing an overview of an example of a positive displacement compressor

符号の説明Explanation of symbols

1 ケーシング
2 回転軸
3 ロータ
4 ベーン
5 スプリング
6 吸入ポート
7 吐出ポート
8 フロントハウジング
9 軸受
10 ハウジング一体型軸受
11 メインケース
DESCRIPTION OF SYMBOLS 1 Casing 2 Rotating shaft 3 Rotor 4 Vane 5 Spring 6 Suction port 7 Discharge port 8 Front housing 9 Bearing 10 Housing-integrated bearing 11 Main case

Claims (4)

パーライト基地にHv800〜1100の硬質粒子が重量比で0.3〜3%分散している焼結合金によって形成されたコンプレッサ用軸受。   A compressor bearing formed of a sintered alloy in which hard particles of Hv 800 to 1100 are dispersed in a pearlite base by 0.3 to 3% by weight. 前記硬質粒子がFe−Mo粒子である請求項1に記載のコンプレッサ用軸受。   The compressor bearing according to claim 1, wherein the hard particles are Fe—Mo particles. 前記硬質粒子として、平均粒径が20μm〜100μmのものを用いた請求項1又は2に記載のコンプレッサ用軸受。   The compressor bearing according to claim 1, wherein the hard particles have an average particle diameter of 20 μm to 100 μm. コンプレッサのハウジングと一体に形成されて焼結空孔の封孔処理が施されている請求項1乃至3のいずれかに記載のコンプレッサ用軸受。   The compressor bearing according to any one of claims 1 to 3, wherein the compressor bearing is formed integrally with the compressor housing and subjected to sealing of the sintered voids.
JP2004067824A 2004-03-10 2004-03-10 Compressor bearing Expired - Fee Related JP4528542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067824A JP4528542B2 (en) 2004-03-10 2004-03-10 Compressor bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067824A JP4528542B2 (en) 2004-03-10 2004-03-10 Compressor bearing

Publications (2)

Publication Number Publication Date
JP2005256062A true JP2005256062A (en) 2005-09-22
JP4528542B2 JP4528542B2 (en) 2010-08-18

Family

ID=35082094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067824A Expired - Fee Related JP4528542B2 (en) 2004-03-10 2004-03-10 Compressor bearing

Country Status (1)

Country Link
JP (1) JP4528542B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202442A (en) * 2011-03-24 2012-10-22 Hitachi Automotive Systems Ltd Balancer device for internal combustion engine and bearing structure of metal shaft
CN104593668A (en) * 2013-10-30 2015-05-06 丰田自动车株式会社 Wear resistant iron-based sintered metal and valve seat used for internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183447A (en) * 1985-02-08 1986-08-16 Toyota Motor Corp Sintered iron alloy for valve seat
JPH02115342A (en) * 1988-10-25 1990-04-27 Sumitomo Electric Ind Ltd Powder metallurgical alloy having excellent high temperature oxidation resistance and wear resistance
JPH06116607A (en) * 1992-10-06 1994-04-26 Mitsubishi Materials Corp Production of sealed fe base sintered alloy parts excellent in airtightness
JPH10259462A (en) * 1997-03-19 1998-09-29 Mitsubishi Materials Corp Sliding member made of free graphite-precipitated ferrous sintering material excellent in seizuring resistance and wear resistance
JP2000080451A (en) * 1998-07-10 2000-03-21 Nippon Piston Ring Co Ltd Sintered body for wear resistant ring and wear resistant ring
JP2000355741A (en) * 1999-04-12 2000-12-26 Mitsubishi Materials Corp Ball stud sheet made of free graphite precipitated ferrous sintering material exhibiting excellent wear resistance under high facial pressure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183447A (en) * 1985-02-08 1986-08-16 Toyota Motor Corp Sintered iron alloy for valve seat
JPH02115342A (en) * 1988-10-25 1990-04-27 Sumitomo Electric Ind Ltd Powder metallurgical alloy having excellent high temperature oxidation resistance and wear resistance
JPH06116607A (en) * 1992-10-06 1994-04-26 Mitsubishi Materials Corp Production of sealed fe base sintered alloy parts excellent in airtightness
JPH10259462A (en) * 1997-03-19 1998-09-29 Mitsubishi Materials Corp Sliding member made of free graphite-precipitated ferrous sintering material excellent in seizuring resistance and wear resistance
JP2000080451A (en) * 1998-07-10 2000-03-21 Nippon Piston Ring Co Ltd Sintered body for wear resistant ring and wear resistant ring
JP2000355741A (en) * 1999-04-12 2000-12-26 Mitsubishi Materials Corp Ball stud sheet made of free graphite precipitated ferrous sintering material exhibiting excellent wear resistance under high facial pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202442A (en) * 2011-03-24 2012-10-22 Hitachi Automotive Systems Ltd Balancer device for internal combustion engine and bearing structure of metal shaft
CN104593668A (en) * 2013-10-30 2015-05-06 丰田自动车株式会社 Wear resistant iron-based sintered metal and valve seat used for internal combustion engine

Also Published As

Publication number Publication date
JP4528542B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP4886545B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JPH10226855A (en) Valve seat for internal combustion engine made of wear resistant sintered alloy
JPH11293368A (en) Copper sliding alloy
JP4528542B2 (en) Compressor bearing
JPH01134092A (en) Roller for compressor
JP2001107173A (en) Roller for rotary compressor
JPH0790512A (en) Sliding member made of fe-base sintered alloy infiltrated with copper, for compressor excellent in wear resistance
JP3410595B2 (en) Iron-based sintered oil-impregnated bearing and its manufacturing method
JPH0428920B2 (en)
JPH06346184A (en) Vane material and its production
JPH0551708A (en) Wear resistant material for compressor and compressor using the same
JPH06248305A (en) Copper-infiltrated fe base sintered alloy sliding member for compressor excellent in wear resistance
JPH0790510A (en) Sliding member made of fe-base sintered alloy infiltrated with copper, for compressor excellent in wear resistance
JPH07197213A (en) Sliding member excellent in wear resistance for compressor, made of fe-base sintered alloy impregnated with lead
JPH0790324A (en) Sliding member made of copper impregnated fe-based sintered alloy for compressor excellent in wear resistance
JPH06207253A (en) Iron base sliding part material
JP2003293948A (en) Refrigerant compressor
JP2001303217A (en) Fe BASED SINTERED ALLOY BEARING EXCELLENT IN SEIZURE RESISTANCE AND CRACKING RESISTANCE
JPH07197212A (en) Sliding member excellent in wear resistance for compressor, made of fe-base sintered alloy infiltrated with copper
JPH06330261A (en) Sliding member made of copper-impregnated fe base sintered alloy for compressor excellent in wear resistance
JPH06248304A (en) Fe-base sintered alloy sliding member for compressor excellent in wear resistance
JPH07188829A (en) Excellent wear-resistant sliding member made of fe based sintered alloy impregnated with pb for compressor excellent in wear resistance
JPH06330224A (en) Sliding member made of lead-impregnated fe base sintered alloy for compressor excellent in wear resistance
JPH07173509A (en) Wear resistant material, production thereof and compressor using the same material
JPH11140603A (en) Wear resistant sintered alloy material for part of compressor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees