JP2005256036A - Nozzle evaporation source for vapor deposition process, and vapor deposition method - Google Patents

Nozzle evaporation source for vapor deposition process, and vapor deposition method Download PDF

Info

Publication number
JP2005256036A
JP2005256036A JP2004066639A JP2004066639A JP2005256036A JP 2005256036 A JP2005256036 A JP 2005256036A JP 2004066639 A JP2004066639 A JP 2004066639A JP 2004066639 A JP2004066639 A JP 2004066639A JP 2005256036 A JP2005256036 A JP 2005256036A
Authority
JP
Japan
Prior art keywords
evaporation source
nozzle
furnace
vapor deposition
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004066639A
Other languages
Japanese (ja)
Other versions
JP4073409B2 (en
Inventor
Kuwan-Hoo Jon
ジョン・クワン−ホー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YSS CO Ltd
Original Assignee
YSS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to TW093105443A priority Critical patent/TWI256419B/en
Application filed by YSS CO Ltd filed Critical YSS CO Ltd
Priority to JP2004066639A priority patent/JP4073409B2/en
Publication of JP2005256036A publication Critical patent/JP2005256036A/en
Application granted granted Critical
Publication of JP4073409B2 publication Critical patent/JP4073409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nozzle evaporation source for a vapor deposition process for improving the utilization rate of a material to be deposited by evaporation by improving the uniformity of a thickness of a material layer to be deposited by evaporation on a substrate in the nozzle evaporation source for the vapor deposition process, more particularly at the time of manufacturing of a large-sized substrate and preventing the sudden decrease in an vapor deposition rate of the material with lapse of time. <P>SOLUTION: The nozzle evaporation source for the vapor deposition process is provided with an insertion section 10 provided with nozzles 11 arrayed in a conical form to determine the evaporation direction of a chemical material, a furnace 20 which is disposed to a cylindrical shape opened on the upper side and is provided with a locking step to make the insertion section 10 insertable on the upper side, a filament 30 situated on the outer side of the furnace 20 to heat the furnace 20, a reflection plate 40 situated on the outer side of the filament 30 to minimize heat loss and a heat conduction section 50 inserted to the inner side of the furnace 20 and adapted to conduct the heat by the filament 30 down to the inner side of the furnace 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、蒸着工程用ノズル蒸発源及び蒸着方法に関し、特に、半導体素子及び平板ディスプレイ素子等の製造のための蒸着工程で使用される蒸発源に関するもので、蒸着工程において蒸発源内の物質を基板に蒸着させるに当たり、蒸発する物質を基板に均一に蒸着させ、炉内部の物質に熱を均一に加えるようにする蒸着工程用ノズル蒸発源及び蒸着方法に関する。   The present invention relates to a nozzle evaporation source and a deposition method for a deposition process, and more particularly to an evaporation source used in a deposition process for manufacturing a semiconductor element, a flat display element, and the like. The present invention relates to a nozzle evaporation source for a vapor deposition process and a vapor deposition method that uniformly vaporizes a material to be evaporated on a substrate and uniformly applies heat to the material inside the furnace.

より詳しくは、大面積の基板の製造の際に、基板に蒸着される物質層の厚さの均一性を向上させ、物質の蒸着率が時間の経過に伴って急激に減少することを防止し、蒸着物質の利用率を高めるための蒸着工程用の円錐状に配列したノズル蒸発源に関する。   More specifically, when manufacturing a large-area substrate, it improves the uniformity of the thickness of the material layer deposited on the substrate, and prevents the material deposition rate from rapidly decreasing over time. The present invention relates to a nozzle evaporation source arranged in a conical shape for a vapor deposition process for increasing the utilization rate of a vapor deposition material.

蒸着工程は、半導体素子の製造や平板ディスプレイ素子の製造に広く使用されている方法で、半導体素子及び平板ディスプレイ素子の製造に使用される化学物質を基板にコーティングするために、化学物質が入っている炉を加熱して化学物質を表面から蒸発させ、炉の上方に設けられた基板に蒸着させることにより、基板上に化学物質からなる薄い層を形成する方法であり、このとき、蒸着率の調整や効率の良い蒸着のために、蒸着工程は、一般に真空容器内で行われる。   The deposition process is a method widely used in the manufacture of semiconductor devices and flat display devices. In order to coat the substrate with chemical substances used in the manufacture of semiconductor devices and flat display devices, chemical substances are contained. This is a method of forming a thin layer of a chemical substance on the substrate by heating the furnace and evaporating the chemical substance from the surface and depositing it on the substrate provided above the furnace. For the purpose of adjustment and efficient vapor deposition, the vapor deposition process is generally performed in a vacuum vessel.

前記蒸着工程において最も重要となる部分は、前述のような化学物質に熱を加えて物質の蒸発を行わせる蒸発源であり、この蒸発源は、炉と、加熱部と、開口部とからなる。   The most important part in the vapor deposition process is an evaporation source that heats a chemical substance as described above to evaporate the substance, and this evaporation source includes a furnace, a heating unit, and an opening. .

前述のような蒸発源としては、点型蒸発源、線型蒸発源等があり、このうち、最も広く使用されているのが点型蒸発源である。
点型蒸発源の従来の構造は、図1に示すように、化学物質を受け入れるための下側が閉塞された円筒型の炉1の上部に、ヒョウタン形に狭くなる一方でさらに広くなる開口部2が設けられており、炉1の外方にはこの炉1を加熱するための加熱部3が設けられ、前記開口部2には化学物質が広く拡散されるようにノズル部4をさらに設けてもよい。
Examples of the evaporation source as described above include a point evaporation source, a linear evaporation source, and the like. Among these, the point evaporation source is most widely used.
As shown in FIG. 1, the conventional structure of the point-type evaporation source has an opening 2 which becomes narrower in a gourdate shape and is further widened in the upper part of a cylindrical furnace 1 whose lower side is closed for receiving a chemical substance. A heating part 3 for heating the furnace 1 is provided outside the furnace 1, and a nozzle part 4 is further provided in the opening 2 so that chemical substances are diffused widely. Also good.

このようにして、基板5から前記点型蒸発源を所定の間隔を保持したまま、前記加熱部3を加熱して物質を蒸着させている。
前述のような構造の点型蒸発源は、製造が容易であることから、広く使用されてきたが、大面積の基板の製造には使用しにくいという欠点があった。
In this manner, the heating unit 3 is heated to deposit the material while maintaining a predetermined distance from the substrate 5 to the point evaporation source.
The point-type evaporation source having the above-described structure has been widely used because it is easy to manufacture, but has a drawback that it is difficult to use for manufacturing a large-area substrate.

半導体素子の基板は、大面積化しつつあり、特に、平板ディスプレイ素子の場合、テレビ画面の大型化や生産性の向上のために、大面積の基板を製造できる蒸着装置が必要となっている。大面積の基板を製造可能な蒸着装置を構成するためには、様々な技術的な問題を解決しなければならないが、このうち、大面積の基板製造用蒸発源の開発は、最も重要な問題といえる。   The substrate of a semiconductor element is increasing in area, and in particular, in the case of a flat display element, a vapor deposition apparatus capable of manufacturing a large-area substrate is required to increase the size of a TV screen and improve productivity. In order to construct a vapor deposition system capable of manufacturing a large-area substrate, various technical problems must be solved. Among these, the development of an evaporation source for manufacturing a large-area substrate is the most important problem. It can be said.

前記点型蒸発源を大面積の基板の製造に使用する場合、一例として、370mm×470mmの大きさの基板に薄膜の厚さの均一性が5%以内に維持されるように蒸着するためには、点型蒸発源を基板から1m程度離さなければならず、装置が大型化し、蒸着物質の利用率が非常に低くなるという問題点があった。   In the case of using the point evaporation source for manufacturing a large area substrate, for example, in order to deposit on a substrate having a size of 370 mm × 470 mm so that the uniformity of the thickness of the thin film is maintained within 5%. However, there is a problem that the point evaporation source must be separated from the substrate by about 1 m, the apparatus becomes large, and the utilization rate of the vapor deposition material becomes very low.

前記問題点を改善するために、図2に示すように、基板5を蒸発源の中心から偏らせて配置したり、基板5を回転させたりするが、このような方法によっても従来の点型蒸発源の問題点はそれほど改善されない。   In order to improve the above problems, as shown in FIG. 2, the substrate 5 is arranged so as to be deviated from the center of the evaporation source, or the substrate 5 is rotated. The problem of the evaporation source is not improved so much.

また、前記点型蒸発源を大面積の基板の製造に使用する場合、炉1を大きくし、化学物質を受け入れる炉1の容積を大きくすべきであるが、炉1が大きくなると、炉1の熱が炉内部の中央にある化学物質まで伝達されにくくなり、図3に示すように、炉1の内壁に近い化学物質6のみが先に蒸発され、化学物質6が炉1の内部に多く残っているにも拘らず、蒸着率が著しく低下するため、化学物質6を頻繁に充填しなければならないという問題点があった。   Further, when the point-type evaporation source is used for manufacturing a large-area substrate, the furnace 1 should be enlarged and the volume of the furnace 1 receiving chemical substances should be increased. It becomes difficult for heat to be transferred to the chemical substance in the center of the furnace, and as shown in FIG. 3, only the chemical substance 6 near the inner wall of the furnace 1 is evaporated first, and a large amount of the chemical substance 6 remains in the furnace 1. However, since the deposition rate is significantly reduced, there is a problem that the chemical substance 6 must be filled frequently.

本発明は、上記問題点に鑑みてなされたものであり、ノズル蒸発源において、特に、大面積の基板の製造時に基板に蒸着される物質層の厚さの均一性を向上させ、物質の蒸着率が時間の経過に伴って急激に減少することを防止し、蒸着物質の利用率を向上させるための蒸着工程用ノズル蒸発源を提供することを目的とする。   The present invention has been made in view of the above-described problems, and in the nozzle evaporation source, in particular, the uniformity of the thickness of the material layer deposited on the substrate during the manufacture of the large area substrate is improved, and the material is deposited. It is an object of the present invention to provide a vapor deposition process nozzle evaporation source for preventing the rate from rapidly decreasing with the passage of time and improving the utilization rate of the vapor deposition material.

上記の目的を達成するため、本発明の蒸着工程用ノズル蒸発源は、化学物質の蒸発方向を決定するものであり、垂直方向に下側と貫通する複数の蒸発管が内側に設けられ、これらの蒸発管と連結され、上側の外周に沿って円錐状に配列されたノズルが設けられる挿入部と、上方が開口した円筒状に設けられ、上側に前記挿入部を挿入可能にする係止段が設けられた炉と、前記炉の外側に位置し、炉を加熱するためのフィラメントと、前記フィラメントの外側に位置し、熱損失を最小化するための反射板と、前記炉の内側に挿入され、前記フィラメントによる熱が炉の内側まで伝達されるようにするための熱伝導部とを具えることを特徴とする。   In order to achieve the above object, the evaporation source nozzle evaporation source of the present invention determines the evaporation direction of a chemical substance, and a plurality of evaporation pipes penetrating downward and downward in the vertical direction are provided on the inside. An insertion portion connected to the evaporation pipe and provided with a nozzle arranged in a conical shape along the outer periphery of the upper side, and a locking stage provided in a cylindrical shape having an opening on the upper side and allowing the insertion portion to be inserted on the upper side A furnace provided with a filament, a filament for heating the furnace, located outside the furnace, a reflector located outside the filament for minimizing heat loss, and inserted inside the furnace And a heat conducting part for transferring heat from the filament to the inside of the furnace.

このような本発明の蒸着工程用ノズル蒸発源によれば、大面積の基板の製造時に基板に蒸着される物質層の厚さの均一性を向上させ、物質の蒸着率が時間の経過に伴って急激に減少することを防止し、蒸着物質の利用率を向上させることができるという効果を奏する。   According to the nozzle evaporation source for the deposition process of the present invention, the uniformity of the thickness of the material layer deposited on the substrate during the manufacture of the large area substrate is improved, and the deposition rate of the material is increased with time. Therefore, it is possible to prevent a sudden decrease and to improve the utilization rate of the vapor deposition material.

以下、本発明の好適な実施の形態を、添付図面に基づいて詳しく説明する。
図4は、本発明の蒸着工程用ノズル蒸発源の炉を示す断面図であり、図5は、本発明の蒸着工程用ノズル蒸発源の第1実施形態を示す断面図である。本発明の蒸着工程用ノズル蒸発源は、化学物質の蒸発方向を決定するものであり、垂直方向に下側と貫通する複数の蒸発管が内側に設けられ、これらの蒸発管と連結され、上側の外周に沿って円錐状に配列したノズル11が設けられる挿入部10と、上方が開口した円筒型に設けられ、上側に前記挿入部10を挿入可能にする係止段21が設けられた炉20と、前記炉20の外側に位置し、炉20を加熱するためのフィラメント30と、前記フィラメント30の外側に位置し、熱損失を最小化するための反射板40と、前記炉20の内側に挿入され、前記フィラメント30による熱が炉20の内側まで伝達されるようにするための熱伝導部50とを具えている。
前記係止段21には、蒸発物質の漏れを防止するために、図示しないねじ山を形成したり、ガスケットを用いて連結部位を密閉することができる。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.
FIG. 4 is a cross-sectional view showing a furnace for a vapor deposition process nozzle evaporation source according to the present invention, and FIG. 5 is a cross-sectional view showing a first embodiment of the vapor deposition process nozzle evaporation source according to the present invention. The nozzle evaporation source for the vapor deposition process of the present invention determines the evaporation direction of the chemical substance. A plurality of evaporation pipes penetrating the lower side and the lower side in the vertical direction are provided inside, connected to these evaporation pipes, and the upper side A furnace provided with an insertion portion 10 provided with nozzles 11 arranged in a conical shape along the outer periphery thereof, and a cylindrical stage with an opening on the upper side, and provided with a locking stage 21 that allows the insertion portion 10 to be inserted on the upper side. 20, the outside of the furnace 20, the filament 30 for heating the furnace 20, the outside of the filament 30, the reflector 40 for minimizing heat loss, and the inside of the furnace 20 And a heat conduction part 50 for transferring heat from the filament 30 to the inside of the furnace 20.
In order to prevent the evaporating substance from leaking, the engaging step 21 can be formed with a screw thread (not shown) or the connecting portion can be sealed with a gasket.

図6は、図4のA−A’線断面図であり、本発明の蒸着工程用ノズル蒸発源の熱伝導部の一例を示している。
すなわち、前記熱伝導部50には、前記炉20の内側面と接触し、端部が中央側を向いて垂直に延びている複数のピン51があり、前記ピン51で囲まれた空間と炉20の中央側に物質が載置される空間部52a,52bを形成することにより、炉20の外側のフィラメント30から伝達されてくる熱が炉20の内側にある化学物質にも効率良く伝達される。
FIG. 6 is a cross-sectional view taken along the line AA ′ of FIG. 4 and shows an example of the heat conduction portion of the nozzle evaporation source for the vapor deposition process of the present invention.
That is, the heat conducting unit 50 has a plurality of pins 51 that are in contact with the inner surface of the furnace 20 and whose end portions extend vertically toward the center side. The space surrounded by the pins 51 and the furnace By forming the space portions 52a and 52b on which the substance is placed at the center side of the heat 20, the heat transferred from the filament 30 outside the furnace 20 is also efficiently transferred to the chemical substance inside the furnace 20. The

図6に示す熱伝導部50は、前記炉20の中央側の空間部52aは、ほぼ6角形をなし、前記ピン51で囲まれる空間部52bは、ほぼ8角形をなすようになっており、前記空間部52a,52bは、互いに連結されている形態であるが、図7及び図8に示すような様々な形態の熱伝導部であってもよい。   In the heat conduction part 50 shown in FIG. 6, the space part 52a on the center side of the furnace 20 has a substantially hexagonal shape, and the space part 52b surrounded by the pins 51 has a substantially octagonal shape. The spaces 52a and 52b are connected to each other, but may be various forms of heat conducting portions as shown in FIGS.

すなわち、図7に示すように、前記空間部52a,52bがほぼ円状をなすようにピン51が形成されたり、図8に示すように、前記ピン51の構造が中央側を向いている壁構造をなし、前記ピン51で囲まれた空間部52はほぼ三角形の構造となるものであってもよい。   That is, as shown in FIG. 7, the pin 51 is formed so that the space portions 52a and 52b are substantially circular, or as shown in FIG. 8, the structure of the pin 51 faces the center side. The space part 52 which comprises a structure and is enclosed by the said pin 51 may become a substantially triangular structure.

しかし、前記熱伝導部50の構造は、前記図6乃至図8に示すような構造に限定されず、様々な実施の形態が可能であることはいうまでもない。
また、場合によっては、前記熱伝導部50を炉20と一体に形成するのが熱伝導効率の点で好ましい。
However, the structure of the heat conducting unit 50 is not limited to the structure shown in FIGS. 6 to 8, and it goes without saying that various embodiments are possible.
In some cases, it is preferable from the viewpoint of heat conduction efficiency that the heat conducting portion 50 is formed integrally with the furnace 20.

図9は、本発明の蒸着工程用ノズル蒸発源の挿入部の第1実施形態を示す断面図であり、図10は、図9のB−B’線断面図である。前記挿入部10の構造は、垂直方向に下側と連通する複数の蒸発管12が設けられ、前記ノズル11は、この蒸発管12の外側から挿入部10の上部まで連結される円錐状に均一に形成されることが好ましい。   FIG. 9 is a cross-sectional view showing a first embodiment of the insertion part of the nozzle evaporation source for the vapor deposition process of the present invention, and FIG. 10 is a cross-sectional view taken along the line B-B ′ of FIG. 9. The structure of the insertion part 10 is provided with a plurality of evaporation pipes 12 communicating with the lower side in the vertical direction, and the nozzle 11 is uniformly conically connected from the outside of the evaporation pipe 12 to the upper part of the insertion part 10. It is preferable to be formed.

また、前記挿入部10の上側には円状の反射板13をさらに設けることにより、熱効率を向上させ、挿入部10のノズルに化学物質が積層されることを防止するようにするのが好ましい。
場合によっては、前記円状の反射板13は、複数層形成してもよい。
前記円状の反射板13の上側には、所定の高さの柱61によって設けられる遮断板60をさらに具え、基板の中央に向かう化学物質の流れを調節可能にしてもよい。
Further, it is preferable that a circular reflector 13 is further provided on the upper side of the insertion portion 10 to improve thermal efficiency and prevent chemical substances from being stacked on the nozzle of the insertion portion 10.
In some cases, the circular reflector 13 may be formed in a plurality of layers.
A blocking plate 60 provided by a column 61 having a predetermined height may be further provided on the upper side of the circular reflecting plate 13 so that the flow of the chemical substance toward the center of the substrate can be adjusted.

図11は、前記蒸着工程用ノズル蒸発源の挿入部の第2実施形態を示す断面図である。
すなわち、前記挿入部10を形成するに当たり、挿入部10の外周部10aを凹状に設けることにより、蒸発管12やノズル11に熱がさらに効率良く伝達されるようにし、蒸発管12やノズル11に物質が積層されることをより効率的に防止することが可能となる。
FIG. 11: is sectional drawing which shows 2nd Embodiment of the insertion part of the said nozzle evaporation source for vapor deposition processes.
That is, in forming the insertion portion 10, the outer peripheral portion 10 a of the insertion portion 10 is provided in a concave shape so that heat can be more efficiently transferred to the evaporation tube 12 and the nozzle 11, and It becomes possible to prevent the substances from being stacked more efficiently.

図12(a)及び(b)は、図11の部分拡大図であり、前記ノズル11は、図12(a)に示すように、長手方向に均一な幅を有するか、図12(b)に示すように、長手方向にその幅が増加するものであってもよい。   12 (a) and 12 (b) are partial enlarged views of FIG. 11. As shown in FIG. 12 (a), the nozzle 11 has a uniform width in the longitudinal direction or FIG. 12 (b). As shown, the width may increase in the longitudinal direction.

図13乃至図15は、本発明の蒸着工程用ノズル蒸発源のさらなる実施形態を示す断面図である。
図13は、本発明の蒸着工程用ノズル蒸発源の第2実施形態を示し、挿入部10や炉20の中央を貫通する円柱状の中空部70を設け、前記中空部70内に中央加熱部31を設けている。前記フィラメント30と中央加熱部31をともに設けたり、前記中央加熱部31のみを設けることもできる。
13 to 15 are cross-sectional views showing further embodiments of the nozzle evaporation source for the vapor deposition process of the present invention.
FIG. 13 shows a second embodiment of the nozzle evaporation source for the vapor deposition process of the present invention, in which a cylindrical hollow portion 70 penetrating the center of the insertion portion 10 and the furnace 20 is provided, and a central heating portion is provided in the hollow portion 70. 31 is provided. Both the filament 30 and the central heating part 31 can be provided, or only the central heating part 31 can be provided.

また、図14は、図13の実施形態を応用した本発明の第3実施形態を示し、図13の中央の中空部70の上側に、その上側が前記挿入部と同じ形状を有する小さい小型蒸発源80をさらに設け、この小型蒸発源80に他の物質を受け入れ、二つの物質を同時に蒸着させる工程に適用可能にしたものである。
このとき、前記中央の小型蒸発源80とその外郭の大きい円錐状に配列したノズル蒸発源の間には、熱的相互干渉を防ぐために、冷却部(図示せず。)を構成してもよい。
FIG. 14 shows a third embodiment of the present invention to which the embodiment of FIG. 13 is applied. A small small-sized evaporation having the same shape as the insertion portion on the upper side of the central hollow portion 70 in FIG. A source 80 is further provided, and another material is received in the small evaporation source 80 and can be applied to a process of depositing two materials at the same time.
At this time, a cooling unit (not shown) may be configured between the small evaporation source 80 at the center and the nozzle evaporation source arranged in a conical shape with a large outer shell in order to prevent thermal mutual interference. .

また、図15に示すように、中空部70を形成する円柱の直径をさらに大きくし、大面積の基板の製造時に発生し得る影効果を最小化することができる。
すなわち、蒸着工程における基板の製造の際には、基板に蒸着形態を決定するために、一般に基板の下側に蒸着形態に沿って製造された薄いマスクを密着させた状態で蒸着工程を進めるが、従来の点型蒸発源の場合、基板の縁部には蒸発物質の流れが偏った形で到達するために、マスクの影効果が発生することがある。
In addition, as shown in FIG. 15, the diameter of the column forming the hollow portion 70 can be further increased, and the shadow effect that can occur during the manufacture of a large-area substrate can be minimized.
That is, when a substrate is manufactured in the vapor deposition process, in order to determine the vapor deposition form on the substrate, the vapor deposition process is generally performed with a thin mask manufactured along the vapor deposition form in close contact with the lower side of the substrate. In the case of the conventional point-type evaporation source, the shadow effect of the mask may occur because the flow of the evaporating substance reaches the edge of the substrate in an uneven manner.

しかし、図15に示すように、直径の大きい円柱を形成すると、基板の全ての部分に蒸発物質が垂直に近く到達するため、大面積の基板の製造時に発生し得る影効果を最小化することができる効果が得られる。
また、前述のように、中空部70を大きくする場合には、フィラメント30を物質が受け入れられる部分22の両側に設けることが好ましい。
However, as shown in FIG. 15, when a cylinder with a large diameter is formed, the evaporation substance reaches almost all parts of the substrate almost vertically, so that the shadow effect that can occur when manufacturing a large-area substrate is minimized. The effect that can be obtained.
In addition, as described above, when the hollow portion 70 is enlarged, it is preferable to provide the filament 30 on both sides of the portion 22 where the substance can be received.

一方、前記挿入部10は、炉20と一体に設けてもよく、場合によっては、炉20の中間部と下部とを分けて連結されるようにすることもできる。   On the other hand, the insertion part 10 may be provided integrally with the furnace 20, and in some cases, the intermediate part and the lower part of the furnace 20 may be separately connected.

以下、前記図4乃至図15を参照して本発明の作用・効果を説明する。
先ず、本発明の蒸着工程用ノズル蒸発源全体の作動原理を説明する。
前記炉20を加熱するためのフィラメント30は、図5に示すように、炉20の上方に位置するのが好ましいが、これは、炉20の上方に位置した前記挿入部10の蒸発管12やノズル11を、蒸発物質が蒸発する炉20の下方よりも熱くして、蒸発管12やノズル11が蒸発物質の積層により閉塞することを防止するためである。
The operation and effect of the present invention will be described below with reference to FIGS.
First, the operation principle of the entire nozzle evaporation source for the vapor deposition process of the present invention will be described.
As shown in FIG. 5, the filament 30 for heating the furnace 20 is preferably located above the furnace 20, which may be the evaporation tube 12 of the insertion portion 10 located above the furnace 20. This is because the nozzle 11 is heated more than the lower part of the furnace 20 where the evaporated substance evaporates, and the evaporation pipe 12 and the nozzle 11 are prevented from being blocked by the stack of evaporated substances.

また、前記炉20の上側と下側が均一に加熱されるようにするために、前記フィラメント30を、所定の比率で炉20の下側に設けてもよい。
また、化学物質が表面から均一に蒸発させられるようにするため、化学物質が充填されている部分の炉20の外面を直接加熱せず、炉20の上部を加熱し、挿入部10を構成する物質から発生する輻射熱を利用して蒸発させるが、輻射熱が均一に広がるようにするために、挿入部10の下面は、上方に窪んでいる円錐状に形成するのが好ましい。
In addition, the filament 30 may be provided on the lower side of the furnace 20 at a predetermined ratio so that the upper side and the lower side of the furnace 20 are heated uniformly.
Further, in order to uniformly evaporate the chemical substance from the surface, the outer surface of the furnace 20 that is filled with the chemical substance is not directly heated, but the upper part of the furnace 20 is heated to constitute the insertion portion 10. Evaporation is performed using radiant heat generated from the substance. In order to spread the radiant heat uniformly, the lower surface of the insertion portion 10 is preferably formed in a conical shape recessed upward.

前記挿入部10の上方には遮断板60を設けて、本発明の点型蒸発源を使用した蒸着工程時に、遮断板60の大きさを調節して中央を向く蒸発物質の流れを調節する。これにより、蒸着薄膜の均一性をさらに調節し、蒸着薄膜の均一性をより高めることが可能となる。   A shielding plate 60 is provided above the insertion portion 10 to adjust the size of the shielding plate 60 during the deposition process using the point evaporation source of the present invention to regulate the flow of the evaporating material toward the center. Thereby, it is possible to further adjust the uniformity of the deposited thin film and further increase the uniformity of the deposited thin film.

以下、前記挿入部10を用いて蒸着薄膜の均一性を確保できる動作原理を説明する。
従来の点型蒸発源の場合、蒸発物質は、一点から出て上方に半球状に四方に広がっていくと考えられ、半球の中央部が半球の外郭部よりも蒸発物質の流れが少し多くなる。また、実際に蒸着が行われる基板は、平らな面であり、基板の中央から外郭に行くほど、蒸発源との距離が遠くなり、蒸発物質の流れの方向と基板面との角度が大きくなるため、中央から外郭に行くほど、蒸着薄膜の厚さは薄くなる。
Hereinafter, an operation principle that can ensure the uniformity of the deposited thin film using the insertion portion 10 will be described.
In the case of a conventional point-type evaporation source, it is considered that the evaporating substance is emitted from one point and spreads upward in a hemispherical shape, and the evaporating substance flows slightly in the center of the hemisphere than in the outer part of the hemisphere . In addition, the substrate on which the vapor deposition is actually performed is a flat surface, and the distance from the evaporation source increases as the distance from the center of the substrate increases, and the angle between the flow direction of the evaporated material and the substrate surface increases. Therefore, the thickness of the deposited thin film becomes thinner as going from the center to the outer shell.

本発明の蒸着工程用ノズル蒸発源の場合、挿入部10のノズル11を、基板の外郭方向に向いて円錐状に形成しているため、蒸発物質の流れは、基板の外郭部がさらに多くなり、蒸発源と基板との距離や蒸発物質の流れ方向と基板面との角度による影響は、基板の中央部をより厚くすることから、前記二つの効果が相殺され、基板全体として蒸着薄膜の厚さの均一性を維持することが可能となる。   In the case of the nozzle evaporation source for the vapor deposition process of the present invention, the nozzle 11 of the insertion portion 10 is formed in a conical shape toward the outer direction of the substrate, so that the flow of the evaporated substance further increases in the outer portion of the substrate. The influence of the distance between the evaporation source and the substrate and the angle between the flow direction of the evaporation substance and the substrate surface makes the central portion of the substrate thicker. It becomes possible to maintain the uniformity of thickness.

このとき、円錐状に配列したノズルと蒸発源の中心線との角度Aは、基板との距離や使用物質等によって、0゜<A≦90゜の範囲の適切な角度を選択することができる。   At this time, the angle A between the nozzles arranged in a conical shape and the center line of the evaporation source can be selected as an appropriate angle in the range of 0 ° <A ≦ 90 ° depending on the distance from the substrate and the substance used. .

また、挿入部10の上面に位置した円状の反射板13は、複数枚重ねて設け、反射率を高めることにより、熱効率を良くするとともに、挿入部10のノズル11が炉20の上部よりも温度が低くなり、ノズル11に蒸着物質等が積層されてノズル11が閉塞する現象を防止することができる。   In addition, a plurality of circular reflectors 13 positioned on the upper surface of the insertion portion 10 are provided in a stacked manner to increase the reflectance, thereby improving the thermal efficiency, and the nozzle 11 of the insertion portion 10 is higher than the upper portion of the furnace 20. It is possible to prevent a phenomenon in which the temperature is lowered and the nozzle 11 is clogged due to deposition of vapor deposition material or the like on the nozzle 11.

本発明のノズル11や炉20は、高密度カーボン、セラミック、又は、真空内の高温で容易に昇華しないモリブデン、タングステン、タンタル、チタニウム等の材料で製造することが可能であり、その他の様々な合金を使用することも可能である。   The nozzle 11 and the furnace 20 of the present invention can be manufactured from high-density carbon, ceramic, or a material such as molybdenum, tungsten, tantalum, or titanium that does not easily sublime at a high temperature in a vacuum. It is also possible to use alloys.

図16は、本発明の蒸着工程用ノズル蒸発源の第5実施形態を示す図である。本発明の第5実施形態は、図16及び図18に示すように、基板の外郭方向に向いて傾斜したノズル90を挿入部10に設け、蒸発源を基板5の中央又は中央付近に位置させ、基板を回転させながら蒸着工程を行う。すなわち、ノズルが一方にのみ偏っているが、基板5を回転させることにより、円錐状に配列したノズルが形成されているものと同じ効果をもたらす。   FIG. 16 is a diagram showing a fifth embodiment of the nozzle evaporation source for the vapor deposition process of the present invention. In the fifth embodiment of the present invention, as shown in FIGS. 16 and 18, a nozzle 90 inclined toward the outer direction of the substrate is provided in the insertion portion 10, and the evaporation source is positioned at or near the center of the substrate 5. The evaporation process is performed while rotating the substrate. That is, although the nozzle is biased to only one side, rotating the substrate 5 brings about the same effect as that in which nozzles arranged in a conical shape are formed.

また、ノズルの偏っている形態は、図16の非対称ノズル90の他にも、図17に示すような、偏っているノズル91を含み、蒸発物質の噴出方向を調節できるいずれの構造を使用してもよい。ノズル90,91の垂直中心線Aに対して偏った角度は、5〜90゜の範囲内であればよく、基板5の高さと基板の中央との距離等を考慮して、蒸着される薄膜の均一度が最大になる角度であればよい。   In addition to the asymmetric nozzle 90 shown in FIG. 16, the nozzle is biased using any structure that includes a nozzle 91 that is biased as shown in FIG. 17 and can adjust the ejection direction of the evaporated substance. May be. The angle biased with respect to the vertical center line A of the nozzles 90 and 91 may be in the range of 5 to 90 °, and the thin film to be deposited is considered in consideration of the distance between the height of the substrate 5 and the center of the substrate. Any angle may be used as long as the degree of uniformity is maximum.

以上のように、図面を参照して上記実施の形態を詳細に説明してきたが、本発明は、これに限定されるものでなく、このような本発明の基本的な技術的思想を逸脱しない範囲内で、本発明の属する技術分野における通常の知識を有する者にとっては、他の多くの変更が可能であろう。また、本発明の範囲は、添付の特許請求の範囲により解釈されるべきであることはいうまでもない。   As mentioned above, although the said embodiment was described in detail with reference to drawings, this invention is not limited to this, It does not deviate from such a fundamental technical idea of this invention. Many other modifications will be possible to those skilled in the art to which the present invention pertains. Needless to say, the scope of the present invention should be construed in accordance with the appended claims.

従来の蒸着工程用点型蒸発源の一例を示す概略図。Schematic which shows an example of the conventional point type evaporation source for vapor deposition processes. 従来の蒸着工程用点型蒸発源の他の使用例を示す概略図。Schematic which shows the other usage example of the conventional point type evaporation source for vapor deposition processes. 従来の蒸着工程用点型蒸発源の炉の内部状態を示す概略図。Schematic which shows the internal state of the furnace of the conventional point type evaporation source for vapor deposition processes. 本発明の蒸着工程用ノズル蒸発源の炉を示す断面図。Sectional drawing which shows the furnace of the nozzle evaporation source for vapor deposition processes of this invention. 本発明の蒸着工程用ノズル蒸発源の第1実施形態を示す断面図。Sectional drawing which shows 1st Embodiment of the nozzle evaporation source for vapor deposition processes of this invention. 図4のA−A’線断面図であり、本発明の熱伝導部の第1実施形態を示す断面図。FIG. 5 is a cross-sectional view taken along line A-A ′ of FIG. 4, showing a first embodiment of the heat conducting unit of the present invention. 図4のA−A’線断面図であり、本発明の熱伝導部の第2実施形態を示す断面図。FIG. 5 is a cross-sectional view taken along line A-A ′ of FIG. 4, showing a second embodiment of the heat conducting unit of the present invention. 図4のA−A’線断面図であり、本発明の熱伝導部の第3実施形態を示す断面図。FIG. 5 is a cross-sectional view taken along line A-A ′ of FIG. 4, showing a third embodiment of the heat conducting unit of the present invention. 本発明の蒸着工程用ノズル蒸発源の挿入部の第1実施形態を示す断面図。Sectional drawing which shows 1st Embodiment of the insertion part of the nozzle evaporation source for vapor deposition processes of this invention. 図9のB−B’線断面図。B-B 'line sectional drawing of FIG. 本発明の蒸着工程用ノズル蒸発源の挿入部の第2実施形態を示す断面図。Sectional drawing which shows 2nd Embodiment of the insertion part of the nozzle evaporation source for vapor deposition processes of this invention. (a)及び(b)は、図11のB部分を示す拡大図。(A) And (b) is an enlarged view which shows the B section of FIG. 本発明の蒸着工程用ノズル蒸発源の第2実施形態を示す断面図。Sectional drawing which shows 2nd Embodiment of the nozzle evaporation source for vapor deposition processes of this invention. 本発明の蒸着工程用ノズル蒸発源の第3実施形態を示す断面図。Sectional drawing which shows 3rd Embodiment of the nozzle evaporation source for vapor deposition processes of this invention. 本発明の蒸着工程用ノズル蒸発源の第4実施形態を示す断面図。Sectional drawing which shows 4th Embodiment of the nozzle evaporation source for vapor deposition processes of this invention. 本発明の蒸着工程用ノズル蒸発源の第5実施形態を示す断面図。Sectional drawing which shows 5th Embodiment of the nozzle evaporation source for vapor deposition processes of this invention. 本発明の蒸着工程用ノズル蒸発源の第6実施形態を示す断面図。Sectional drawing which shows 6th Embodiment of the nozzle evaporation source for vapor deposition processes of this invention. 本発明の蒸着工程用ノズル蒸発源の第5実施形態を用いた蒸着方法を示す概略図。Schematic which shows the vapor deposition method using 5th Embodiment of the nozzle evaporation source for vapor deposition processes of this invention.

符号の説明Explanation of symbols

10:挿入部
11,90,91:ノズル
12:蒸発管
20:炉
21:係止段
30:フィラメント
40:反射板
50:熱伝導部
60:遮蔽板
70:中空部
80:小型蒸発源
10: Insertion part 11, 90, 91: Nozzle 12: Evaporation tube 20: Furnace 21: Locking stage 30: Filament 40: Reflection plate 50: Heat conduction part 60: Shielding plate 70: Hollow part 80: Small evaporation source

Claims (18)

化学物質の蒸発方向を決定するものであり、垂直方向に下側と貫通する複数の蒸発管が内側に設けられ、該蒸発管と連結され、上側の外周に沿って円錐状に配列されたノズルが設けられている挿入部と、
上方が開口した円筒状に設けられ、上側に前記挿入部を挿入可能にする係止段が設けられた炉と、
前記炉の外側に位置し、炉を加熱するためのフィラメントとを具えることを特徴とする、
蒸着工程用ノズル蒸発源。
A nozzle that determines the evaporation direction of the chemical substance, and is provided with a plurality of evaporation pipes that are vertically and vertically penetrated, connected to the evaporation pipe, and arranged in a conical shape along the outer periphery of the upper side. An insertion portion provided with,
A furnace provided in a cylindrical shape with an upper opening, and provided with a locking stage that allows the insertion portion to be inserted on the upper side;
It is located outside the furnace and comprises a filament for heating the furnace,
Nozzle evaporation source for vapor deposition process.
前記炉の内側には、前記炉の内側面と接触し、端部が中央側に向き、垂直に延びる複数のピンからなる熱伝導部が設けられ、前記ピンで囲まれた空間と炉の中央側に物質が載置される空間部が形成されている、請求項1の蒸着工程用ノズル蒸発源。   Inside the furnace, there is provided a heat conducting portion that is in contact with the inner side surface of the furnace, and whose end portion is directed toward the center side and extends vertically, and the space surrounded by the pins and the center of the furnace 2. The nozzle evaporation source for vapor deposition process according to claim 1, wherein a space portion on which a substance is placed is formed. 前記熱伝導部のピンが所定の間隔で設けられ、前記熱伝導部の形状が上側から見て放射対称の幾何学的図形をなす、請求項2の蒸着工程用ノズル蒸発源。   The evaporation source nozzle evaporation source according to claim 2, wherein the pins of the heat conducting part are provided at predetermined intervals, and the shape of the heat conducting part forms a geometric figure that is radially symmetric when viewed from above. 前記熱伝導部が前記炉と一体に形成されている、請求項2の蒸着工程用ノズル蒸発源。   The evaporation source nozzle evaporation source according to claim 2, wherein the heat conducting part is formed integrally with the furnace. 前記挿入部の前記ノズルと蒸発源の中心線との角度Aが0゜<A≦90゜の範囲内にある、請求項1の蒸着工程用ノズル蒸発源。   The evaporation source nozzle evaporation source according to claim 1, wherein an angle A between the nozzle of the insertion portion and the center line of the evaporation source is in a range of 0 ° <A ≦ 90 °. 前記挿入部が下側と貫通する複数の管形状のノズルからなり、前記管形状のノズルと蒸発源の中心線との角度Aが0゜<A≦90゜の範囲内で円錐状に配列されている、請求項1の蒸着工程用ノズル蒸発源。   The insertion portion is composed of a plurality of tube-shaped nozzles penetrating the lower side, and the angle A between the tube-shaped nozzle and the center line of the evaporation source is arranged in a conical shape within a range of 0 ° <A ≦ 90 °. The nozzle evaporation source for a vapor deposition process according to claim 1. 前記挿入部の上側に円状の反射板をさらに具え、熱効率を向上させ、挿入部のノズルに化学物質が積層されるのを防止するようになっている、請求項1の蒸着工程用ノズル蒸発源。   2. The vapor deposition process nozzle evaporation according to claim 1, further comprising a circular reflector above the insertion portion to improve thermal efficiency and prevent chemical substances from being stacked on the nozzle of the insertion portion. source. 前記挿入部の外周部を凹状に形成することにより前記蒸発管やノズルへの熱伝達を効率良く行い、蒸発管やノズルが蒸発物質の積層により閉塞されることを防止している、請求項1の蒸着工程用ノズル蒸発源。   2. The heat transfer to the evaporation pipe and the nozzle is efficiently performed by forming the outer peripheral portion of the insertion portion in a concave shape, and the evaporation pipe and the nozzle are prevented from being blocked by the stack of evaporation substances. Nozzle evaporation source for the evaporation process. 前記挿入部の上側に所定の高さの柱によって設けられる遮断板がさらにあり基板の中央を向く化学物質の流れを調節可能にしている、請求項1の蒸着工程用ノズル蒸発源。   The evaporation source nozzle evaporation source according to claim 1, further comprising a blocking plate provided by a pillar having a predetermined height above the insertion portion, wherein the flow of the chemical substance toward the center of the substrate can be adjusted. 前記挿入部の下面が上側に円錐状に窪んだ形状に形成されている、請求項1の蒸着工程用ノズル蒸発源。   The nozzle evaporation source for a vapor deposition process according to claim 1, wherein the lower surface of the insertion portion is formed in a conical shape recessed upward. 前記フィラメントが前記炉の上側に位置し前記炉の上部を加熱するようになっている、請求項1の蒸着工程用ノズル蒸発源。   The evaporation source nozzle evaporation source according to claim 1, wherein the filament is located on the upper side of the furnace and heats the upper part of the furnace. 前記フィラメントを前記炉の上側と下側とに一定の比率で分布させ上下側の温度の均一性を維持するようになっている、請求項1の蒸着工程用ノズル蒸発源。   2. The nozzle evaporation source for a vapor deposition process according to claim 1, wherein the filament is distributed at a constant ratio between the upper side and the lower side of the furnace so as to maintain temperature uniformity on the upper and lower sides. 前記係止段にねじ山を形成するかガスケットを用いて前記炉と前記挿入部との連結部分を密閉している、請求項1の蒸着工程用ノズル蒸発源。   The nozzle evaporation source for a vapor deposition process according to claim 1, wherein a screw thread is formed in the locking step or a connecting portion between the furnace and the insertion portion is sealed using a gasket. 前記挿入部と炉の中央を貫通する円柱状の中空部を形成し前記中空部内に中央加熱部を設けて、前記フィラメントと中央加熱部をともに設けるか前記中央加熱部のみを設けて加熱するようにした、請求項1の蒸着工程用ノズル蒸発源。   A columnar hollow portion that penetrates the insertion portion and the center of the furnace is formed, a central heating portion is provided in the hollow portion, and the filament and the central heating portion are provided together or only the central heating portion is provided for heating. The nozzle evaporation source for a vapor deposition process according to claim 1. 前記中空部の上側に、その上側が前記挿入部と同じ形状の小さい小型蒸発源をさらに設け、この小型蒸発源に他の物質を充填し、二つの物質を同時に蒸着可能にした、請求項14の蒸着工程用ノズル蒸発源。   The small evaporation source having the same shape as the insertion portion on the upper side of the hollow portion is further provided on the upper side of the hollow portion, and the small evaporation source is filled with another substance so that two substances can be deposited simultaneously. Nozzle evaporation source for the evaporation process. 前記挿入部が炉に一体型に形成されるか、又は炉の中間部分と下方部分とに分けて連結されている、請求項1の蒸着工程用ノズル蒸発源。   The nozzle evaporation source for a vapor deposition process according to claim 1, wherein the insertion portion is formed integrally with the furnace, or is divided and connected to an intermediate portion and a lower portion of the furnace. 化学物質の蒸発方向を決定するものであり、垂直中心線に対して5〜90゜の角度で傾斜したノズルが設けられた挿入部と、
上方が開口した円筒型に形成され、上側に前記挿入部を挿入可能にする係止段が設けられた炉と、
前記炉の外側に位置し、炉を加熱するためのフィラメントとを具えたことを特徴とする、
蒸着工程用ノズル蒸発源。
The direction of vaporization of the chemical substance is determined, and an insertion portion provided with a nozzle inclined at an angle of 5 to 90 ° with respect to the vertical center line;
A furnace formed in a cylindrical shape having an upper opening, and provided with a locking step that allows the insertion portion to be inserted on the upper side;
It is located outside the furnace and comprises a filament for heating the furnace,
Nozzle evaporation source for vapor deposition process.
請求項17の蒸発源又は従来の点型蒸発源を用いて薄膜を蒸着させる方法において、
基板の中心、又はこの中心に隣合い前記挿入部のノズルを基板の外側向きに位置させるステップ1と、
前記基板を回転させながら蒸発源を加熱して基板に物質を蒸着させるステップ2とを含むことを特徴とする、
蒸着方法。


A method of depositing a thin film using the evaporation source of claim 17 or a conventional point evaporation source,
Step 1 of positioning the nozzle of the insertion portion adjacent to the center of the substrate or the center thereof toward the outside of the substrate;
Heating the evaporation source while rotating the substrate, and depositing a substance on the substrate.
Deposition method.


JP2004066639A 2002-11-18 2004-03-10 Nozzle evaporation source for vapor deposition process and vapor deposition method Expired - Fee Related JP4073409B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW093105443A TWI256419B (en) 2002-11-18 2004-03-02 A nozzle source for a thermal evaporation process
JP2004066639A JP4073409B2 (en) 2004-03-10 2004-03-10 Nozzle evaporation source for vapor deposition process and vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066639A JP4073409B2 (en) 2004-03-10 2004-03-10 Nozzle evaporation source for vapor deposition process and vapor deposition method

Publications (2)

Publication Number Publication Date
JP2005256036A true JP2005256036A (en) 2005-09-22
JP4073409B2 JP4073409B2 (en) 2008-04-09

Family

ID=35082068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066639A Expired - Fee Related JP4073409B2 (en) 2002-11-18 2004-03-10 Nozzle evaporation source for vapor deposition process and vapor deposition method

Country Status (1)

Country Link
JP (1) JP4073409B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530372A (en) * 2006-07-03 2008-08-07 ワイ・エー・エス カンパニー リミテッド Multi-nozzle vaporizer for vacuum thermal evaporation
JP2009280861A (en) * 2008-05-22 2009-12-03 Hitachi Zosen Corp Structure of release part in vacuum deposition apparatus
JP2014177681A (en) * 2013-03-15 2014-09-25 Choshu Industry Co Ltd Vapor deposition source crucible

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530372A (en) * 2006-07-03 2008-08-07 ワイ・エー・エス カンパニー リミテッド Multi-nozzle vaporizer for vacuum thermal evaporation
JP4781433B2 (en) * 2006-07-03 2011-09-28 ワイ・エー・エス カンパニー リミテッド Multi-nozzle vaporizer for vacuum thermal evaporation
JP2009280861A (en) * 2008-05-22 2009-12-03 Hitachi Zosen Corp Structure of release part in vacuum deposition apparatus
JP2014177681A (en) * 2013-03-15 2014-09-25 Choshu Industry Co Ltd Vapor deposition source crucible

Also Published As

Publication number Publication date
JP4073409B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP4781433B2 (en) Multi-nozzle vaporizer for vacuum thermal evaporation
EP1927674B1 (en) Evaporation source and vacuum evaporator using the same
KR100434438B1 (en) Circular nozzle source for thermal evaporation process
KR101877908B1 (en) An evaporation source for an organic material, a device having an evaporation source for an organic material, and a method for depositing an organic material
TW201439354A (en) Evaporation deposition apparatus
TW200835017A (en) Vapor deposition sources and methods
KR20180048444A (en) NOZZLE FOR DISTRIBUTION ASSEMBLY OF MATERIAL VAPOR SOURCE AREAS, METHOD FOR MAKING SOURCE ARRANGEMENT, VACUUM VAPOR DEPOSITION SYSTEM, AND METHOD FOR VAPORING MATERIAL
JP2007314873A (en) Linear evaporator for manufacturing thin film of organic light emitting device using numerous crucible
KR101990619B1 (en) Apparatus for depositing evaporated material, distribution pipe, vacuum deposition chamber, and method for depositing an evaporated material
JPWO2009034916A1 (en) Vapor release apparatus, organic thin film deposition apparatus, and organic thin film deposition method
JP2011168805A (en) Evaporation source and vacuum deposition device using the same
JP2006225725A (en) Vapor deposition apparatus
JP2008106360A (en) Evaporator having multi-layered conical slit nozzle for vacuum thermal evaporation
KR101740007B1 (en) Evaporation source
KR101063192B1 (en) Deposition source capable of downward deposition
JP4073409B2 (en) Nozzle evaporation source for vapor deposition process and vapor deposition method
KR20210151151A (en) Source arrangement, deposition apparatus and method for depositing source material
KR102018865B1 (en) Material source arrangement and nozzle for vacuum deposition
JP2010013731A (en) Vapor deposition apparatus
CN100441733C (en) Nozzle evaporating source for steam plating
KR101660393B1 (en) Evaporation source and Apparatus for deposition having the same
KR100829736B1 (en) Heating crucible of deposit apparatus
KR101711588B1 (en) Evaporation source
JP2020521039A (en) Evaporation source for depositing evaporated material, vacuum deposition system, and method for depositing evaporated material
US20200283887A1 (en) Effusion cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070315

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4073409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees