JP2005254516A - Cutting method for brittle material - Google Patents

Cutting method for brittle material Download PDF

Info

Publication number
JP2005254516A
JP2005254516A JP2004066398A JP2004066398A JP2005254516A JP 2005254516 A JP2005254516 A JP 2005254516A JP 2004066398 A JP2004066398 A JP 2004066398A JP 2004066398 A JP2004066398 A JP 2004066398A JP 2005254516 A JP2005254516 A JP 2005254516A
Authority
JP
Japan
Prior art keywords
cutting
brittle material
processing
cut
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004066398A
Other languages
Japanese (ja)
Inventor
Tatsuya Kyotani
達也 京谷
Eiji Shamoto
英二 社本
Norikazu Suzuki
教和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
New Industry Research Organization NIRO
Original Assignee
Sumitomo Electric Hardmetal Corp
New Industry Research Organization NIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, New Industry Research Organization NIRO filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2004066398A priority Critical patent/JP2005254516A/en
Publication of JP2005254516A publication Critical patent/JP2005254516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting method for a brittle material which can obtain a prescribed mirror surface without polishing. <P>SOLUTION: The brittle material of a single crystal is cut by an elliptic vibration cutting method cutting the material while elliptic vibration is applied to the blade edge of a tool. By this method, even when the brittle material is calcium fluoride, since it is processed while scraps are pulled up, the thickness of the scraps and cutting force are reduced sharply, and the material can be cut efficiently in a wide ductility mode region. More specifically, the processing by a ductility mode is possible even when the thickness of cutting exceeds 85 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、脆性材料の切削方法に関するものである。特に、フッ化カルシウムなどの光学材料を高精度に切削するための方法に関する。   The present invention relates to a method for cutting a brittle material. In particular, the present invention relates to a method for cutting an optical material such as calcium fluoride with high accuracy.

従来より、光の分散が非常に低いフッ化カルシウム(CaF2)を光学製品のレンズとして利用することが行なわれている。中でも非球面レンズは高い収差補正能力があり、光学系のコンパクト化、光学性能の向上が可能になるため、高精度の非球面レンズの要望が大きい。 Conventionally, calcium fluoride (CaF 2 ), which has very low light dispersion, has been used as a lens for optical products. Among them, the aspherical lens has a high aberration correction capability, and the optical system can be made compact and the optical performance can be improved. Therefore, there is a great demand for a highly accurate aspherical lens.

フッ化カルシウムのレンズを作製する主な方法として次の2つの方法がある。
(1)まずフッ化カルシウムの母材を切削し又は研削加工し、次いでその加工面を研磨して所定の鏡面を得る。
There are two main methods for producing a calcium fluoride lens.
(1) First, a calcium fluoride base material is cut or ground, and then the processed surface is polished to obtain a predetermined mirror surface.

(2)フッ化カルシウムの母材を回転させ、この母材に数値制御により所定の非球面の軌跡に沿って動かされる単結晶ダイヤモンドバイトを押し当てて切削する。その際、切り込みを非常に小さくした特定の切削条件により、研磨を行うことなく切削加工のみで所定の鏡面を得る(例えば、非特許文献1)。   (2) A calcium fluoride base material is rotated, and this base material is cut by pressing a single crystal diamond tool moved along a predetermined aspherical locus by numerical control. At that time, a predetermined mirror surface is obtained only by cutting without performing polishing under specific cutting conditions with a very small cut (for example, Non-Patent Document 1).

「新しい延性モード切削法による単結晶フッ化カルシウム製非球面レンズ加工技術の開発」 閻 紀旺 清水浩貴 庄司克雄"Development of processing technology for aspherical lenses made of single crystal calcium fluoride by a new ductile mode cutting method" Noriaki Tsuji Hiroki Shimizu Katsuo Shoji

しかし、切削(研削)と研磨の両方を行なうのでは工程数が多くなり、コスト面でも不利である。特に、非球面レンズの加工では高精度の研磨を行なうのに手間がかかる。   However, if both cutting (grinding) and polishing are performed, the number of processes increases, which is disadvantageous in terms of cost. In particular, in the processing of aspherical lenses, it takes time to perform highly accurate polishing.

また、単結晶ダイヤモンドバイトによる超精密加工では研磨を行なうことなく研削だけで鏡面加工を行なうことができる。しかし、この加工方法では非常に切削効率が低い。切削によりレンズとして必要な鏡面を得るには、脆性破壊を生じることなく薄いテープ状の切り屑を排出しながら切削を行う延性モード加工が必要になる。この延性モード加工を行うには、非常に小さい切り込み量としなければならず、例えば非特許文献1に示される切り取り厚さはわずか85nmにすぎない。このようなわずかな切り取り厚さによる切削では到底実用的な加工は不可能である。   In addition, mirror processing can be performed only by grinding without performing polishing in ultraprecision processing using a single crystal diamond tool. However, this processing method has very low cutting efficiency. In order to obtain a mirror surface necessary as a lens by cutting, ductile mode processing is required in which cutting is performed while discharging thin tape-like chips without causing brittle fracture. In order to perform this ductile mode processing, the cut amount must be very small. For example, the cut thickness shown in Non-Patent Document 1 is only 85 nm. Practical processing is impossible by cutting with such a small cutting thickness.

特に、直径が30mm以下のように小径のレンズを加工する場合、小さなレンズに対して刃先位置を高精度に制御して非球面を加工することは難しい。特に、凸面の非球面レンズではなく、凹面や凸面と凹面とが組み合わされた小径の非球面レンズを加工することは非常に難しい。これは、刃先の逃げ角と加工対象との間の角度が凸面の場合より凹面の場合の方が小さくなり、この幾何学的位置関係から凹面の加工は凸面の加工よりもより狭い条件でしか加工できないためである。   In particular, when processing a small-diameter lens having a diameter of 30 mm or less, it is difficult to process an aspherical surface by controlling the blade edge position with high accuracy for a small lens. In particular, it is very difficult to process not a convex aspherical lens but a concave aspherical lens having a concave surface or a combination of a convex surface and a concave surface. This is because the angle between the clearance angle of the cutting edge and the object to be machined is smaller in the case of a concave surface than in the case of a convex surface. This is because it cannot be processed.

従って、本発明の主目的は、研磨を行うことなく所定の鏡面が得られる脆性材料の切削方法を提供することにある。   Therefore, a main object of the present invention is to provide a method for cutting a brittle material that can obtain a predetermined mirror surface without polishing.

本発明者らは、上記の事情に鑑みて脆性材料を効率的に加工する技術を検討した結果、楕円振動切削法を利用すれば脆性材料を鏡面加工できることを見出し、本発明を完成するに至った。   As a result of studying a technique for efficiently processing a brittle material in view of the above circumstances, the present inventors have found that the brittle material can be mirror-finished using the elliptical vibration cutting method, and the present invention has been completed. It was.

すなわち、本発明切削方法は、単結晶の脆性材料を、工具の刃先に楕円振動を与えながら切削する楕円振動切削法で切削することを特徴とする。   That is, the cutting method of the present invention is characterized in that a single crystal brittle material is cut by an elliptical vibration cutting method in which cutting is performed while applying elliptical vibration to the cutting edge of the tool.

楕円振動切削法は、図1に示すように、圧電素子などにより切削工具1の切刃1Aに切削方向と切り屑流出方向の振動を重畳して与えて、切刃1Aを楕円状の振動軌道2に運動させ、その状態で切刃1Aを被削材3に押し当てて切削を行う技術である。この切刃1Aの楕円振動により、切り屑4を引き上げながら加工を行うため、切削力を減少させて高精度の加工を可能にする(例えば特開2000-52101号公報)。   In the elliptical vibration cutting method, as shown in FIG. 1, vibrations in the cutting direction and the chip outflow direction are superimposed on the cutting edge 1A of the cutting tool 1 by a piezoelectric element or the like to give the cutting edge 1A an elliptical vibration trajectory. In this state, the cutting edge 1A is pressed against the work material 3 to perform cutting. Since the machining is performed while pulling up the chips 4 by the elliptical vibration of the cutting edge 1A, the cutting force is reduced to enable high-precision machining (for example, JP 2000-52101 A).

従来、この楕円振動切削法は主として金属材料、特に鋼材を切削対象としていた。鋼材等の鉄系材料を超精密加工用のダイヤモンド工具で工具を振動させずに通常切削した場合、ダイヤモンド工具と鉄系材料とが常時接触することになる。その際、ダイヤモンド工具(炭素)は鉄系材料と化学的親和性が高く、ダイヤモンド工具が非常に摩耗し易くなって、高い形状精度や鏡面を得る超精密切削加工ができない。   Conventionally, this elliptical vibration cutting method has been mainly performed on metal materials, particularly steel materials. When an iron-based material such as steel is normally cut without vibrating the tool with a diamond tool for ultra-precision machining, the diamond tool and the iron-based material are always in contact with each other. At that time, the diamond tool (carbon) has a high chemical affinity with the iron-based material, and the diamond tool is very easily worn, so that ultra-precision cutting with high shape accuracy and mirror surface cannot be performed.

これに対して楕円振動切削法は、刃先に水平方向(切削方向)の振動のみならず垂直方向(切り屑排出方向)の振動を付与して被削材を切削し、切り屑との摩擦力の低減、切削抵抗の減少、切削油剤の浸透効果向上などによりダイヤモンド工具の摩耗を抑制することができる。   On the other hand, in the elliptical vibration cutting method, not only horizontal (cutting direction) vibration but also vertical (chip discharge direction) vibration is applied to the cutting edge to cut the work material, and frictional force against the chip The wear of the diamond tool can be suppressed by reducing the cutting force, reducing the cutting resistance, and improving the penetration effect of the cutting fluid.

しかし、楕円振動切削法を用いても、フッ化カルシウムなどの硬脆材料を延性モードで高精度に鏡面加工するには、非特許文献1に示される切り取り厚さ85nm以下という条件が必要であり、この条件を満たさなければ到底加工ができないと考えられていた。   However, even if the elliptical vibration cutting method is used, in order to mirror-finish hard and brittle materials such as calcium fluoride in a ductile mode with high accuracy, the condition of a cut thickness of 85 nm or less shown in Non-Patent Document 1 is required It was thought that if this condition was not satisfied, it could not be processed.

本発明者らは、この楕円振動切削法を脆性材料の切削に適用したところ、より大きな切り込みでも鏡面加工が可能であることを見出した。   The present inventors have found that, when this elliptical vibration cutting method is applied to the cutting of brittle materials, mirror finishing can be performed even with a larger cut.

本発明切削方法が切削対象とする単結晶の脆性材料としては、イオン結合性が強いもの、特にフッ化物や塩化物が挙げられる。より具体的には、CaF2、LiF、MgF2、BaF2、LiAlCaF6またはSrF2である。とりわけフッ化カルシウム(CaF2)は低分散で、レンズの材料として好適である。その他、GaN、Si,GaAs、Ge、ZnSe、ZnSなどの結晶も本発明方法による切削が適すると考えられる。 Examples of the single crystal brittle material to be cut by the cutting method of the present invention include those having strong ionic bonding properties, particularly fluorides and chlorides. More specifically, it is CaF 2 , LiF, MgF 2 , BaF 2 , LiAlCaF 6 or SrF 2 . In particular, calcium fluoride (CaF 2 ) has a low dispersion and is suitable as a lens material. In addition, it is considered that cutting by the method of the present invention is suitable for crystals such as GaN, Si, GaAs, Ge, ZnSe, and ZnS.

本発明による切削は延性モードで行うことが好ましい。脆性破壊の生じない延性モードでの加工を行うことにより、切削のみで被削材を鏡面加工することができる。   The cutting according to the present invention is preferably performed in a ductile mode. By performing the processing in the ductile mode in which brittle fracture does not occur, the workpiece can be mirror-finished only by cutting.

切削における切り取り厚さは85nm超とすることが好ましい。切り取り厚さとは、切り屑の厚さのことである。従来、脆性材料を延性モードで加工するには非常にわずかな切り取り厚さでしか加工を行うことができず非常に加工効率が悪かった。本発明方法によれば、85nm超の切り取り厚さでも延性モードによる加工が可能となる。より好ましい切り取り厚さは1μm以上である。フッ化カルシウムを切削する場合、本発明方法による延性モード加工が可能な切り取り厚さの上限は5μm程度である。   The cutting thickness in cutting is preferably more than 85 nm. The cutting thickness is the thickness of the chips. Conventionally, in order to process a brittle material in a ductile mode, it was possible to process only with a very small cut thickness, and the processing efficiency was very poor. According to the method of the present invention, it is possible to perform processing in the ductile mode even with a cutting thickness exceeding 85 nm. A more preferable cutting thickness is 1 μm or more. In the case of cutting calcium fluoride, the upper limit of the cut thickness at which ductile mode processing by the method of the present invention is possible is about 5 μm.

また、切り込み量は20μm以下とすることが好ましい。このような切り込み量とすることで、より実用的な加工を行うことができる。   Further, the cutting depth is preferably 20 μm or less. By using such a cutting amount, more practical processing can be performed.

工具に与える振動の周波数は20〜40kHz程度が好適である。この振動数をより高くすることで効率的な切削が可能になる。   The frequency of vibration applied to the tool is preferably about 20 to 40 kHz. By making this frequency higher, efficient cutting becomes possible.

本発明方法によりレンズの加工を行う場合、単結晶ダイヤモンドバイトを用いることが好適である。その際、刃先のすくい角は0〜−40°とすることが好ましい。このようなすくい角とすることでより表面粗さの小さい鏡面を得ることができる。また、すくい角をネガとすることで刃先強度を高め、刃先の欠けを抑制して工具寿命を長くすることができる。   When processing a lens by the method of the present invention, it is preferable to use a single crystal diamond tool. At that time, the rake angle of the blade edge is preferably set to 0 to −40 °. By using such a rake angle, a mirror surface with a smaller surface roughness can be obtained. Further, by setting the rake angle as a negative, the strength of the blade edge can be increased, chipping of the blade edge can be suppressed, and the tool life can be extended.

逃げ角は正の値とすることが好ましい。例えば、逃げ角を5〜10°程度が好ましい。さらに刃先のノーズ半径は1.0mm以下とすることが望ましい。これら逃げ角やノーズ半径の規定条件を満たすことで、表面粗さの小さい鏡面を得ることができる。   The clearance angle is preferably a positive value. For example, the clearance angle is preferably about 5 to 10 °. Furthermore, it is desirable that the nose radius of the blade edge be 1.0 mm or less. A mirror surface with a small surface roughness can be obtained by satisfying the specified conditions of the clearance angle and the nose radius.

本発明方法を用いれば、レンズ表面を研磨することなく、単結晶の脆性材料から構成された非球面レンズを得ることができる。特に、従来は不可能であった凹面を有する非球面レンズを脆性材料から切削のみにより得ることができる。この非球面レンズの形状は、凹面に凸面が複合された形状が好適である。凹面に凸面が複合された形状のレンズを従来の方法で得ることは不可能であると考えられていたが、本発明方法では複雑な形状の非球面も切削で形成することができる。凹面と凸面とを複合した形状としては、図5に示すような環状の凸部51を有し、この凸部51の内周側と外周側が凹部52となった非球面レンズ5の形状が挙げられる。   By using the method of the present invention, an aspheric lens made of a single crystal brittle material can be obtained without polishing the lens surface. In particular, it is possible to obtain an aspheric lens having a concave surface, which has been impossible in the past, from a brittle material only by cutting. The shape of the aspheric lens is preferably a shape in which a convex surface is combined with a concave surface. Although it has been thought that it is impossible to obtain a lens having a shape in which a convex surface is combined with a concave surface by a conventional method, a complex aspherical surface can also be formed by cutting according to the method of the present invention. As a shape combining the concave surface and the convex surface, there is a shape of the aspherical lens 5 having an annular convex portion 51 as shown in FIG. 5 and the concave portion 52 on the inner peripheral side and the outer peripheral side of the convex portion 51. It is done.

また、本発明方法を利用すれば、以下の特性を単独であるいは複合した高精度のレンズを工業的に能率よく得ることができる。   Moreover, if the method of the present invention is used, a highly accurate lens having the following characteristics alone or in combination can be obtained industrially efficiently.

(1)非球面レンズの非球面量(図5参照)が50μm以上である。
(2)非球面レンズの形状精度が、そのレンズが利用される波長λに対して、λ/10以下、より好ましくはλ/20以下、さらに好ましくはλ/100以下である。
(3)非球面レンズの直径が50mm以下である。
(4)非球面レンズの表面粗さRaが0.01μm以下である。
(1) The aspheric amount (see FIG. 5) of the aspheric lens is 50 μm or more.
(2) The shape accuracy of the aspherical lens is λ / 10 or less, more preferably λ / 20 or less, and further preferably λ / 100 or less with respect to the wavelength λ for which the lens is used.
(3) The diameter of the aspheric lens is 50 mm or less.
(4) The surface roughness Ra of the aspherical lens is 0.01 μm or less.

上記の非球面レンズは、切削のみにより形成されているが、さらにその切削面にスキンポリッシュを施してもよい。切削面に形成されたリップル(切削痕による凹凸)のみを除去するスキンポリッシュを施すことで、より表面粗さの小さいレンズとすることができる。また、スキンポリッシュであれば、ごく短時間で容易に行うことができる。   The above aspherical lens is formed only by cutting, but skin polishing may be further applied to the cutting surface. By applying skin polish that removes only ripples (unevenness caused by cutting marks) formed on the cut surface, a lens with a smaller surface roughness can be obtained. In addition, skin polishing can be easily performed in a very short time.

以下、本発明の実施の形態を説明する。
単結晶フッ化カルシウムの母材を用いて楕円振動切削法により加工を行った。楕円振動切削法は刃先に超音波領域の楕円振動を与えて切り屑を引き上げながら切削を行う加工法である。ここでは、超音波楕円振動制御システムを搭載した超精密加工機「株式会社ナガセインテグレックスNIC-300」を用いて切削を行った。Z軸上に搭載したインデックステーブルに振動工具を取り付け、その下方に位置するX軸インデックステーブルに(111)面の出ているフッ化カルシウムを固定し、X-Z軸同期送りによって所定の傾きで連続的に切り込み量が変化するプレナー型の溝加工および平面加工を行った。その際、延性モードから脆性破壊を伴う加工への遷移について検討を行った。また、工具に振動を与えることなく切削を行う従来法による切削も同様に行った。切削条件は次の通りである。
Embodiments of the present invention will be described below.
Machining was performed by an elliptical vibration cutting method using a single crystal calcium fluoride base material. The elliptical vibration cutting method is a processing method in which cutting is performed while pulling up chips by applying elliptical vibration in the ultrasonic region to the cutting edge. Here, cutting was performed using an ultra-precision processing machine “Nagase Integrex NIC-300” equipped with an ultrasonic elliptical vibration control system. A vibration tool is attached to the index table mounted on the Z axis, and the calcium fluoride protruding from the (111) surface is fixed to the X axis index table located below it. Planar type groove processing and planar processing in which the amount of cut was changed. At that time, the transition from ductile mode to processing accompanied by brittle fracture was examined. Moreover, the cutting by the conventional method which cuts without giving a vibration to a tool was also performed similarly. Cutting conditions are as follows.

切り込み量:0-3μm(溝加工) 0-15μm(平面加工) 切削速度:0.37m/min
送り:10-40μm 切削方向:<-12-1>、<1-21>
振動:円軌跡 振幅:4μm 周波数:19.5kHz
工具:単結晶ダイヤモンドバイト ノーズ半径:1mm すくい角:0゜
Cutting depth: 0-3μm (grooving) 0-15μm (planar machining) Cutting speed: 0.37m / min
Feed: 10-40μm Cutting direction: <-12-1>, <1-21>
Vibration: Circular locus Amplitude: 4μm Frequency: 19.5kHz
Tool: Single crystal diamond tool Nose radius: 1mm Rake angle: 0 °

<-12-1>および<1-21>方向に切り込み量2μmで溝加工した加工面の微分干渉顕微鏡写真を図2、図3に示す。各図の(A)は楕円振動切削法による加工面、(B)は従来法による加工面を示す。この写真から明らかなように、従来法による加工面では脆性破壊した面が現れているのに対し、本発明法による加工法では鏡面加工が可能であることがわかる。従って、従来法に比べて大幅に延性モードにより加工できる領域が広がっていることがわかった。   FIGS. 2 and 3 show differential interference micrographs of the machined surfaces grooved with a cutting depth of 2 μm in the <-12-1> and <1-21> directions. (A) of each figure shows the machined surface by the elliptical vibration cutting method, and (B) shows the machined surface by the conventional method. As is apparent from this photograph, a surface that has been brittlely fractured appears on the processed surface by the conventional method, whereas it can be seen that mirror processing is possible by the processing method of the present invention. Therefore, it has been found that the region that can be processed by the ductility mode is greatly expanded as compared with the conventional method.

次に、溝加工試験より、延性モード加工が最も困難であった<-12-1>方向に対して切り込み量および送り量を変化させて平面加工を行った際の加工面の微分干渉顕微鏡写真を図4に示す。図4も(A)は楕円振動切削法による加工面、(B)は従来法による加工面を示す。ここでは切り込み量が5μmで送り量が10および20μmのときの加工面を示している。   Next, from the grooving test, a differential interference micrograph of the machined surface when flattening was performed by changing the depth of cut and feed in the <-12-1> direction, where ductile mode machining was the most difficult. Is shown in FIG. 4A also shows a processed surface by the elliptical vibration cutting method, and FIG. 4B shows a processed surface by the conventional method. Here, the machined surface is shown when the cut depth is 5 μm and the feed amounts are 10 and 20 μm.

その結果、送り量が変化しても加工面性状はあまり変化していない。しかし、通常の切削では脆性破壊面が見られ送り量の増加に伴って脆性破壊面が増大しているのがわかる。また、さらに切り込み量を増大した場合、加工面性状は若干劣化するが、楕円振動切削法では顕著な脆性破壊面が発生しにくい傾向を確認できた。以上の結果からも従来法に比べて大幅に延性モードにより加工できる領域が広がっていることがわかった。   As a result, the machined surface properties do not change much even if the feed amount changes. However, it can be seen that a brittle fracture surface is observed in normal cutting, and that the brittle fracture surface increases as the feed rate increases. Further, when the depth of cut was further increased, the machined surface properties slightly deteriorated, but it was confirmed that a remarkable brittle fracture surface was hardly generated by the elliptical vibration cutting method. From the above results, it was found that the region that can be processed by the ductile mode is greatly expanded compared to the conventional method.

本発明方法によれば、高精度の非球面レンズを切削加工のみにより得ることができる。従って、光学材料の加工分野などにおいて本発明方法を利用することが期待される。また、本発明方法で得られた非球面レンズは、各種光学製品に利用することができる。   According to the method of the present invention, a highly accurate aspheric lens can be obtained only by cutting. Therefore, it is expected that the method of the present invention is used in the field of processing optical materials. In addition, the aspherical lens obtained by the method of the present invention can be used for various optical products.

楕円振動切削の加工状態を示す説明図である。It is explanatory drawing which shows the processing state of elliptical vibration cutting. <-12-1>方向に溝加工した際の加工面の微分干渉顕微鏡写真で、(A)は本発明方法、(B)は従来方法による加工面を示す。It is a differential interference micrograph of the processed surface when grooved in the <-12-1> direction. (A) shows the processed surface by the method of the present invention, and (B) shows the processed surface by the conventional method. <1-21>方向に溝加工した際の加工面の微分干渉顕微鏡写真で、(A)は本発明方法、(B)は従来方法による加工面を示す。It is a differential interference micrograph of the processed surface when grooved in the <1-21> direction, (A) shows the processed surface by the method of the present invention, and (B) shows the processed surface by the conventional method. <-12-1>方向に平面加工した際の加工面の微分干渉顕微鏡写真で、(A)は本発明方法、(B)は従来方法による加工面を示す。It is a differential interference micrograph of the processed surface when it is planarized in the <-12-1> direction, (A) shows the processed surface by the method of the present invention and (B) by the conventional method. 非球面レンズの形状構成図である。It is a shape block diagram of an aspherical lens.

符号の説明Explanation of symbols

1 切削工具 1A 切刃 2 楕円軌道 3 被削材 4 切り屑
5 非球面レンズ 51 凸部 52 凹部
1 Cutting tool 1A Cutting edge 2 Elliptical track 3 Work material 4 Chip
5 Aspheric lens 51 Convex 52 Concave

Claims (5)

単結晶の脆性材料を、工具の刃先に楕円振動を与えながら切削する楕円振動切削法で切削することを特徴とする脆性材料の切削方法。   A method for cutting a brittle material, characterized in that a single crystal brittle material is cut by an elliptical vibration cutting method in which an elliptical vibration is applied to a cutting edge of a tool. 単結晶の脆性材料が、CaF2、LiF、MgF2、BaF2、LiAlCaF6またはSrF2であることを特徴とする請求項1に記載の脆性材料の切削方法。 2. The method for cutting a brittle material according to claim 1, wherein the single crystal brittle material is CaF 2 , LiF, MgF 2 , BaF 2 , LiAlCaF 6 or SrF 2 . 前記切削を延性モードで行なうことを特徴とする請求項1または2に記載の脆性材料の切削方法。   The brittle material cutting method according to claim 1, wherein the cutting is performed in a ductile mode. 前記切削における切り取り厚さを85nm超とすることを特徴とする請求項1〜3のいずれかに記載の脆性材料の切削方法。   4. The method for cutting a brittle material according to claim 1, wherein a cutting thickness in the cutting is greater than 85 nm. 前記刃先のすくい角が0〜−40°であることを特徴とする請求項1〜4のいずれかに記載の脆性材料の切削方法。   The brittle material cutting method according to any one of claims 1 to 4, wherein a rake angle of the blade edge is 0 to -40 °.
JP2004066398A 2004-03-09 2004-03-09 Cutting method for brittle material Pending JP2005254516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066398A JP2005254516A (en) 2004-03-09 2004-03-09 Cutting method for brittle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066398A JP2005254516A (en) 2004-03-09 2004-03-09 Cutting method for brittle material

Publications (1)

Publication Number Publication Date
JP2005254516A true JP2005254516A (en) 2005-09-22

Family

ID=35080726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066398A Pending JP2005254516A (en) 2004-03-09 2004-03-09 Cutting method for brittle material

Country Status (1)

Country Link
JP (1) JP2005254516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114603164A (en) * 2022-01-21 2022-06-10 清华大学 Backward vibration cutting method and system for high-aspect-ratio surface microstructure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096201A (en) * 2000-09-19 2002-04-02 National Institute Of Advanced Industrial & Technology Ductile mode cutting work method of brittle material by slitting direction vibrational cutting and cutting work device
JP2002172615A (en) * 2000-12-07 2002-06-18 Canon Inc Specular cutting processing method for single crystal material
JP2003195057A (en) * 2001-12-25 2003-07-09 Towa Corp Light guide plate forming method and light guide plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096201A (en) * 2000-09-19 2002-04-02 National Institute Of Advanced Industrial & Technology Ductile mode cutting work method of brittle material by slitting direction vibrational cutting and cutting work device
JP2002172615A (en) * 2000-12-07 2002-06-18 Canon Inc Specular cutting processing method for single crystal material
JP2003195057A (en) * 2001-12-25 2003-07-09 Towa Corp Light guide plate forming method and light guide plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114603164A (en) * 2022-01-21 2022-06-10 清华大学 Backward vibration cutting method and system for high-aspect-ratio surface microstructure

Similar Documents

Publication Publication Date Title
Gan et al. Ultraprecision diamond turning of glass with ultrasonic vibration
US8597080B2 (en) Ophthalmic roughing wheel
Nath et al. A study on the effect of tool nose radius in ultrasonic elliptical vibration cutting of tungsten carbide
Suzuki et al. Ultraprecision micromachining of hardened steel by applying ultrasonic elliptical vibration cutting
JP2005118989A (en) Automatic polishing method of titanium-made and titanium alloy-made mechanical parts
JP4466956B2 (en) Diamond tool manufacturing method
JPWO2018123133A1 (en) Cutting tool and manufacturing method thereof
JP4878517B2 (en) Diamond tools
US8597079B2 (en) Abrasive wheel with closed profiles in cutting surface
KR20040084641A (en) Point superabrasive machining of nickel alloys
JP2007307680A (en) Cutting method, optical element and die
JP4688110B2 (en) Single crystal diamond tool and method for manufacturing the same
JP4339573B2 (en) End mill using single crystal diamond
CN103707003B (en) The processing method of tungsten titanium alloy plate
JP3544601B2 (en) Ultra-precision cutting method for crystalline materials
JP2005254516A (en) Cutting method for brittle material
JP4746339B2 (en) Cutting tool manufacturing method
Fess et al. Developments in precision optical grinding technology
JP2009291864A (en) Diamond cutting tool
JP2003525759A (en) Method and machine for shaping edges
JP2006088243A (en) Abrasive grain and grindstone
Venkatesh et al. Ductile streaks in precision grinding of hard and brittle materials
JP2004181548A (en) Monocrystal diamond cutting tool and its manufacturing method
JP4670249B2 (en) Processing apparatus, processing method, and diamond tool
JP2008229764A (en) Rotary tool and machining method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A521 Written amendment

Effective date: 20090525

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A02 Decision of refusal

Effective date: 20100525

Free format text: JAPANESE INTERMEDIATE CODE: A02