JP2005254079A - Ozone oxidation system for sewage - Google Patents

Ozone oxidation system for sewage Download PDF

Info

Publication number
JP2005254079A
JP2005254079A JP2004066474A JP2004066474A JP2005254079A JP 2005254079 A JP2005254079 A JP 2005254079A JP 2004066474 A JP2004066474 A JP 2004066474A JP 2004066474 A JP2004066474 A JP 2004066474A JP 2005254079 A JP2005254079 A JP 2005254079A
Authority
JP
Japan
Prior art keywords
ozone
sewage
oxidation treatment
ozone oxidation
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004066474A
Other languages
Japanese (ja)
Inventor
Tetsuo Mizumura
哲夫 水村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004066474A priority Critical patent/JP2005254079A/en
Publication of JP2005254079A publication Critical patent/JP2005254079A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost ozone oxidation system for sewage which has high ozone utilization efficiency, can efficiently oxidize organic pollutants, such as bacteria and organic chemical substances, in the sewage, does not exert a bad influence upon environment and health, and does not require a high equipment cost and running cost. <P>SOLUTION: In the ozone oxidation system for the sewage which oxidizes the sewage containing the organic pollutants by using ozone, fine bubbles of a ozone-containing gas are diffused into the sewage, a plurality of diaphragms is vibrated at a vibration frequency of 20-70 Hz, and the sewage is oxidized with ozone while being agitated. It is preferable that the size of the fine bubble of the ozone-containing gas is 5-300 μm. The ozone oxidation system can treat surplus sludge-containing sewage as a target. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、汚水のオゾン酸化処理システムに関し、さらに詳しくは、有機性汚濁物質を含む汚水を、少量のオゾンで効率良く酸化処理することができ、かつ環境や健康への悪影響がない汚水のオゾン酸化処理システムに関する。   The present invention relates to a wastewater ozone oxidation treatment system, and more specifically, wastewater ozone that can efficiently oxidize wastewater containing organic pollutants with a small amount of ozone and that does not adversely affect the environment and health. The present invention relates to an oxidation treatment system.

従来からも、バクテリアや有機性化学物質などの有機性汚濁物質を含有する汚水を、酸化力の強いオゾンを用いて、酸化分解して浄化する方法が種々提案されている。
特開平6−15282号公報 実開平5−80291号公報
Conventionally, various methods have been proposed for purifying sewage containing organic pollutants such as bacteria and organic chemicals by oxidative decomposition using ozone having strong oxidizing power.
JP-A-6-15282 Japanese Utility Model Publication No. 5-80291

これらの従来法における基本的構成は、無声放電などで生成するオゾンを含有した空気や酸素ガスを、処理すべき汚水中に配した散気管やエゼクターなどを介して、汚水中に気泡 として放散させ、同時にエゼクターの水流などによって、それらの気泡をできるだけ水に溶解させることを狙いとしている。すなわち、水に溶解したオゾンを汚水中のバクテリアや有機性化学物質などの有機性汚濁物質に作用させ、 オゾンのもつ極めて優れた酸化力によって、 殺菌または酸化分解する仕組みとなっている。   The basic structure of these conventional methods is that air or oxygen gas containing ozone generated by silent discharge or the like is diffused as bubbles into the sewage through an air diffuser or ejector disposed in the sewage to be treated. At the same time, it aims to dissolve these bubbles in water as much as possible by the water flow of the ejector. In other words, ozone dissolved in water is allowed to act on organic pollutants such as bacteria and organic chemicals in the sewage, and it is sterilized or oxidatively decomposed by the extremely excellent oxidizing power of ozone.

このような従来法の最大の問題点は、オゾンを含有した気泡がごく短時間で汚水液面に浮上し、大気中に放散してしまう割合が非常に高く、僅かな量のオゾンしか水に溶解できない、ということである。一般的にオゾンの水への溶解量は、 エゼクターなどで吹き込む量の数%程度とされており、生成したオゾンの大部分は、本来の目的に使われることなく、大気中に無駄に放散していることになる。また、オゾンはその一方で、健康に悪影響を与えるガスでもあり、このような大気中に放出されたオゾンを無害化する設備が必要となる場合が多い。従って、オゾンを水に溶解させて、それで汚水中のバクテリアや有機性化学物質などの有機性汚濁物質を酸化処理する従来法では、酸化処理に必要な量以上にオゾンを生成しなければならず、また、健康面への配慮から、排気設備などが不可欠となるなど、メンテナンスを含めた設備面でのコスト高およびランニングコスト増が避けられないという問題があった。   The biggest problem of such a conventional method is that bubbles containing ozone float on the surface of the sewage liquid in a very short time and are diffused into the atmosphere, and only a small amount of ozone enters the water. It cannot be dissolved. Generally, the amount of ozone dissolved in water is about several percent of the amount blown by an ejector, etc., and most of the generated ozone is wasted in the atmosphere without being used for its original purpose. Will be. On the other hand, ozone is also a gas that adversely affects health, and there are many cases where facilities for detoxifying ozone released into the atmosphere are required. Therefore, conventional methods that dissolve ozone in water and oxidize organic pollutants such as bacteria and organic chemicals in sewage must produce ozone in excess of the amount required for oxidation. In addition, due to health considerations, exhaust facilities and the like are indispensable, and there are problems that the cost of facilities including maintenance and running costs are inevitably increased.

また、オゾンと有機性汚濁物質との反応性を高めるために、オゾンを微細気泡化し、例えばプロペラなどの回転子によって攪拌させ、オゾンの微細気泡を効率良く、有機性汚濁物質に酸化反応させようとする提案がなれている。
特開平8−132099号公報 特開2000−189981号公報
Also, in order to increase the reactivity between ozone and organic pollutants, make ozone fine bubbles and stir it with a rotor such as a propeller to efficiently oxidize the fine bubbles of ozone into organic pollutants. The proposal has become.
JP-A-8-1332099 JP 2000-189981 A

このような特許文献3〜4に記載の方法では、ある程度の段階まで、攪拌によって微細気泡の浮力に勝る流れを作りことが可能であるが、乱流ではない一方向の流れのため、気泡と有機性汚濁物質との接触頻度が格段に低いという問題もあった。また、高速攪拌では、空気を巻き込んだり、槽構造が円形に限定されるという問題もあった。さらに、回転に必要な動力は、回転体の大きさとともに大きくなり、前記特許文献3〜4に記載の方法は、大規模の槽内を高速に攪拌するには適しているとは言えなかった。   In the methods described in Patent Documents 3 to 4, it is possible to create a flow superior to the buoyancy of fine bubbles by stirring up to a certain level, but because of the unidirectional flow that is not turbulent, There was also a problem that the frequency of contact with organic pollutants was much lower. In addition, the high-speed stirring has problems that air is involved and the tank structure is limited to a circular shape. Furthermore, the power required for rotation increases with the size of the rotating body, and the methods described in Patent Documents 3 to 4 cannot be said to be suitable for high-speed stirring in a large-scale tank. .

本発明は、上記のような従来技術の問題点を解決し、オゾンの使用効率が高く、汚水中のバクテリアや有機性化学物質などの有機性汚濁物質を効率よく酸化処理することができ、かつ環境や健康への悪影響がなく、しかも高価な設備費や多額のランニングコストを要しない安価な汚水のオゾン酸化処理システムを提供することを目的とする。   The present invention solves the problems of the prior art as described above, has high ozone use efficiency, can efficiently oxidize organic pollutants such as bacteria and organic chemicals in wastewater, and An object of the present invention is to provide an inexpensive ozone oxidation treatment system for sewage that does not adversely affect the environment and health, and does not require expensive equipment costs or large running costs.

本発明は、オゾンを用いてバクテリアや有機性化学物質などの有機性汚濁物質を含む汚水を酸化処理するシステムにおいて、オゾンを含む気体の微細な気泡を汚水中に放散させ、複数の振動板を振動数20〜70Hzで振動させて、汚水を攪拌しながらオゾンにより酸化処理することによって、オゾンの使用効率が高く、汚水中のバクテリアや有機性化学物質などの有機性汚濁物質を効率よく酸化処理することができ、かつ環境や健康への悪影響がなく、しかも高価な設備費や多額のランニングコストを要しない安価なオゾン酸化処理システムを提供し、前記課題を解決したものである。   The present invention relates to a system that oxidizes sewage containing organic pollutants such as bacteria and organic chemicals using ozone, and disperses fine bubbles of gas containing ozone into the sewage, thereby providing a plurality of diaphragms. By vibrating at a frequency of 20 to 70 Hz and oxidizing the wastewater with ozone while stirring the wastewater, the use efficiency of ozone is high, and organic pollutants such as bacteria and organic chemicals in the wastewater are efficiently oxidized. The present invention solves the above-mentioned problems by providing an inexpensive ozone oxidation treatment system that can be performed, has no adverse effects on the environment and health, and does not require expensive equipment costs and large running costs.

本発明では、前記課題を解決するために、 2つの技術を盛り込んでいる。その1つはオゾンの微細気泡化である。同量のオゾンを水中に効率よく溶解させるには、気泡の総表面積を大きくすることが有利であり、 オゾンの気泡を微細化することによって、これを実現できるからである。   In the present invention, two techniques are incorporated in order to solve the above-mentioned problems. One of them is the microbubble generation of ozone. In order to efficiently dissolve the same amount of ozone in water, it is advantageous to increase the total surface area of the bubbles, and this can be realized by making the bubbles of ozone finer.

また、オゾンの気泡の微細化の効果は、それだけにとどまらず、表面張力の関係で、気泡の気液界面に凝集するバクテリアや有機性化学物質などの有機性汚濁物質に気泡のオゾンが直接作用する頻度が飛躍的に高まり、 溶存オゾンの酸化作用だけでなく、ガス状態のオゾンも有機性汚濁物質の酸化分解に寄与することが判明した。   In addition, the effect of micronization of ozone bubbles is not limited to that. Ozone bubbles directly act on organic pollutants such as bacteria and organic chemicals that aggregate at the gas-liquid interface of the bubbles due to surface tension. The frequency has increased dramatically, and it has been found that not only the oxidative action of dissolved ozone, but also gaseous ozone contributes to the oxidative decomposition of organic pollutants.

上記ガス状態のオゾンの有機性汚濁物質の酸化処理に寄与する割合は、相対的に低いため、 これを更に高める第2の対策として、本発明では、複数の振動板の振動を利用した攪拌技術を導入している。この目的は高速の乱流を作り出すことであって、微細気泡が短時間で汚水表面に浮上することなく、 汚水中の滞留時間を飛躍的に長くすることにある。この高速乱流により生ずる流れは微細気泡自身の浮力よりも大きいので、 気泡は長時間、汚水中を上下左右あらゆるところを、あたかも縣濁粒子のように移動し、 汚水中の有機性汚濁物質と接触する頻度が飛躍的に向上する。   Since the ratio that contributes to the oxidation treatment of the organic pollutant of ozone in the gas state is relatively low, as a second countermeasure to further increase this, in the present invention, the stirring technique using the vibrations of a plurality of diaphragms Has been introduced. The purpose is to create a high-speed turbulent flow, and it is necessary to dramatically increase the residence time in the sewage without causing the fine bubbles to rise to the surface of the sewage in a short time. Since the flow generated by this high-speed turbulent flow is larger than the buoyancy of the microbubbles themselves, the bubbles move in the sewage up and down, left and right for a long time as if they were suspended particles. The contact frequency is greatly improved.

従って、本発明では、上記2つの改良策の導入により、生成したオゾンを大気中に散逸させることなく、微細気泡表面で直接酸化作用に寄与させる割合を飛躍的に増大させ、生成オゾンをほぼ100%有効利用することが可能となる。その結果、 従来法での課題であったオゾンの使用効率の低さと、それに起因する設備コスト、環境や健康への問題が解決でき、ユーザーの求める、安価で安全なオゾン酸化処理システムの提供が可能となる。   Therefore, in the present invention, by introducing the above two improvement measures, the ratio of contributing directly to the oxidation action on the surface of the fine bubbles is greatly increased without dissipating the generated ozone into the atmosphere, and the generated ozone is almost 100%. % Effective use. As a result, it is possible to solve the low efficiency of ozone use, the equipment cost, environmental and health problems caused by the conventional method, and to provide an inexpensive and safe ozone oxidation treatment system that users demand. It becomes possible.

本発明によれば、オゾンの使用効率が高く、汚水中の有機性汚濁物質を効率よく酸化処理することができ、かつ環境や健康に悪影響を及ぼすことなく、しかも高価な設備費や多額のランニングコストを要しない安価な汚水のオゾン酸化処理システムを提供することができる。   According to the present invention, ozone is highly used, organic pollutants in wastewater can be efficiently oxidized, and there is no adverse effect on the environment and health, and expensive equipment costs and large running costs An inexpensive ozone oxidation treatment system for wastewater that does not require costs can be provided.

すなわち、本発明では、オゾンの使用効率が高いので、オゾンの使用量が少なくて済み、また、汚水中の有機性汚濁物質を効率よく酸化処理することができるので、汚水の浄化効率が高くなる。また、本発明では、生成したオゾンを大気中に散逸させることが少ないので、環境や健康に悪影響を及ぼすことがなく、また、オゾンの有効利用に加えて、排気設備なども不要になるので、高価な設備や多額のランニングコストを要することなく、汚水を酸化処理することができる。   That is, in the present invention, since the use efficiency of ozone is high, the amount of ozone used is small, and the organic pollutants in the sewage can be efficiently oxidized, so the purification efficiency of the sewage is increased. . In the present invention, the generated ozone is rarely dissipated in the atmosphere, so there is no adverse effect on the environment and health, and in addition to the effective use of ozone, exhaust facilities are unnecessary, Sewage can be oxidized without expensive equipment and large running costs.

本発明においては、振動板の振動数を20〜70Hzの範囲で振動させることが必要である。振動板の振動数をこの範囲に設定すれば、オゾン酸化処理槽の水面を乱さず、オゾンを大気中に放出することなく、オゾンと汚水中の有機性汚濁物質との反応効率を高めることができる。振動板の材質やサイズは、攪拌するオゾン酸化処理槽の大きさにあわせて適宜選択することができるが、機械的強度や耐食性に問題が発生しない材質であればよく、振動板の長さは、おおむねオゾン酸化処理槽の長さの1/3〜1/4(これは片側壁面にのみ振動板設置の場合であり、両壁面に振動板を設置する場合はその半分程度)が好ましい。その厚みも振動時の耐久性に問題ないものであれば構わない。また、振動板の枚数や振幅についても、汚水の性状や槽構造により、適宜選択すればよいが、振動板の振幅は1〜20mm程度が適している。   In the present invention, it is necessary to vibrate the vibration frequency of the diaphragm in the range of 20 to 70 Hz. If the vibration frequency of the diaphragm is set within this range, the reaction efficiency between ozone and organic pollutants in the sewage can be improved without disturbing the surface of the ozone oxidation treatment tank and releasing ozone into the atmosphere. it can. The material and size of the diaphragm can be appropriately selected according to the size of the ozone oxidation treatment tank to be stirred, but any material that does not cause problems in mechanical strength and corrosion resistance can be used. In general, 1/3 to 1/4 of the length of the ozone oxidation treatment tank (this is a case where a diaphragm is installed only on one side wall surface, and about half of that when a diaphragm is installed on both wall surfaces) is preferable. The thickness is not particularly limited as long as there is no problem with durability during vibration. Further, the number and amplitude of the diaphragm may be appropriately selected depending on the properties of the sewage and the tank structure, but the amplitude of the diaphragm is preferably about 1 to 20 mm.

本発明において、オゾンを含む気体の微細な気泡の大きさは5μm〜300μmであることが好ましい。上記気泡の大きさをこの範囲内に調整することにより、浮力を小さくし、大気中への放出量を減らすと共に、少ないエネルギーで、汚水を浄化できる。この気泡の大きさのより好ましい範囲は20μm〜100μmである。このようなオゾンを含む気体の気泡の大きさは、例えば、次のような方法で制御できる。後記の実施例に示すように、水中に導入するガスを、モーターの回転羽根で水と共に高速専断しつつ攪拌する方法では、回転羽根の形状や回転数、導入ガス量などで制御することができる。また、その気泡の大きさは、例えば、顕微鏡用目盛板とファイバースコープ式の実態顕微鏡で、焦点近傍を通過する気泡の撮影像によって測定することができる。   In the present invention, the size of fine bubbles of ozone-containing gas is preferably 5 μm to 300 μm. By adjusting the size of the bubbles within this range, buoyancy can be reduced, the amount released to the atmosphere can be reduced, and sewage can be purified with less energy. A more preferable range of the size of the bubbles is 20 μm to 100 μm. The size of the gas bubbles containing ozone can be controlled by the following method, for example. As shown in the examples described later, in the method of stirring the gas introduced into the water at high speed with the rotating blades of the motor together with the water, the shape can be controlled by the shape of the rotating blades, the number of rotations, the amount of introduced gas, etc. . The size of the bubbles can be measured by, for example, a photographed image of bubbles passing near the focal point with a microscope scale plate and a fiberscope type actual microscope.

また、本発明のオゾン酸化処理システムでは、余剰汚泥が含まれる汚水を対象にすると、余剰汚泥の可溶化率を少ないエネルギーで高めることができ、効果的である。   Moreover, in the ozone oxidation treatment system of the present invention, when sewage containing excess sludge is targeted, the solubilization rate of excess sludge can be increased with less energy, which is effective.

次に、本発明により、有機性汚濁物質などを含有する汚水を、オゾンを用いて酸化処理する際の好適な実施形態について、図1を用いて説明する。   Next, a preferred embodiment of the present invention when oxidizing sewage containing organic pollutants using ozone is described with reference to FIG.

図1において、有機性汚濁物質を含む汚水1はオゾン酸化処理槽2に貯留される。オゾンはオゾン発生装置3で生成したオゾンを含む空気または酸素ガスとして、微細気泡化装置4に導かれ、そこで、微細気泡にされ、その微細気泡化装置4からオゾン酸化処理槽2中の汚水1に微細な気泡として放散される。その際、気泡の大きさは5μm〜300μmの大きさに調整しておくことが好ましい。そして、前記オゾン酸化処理槽2の一方またはそれと対向する壁面には、複数の振動板5とそれを駆動するモーター6から構成される攪拌装置7が取り付けられており、上記振動板5の振動によって、オゾン酸化処理槽2内の汚水1には効率良く高速乱流が発生する。上記複数の振動板5は、図示のように、オゾン酸化処理槽2の壁面から汚水1にほぼ直角に取り付けられた複数の板で構成され、本発明において、この振動板5の振動数は20〜70Hzに制御している。   In FIG. 1, sewage 1 containing an organic pollutant is stored in an ozone oxidation treatment tank 2. Ozone is introduced into the microbubble generator 4 as air or oxygen gas containing ozone generated by the ozone generator 3, where it is made into microbubbles, and the sewage 1 in the ozone oxidation treatment tank 2 from the microbubble generator 4. Dissipated as fine bubbles. At that time, the size of the bubbles is preferably adjusted to 5 μm to 300 μm. A stirring device 7 including a plurality of diaphragms 5 and a motor 6 for driving the diaphragms 5 is attached to one or the wall surface of the ozone oxidation treatment tank 2, and the vibrations of the diaphragms 5 cause vibrations. The high-speed turbulent flow is efficiently generated in the sewage 1 in the ozone oxidation treatment tank 2. As shown in the drawing, the plurality of diaphragms 5 are composed of a plurality of plates attached substantially perpendicular to the sewage 1 from the wall surface of the ozone oxidation treatment tank 2. In the present invention, the frequency of the diaphragm 5 is 20. It is controlled to ˜70 Hz.

微細気泡化装置4からオゾン酸化処理槽2内の汚水1中に放散された微細気泡は、その大きさが極めて小さいので、 それ自身の浮力より遥かに強い攪拌で生ずる乱流によって、 オゾン酸化処理槽2内を上下左右に移動しつづける。   The microbubbles diffused in the sewage 1 in the ozone oxidation treatment tank 2 from the microbubble generator 4 are extremely small in size, and therefore, the ozone oxidation treatment is performed by the turbulent flow generated by the stirring much stronger than the buoyancy of the microbubbles. Continue to move up and down, left and right in the tank 2.

この攪拌によりオゾン酸化処理槽2内に長時間滞留するオゾンの微細気泡からは、溶存オゾンが効率良く供給されると共に、オゾン含有気泡と有機性汚濁物質との直接接触頻度の高まりや、気泡への有機性汚濁物質の付着などによって、気泡自身の酸化力が直接的に有機性汚濁物質に作用することになる。その結果、生成したオゾンはほぼ100%が汚水中の有機性汚濁物質の酸化に消費され、 外部へ漏れ出すことがほとんどない。なお、図1は本発明の汚水のオゾン酸化処理システムの処理プロセスを模式的に示すものであって、微細気泡も視認しやすいように大きく図示されているが、この微細気泡は前記のように5μm〜300μm程度の大きさを好ましいとしているものであって、実際には、他の部材などに比べてはるかに小さいものである。   From the fine bubbles of ozone that stay in the ozone oxidation treatment tank 2 for a long time due to this stirring, dissolved ozone is efficiently supplied, and the frequency of direct contact between the ozone-containing bubbles and the organic pollutant is increased. Due to the adhesion of organic pollutants, the oxidizing power of the bubbles themselves directly acts on the organic pollutants. As a result, almost 100% of the generated ozone is consumed for the oxidation of organic pollutants in the sewage and hardly leaks outside. FIG. 1 schematically shows the treatment process of the ozone oxidation treatment system for sewage according to the present invention, and the fine bubbles are shown in a large size so that the fine bubbles can be easily seen. The size of about 5 μm to 300 μm is preferable, and actually it is much smaller than other members.

前記した従来技術では、一般に水中に溶解したオゾンの酸化力を使う方法であったが、 本発明では、水中に溶解したオゾンの酸化処理への寄与はもちろん、それ以外に、前記のように、微細気泡中のオゾンが直接酸化処理に寄与するので、 オゾンによる酸化処理の速度は一層迅速化される。すなわち、本発明によれば、オゾンのほぼ100%有効利用のほかに、 高速乱流による被酸化物(有機性汚濁物質)との接触頻度の向上により、酸化処理が迅速化する。これは、溶存オゾンより、ガスのまま存在するオゾンの方が、長寿命であって、その効果が顕在化することによるものと考えられる。   In the above-described prior art, the method generally uses the oxidizing power of ozone dissolved in water, but in the present invention, as well as contributing to the oxidation treatment of ozone dissolved in water, in addition to the above, Since ozone in the fine bubbles directly contributes to the oxidation treatment, the speed of the oxidation treatment with ozone is further accelerated. That is, according to the present invention, in addition to the effective utilization of ozone almost 100%, the oxidation treatment is accelerated by the improvement of the contact frequency with the oxide (organic pollutant) due to the high-speed turbulent flow. This is considered to be due to the fact that ozone present as a gas has a longer life than dissolved ozone, and the effect becomes obvious.

次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例に限定されるものではない。   Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

実施例1
この実施例1では、オゾン酸化処理する汚水として、パラクロロフェノールを含む水を選んでいるが、これは、次の理由に基づいている。
塩素化合物の中でパラクロロフェノールなどのクロロフェノール類は、有機合成などで多用される材料であるが、難分解性であり、また毒性もあるため、 それを含む汚水は一般の生物処理ではほとんど浄化できない。しかし、この難分解性化学物質含有汚水でも、オゾンによって酸化処理すれば、そのオゾン酸化によって低分子化するので、オゾン酸化処理に続いて生物処理すれば、 浄化が可能になる。すなわち、クロロフェノール類の生物処理浄化は、通常は期待できないが、オゾン酸化処理と組み合わせれば、オゾン酸化処理によって低分子化することで、生分解性が得られるようになり、通常の生物処理が可能になる。この実施例1では、それを明らかにする。
Example 1
In Example 1, water containing parachlorophenol is selected as the wastewater to be subjected to the ozone oxidation treatment, which is based on the following reason.
Among chlorinated compounds, chlorophenols such as parachlorophenol are materials that are frequently used in organic synthesis, etc., but they are hardly degradable and toxic. It cannot be purified. However, even this refractory chemical-containing sewage is oxidized by ozone, and its molecular weight is reduced by ozone oxidation. Therefore, it can be purified by biological treatment following ozone oxidation. In other words, biological treatment and purification of chlorophenols cannot normally be expected, but when combined with ozone oxidation treatment, biodegradability can be obtained by reducing the molecular weight by ozone oxidation treatment. Is possible. In Example 1, this will be clarified.

この実施例1では、オゾン酸化処理する汚水としてパラクロロフェノールを80mg/リットル含む水を選び、それをオゾン酸化処理槽に15リットル注入し、オゾン発生装置で生成した濃度8000ppmのオゾン含有酸素ガスを、微細気泡発生装置(野村電子社製)を通して、大きさが50μmから100μmの微細な気泡を発生させ、それをオゾン酸化処理槽内の汚水に毎分0.5リットル導入した。それと同時に振動板を作動させ、10分間攪拌を行った後に微細気泡の供給と攪拌を停止した。振動板としては、大きさが幅60mm、長さ120mm、厚さ5mmのステンレス鋼(SUS)板を用いた。また、振動板は、水深200mmの矩形型のオゾン酸化処理槽内に4枚設置し、振動数は50Hz、振幅は6mmとした。   In this Example 1, water containing 80 mg / liter of parachlorophenol was selected as waste water to be subjected to ozone oxidation treatment, 15 liters of water was injected into the ozone oxidation treatment tank, and ozone-containing oxygen gas having a concentration of 8000 ppm generated by the ozone generator was used. Through a fine bubble generator (manufactured by Nomura Electronics Co., Ltd.), fine bubbles having a size of 50 μm to 100 μm were generated, and 0.5 liters per minute was introduced into the sewage in the ozone oxidation treatment tank. At the same time, the diaphragm was operated, and after stirring for 10 minutes, the supply of fine bubbles and stirring were stopped. As the vibration plate, a stainless steel (SUS) plate having a size of 60 mm in width, 120 mm in length, and 5 mm in thickness was used. Four diaphragms were installed in a rectangular ozone oxidation treatment tank having a water depth of 200 mm, the frequency was 50 Hz, and the amplitude was 6 mm.

次に上記のようにオゾン酸化処理した汚水を生物処理法により曝気処理した。すなわち、三角フラスコに上記オゾン酸化処理した汚水を入れ、それに栄養塩類を添加した中に、活性汚泥を加えて、攪拌しながら曝気した。使用した活性汚泥のMLSSは3500mg/リットルで、3日間曝気処理した後、濾過した水のCODを計測した。その結果を後記の表1に示す。   Next, the sewage subjected to the ozone oxidation treatment as described above was aerated by a biological treatment method. That is, the above-mentioned ozone-oxidized sewage was placed in an Erlenmeyer flask, and while adding nutrients thereto, activated sludge was added and aerated while stirring. The MLSS of the used activated sludge was 3500 mg / liter, and after aeration treatment for 3 days, the COD of filtered water was measured. The results are shown in Table 1 below.

実施例2
オゾン発生装置で生成した濃度8000ppmのオゾン含有酸素ガスを、散気管を通して、オゾン酸化処理槽内の汚水に毎分0.5リットル放散した以外は、実施例1と同様にオゾン酸化処理およびそれに続く生物処理を行った。上記のように散気管を通して放散した気泡の大きさは1mm〜2mmであった。そして、上記のようにオゾン酸化処理およびそれに続く生物処理を行った水のCODを測定した。その結果を後記の表1に示す。
Example 2
Ozone oxidation treatment followed by ozone oxidation treatment in the same manner as in Example 1 except that the ozone-containing oxygen gas having a concentration of 8000 ppm produced by the ozone generator was diffused through the air diffusing tube to 0.5 liters per minute into the sewage in the ozone oxidation treatment tank. Biological treatment was performed. The size of the bubbles diffused through the air diffuser as described above was 1 mm to 2 mm. And COD of the water which performed the ozone oxidation process and the biological treatment following it as mentioned above was measured. The results are shown in Table 1 below.

比較例1
オゾン含有気泡の発生・導入を散気管にて行い、それと同時に行う攪拌は回転羽により行った以外は、実施例1と同様にオゾン酸化処理を行った。そして、それに続く生物処理を実施例1と同様に行った。なお、散気管により発生させた気泡のサイズは2mm〜3mmであった。そして、上記のようにオゾン酸化処理およびそれに続く生物処理した水のCODを測定した。その結果を後記の表1に示す。
Comparative Example 1
Ozone oxidation treatment was performed in the same manner as in Example 1 except that generation and introduction of ozone-containing bubbles were performed with an air diffuser and stirring was performed simultaneously with rotating blades. Subsequent biological treatment was performed in the same manner as in Example 1. The size of bubbles generated by the air diffuser was 2 mm to 3 mm. Then, the COD of water subjected to ozone oxidation treatment and subsequent biological treatment was measured as described above. The results are shown in Table 1 below.

比較例2
振動板の振動数を100Hzとした以外は、実施例1と同様にオゾン酸化処理およびそれに続く生物処理を行った。そして、上記のようにオゾン酸化処理およびそれに続く生物処理した水のCODを測定した。その結果を後記の表1に示す。
Comparative Example 2
Except for the frequency of the diaphragm being 100 Hz, ozone oxidation treatment and subsequent biological treatment were performed in the same manner as in Example 1. Then, the COD of water subjected to ozone oxidation treatment and subsequent biological treatment was measured as described above. The results are shown in Table 1 below.

上記のように、表1には上記実施例1〜2および比較例1〜2でオゾン酸化処理およびそれに続く生物処理した後の水中のCOD(化学的酸素要求量)を示すが、表1には、それと共に原水(すなわち、処理の対象とした水)のCODについても示す。   As described above, Table 1 shows COD (chemical oxygen demand) in water after the ozone oxidation treatment and the subsequent biological treatment in Examples 1-2 and Comparative Examples 1-2. Shows the COD of the raw water (that is, the water to be treated).

Figure 2005254079
Figure 2005254079

表1に示す結果から明らかなように、実施例1〜2は、比較例1〜2に比べて、生物処理後のCODが少なく、汚水を効率よく浄化することができた。この結果から、パラクロロフェノールを含む汚水は、従来のオゾン酸化処理ではそれに続いて生物処理を行ってもこの程度の短時間では浄化できないが、本発明の構成にしたオゾン酸化処理と生物処理とを組み合わせることによって、効率良く浄化できることがわかる。これは、本発明のオゾン酸化処理が、 難分解性のパラクロロフェノールを効率良く低分子化して、生分解性物質に変えることができたことによるものと考えられる。これに対して、従来のオゾン酸化処理では、酸化分解反応の効率が低く、短時間処理では充分な生分解性が得られないため、 最終的なCODが高いままであった。また、実施例1と実施例2との対比から明らかなように、オゾンを含む気体の気泡サイズの大きさを5〜300μmに設定することにより、CODをより少なくすることができる。   As is clear from the results shown in Table 1, Examples 1 and 2 had less COD after biological treatment than Comparative Examples 1 and 2, and were able to efficiently purify sewage. From this result, sewage containing parachlorophenol cannot be purified in such a short time even if biological treatment is subsequently performed by conventional ozone oxidation treatment, but the ozone oxidation treatment and biological treatment in the configuration of the present invention It turns out that it can purify efficiently by combining. This is considered to be because the ozone oxidation treatment of the present invention was able to efficiently reduce the molecular weight of hardly decomposable parachlorophenol and convert it into a biodegradable substance. On the other hand, in the conventional ozone oxidation treatment, the efficiency of the oxidative decomposition reaction is low, and sufficient biodegradability cannot be obtained in a short time treatment, so that the final COD remains high. Further, as is clear from the comparison between Example 1 and Example 2, COD can be further reduced by setting the bubble size of the gas containing ozone to 5 to 300 μm.

実施例3
この実施例3では、バクテリアなどが生息する汚水として、下水処理場から排出される余剰汚泥に対して本発明を実施した例を説明する。余剰汚泥とは、有機性廃水を微生物処理して浄化する下水処理場において、廃水処理後の上澄水を除いた水で、増殖したバクテテリアなどを質量比で0.6〜1.5%程度含んでいる、この余剰汚泥については、その排出量を減らす目的で、微生物学的に減容化する努力がなされていて、オゾンによる酸化処理は1つの有力な方法である。汚泥の減容化では、細胞膜を酸化して、細胞内容物を溶出させる、いわゆる可溶化によって、微生物による生分解性が促進される。従って、できるだけ効率良く、少ないオゾン吹込み量で可溶化させることが、求められる。
Example 3
In Example 3, an example will be described in which the present invention is applied to surplus sludge discharged from a sewage treatment plant as sewage inhabited by bacteria and the like. Excess sludge is the water excluding the supernatant water after wastewater treatment in a sewage treatment plant that purifies organic wastewater by microbial treatment, and contains about 0.6 to 1.5% of bacterium that has grown. As for this excess sludge, efforts are being made to reduce the volume microbiologically for the purpose of reducing the discharge amount, and oxidation treatment with ozone is one effective method. In sludge volume reduction, biodegradability by microorganisms is promoted by so-called solubilization in which cell membranes are oxidized to elute cell contents. Therefore, it is required to solubilize as efficiently as possible and with a small ozone blowing amount.

固形分濃度0.6%の余剰汚泥(以下、簡略化して「汚泥」という場合がある)をオゾン酸化処理槽に15リットル導入し、実施例2と同様の微細気泡発生装置を通して、そのオゾン酸化処理槽内中の汚泥に気泡サイズが50μmから100μmのオゾン含有酸素ガスを、毎分0.5リットル放散させた。それと同時に上記オゾン酸化処理槽の内壁に設置された振動板を振動させ、5分間攪拌を行った後に微細気泡の供給を停止し、攪拌をさらに5分間行った。振動板は、大きさが幅60mm、長さ120mm、厚さ5mmのステンレス鋼板であり、また、振動板は水深200mmの矩形型のオゾン酸化槽内に4枚設置し、振動数は50Hz、振幅は6mmとした。そして、原水汚泥と上記処理後の水のDOC(溶解性有機炭素濃度)とTOC(全有機炭素濃度)を測定し、それらの比率(DOC/TOC)を求めた。   15 liters of surplus sludge having a solid content concentration of 0.6% (hereinafter sometimes referred to as “sludge” for simplification) is introduced into an ozone oxidation treatment tank, and the ozone oxidation is performed through the same fine bubble generator as in Example 2. Ozone-containing oxygen gas having a bubble size of 50 μm to 100 μm was diffused into the sludge in the treatment tank at 0.5 liters per minute. At the same time, the diaphragm installed on the inner wall of the ozone oxidation treatment tank was vibrated and stirred for 5 minutes, and then the supply of fine bubbles was stopped, and stirring was further performed for 5 minutes. The diaphragm is a stainless steel plate having a width of 60 mm, a length of 120 mm, and a thickness of 5 mm. Four diaphragms are installed in a rectangular ozone oxidation tank having a water depth of 200 mm, the frequency is 50 Hz, and the amplitude is Was 6 mm. Then, DOC (dissolvable organic carbon concentration) and TOC (total organic carbon concentration) of raw water sludge and the treated water were measured, and the ratio (DOC / TOC) was obtained.

比較例3
オゾン供給方法と攪拌方法を従来技術とした以外は、実施例3と同様に固形分濃度0.6%の余剰汚泥を処理した。すなわち、回転羽根で汚泥を攪拌しながら、濃度8000ppmのオゾン含有酸素ガスを散気管で0.5リットル/分オゾン酸化処理槽内の余剰汚泥に供給し、ガス供給2.5リットル、攪拌10分の条件で、汚泥をオゾン酸化処理した。散気管により生成させた気泡の大きさは2mmから3mmであった。その後、実施例3と同様に処理後の水のDOCとTOCを測定し、それらの比率(DOC/TOC)を求めた。その結果を表2に示す。
Comparative Example 3
Excess sludge having a solid content concentration of 0.6% was treated in the same manner as in Example 3 except that the ozone supply method and the stirring method were changed to the conventional technology. That is, while stirring the sludge with the rotary blade, the ozone-containing oxygen gas having a concentration of 8000 ppm is supplied to the surplus sludge in the ozone oxidation treatment tank at 0.5 liter / min with the air diffuser, the gas supply is 2.5 liters, and the stirring is 10 minutes. The sludge was subjected to ozone oxidation treatment under the conditions described above. The size of bubbles generated by the air diffuser was 2 mm to 3 mm. Thereafter, the DOC and TOC of the treated water were measured in the same manner as in Example 3, and the ratio (DOC / TOC) was determined. The results are shown in Table 2.

表2には、上記のように、実施例3および比較例3で処理した水のTOC、DOC、DOC/TOCを示すが、この表2には、それらにあわせて、原汚泥(固形分濃度0.6%の余剰汚泥)のTOC、DOC、DOC/TOCについても示す。   Table 2 shows TOC, DOC, and DOC / TOC of the water treated in Example 3 and Comparative Example 3 as described above. In Table 2, raw sludge (solid content concentration) TOC, DOC, and DOC / TOC of 0.6% surplus sludge) are also shown.

Figure 2005254079
Figure 2005254079

表2に示すように、実施例3で処理した場合は、DOC/TOCが0.92と高く、汚泥中のTOCの92%がDOCに変化していて、処理効率が高く、汚泥中のTOCが効率よくDOCに変化していた。   As shown in Table 2, when treated in Example 3, DOC / TOC is as high as 0.92, 92% of TOC in sludge is changed to DOC, treatment efficiency is high, and TOC in sludge. Was efficiently changed to DOC.

この結果から、本発明のオゾン酸化処理システムで処理した場合には、微生物の細胞膜がオゾンの酸化力によって破壊され、細胞質が水中に溶出する可溶化が極めて効率的に進行していることがわかる。これは、微細なオゾン含有気泡が、長時間汚泥中に滞留し、それらが効率よく溶存オゾンを生成すると共に、これまでのオゾン酸化処理では期待できなかった、高速攪拌により移動することで、ガス状のオゾンと被酸化物との接触頻度が飛躍的に高まった結果によるものと考えられる。なお、比較例3における処理過程では、散気管からの気泡が短時間のうちに酸化処理槽の水面に浮上し、その臭気が顕著であった。しかし、実施例3においては、オゾンの臭気は認められなかった。   From this result, it can be seen that when treated with the ozone oxidation treatment system of the present invention, the cell membrane of the microorganism is destroyed by the oxidizing power of ozone, and solubilization in which the cytoplasm is eluted in water is proceeding very efficiently. . This is because fine ozone-containing bubbles stay in the sludge for a long time, and they efficiently generate dissolved ozone, and also move by high-speed stirring, which could not be expected with conventional ozone oxidation treatment, This is thought to be due to the result of a dramatic increase in the contact frequency between the ozone and the oxide. In the treatment process in Comparative Example 3, bubbles from the air diffuser floated on the water surface of the oxidation treatment tank within a short time, and the odor was remarkable. However, in Example 3, the odor of ozone was not recognized.

実施例4
この実施例4では、有機性汚濁含有汚水として、生物処理後の家畜尿汚水を用い、そのオゾン酸化処理を行った。生物処理後の家畜尿汚水は、メタン硝化液と同様に、生物処理では除去できない茶褐色の色相を呈するため、 河川放流時には、これを脱色することが求められている。この色素成分は、微生物には難分解性の有機性高分子である。
Example 4
In Example 4, the livestock urine sewage after biological treatment was used as the organic pollution-containing sewage, and the ozone oxidation treatment was performed. Livestock urine sewage after biological treatment, like methane nitrification liquid, has a brownish hue that cannot be removed by biological treatment, so it is required to decolorize it when it is discharged into the river. This pigment component is an organic polymer that is hardly degradable to microorganisms.

生物処理後の家畜尿汚水(COD値:240mg/l)15リットルを原水として、オゾン酸化処理槽に導入した。前記実施例2と同様にオゾン発生装置で生成した濃度8000ppmのオゾン含有酸素ガスを、実施例2で用いた微細気泡発生装置を通して、オゾン酸化処理槽内の汚水に毎分0.5リットル供給し、それと共に振動板を振動させ、5分間攪拌を行った後に微細気泡の供給を停止し、振動板の振動による攪拌のみをさらに5分間行った。このプロセスで液の色は徐々に脱色され、10分間処理後にはほぼ透明化していた。処理後の汚水のCOD値は150mg/リットルと減少し、河川放流基準値(160mg/リットル)以下になっていた。   15 liters of livestock urine sewage (COD value: 240 mg / l) after biological treatment was introduced as raw water into an ozone oxidation treatment tank. The ozone-containing oxygen gas having a concentration of 8000 ppm produced by the ozone generator as in Example 2 is supplied to the sewage in the ozone oxidation treatment tank through the fine bubble generator used in Example 2 at 0.5 liters per minute. Then, the vibration plate was vibrated, and after stirring for 5 minutes, the supply of fine bubbles was stopped, and only stirring by vibration of the vibration plate was further performed for 5 minutes. In this process, the color of the liquid was gradually decolored and became almost transparent after 10 minutes of treatment. The COD value of the sewage after the treatment decreased to 150 mg / liter, and was below the river discharge standard value (160 mg / liter).

比較例4
上記実施例3の微細気泡発生装置をエゼクターに代え、実施例3と同一濃度のオゾンガスを10分間オゾン酸化処理槽へ吹き込んだ。この場合、攪拌はエゼクターの発生する水流で行った。このオゾン酸化処理を10分間行ったときのCOD値は200mg/lであり、色もかなり残ったままであった。
Comparative Example 4
The fine bubble generating apparatus of Example 3 was replaced with an ejector, and ozone gas having the same concentration as Example 3 was blown into the ozone oxidation treatment tank for 10 minutes. In this case, stirring was performed with a water flow generated by an ejector. When this ozone oxidation treatment was carried out for 10 minutes, the COD value was 200 mg / l, and the color still remained considerably.

本発明の汚水のオゾン酸化処理システムの処理プロセスの概要を模式的に示す図である。It is a figure which shows typically the outline | summary of the process of the ozone oxidation processing system of the sewage of this invention.

符号の説明Explanation of symbols

1 汚水
2 オゾン酸化処理槽
3 オゾン発生装置
4 微細気泡化装置
5 振動板
6 モータ
7 攪拌装置
DESCRIPTION OF SYMBOLS 1 Sewage 2 Ozone oxidation treatment tank 3 Ozone generator 4 Microbubble device 5 Vibrating plate 6 Motor 7 Stirrer

Claims (3)

オゾンを用いて有機性汚濁物質を含む汚水を酸化処理する汚水のオゾン酸化処理システムであって、オゾンを含む気体の微細な気泡を汚水中に放散させ、複数の振動板を振動数20〜70Hzで振動させて、汚水を攪拌しながらオゾンにより酸化処理することを特徴とする汚水のオゾン酸化処理システム。 An ozone oxidation treatment system for sewage that oxidizes sewage containing organic pollutants using ozone, wherein fine bubbles of a gas containing ozone are diffused into the sewage, and a plurality of diaphragms have a frequency of 20 to 70 Hz. The wastewater ozone oxidation system is characterized in that the wastewater is oxidized and oxidized with ozone while stirring the wastewater. オゾンを含む気体の微細な気泡の大きさが5〜300μmであることを特徴とする請求項1記載の汚水のオゾン酸化処理システム。 2. The ozone oxidation treatment system for wastewater according to claim 1, wherein the size of fine bubbles of gas containing ozone is 5 to 300 [mu] m. 汚水中に余剰汚泥が含まれることを特徴とする請求項1記載の汚水のオゾン酸化処理システム。 2. The wastewater ozone oxidation treatment system according to claim 1, wherein surplus sludge is contained in the wastewater.
JP2004066474A 2004-03-10 2004-03-10 Ozone oxidation system for sewage Pending JP2005254079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066474A JP2005254079A (en) 2004-03-10 2004-03-10 Ozone oxidation system for sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066474A JP2005254079A (en) 2004-03-10 2004-03-10 Ozone oxidation system for sewage

Publications (1)

Publication Number Publication Date
JP2005254079A true JP2005254079A (en) 2005-09-22

Family

ID=35080340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066474A Pending JP2005254079A (en) 2004-03-10 2004-03-10 Ozone oxidation system for sewage

Country Status (1)

Country Link
JP (1) JP2005254079A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117796A (en) * 2005-10-25 2007-05-17 Nissei Plant Kk Equipment for weight reduction of surplus sludge
JP2008149215A (en) * 2006-12-14 2008-07-03 Sharp Corp Cleaning apparatus
JP2009254967A (en) * 2008-04-16 2009-11-05 Hitachi Ltd Water treatment system
KR102148390B1 (en) * 2019-12-06 2020-08-26 송원기 Method, apparatus and computer-readable medium for monitoring of water treatment facility based on ozone treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117796A (en) * 2005-10-25 2007-05-17 Nissei Plant Kk Equipment for weight reduction of surplus sludge
JP4575270B2 (en) * 2005-10-25 2010-11-04 日成プラント株式会社 Excess sludge reduction equipment
JP2008149215A (en) * 2006-12-14 2008-07-03 Sharp Corp Cleaning apparatus
JP2009254967A (en) * 2008-04-16 2009-11-05 Hitachi Ltd Water treatment system
KR102148390B1 (en) * 2019-12-06 2020-08-26 송원기 Method, apparatus and computer-readable medium for monitoring of water treatment facility based on ozone treatment

Similar Documents

Publication Publication Date Title
JP2008055291A (en) Water treating device
WO2006095509A1 (en) Method of wastewater treatment and wastewater treatment equipment
JP6750930B2 (en) Wastewater purification system
JP2006281194A (en) Wastewater treatment apparatus and wastewater treatment method
JP2006181393A (en) Non-sludge high-speed wastewater treatment system
JP5808663B2 (en) Method and apparatus for treating 1,4-dioxane in wastewater
JP2008126125A (en) Polluted water treatment apparatus and method
JP2000288568A (en) Sewage treatment apparatus
JP4994265B2 (en) Water treatment apparatus and water treatment method
Kaushik et al. Microbubble technology: emerging field for water treatment
JP5037479B2 (en) Purification processing apparatus and purification processing method
JP4787814B2 (en) Organic wastewater purification method and apparatus
JP5840004B2 (en) Organic wastewater purification method and apparatus
JP2011025200A (en) Method and apparatus for treating water
JP2007021285A (en) Method and apparatus for reducing volume of excess sludge
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JP2005169304A (en) Method of treating high concentration colored organic waste water
JP2005254079A (en) Ozone oxidation system for sewage
JP2003053378A (en) Method and device for treating water by using separation membrane
JP2001239280A (en) Method of processing polluted water containing hardly biodegradable organic substance
JP2002143895A (en) Decomposition method for excess sludge
CN208345969U (en) A kind of industrial wastewater treatment system
JP2007245013A (en) Leachate treatment method
JP2009082813A (en) Water treatment method and apparatus
CN110066064A (en) A kind of industrial wastewater treatment system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201