JP2005254058A - Method for manufacturing metallic oxide catalyst containing iron, antimony, and tellurium - Google Patents

Method for manufacturing metallic oxide catalyst containing iron, antimony, and tellurium Download PDF

Info

Publication number
JP2005254058A
JP2005254058A JP2004065848A JP2004065848A JP2005254058A JP 2005254058 A JP2005254058 A JP 2005254058A JP 2004065848 A JP2004065848 A JP 2004065848A JP 2004065848 A JP2004065848 A JP 2004065848A JP 2005254058 A JP2005254058 A JP 2005254058A
Authority
JP
Japan
Prior art keywords
tellurium
antimony
iron
slurry
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004065848A
Other languages
Japanese (ja)
Other versions
JP4503315B2 (en
Inventor
Kenichi Miyagi
健一 宮氣
Seigo Watanabe
聖午 渡辺
Koichi Mizutani
浩一 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2004065848A priority Critical patent/JP4503315B2/en
Publication of JP2005254058A publication Critical patent/JP2005254058A/en
Application granted granted Critical
Publication of JP4503315B2 publication Critical patent/JP4503315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a metallic oxide catalyst containing iron, antimony, and tellurium, by which the metallic oxide catalyst excellent in physical properties and activity can be manufactured with high reproducibility without necessitating complicated steps nor complicated apparatuses. <P>SOLUTION: This method for manufacturing the metal oxide catalyst containing iron, antimony, and tellurium comprises: a step (1) to prepare a solution or slurry (X) containing an iron component raw material, an antimony component raw material, and a tellurium component raw material; and a step (2) to dry and fire the solution or slurry (X). The step (1) includes: a step (a) to prepare another solution or slurry (Y) of pH≤7 containing the iron component raw material, the antimony component raw material, and a nitrate ion; and a step (b) to heat-treat the solution and slurry (Y) at ≥60°C for ≥30 minutes. The tellurium raw material is divided into two portions so that one of two portions is added to the solution or slurry before the step (b) and the other is added to the solution or slurry after the step (b). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機化合物のアンモ酸化反応によるニトリル類の製造等に使用される鉄・アンチモン・テルル含有金属酸化物触媒の製造方法に関する。   The present invention relates to a method for producing an iron / antimony / tellurium-containing metal oxide catalyst used for producing nitriles by an ammoxidation reaction of an organic compound.

アンチモン含有金属酸化物触媒は、有機化合物の酸化反応によるアルデヒド類や不飽和酸類の製造、アンモ酸化反応によるニトリル類の製造等の触媒として知られており、アンチモンと、鉄、コバルト、ニッケルよりなる群から選ばれた少なくとも一種の元素との複合金属酸化物触媒(特許文献1)や、鉄・アンチモン・テルル、さらにバナジウム、モリブデン、タングステン等を含有する複合金属酸化物触媒(特許文献2〜8)等が開示されている。特に、鉄・アンチモン・テルルを必須成分として含有する触媒は有用であるとされている。   Antimony-containing metal oxide catalysts are known as catalysts for the production of aldehydes and unsaturated acids by the oxidation reaction of organic compounds, and the production of nitriles by an ammoxidation reaction, and consist of antimony, iron, cobalt, and nickel. A composite metal oxide catalyst with at least one element selected from the group (Patent Document 1), or a composite metal oxide catalyst containing iron, antimony, tellurium, vanadium, molybdenum, tungsten, or the like (Patent Documents 2 to 8) ) Etc. are disclosed. In particular, a catalyst containing iron, antimony, and tellurium as essential components is considered useful.

一般的なアンチモン含有金属酸化物触媒の製造方法に関しては、
(1)3価又は5価のアンチモンと第二鉄化合物、及び硝酸根を含有するスラリーのpHを約7以下に調整し、約40〜150℃の範囲で加熱処理する方法(特許文献9及び10)、
(2)アンチモンと、鉄、コバルト、ニッケル、マンガン、セリウム、ウラン、スズ、チタン、銅よりなる群から選ばれた少なくとも一種の元素とを含むアンチモン含有金属酸化物組成物と、アンチモン単体又はアンチモン化合物とを乾式混合し、約300〜1000℃で加熱処理する方法(特許文献11)、
(3)アンチモン原料として、アンチモン酸、ポリアンチモン酸、及び/又はアンチモン酸塩と、三酸化アンチモンとを混合して用いる方法(特許文献12)、
(4)pH調整時、あるいはpH調整後加熱処理前のアンチモン含有スラリーに超音波を照射する方法(特許文献13)が開示されている。
Regarding a method for producing a general antimony-containing metal oxide catalyst,
(1) A method in which the pH of a slurry containing trivalent or pentavalent antimony, ferric compound, and nitrate radical is adjusted to about 7 or less and heat-treated in a range of about 40 to 150 ° C. (Patent Document 9 and 10),
(2) an antimony-containing metal oxide composition containing antimony and at least one element selected from the group consisting of iron, cobalt, nickel, manganese, cerium, uranium, tin, titanium, and copper, and antimony alone or antimony A method of dry-mixing the compound and heat-treating at about 300 to 1000 ° C. (Patent Document 11),
(3) A method of using antimonic acid, polyantimonic acid, and / or antimonate and antimony trioxide as a mixture of antimony (Patent Document 12),
(4) A method of irradiating an antimony-containing slurry at the time of pH adjustment or after pH adjustment and before heat treatment (Patent Document 13) is disclosed.

しかしながら、鉄・アンチモン・テルル含有触媒については、製造再現性が悪く、充分な強度や活性の触媒を安定的に得ることが困難である等の理由から、上記製造方法(1)〜(4)では不充分であるとされている。
そこで、鉄・アンチモン・テルル含有触媒の製造方法として、
(5)アンチモン化合物と多価金属化合物とシリカ原料を含み、pHを7以下とし、温度40℃以上で加熱処理したスラリーに、バナジウム、モリブデン、及びタングステンよりなる群から選ばれた少なくとも一種の金属の酸化物、酸素酸、又は酸素酸塩の共存下に、金属テルルを過酸化水素酸化することによって得られるテルル含有溶液を混合し、スラリーを調製する方法(特許文献14)、
(6)アンチモンと、鉄、コバルト、ニッケル、マンガン、ウラン、スズ、及び銅よりなる群から選ばれた少なくとも一種の元素とを含む金属酸化物組成物を、約500〜1000℃で焼成し、これにテルル成分を含む溶液を含浸させるなどして接触させ、再焼成する方法(特許文献15〜17)が提案されている。
特公昭38−19111号公報 特公昭46−2804号公報 特公昭47−19765号公報 特公昭47−19766号公報 特公昭47−19767号公報 特開昭50−108219号公報 特開昭52−125124号公報 特開平4−118051号公報 特公昭46−18722号公報 特公昭47−18723号公報 特開昭58−11041号公報 特開昭60−166037号公報 特開昭60−166039号公報 特開昭63−209755号公報 特開昭51−17194号公報 特公昭63−47505号公報 特開昭58−11041号公報
However, for the iron / antimony / tellurium-containing catalyst, the above production methods (1) to (4) are difficult because the production reproducibility is poor and it is difficult to stably obtain a catalyst having sufficient strength and activity. Is considered insufficient.
Therefore, as a method for producing an iron / antimony / tellurium-containing catalyst,
(5) At least one metal selected from the group consisting of vanadium, molybdenum, and tungsten in a slurry containing an antimony compound, a polyvalent metal compound, and a silica raw material, having a pH of 7 or less and heat-treated at a temperature of 40 ° C. or higher. A method for preparing a slurry by mixing a tellurium-containing solution obtained by oxidizing metal tellurium with hydrogen peroxide in the presence of an oxide, an oxyacid, or an oxyacid salt (Patent Document 14),
(6) A metal oxide composition containing antimony and at least one element selected from the group consisting of iron, cobalt, nickel, manganese, uranium, tin, and copper is fired at about 500 to 1000 ° C. There has been proposed a method (Patent Documents 15 to 17) in which a solution containing a tellurium component is impregnated and brought into contact with the solution and then refired.
Japanese Examined Patent Publication No. 38-19111 Japanese Patent Publication No.46-2804 Japanese Patent Publication No. 47-19765 Japanese Patent Publication No. 47-19766 Japanese Patent Publication No.47-19767 JP 50-108219 A JP-A-52-125124 Japanese Patent Laid-Open No. 4-118051 Japanese Examined Patent Publication No. 46-18722 Japanese Patent Publication No. 47-18723 JP 58-11041 A JP-A-60-166037 Japanese Patent Laid-Open No. 60-166039 JP-A-63-209755 Japanese Patent Laid-Open No. 51-17194 Japanese Examined Patent Publication No. 63-47505 JP 58-11041 A

鉄・アンチモン・テルル含有スラリーを調製し、乾燥及び焼成する先行技術(5)では、依然として、物性及び活性が共に良好な鉄・アンチモン・テルル含有触媒を再現性良く製造することは困難であり、製造される触媒粒子の密度や強度等が不充分であったり、反応に供した際の目的生成物収率が不充分となることがある。
テルル成分を含有しない触媒を予め調製し、これにテルル成分含有溶液を含浸させるなどして接触させ、再焼成する先行技術(6)は、上記問題点は大幅に改善されているが、製造工程が複雑である、大規模な含浸装置等が必要である等、工業実用化にはなお問題がある。
In the prior art (5) in which an iron / antimony / tellurium-containing slurry is prepared, dried and calcined, it is still difficult to reproducibly produce an iron / antimony / tellurium-containing catalyst having good physical properties and activity. The density and strength of the produced catalyst particles may be insufficient, or the target product yield may be insufficient when subjected to the reaction.
The prior art (6) in which a catalyst containing no tellurium component is prepared in advance, brought into contact with it by impregnation with a tellurium component-containing solution, and refired has the above problem greatly improved. However, there are still problems in industrial practical use, such as the need for a large-scale impregnation apparatus and the like.

本発明はかかる事情に鑑みてなされたものであり、物性及び活性が共に良好な触媒を再現性良く、しかも複雑な工程や装置を要することなく製造することが可能な鉄・アンチモン・テルル含有金属酸化物触媒の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an iron / antimony / tellurium-containing metal capable of producing a catalyst having good physical properties and activity with good reproducibility and without requiring a complicated process or apparatus. It aims at providing the manufacturing method of an oxide catalyst.

本発明者は上記課題を解決するべく鋭意検討し、以下の製造方法を発明した。
本発明の鉄・アンチモン・テルル含有金属酸化物触媒の製造方法は、鉄成分原料、アンチモン成分原料、テルル成分原料を含む溶液又はスラリー(X)を調製する工程(1)と、溶液又はスラリー(X)を乾燥及び焼成する工程(2)とを有する鉄・アンチモン・テルル含有金属酸化物触媒の製造方法において、工程(1)が、鉄成分原料、アンチモン成分原料、及び硝酸イオンを含むpH7以下の溶液又はスラリー(Y)を調製する工程(a)と、溶液又はスラリー(Y)を60℃以上の温度で加熱処理する工程(b)とを含むと共に、テルル成分原料を工程(b)前と工程(b)後に分けて添加することを特徴とする。
The inventor diligently studied to solve the above-mentioned problems and invented the following production method.
The method for producing an iron / antimony / tellurium-containing metal oxide catalyst of the present invention comprises a step (1) of preparing a solution or slurry (X) containing an iron component raw material, an antimony component raw material, a tellurium component raw material, and a solution or slurry ( X) Drying and firing step (2) In the method for producing an iron / antimony / tellurium-containing metal oxide catalyst, step (1) has a pH of 7 or less containing an iron component raw material, an antimony component raw material, and nitrate ions. A step (a) of preparing a solution or slurry (Y) of the above and a step (b) of heat-treating the solution or slurry (Y) at a temperature of 60 ° C. or higher, and the tellurium component raw material before the step (b) And adding step by step after step (b).

本発明の製造方法において、テルル成分の工程(b)前/工程(b)後の添加比率を10〜90:90〜10とする(但し、総量を100とする。)ことが好ましい。
なお、本明細書において、「テルル成分の添加比率」は、製造する触媒中の全テルルモル量のうち、工程(b)前、工程(b)後に添加するテルルモル量の比率を意味するものとする。
In the production method of the present invention, the addition ratio of the tellurium component before step (b) / after step (b) is preferably 10 to 90:90 to 10 (however, the total amount is 100).
In the present specification, the “addition ratio of tellurium component” means the ratio of the tellurium mole amount added before the step (b) and after the step (b) in the total tellurium mole amount in the catalyst to be produced. .

本発明は、下記組成式(I)で表される触媒に対して好ましく適用できる。
Fe10SbTe・(SiO・・・(I)
(但し、式中、Aはバナジウム、モリブデン、及びタングステンからなる群より選ばれた少なくとも一種の元素、Dはマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニオブ、クロム、マンガン、コバルト、ニッケル、銅、銀、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、スズ、鉛、リン、ヒ素、及びビスマスからなる群より選ばれた少なくとも一種の元素、Eはリチウム、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれた少なくとも一種の元素を表す。添字a〜e、x、及びyは原子比を表し、a=3〜100、b=0.1〜15、c=0.1〜12、d=0〜50、e=0〜5、y=10〜200である。xはFe〜Eが結合して生成する金属酸化物の酸素数を示す。)
The present invention can be preferably applied to a catalyst represented by the following composition formula (I).
Fe 10 Sb a A b Te c D d E e O x · (SiO 2) y ··· (I)
(Wherein, A is at least one element selected from the group consisting of vanadium, molybdenum and tungsten, D is magnesium, calcium, strontium, barium, titanium, zirconium, niobium, chromium, manganese, cobalt, nickel, At least one element selected from the group consisting of copper, silver, zinc, boron, aluminum, gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic, and bismuth, E is lithium, sodium, potassium, rubidium, And at least one element selected from the group consisting of cesium, subscripts a to e, x, and y represent atomic ratios, a = 3 to 100, b = 0.1 to 15, c = 0.1. -12, d = 0 to 50, e = 0 to 5, and y = 10 to 200. x is formed by combining Fe to E. Shows the number of oxygen genus oxide.)

本発明は、アンチモン酸鉄を結晶相として含有する触媒に対して好ましく適用できる。また、プロピレンのアンモ酸化反応によるアクリロニトリル製造用の触媒に対して好ましく適用できる。   The present invention can be preferably applied to a catalyst containing iron antimonate as a crystal phase. Further, it can be preferably applied to a catalyst for producing acrylonitrile by an ammoxidation reaction of propylene.

本発明の鉄・アンチモン・テルル含有金属酸化物触媒の製造方法によれば、物性(触媒粒子の密度や強度等)が良好で、活性(反応に供した際の目的生成物収率)が良好な鉄・アンチモン・テルル含有金属酸化物触媒を再現性良く製造することができる。
また、本発明の製造方法によれば、いったん焼成して調製した触媒に対して、さらにテルル成分含有溶液を含浸させるなどの操作が不要であるため、複雑な工程や装置を要することなく、良好な特性の触媒を低コストにかつ安定的に製造することができる。
According to the method for producing an iron / antimony / tellurium-containing metal oxide catalyst of the present invention, physical properties (density and strength of catalyst particles, etc.) are good, and activity (target product yield when subjected to reaction) is good. It is possible to produce an iron / antimony / tellurium-containing metal oxide catalyst with good reproducibility.
Further, according to the production method of the present invention, the catalyst prepared by calcination once does not require an operation such as impregnation with a tellurium component-containing solution. A catalyst having various characteristics can be stably produced at low cost.

以下、本発明について詳細に説明する。
本発明の鉄・アンチモン・テルル含有金属酸化物触媒の製造方法は、鉄成分原料、アンチモン成分原料、テルル成分原料を含む溶液又はスラリー(X)を調製する工程(1)と、溶液又はスラリー(X)を乾燥及び焼成する工程(2)とから概略構成され、工程(1)が特徴的なものとなっている。
Hereinafter, the present invention will be described in detail.
The method for producing an iron / antimony / tellurium-containing metal oxide catalyst of the present invention comprises a step (1) of preparing a solution or slurry (X) containing an iron component raw material, an antimony component raw material, a tellurium component raw material, and a solution or slurry ( X) is roughly composed of a step (2) for drying and baking, and the step (1) is characteristic.

「工程(1)」
本発明では、鉄成分原料、アンチモン成分原料、テルル成分原料を含む溶液又はスラリー(X)を調製する工程(1)が、鉄成分原料、アンチモン成分原料、及び硝酸イオンを含むpH7以下の溶液又はスラリー(Y)を調製する工程(a)と、溶液又はスラリー(Y)を60℃以上の温度で加熱処理する工程(b)とを含む。
"Process (1)"
In the present invention, the step (1) of preparing a solution or slurry (X) containing an iron component raw material, an antimony component raw material, a tellurium component raw material is a solution having a pH of 7 or less containing an iron component raw material, an antimony component raw material, and nitrate ions. The process (a) which prepares a slurry (Y), and the process (b) which heat-processes a solution or slurry (Y) at the temperature of 60 degreeC or more are included.

さらに、工程(1)では、テルル成分原料を工程(b)前(すなわち工程(a)中)と工程(b)後に分けて添加する。なお、工程(a)において、テルル成分原料の一部を添加するタイミングは、pH調整前であっても調整後であっても構わない。また、先に添加するテルル成分原料と後から添加するテルル成分原料は同一でも非同一でも良い。
テルル以外の成分原料については、溶液又はスラリー(Y)調製時に全量を添加しても良いし、工程(a)と、他の任意の工程に分けて添加しても良い。原料を分けて添加する場合、テルル成分原料と同様、先に添加する原料と後から添加する原料は同一でも非同一でも良い。
Furthermore, in the step (1), the tellurium component raw material is added separately before the step (b) (that is, during the step (a)) and after the step (b). In the step (a), the timing of adding a part of the tellurium component raw material may be before pH adjustment or after adjustment. Further, the tellurium component raw material added first and the tellurium component raw material added later may be the same or non-identical.
Regarding the component raw materials other than tellurium, the whole amount may be added at the time of preparing the solution or slurry (Y), or may be added separately in the step (a) and other optional steps. When the raw materials are added separately, the raw material added first and the raw material added later may be the same or non-identical as in the tellurium component raw material.

鉄成分原料としては容易に酸化物に変換し得るものであれば特に制限はないが、溶液又はスラリー中において鉄が3価のイオンとして存在することが好ましく、硝酸第二鉄、硫酸第二鉄等の無機酸塩、酢酸鉄等の有機酸塩類や、電解鉄粉等の金属鉄を硝酸等に溶解したもの等が好ましく用いられる。
溶液又はスラリー(Y)中の鉄イオン量は特に限定されないが、アンチモン1グラム原子に対し0.1グラムイオン以上、特に0.15〜2グラムイオンが好ましい。鉄イオン量が下限未満では工程(b)における三酸化アンチモンの硝酸酸化の反応速度が小さくなり過ぎ、実用的でない。
The iron component raw material is not particularly limited as long as it can be easily converted into an oxide, but iron is preferably present as trivalent ions in the solution or slurry, and ferric nitrate, ferric sulfate. An inorganic acid salt such as iron acetate, an organic acid salt such as iron acetate, or a metal iron such as electrolytic iron powder dissolved in nitric acid is preferably used.
The amount of iron ion in the solution or slurry (Y) is not particularly limited, but 0.1 gram ion or more, particularly 0.15 to 2 gram ion is preferable with respect to 1 gram atom of antimony. If the amount of iron ions is less than the lower limit, the reaction rate of nitric acid oxidation of antimony trioxide in step (b) becomes too small, which is not practical.

アンチモン成分原料としては特に限定されないが、少なくとも溶液又はスラリー(Y)調製時に添加するアンチモン成分原料は3価の化合物が好ましく、三酸化アンチモンや金属アンチモンを硝酸により酸化した化合物等が好適に用いられる。工程(b)において、3価のアンチモン成分は5価のアンチモン成分に酸化され、アンチモン酸鉄を生成する。   Although it does not specifically limit as an antimony component raw material, A trivalent compound is preferable as the antimony component raw material added at least when preparing a solution or slurry (Y), and a compound obtained by oxidizing antimony trioxide or metal antimony with nitric acid is preferably used. . In step (b), the trivalent antimony component is oxidized to a pentavalent antimony component to produce iron antimonate.

硝酸イオンは工程(b)において、アンチモンの硝酸酸化の酸化剤として機能する。溶液又はスラリー(Y)中の硝酸イオン量は特に限定されないが、アンチモン1グラム原子に対して0.5グラムイオン以上、特に1〜5グラムイオンが好ましい。硝酸イオン源としては特に限定されず、硝酸第二鉄に含まれる硝酸イオン相当分や硝酸等を用いることができる。   Nitrate ions function as an oxidizing agent for nitric acid oxidation of antimony in step (b). The amount of nitrate ion in the solution or slurry (Y) is not particularly limited, but 0.5 gram ion or more, particularly 1 to 5 gram ion is preferable with respect to 1 gram atom of antimony. The nitrate ion source is not particularly limited, and a nitrate ion equivalent or nitric acid contained in ferric nitrate can be used.

テルル成分原料としては特に制限はなく、二酸化テルル、テルル酸、金属テルルを硝酸に溶解した溶液等を用いることができる。その他、「背景技術」の項で挙げた特許文献14に記載されているような、金属テルルをバナジウム、モリブデン、及びタングステンよりなる群から選ばれた少なくとも一種の金属の酸化物、酸素酸、又は酸素酸塩の共存下にて過酸化水素酸化することにより得られるテルル含有溶液を用いることもできる。   There is no restriction | limiting in particular as a tellurium component raw material, The solution etc. which melt | dissolved tellurium dioxide, telluric acid, metal tellurium in nitric acid can be used. In addition, an oxide of at least one metal selected from the group consisting of vanadium, molybdenum, and tungsten, oxygen acid, or the like, as described in Patent Document 14 listed in the section “Background Art”, or A tellurium-containing solution obtained by hydrogen peroxide oxidation in the presence of an oxyacid salt can also be used.

本発明では、テルル原料成分を工程(b)前(工程(a)中)と工程(b)後に分けて添加することを述べた。本発明では特に、工程(b)前(工程(a)中)/工程(b)後の添加比率を10〜90:90〜10とする(但し、総量を100とする。)ことが好ましい。かかる添加比率でテルル成分を分割添加することで、特に物性や活性の良好な触媒を再現性良く製造することができる。
全テルル添加量に対する工程(b)前(工程(a)中)のテルル成分の添加量の下限はより好ましくは15、特に好ましくは20であり、上限はより好ましくは85、特に好ましくは80である。
In the present invention, it is described that the tellurium raw material component is added separately before step (b) (in step (a)) and after step (b). In the present invention, it is particularly preferable that the addition ratio before step (b) (during step (a)) / after step (b) is 10 to 90:90 to 10 (where the total amount is 100). By separately adding the tellurium component at such an addition ratio, a catalyst having particularly good physical properties and activity can be produced with good reproducibility.
The lower limit of the amount of tellurium component added before the step (b) (during step (a)) relative to the total amount of tellurium added is more preferably 15, particularly preferably 20, and the upper limit is more preferably 85, particularly preferably 80. is there.

工程(a)で調製する溶液又はスラリー(Y)には、鉄成分原料、アンチモン成分原料、テルル成分原料、及び硝酸イオン源の他、必要に応じて他の成分を添加することは差し支えない。但し、キレート剤などは、後の工程(b)において、アンチモン成分の硝酸酸化反応を阻害する恐れがあるので、かかる恐れのない範囲内で、添加する成分やその量を設計することが好ましい。   In addition to the iron component raw material, the antimony component raw material, the tellurium component raw material, and the nitrate ion source, other components may be added to the solution or slurry (Y) prepared in the step (a) as necessary. However, since a chelating agent or the like may inhibit the nitric acid oxidation reaction of the antimony component in the subsequent step (b), it is preferable to design the component to be added and the amount thereof within a range where there is no such risk.

上記したように、工程(a)においては、pH7以下の溶液又はスラリー(Y)を調製する。pHの上限は好ましくは6、特に好ましくは5である。
工程(a)で調製する溶液又はスラリーのpHが上記上限超では、溶液又はスラリー中において鉄成分が水酸化物等の形態で沈降し、工程(b)での3価のアンチモンの硝酸酸化反応が進行しないか、反応速度が著しく遅くなり現実的でない。
pHの下限は特に限定されないが、pHを1以上、特に好ましくは1.2以上とすることで、工程(b)における3価のアンチモンの硝酸酸化反応を促進することができ、好適である。
As described above, in the step (a), a solution or slurry (Y) having a pH of 7 or less is prepared. The upper limit of the pH is preferably 6, particularly preferably 5.
When the pH of the solution or slurry prepared in step (a) exceeds the above upper limit, the iron component settles in the form of hydroxide or the like in the solution or slurry, and nitric acid oxidation reaction of trivalent antimony in step (b) Does not proceed, or the reaction rate is extremely slow, which is not realistic.
The lower limit of the pH is not particularly limited, but it is preferable that the pH be 1 or more, particularly preferably 1.2 or more, because the nitric acid oxidation reaction of trivalent antimony in the step (b) can be promoted.

上記したように、工程(b)の加熱処理温度は60℃以上とする。下限は好ましくは70℃、特に好ましくは80℃である。加熱処理温度が下限未満では、アンチモン酸鉄の生成が進行しないか、あるいは反応速度が著しく遅くなり現実的でない。
加熱処理温度の上限は特に制限はなく、溶液又はスラリー(Y)の常圧における沸点以下、例えば120℃以下で行われることが一般的であるが、必要により加圧下、120℃以上の温度で処理を行うこともできる。
As described above, the heat treatment temperature in step (b) is 60 ° C. or higher. The lower limit is preferably 70 ° C., particularly preferably 80 ° C. When the heat treatment temperature is less than the lower limit, the production of iron antimonate does not proceed, or the reaction rate is extremely slow, which is not realistic.
The upper limit of the heat treatment temperature is not particularly limited, and it is generally performed at a boiling point or lower at normal pressure of the solution or slurry (Y), for example, 120 ° C. or lower. Processing can also be performed.

工程(b)における加熱処理時間は特に限定されないが、30分以上が好ましい。下限はより好ましくは45分、特に好ましくは60分である。加熱処理時間が短すぎると、アンチモン酸鉄の生成反応が完結せず、得られる触媒の物性や活性が不良となる恐れがある。加熱処理時間の上限は特に制限はないが、通常10時間以内に設定される。時間を長くしても得られる触媒の性能はほとんど変化せず、製造効率が低下するだけである。   Although the heat processing time in a process (b) is not specifically limited, 30 minutes or more are preferable. The lower limit is more preferably 45 minutes, particularly preferably 60 minutes. If the heat treatment time is too short, the production reaction of iron antimonate is not completed, and the physical properties and activity of the resulting catalyst may be poor. The upper limit of the heat treatment time is not particularly limited, but is usually set within 10 hours. Even if the time is prolonged, the performance of the obtained catalyst is hardly changed, and only the production efficiency is lowered.

工程(b)後、残りのテルル成分原料、必要に応じて他の成分原料を添加し、乾燥及び焼成前の溶液又はスラリー(X)が得られる。
加熱処理に供する溶液又はスラリー(Y)、及び乾燥及び焼成に供する溶液又はスラリー(X)の調製方法は特に制限はなく、「背景技術」の項で挙げた特許文献に記載の鉄・アンチモン含有金属酸化物触媒の調製法を適用することができる。
After the step (b), the remaining tellurium component raw materials and other component raw materials are added as necessary to obtain a solution or slurry (X) before drying and firing.
The method for preparing the solution or slurry (Y) to be subjected to the heat treatment and the solution or slurry (X) to be subjected to drying and firing is not particularly limited, and contains iron and antimony described in the patent document cited in the section of “Background Technology”. A method for preparing a metal oxide catalyst can be applied.

「工程(2)」
工程(2)において、工程(1)で調製した溶液又はスラリー(X)を乾燥及び焼成し、触媒が完成する。
乾燥条件は特に限定されない。本発明は、固定層触媒、流動層触媒のいずれにも適用できるが、特に流動層触媒に対して好ましく適用できる。流動層触媒を製造する場合には、噴霧乾燥にて溶液又はスラリー(X)を乾燥することが好ましい。噴霧乾燥装置としては、回転円盤式、ノズル式等、公知のものを用いることができ、流動層触媒として好ましい粒径の触媒が得られるように噴霧乾燥条件を適宜調整する。
乾燥粒子を焼成することで、触媒としての活性が発現する。焼成条件は特に限定されないが、焼成温度は200〜1000℃、焼成時間は0.5〜20時間が好ましい。焼成を2回若しくはそれ以上に分けて実施することで、触媒の物性や活性が向上する場合がある。
"Process (2)"
In step (2), the solution or slurry (X) prepared in step (1) is dried and calcined to complete the catalyst.
Drying conditions are not particularly limited. The present invention can be applied to either a fixed bed catalyst or a fluidized bed catalyst, but is particularly preferably applicable to a fluidized bed catalyst. When producing a fluidized bed catalyst, it is preferable to dry the solution or slurry (X) by spray drying. As the spray drying apparatus, known ones such as a rotary disk type and a nozzle type can be used, and the spray drying conditions are appropriately adjusted so as to obtain a catalyst having a preferable particle size as the fluidized bed catalyst.
By firing the dried particles, the activity as a catalyst is expressed. The firing conditions are not particularly limited, but the firing temperature is preferably 200 to 1000 ° C., and the firing time is preferably 0.5 to 20 hours. By carrying out the firing twice or more times, the physical properties and activity of the catalyst may be improved.

本発明の触媒の製造方法では、乾燥及び焼成に供する溶液又はスラリー(X)を調製する工程(1)を工夫することで、物性(触媒粒子の密度や強度等)や活性(反応に供した際の目的生成物収率)が共に良好な鉄・アンチモン・テルル含有金属酸化物触媒を、再現性良く製造することを実現した。
さらに、本発明は、乾燥及び焼成に供する溶液又はスラリー(X)を調製する工程(1)を工夫したものであるので、いったん焼成して調製した触媒に対して、さらにテルル成分含有溶液を含浸させるなどの操作が不要である。したがって、複雑な工程や装置を要することなく、良好な特性の触媒を低コストにかつ安定的に製造することができる。
In the method for producing a catalyst of the present invention, physical properties (such as the density and strength of the catalyst particles) and activity (subjected to the reaction) are devised by preparing the step (1) for preparing a solution or slurry (X) to be dried and calcined. The production of iron-antimony-tellurium-containing metal oxide catalysts with good yield of the desired product was achieved with good reproducibility.
Furthermore, since the present invention is a devised step (1) for preparing a solution or slurry (X) to be dried and calcined, the catalyst once calcined is further impregnated with a tellurium component-containing solution. No operation is required. Therefore, a catalyst having good characteristics can be stably produced at low cost without requiring a complicated process or apparatus.

本発明の製造方法は、鉄・アンチモン・テルル含有金属酸化物触媒であれば、いかなる組成の触媒にも適用可能であるが、特に下記組成式(I)で表される触媒に対して好ましく適用できる。
Fe10SbTe・(SiO・・・(I)
但し、式中、Aはバナジウム、モリブデン、及びタングステンからなる群より選ばれた少なくとも一種の元素、Dはマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニオブ、クロム、マンガン、コバルト、ニッケル、銅、銀、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、スズ、鉛、リン、ヒ素、及びビスマスからなる群より選ばれた少なくとも一種の元素、Eはリチウム、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれた少なくとも一種の元素を表す。
The production method of the present invention can be applied to a catalyst having any composition as long as it is an iron / antimony / tellurium-containing metal oxide catalyst, but is particularly preferably applied to a catalyst represented by the following composition formula (I). it can.
Fe 10 Sb a A b Te c D d E e O x · (SiO 2) y ··· (I)
However, in the formula, A is at least one element selected from the group consisting of vanadium, molybdenum and tungsten, D is magnesium, calcium, strontium, barium, titanium, zirconium, niobium, chromium, manganese, cobalt, nickel, copper At least one element selected from the group consisting of silver, zinc, boron, aluminum, gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic, and bismuth, E is lithium, sodium, potassium, rubidium, and It represents at least one element selected from the group consisting of cesium.

添字a〜e、x、及びyは原子比を表す。aの下限は3、好ましくは5であり、上限は100、好ましくは90である。bの下限は0.1、好ましくは0.2であり、上限は15、好ましくは12である。cの下限は0.1、好ましくは0.2であり、上限は12、好ましくは10である。dの下限は0であり、上限は50、好ましくは40である。eの下限は0であり、上限は5、好ましくは4.5である。yの下限は10、好ましくは20であり、上限は200、好ましくは180である。xはFe〜Eが結合して生成する金属酸化物の酸素数を示し、金属組成に応じて自然に決定されるものである。   Subscripts a to e, x, and y represent atomic ratios. The lower limit of a is 3, preferably 5, and the upper limit is 100, preferably 90. The lower limit of b is 0.1, preferably 0.2, and the upper limit is 15, preferably 12. The lower limit of c is 0.1, preferably 0.2, and the upper limit is 12, preferably 10. The lower limit of d is 0, and the upper limit is 50, preferably 40. The lower limit of e is 0, and the upper limit is 5, preferably 4.5. The lower limit of y is 10, preferably 20, and the upper limit is 200, preferably 180. x represents the oxygen number of the metal oxide formed by combining Fe to E, and is naturally determined according to the metal composition.

また、本発明の組成物は、アンチモン酸鉄を結晶相として含有する触媒に対して好ましく適用できる。アンチモン酸鉄の組成は数種類存在するが(「背景技術」の項で挙げた特許文献8等参照)、FeSbが最も一般的であり、X線回折によりその結晶相の存在を確認することができる。なお、本明細書において、「アンチモン酸鉄」は、純粋なアンチモン酸鉄の他、これに種々の元素が固溶したものも含むものとする。 The composition of the present invention can be preferably applied to a catalyst containing iron antimonate as a crystal phase. There are several compositions of iron antimonate (see, for example, Patent Document 8 listed in the section of “Background Art”), but FeSb 4 is the most common, and its crystal phase can be confirmed by X-ray diffraction. it can. In this specification, “iron antimonate” includes not only pure iron antimonate but also various elements dissolved therein.

本発明は、有機化合物の酸化反応によるアルデヒド類や不飽和酸類の製造用、アンモ酸化反応によるニトリル類の製造用等の触媒、特にアンモ酸化反応によるニトリル類の製造用の触媒に対して好ましく適用できる。   The present invention is preferably applied to catalysts for the production of aldehydes and unsaturated acids by the oxidation reaction of organic compounds, the production of nitriles by an ammoxidation reaction, especially catalysts for the production of nitriles by an ammoxidation reaction. it can.

ニトリル類の原料有機化合物としては、オレフィン類、アルコール類、エーテル類、芳香族化合物、ヘテロ芳香族化合物等、具体的にはプロピレン、イソブテン、メタノール、エタノール、ターシャリーブタノール、メチルターシャリーブチルエーテル、トルエン、キシレン、ピコリン、キナルジン等が挙げられる。本発明は特に、プロピレンのアンモ酸化反応によるアクリロニトリル製造用の触媒に対して好ましく適用できる。   The raw material organic compounds of nitriles include olefins, alcohols, ethers, aromatic compounds, heteroaromatic compounds, etc., specifically propylene, isobutene, methanol, ethanol, tertiary butanol, methyl tertiary butyl ether, toluene , Xylene, picoline, quinaldine and the like. The present invention can be preferably applied particularly to a catalyst for producing acrylonitrile by ammoxidation reaction of propylene.

アンモ酸化反応は、通常、供給ガスの組成を原料有機化合物/アンモニア/空気=1/0.1〜5/8〜20(モル比)とし、反応温度を370〜500℃、反応圧力を常圧〜500kPa、触媒と供給ガスの見掛け接触時間を0.1〜20秒として実施される。酸素源としては空気を用いるのが好適であるが、これを水蒸気、窒素、炭酸ガス、飽和炭化水素等で希釈したり、酸素を富化して用いることもできる。   In the ammoxidation reaction, the composition of the feed gas is usually made from raw material organic compound / ammonia / air = 1 / 0.1 to 5/8 to 20 (molar ratio), the reaction temperature is 370 to 500 ° C., and the reaction pressure is normal pressure. It is carried out with an apparent contact time of 0.1 to 20 seconds between ˜500 kPa and the catalyst and the supply gas. Air is preferably used as the oxygen source, but it can also be diluted with water vapor, nitrogen, carbon dioxide, saturated hydrocarbon, etc., or enriched with oxygen.

以下、本発明を実施例及び比較例を挙げて具体的に説明するが、本発明は下記例によって何ら限定されるものではない。
(実施例1−1)
組成式Fe10Sb25W0.5Mo1.2Te3Co2Cu2B0.5Ox・(SiO2)60で表される触媒を下記手順にて調製した。
63質量%硝酸761gに銅粉末13.6gを溶解した。この溶液に純水740gを添加してから溶液を60℃に加熱し、電解鉄粉59.8g、及びテルル粉末20.5gを少量ずつ添加し、溶解した。溶解確認後、ホウ酸3.3g、及び硝酸コバルト62.3gを順次添加し、溶解した(A液)。
別途、純水680gにパラタングステン酸アンモニウム14.0gを溶解した(B液)。
別途、純水130gにパラモリブデン酸アンモニウム22.7gとテルル粉末20.5gとを縣濁させ、80℃に加熱した後、35質量%過酸化水素水62gを滴下し、溶解した(C液)。
攪拌しながら、A液に20質量%シリカゾル1929.5g、三酸化アンチモン粉末390.1g、及びB液を順次添加した。このスラリーに15質量%アンモニア水を滴下し、pHを2.0に調整した(以上、工程(a))。pH調整後のスラリー(Y)に対して、還流下99℃で3時間加熱処理を行った(工程(b))。加熱処理後のスラリーを80℃まで冷却し、C液を添加した(以上、工程(1))。
得られたスラリー(X)を回転円盤式噴霧乾燥機にて、入口温度を330℃、出口温度を160℃として噴霧乾燥し、得られた乾燥粒子を250℃で2時間、400℃で2時間加熱処理し、最終的に700℃で3時間流動焼成した(工程(2))。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited at all by the following example.
(Example 1-1)
A catalyst represented by the composition formula Fe 10 Sb 25 W 0.5 Mo 1.2 Te 3 Co 2 Cu 2 B 0.5 O x. (SiO 2 ) 60 was prepared by the following procedure.
13.6 g of copper powder was dissolved in 761 g of 63 mass% nitric acid. After adding 740 g of pure water to this solution, the solution was heated to 60 ° C., and 59.8 g of electrolytic iron powder and 20.5 g of tellurium powder were added little by little and dissolved. After confirmation of dissolution, 3.3 g of boric acid and 62.3 g of cobalt nitrate were sequentially added and dissolved (solution A).
Separately, 14.0 g of ammonium paratungstate was dissolved in 680 g of pure water (Liquid B).
Separately, 22.7 g of ammonium paramolybdate and 20.5 g of tellurium powder were suspended in 130 g of pure water, heated to 80 ° C., and then dissolved by dropping 62 g of 35% by mass hydrogen peroxide (liquid C). .
While stirring, 1929.5 g of 20% by mass silica sol, 390.1 g of antimony trioxide powder, and B solution were sequentially added to the A solution. 15 mass% ammonia water was dripped at this slurry, and pH was adjusted to 2.0 (above, process (a)). The slurry (Y) after pH adjustment was subjected to heat treatment at 99 ° C. under reflux for 3 hours (step (b)). The slurry after the heat treatment was cooled to 80 ° C., and liquid C was added (step (1) above).
The obtained slurry (X) was spray-dried with a rotary disk spray dryer at an inlet temperature of 330 ° C. and an outlet temperature of 160 ° C., and the obtained dried particles were heated at 250 ° C. for 2 hours and at 400 ° C. for 2 hours. It heat-processed and finally carried out the flow baking for 3 hours at 700 degreeC (process (2)).

(実施例1−2、1−3)
再現性を確認するべく、実施例1−1と同一組成の触媒を同一方法にて調製した。
(Examples 1-2 and 1-3)
In order to confirm reproducibility, a catalyst having the same composition as in Example 1-1 was prepared by the same method.

(実施例2)
組成式Fe10Sb20W0.3Mo0.4Te1Ni0.5Cu2Mg0.3P0.1Li0.1Cs0.1・(SiO2)45で表される触媒を下記手順にて調製した。
63質量%硝酸928gに銅粉末17.9gを溶解した。この溶液に純水900gを添加してから60℃に加熱し、電解鉄粉78.2g、及びテルル粉末5.4gを少量ずつ添加し、溶解した。溶解確認後、硝酸マグネシウム10.8g、硝酸ニッケル20.5g、硝酸リチウム1.0g、及び硝酸セシウム2.8gを順次添加し、溶解した(D液)。
別途、純水540gにパラタングステン酸アンモニウム11.0gを溶解した(E液)。
別途、純水200gにパラモリブデン酸アンモニウム10.0gとテルル酸22.7gを溶解した(F液)。
攪拌しながら、D液に20質量%シリカゾル1905.2g、三酸化アンチモン粉末410.9g、及びE液を順次添加した。このスラリーに15質量%アンモニア水を滴下し、pHを1.8に調整した(以上、工程(a))。pH調整後のスラリー(Y)に対し、還流下99℃で3時間加熱処理を行った(工程(b))。加熱処理後のスラリーを80℃まで冷却し、85質量%リン酸1.6g、F液を順次添加した(以上、工程(1))。
得られたスラリー(X)を実施例1−1と同様に噴霧乾燥し、得られた乾燥粒子を250℃で2時間、400℃で2時間加熱処理し、最終的に800℃で3時間流動焼成した(工程(2))。
(Example 2)
A catalyst represented by the composition formula Fe 10 Sb 20 W 0.3 Mo 0.4 Te 1 Ni 0.5 Cu 2 Mg 0.3 P 0.1 Li 0.1 Cs 0.1 · (SiO 2 ) 45 was prepared by the following procedure.
17.9 g of copper powder was dissolved in 928 g of 63% by mass nitric acid. After adding 900 g of pure water to this solution, it was heated to 60 ° C., and 78.2 g of electrolytic iron powder and 5.4 g of tellurium powder were added little by little and dissolved. After confirmation of dissolution, 10.8 g of magnesium nitrate, 20.5 g of nickel nitrate, 1.0 g of lithium nitrate, and 2.8 g of cesium nitrate were sequentially added and dissolved (solution D).
Separately, 11.0 g of ammonium paratungstate was dissolved in 540 g of pure water (solution E).
Separately, 10.0 g of ammonium paramolybdate and 22.7 g of telluric acid were dissolved in 200 g of pure water (F solution).
While stirring, 1905.2 g of 20% by mass silica sol, 410.9 g of antimony trioxide powder, and E solution were sequentially added to D solution. 15 mass% ammonia water was dripped at this slurry, and pH was adjusted to 1.8 (above, process (a)). The slurry (Y) after pH adjustment was heat-treated at 99 ° C. for 3 hours under reflux (step (b)). The slurry after the heat treatment was cooled to 80 ° C., and 1.6 g of 85 mass% phosphoric acid and liquid F were sequentially added (step (1)).
The obtained slurry (X) was spray-dried in the same manner as in Example 1-1, and the obtained dried particles were heat-treated at 250 ° C. for 2 hours and at 400 ° C. for 2 hours, and finally flowed at 800 ° C. for 3 hours. Firing was performed (step (2)).

(実施例3)
組成式Fe10Sb60W0.5Mo0.5V0.2Te2Zn3Cu1K0.1・(SiO2)30で表される触媒を下記手順にて調製した。
63質量%硝酸470gに銅粉末5.0gを溶解した。この溶液に純水460gを添加してから溶液を60℃に加熱し、電解鉄粉43.9g、及びテルル粉末12.0gを少量ずつ添加し、溶解した。溶解確認後、硝酸カリウム0.8g、及び硝酸亜鉛70.2gを順次添加し、溶解した(G液)。
別途、純水500gにパラタングステン酸アンモニウム10.3gを溶解した(H液)。
別途、純水54gにパラモリブデン酸アンモニウム6.9g、テルル粉末8.0g、及びメタバナジン酸アンモニウム1.8gを縣濁させ、80℃に加熱した後35質量%過酸化水素水25gを滴下し、溶解した(I液)。
攪拌しながらG液に20質量%シリカゾル708.4g、三酸化アンチモン粉末687.4g、及びH液を順次添加した。
得られたスラリーに15質量%アンモニア水を滴下し、スラリーのpHを2.2に調整した(以上、工程(a))。pH調整後のスラリー(Y)に対し、還流下99℃で3時間加熱処理を行った(工程(b))。
加熱処理後のスラリーを80℃まで冷却し、I液を添加した(以上、工程(1))。
得られたスラリー(X)を実施例1−1と同様に噴霧乾燥し、得られた乾燥粒子を250℃で2時間、400℃で2時間加熱処理し、最終的に750℃で3時間流動焼成した(工程(2))。
(Example 3)
A catalyst represented by the composition formula Fe 10 Sb 60 W 0.5 Mo 0.5 V 0.2 Te 2 Zn 3 Cu 1 K 0.1 · (SiO 2 ) 30 was prepared by the following procedure.
Copper powder 5.0g was melt | dissolved in 470g of 63 mass% nitric acid. After adding 460 g of pure water to this solution, the solution was heated to 60 ° C., and 43.9 g of electrolytic iron powder and 12.0 g of tellurium powder were added little by little and dissolved. After confirmation of dissolution, 0.8 g of potassium nitrate and 70.2 g of zinc nitrate were sequentially added and dissolved (solution G).
Separately, 10.3 g of ammonium paratungstate was dissolved in 500 g of pure water (liquid H).
Separately, 6.9 g of ammonium paramolybdate, 8.0 g of tellurium powder, and 1.8 g of ammonium metavanadate were suspended in 54 g of pure water, heated to 80 ° C., and then 25 g of 35% by mass hydrogen peroxide solution was dropped. Dissolved (Liquid I).
While stirring, 708.4 g of 20% by mass silica sol, 687.4 g of antimony trioxide powder, and H liquid were sequentially added to G liquid.
15 mass% ammonia water was dripped at the obtained slurry, and pH of the slurry was adjusted to 2.2 (above, process (a)). The slurry (Y) after pH adjustment was heat-treated at 99 ° C. for 3 hours under reflux (step (b)).
The slurry after the heat treatment was cooled to 80 ° C., and the liquid I was added (step (1) above).
The obtained slurry (X) was spray-dried in the same manner as in Example 1-1, and the obtained dried particles were heat-treated at 250 ° C. for 2 hours and 400 ° C. for 2 hours, and finally flowed at 750 ° C. for 3 hours. Firing was performed (step (2)).

(実施例4)
組成式Fe10Sb25Mo2Te4Ni2Cu2Cr0.1Al0.2Rb0.05・(SiO2)50で表される触媒を下記手順にて調製した。。
63質量%硝酸787.1gに銅粉末14.3gを溶解した。この溶液に純水760gを添加してから溶液を60℃に加熱し、電解鉄粉62.7g、及びテルル粉末35.8gを少量ずつ添加し、溶解した。溶解確認後、硝酸ニッケル65.3g、硝酸クロム4.5g、硝酸アルミニウム8.4g、及び硝酸ルビジウム0.8gを順次添加し、溶解した(J液)。
別途、純水400gにパラモリブデン酸アンモニウム39.7g、及びテルル酸38.7gを溶解した(K液)。
攪拌しながらJ液に20質量%シリカゾル1686.9g、及び三酸化アンチモン粉末409.3gを順次添加した。得られたスラリーに15質量%アンモニア水を滴下し、スラリーのpHを2.4に調整した(以上、工程(a))。pH調整後のスラリー(Y)に対し、還流下99℃で3時間加熱処理を行った(工程(b))。加熱処理後のスラリーを80℃まで冷却し、K液を添加した(以上、工程(1))。
得られたスラリー(X)を実施例1−1と同様に噴霧乾燥し、得られた乾燥粒子を250℃で2時間、400℃で2時間加熱処理し、最終的に740℃で3時間流動焼成した(工程(2))。
Example 4
A catalyst represented by the composition formula Fe 10 Sb 25 Mo 2 Te 4 Ni 2 Cu 2 Cr 0.1 Al 0.2 Rb 0.05 · (SiO 2 ) 50 was prepared by the following procedure. .
14.3 g of copper powder was dissolved in 787.1 g of 63% by mass nitric acid. After adding 760 g of pure water to this solution, the solution was heated to 60 ° C., and 62.7 g of electrolytic iron powder and 35.8 g of tellurium powder were added little by little and dissolved. After confirmation of dissolution, 65.3 g of nickel nitrate, 4.5 g of chromium nitrate, 8.4 g of aluminum nitrate, and 0.8 g of rubidium nitrate were sequentially added and dissolved (solution J).
Separately, 39.7 g of ammonium paramolybdate and 38.7 g of telluric acid were dissolved in 400 g of pure water (solution K).
While stirring, 1686.9 g of 20 mass% silica sol and 409.3 g of antimony trioxide powder were sequentially added to the J liquid. 15 mass% ammonia water was dripped at the obtained slurry, and pH of the slurry was adjusted to 2.4 (above, process (a)). The slurry (Y) after pH adjustment was heat-treated at 99 ° C. under reflux for 3 hours (step (b)). The slurry after the heat treatment was cooled to 80 ° C., and liquid K was added (step (1) above).
The obtained slurry (X) was spray-dried in the same manner as in Example 1-1, and the obtained dried particles were heat-treated at 250 ° C. for 2 hours and 400 ° C. for 2 hours, and finally flowed at 740 ° C. for 3 hours. Firing was performed (step (2)).

(実施例5)
組成式Fe10Sb30Mo0.3V0.1Te1.5Cu2Mn0.2P0.2・(SiO2)80で表される触媒を下記手順にて調製した。
63質量%硝酸564.7gに銅粉末10.7gを溶解した。この溶液に純水550gを添加してから溶液を60℃に加熱し、電解鉄粉46.9g、及びテルル粉末10.7gを少量ずつ添加し、溶解した。溶解確認後、硝酸マンガン4.8gを添加した(L液)。
別途、純水50gにパラモリブデン酸アンモニウム4.5g、メタバナジン酸アンモニウム1.0g、及びテルル粉末5.4gを縣濁させ、80℃に加熱した後35質量%過酸化水素水を滴下し、溶解した(M液)。
攪拌しながらL液に20質量%シリカゾル2019.2g、及び三酸化アンチモン粉末367.4gを順次添加した。得られたスラリーに15質量%アンモニア水を滴下し、スラリーのpHを1.7に調整した(以上、工程(a))。pH調整後のスラリー(Y)に対し、還流下99℃で3時間加熱処理を行った(工程(b))。加熱処理後のスラリーを80℃まで冷却し、M液を添加した(以上、工程(1))。
得られたスラリー(X)を実施例1−1と同様に噴霧乾燥し、得られた乾燥粒子を250℃で2時間、400℃で2時間加熱処理し、最終的に780℃で3時間流動焼成した(工程(2))。
(Example 5)
A catalyst represented by the composition formula Fe 10 Sb 30 Mo 0.3 V 0.1 Te 1.5 Cu 2 Mn 0.2 P 0.2 · (SiO 2 ) 80 was prepared by the following procedure.
10.7 g of copper powder was dissolved in 564.7 g of 63% by mass nitric acid. After adding 550 g of pure water to this solution, the solution was heated to 60 ° C., and 46.9 g of electrolytic iron powder and 10.7 g of tellurium powder were added little by little and dissolved. After confirming dissolution, 4.8 g of manganese nitrate was added (Liquid L).
Separately, 4.5 g of ammonium paramolybdate, 1.0 g of ammonium metavanadate, and 5.4 g of tellurium powder are suspended in 50 g of pure water, heated to 80 ° C., and 35% by mass hydrogen peroxide is added dropwise to dissolve. (M solution).
While stirring, 2019.2 g of 20 mass% silica sol and 367.4 g of antimony trioxide powder were sequentially added to the L liquid. 15 mass% ammonia water was dripped at the obtained slurry, and pH of the slurry was adjusted to 1.7 (above, process (a)). The slurry (Y) after pH adjustment was heat-treated at 99 ° C. for 3 hours under reflux (step (b)). The slurry after the heat treatment was cooled to 80 ° C., and liquid M was added (step (1) above).
The obtained slurry (X) was spray-dried in the same manner as in Example 1-1, and the obtained dried particles were heat-treated at 250 ° C. for 2 hours and 400 ° C. for 2 hours, and finally flowed at 780 ° C. for 3 hours. Firing was performed (step (2)).

(比較例1−1)
テルル成分原料のテルル粉末をA液に全量一括添加した以外は実施例1−1と同様にして、触媒を調製した。
(比較例1−2、1−3)
再現性を確認するべく、比較例1−1と同一方法にて触媒を調製した。
(比較例2)
テルル成分原料としてテルル酸を用い、F液に全量一括添加した以外は実施例2と同様にして、触媒を調製した。
(比較例3)
アンモニア水によるpH調整時にpHを8.0とした以外は実施例1−1と同様にして、触媒を調製した。
(Comparative Example 1-1)
A catalyst was prepared in the same manner as in Example 1-1 except that the tellurium powder of the tellurium component raw material was added all at once to the liquid A.
(Comparative Examples 1-2, 1-3)
In order to confirm reproducibility, a catalyst was prepared by the same method as Comparative Example 1-1.
(Comparative Example 2)
A catalyst was prepared in the same manner as in Example 2 except that telluric acid was used as a tellurium component raw material and all the components were added to the F solution at once.
(Comparative Example 3)
A catalyst was prepared in the same manner as in Example 1-1 except that the pH was adjusted to 8.0 when adjusting the pH with aqueous ammonia.

各例において調製した触媒の組成、及び、触媒調製条件(工程(1)における溶液又はスラリーの加熱処理前/処理後のテルル(Te)の添加比率、アンモニア水により調整した溶液又はスラリーのpH、焼成温度)を表1にまとめる。   Composition of catalyst prepared in each example, and catalyst preparation conditions (addition ratio of tellurium (Te) before / after heat treatment of solution or slurry in step (1), pH of solution or slurry adjusted with aqueous ammonia, The firing temperature is summarized in Table 1.

(評価項目及び評価方法)
評価項目及び評価方法は以下の通りとした。
<触媒粒子の圧縮強度>
実施例1−1〜1−3及び比較例3で得られた触媒について、圧縮強度を測定した。
マイクロメッシュ・ハイ・プレシジョン・シーブスを用いて粒径45〜50μmの粒子を分取し、島津製作所製「MCTM−200」にて圧縮強度(g・重/粒)を測定した。各例においてサンプル数30個で測定を行い、平均値を求めた。測定条件は下記の通りとした。結果を表2に示す。
上部加圧圧子 ダイヤモンド製500μm平面圧子
下部加圧板 SUS板
負荷速度 0.72g重/sec
(Evaluation items and evaluation methods)
Evaluation items and evaluation methods were as follows.
<Compressive strength of catalyst particles>
The compressive strength of the catalysts obtained in Examples 1-1 to 1-3 and Comparative Example 3 was measured.
Particles having a particle size of 45 to 50 μm were collected using Micromesh High Precision Sieves, and the compressive strength (g · weight / particle) was measured with “MCTM-200” manufactured by Shimadzu Corporation. In each example, measurement was performed with 30 samples, and an average value was obtained. The measurement conditions were as follows. The results are shown in Table 2.
Upper pressure indenter Diamond 500μm flat indenter Lower pressure plate SUS plate Load speed 0.72g weight / sec

<触媒の活性>
比較例3を除く各例において調製した触媒を用い、プロピレンのアンモ酸化反応によるアクリロニトリル合成を行った。
触媒流動部の内径が25mm、高さが400mmの流動層反応器に触媒を充填した。これに、酸素源として空気を用い、組成がプロピレン/アンモニア/酸素=1/1.1/2.2(モル比)である供給ガスをガス線速度4.5cm/secで送入した。反応圧力は200kPaとした。反応温度、下記式で定義される触媒と供給ガスの見掛け接触時間は表2に示す通りとした。反応を開始してから4時間後に、下記式で定義されるプロピレン転化率とアクリロニトリル収率を各々求めた。
接触時間(sec)=見掛け嵩密度基準の触媒容積(ml)/反応条件に換算した供給ガス流量(ml/sec)
プロピレン転化率(%)=(反応で消費されたプロピレンのモル数/供給したプロピレンのモル数)×100
アクリロニトリル収率(%)=(生成したアクリロニトリルのモル数/供給したプロピレンのモル数)×100
<Activity of catalyst>
Using the catalyst prepared in each example except Comparative Example 3, acrylonitrile was synthesized by ammoxidation of propylene.
The catalyst was packed in a fluidized bed reactor having an inner diameter of 25 mm and a height of 400 mm. To this, air was used as an oxygen source, and a supply gas having a composition of propylene / ammonia / oxygen = 1 / 1.1 / 2.2 (molar ratio) was fed at a gas linear velocity of 4.5 cm / sec. The reaction pressure was 200 kPa. The reaction temperature and the apparent contact time between the catalyst and the feed gas defined by the following formula were as shown in Table 2. Four hours after the start of the reaction, the propylene conversion rate and the acrylonitrile yield defined by the following formulas were determined.
Contact time (sec) = catalyst volume based on apparent bulk density (ml) / feed gas flow rate converted to reaction conditions (ml / sec)
Propylene conversion rate (%) = (number of moles of propylene consumed in reaction / number of moles of propylene supplied) × 100
Acrylonitrile yield (%) = (number of moles of acrylonitrile produced / number of moles of propylene fed) × 100

(結果)
結果を表2に示す。
表1、2に示すように、本発明の製造方法により触媒を製造した実施例では、いずれも圧縮強度及び活性が良好な触媒が得られ、アクリロニトリルの合成を行ったところ、プロピレン転化率が97.9%以上と高く、81.4%以上の良好なアクリロニトリル収率が得られた。また、実施例1−1〜1−3に示すように、再現性良く、同等特性の触媒を安定的に製造することができた。
(result)
The results are shown in Table 2.
As shown in Tables 1 and 2, in the examples where the catalyst was produced by the production method of the present invention, a catalyst having good compressive strength and activity was obtained. When acrylonitrile was synthesized, the propylene conversion rate was 97. A good acrylonitrile yield of 81.4% or higher was obtained. Moreover, as shown in Examples 1-1 to 1-3, a catalyst having the same characteristics could be stably produced with good reproducibility.

これに対して、テルル成分原料を一括添加した比較例1−1〜1−3、及び2では、得られた触媒は、アクリロニトリルの合成において、同組成の触媒を調製した実施例に比して、プロピレン転化率、アクリロニトリル収率が劣る結果となった。加えて、比較例1−1〜1−3に示すように、同条件で触媒を調製しても、活性にばらつきがあり、同等特性の触媒を再現性良く製造することが困難であった。
また、加熱処理直前の溶液又はスラリーのpHを7超とした比較例3では、得られた触媒は圧縮強度が実施例に比して著しく劣る結果となった。
On the other hand, in Comparative Examples 1-1 to 1-3 and 2 in which tellurium component raw materials were added all at once, the obtained catalyst was compared with the example in which the catalyst having the same composition was prepared in the synthesis of acrylonitrile. The propylene conversion rate and the acrylonitrile yield were inferior. In addition, as shown in Comparative Examples 1-1 to 1-3, even when the catalyst was prepared under the same conditions, the activity varied, and it was difficult to produce a catalyst having equivalent characteristics with good reproducibility.
Further, in Comparative Example 3 in which the pH of the solution or slurry immediately before the heat treatment was more than 7, the obtained catalyst had a result that the compressive strength was remarkably inferior to the Examples.

Figure 2005254058
Figure 2005254058

Figure 2005254058
Figure 2005254058

本発明の技術は、有機化合物の酸化反応によるアルデヒド類や不飽和酸類の製造、アンモ酸化反応によるニトリル類の製造等に用いられる鉄・アンチモン・テルル含有金属酸化物触媒に好ましく適用できる。   The technique of the present invention can be preferably applied to an iron / antimony / tellurium-containing metal oxide catalyst used for the production of aldehydes and unsaturated acids by oxidation reaction of organic compounds and the production of nitriles by ammoxidation reaction.

Claims (5)

鉄成分原料、アンチモン成分原料、テルル成分原料を含む溶液又はスラリー(X)を調製する工程(1)と、溶液又はスラリー(X)を乾燥及び焼成する工程(2)とを有する鉄・アンチモン・テルル含有金属酸化物触媒の製造方法において、
工程(1)が、鉄成分原料、アンチモン成分原料、及び硝酸イオンを含むpH7以下の溶液又はスラリー(Y)を調製する工程(a)と、溶液又はスラリー(Y)を60℃以上の温度で加熱処理する工程(b)とを含むと共に、
テルル成分原料を工程(b)前と工程(b)後に分けて添加することを特徴とする鉄・アンチモン・テルル含有金属酸化物触媒の製造方法。
Iron, antimony, and step (1) of preparing a solution or slurry (X) containing an iron component raw material, an antimony component raw material, a tellurium component raw material, and a step (2) of drying and firing the solution or slurry (X) In the method for producing a tellurium-containing metal oxide catalyst,
Step (1) is a step (a) of preparing a solution or slurry (Y) having a pH of 7 or less containing an iron component raw material, an antimony component raw material, and nitrate ions, and the solution or slurry (Y) at a temperature of 60 ° C. or higher. Including a step (b) of heat treatment,
A method for producing an iron / antimony / tellurium-containing metal oxide catalyst, wherein the tellurium component raw material is added separately before step (b) and after step (b).
テルル成分の工程(b)前/工程(b)後の添加比率を10〜90:90〜10とする(但し、総量を100とする。)ことを特徴とする請求項1に記載の鉄・アンチモン・テルル含有金属酸化物触媒の製造方法。   The ratio of the tellurium component before step (b) / after step (b) is set to 10 to 90:90 to 10 (provided that the total amount is 100). A method for producing an antimony and tellurium-containing metal oxide catalyst. 前記触媒が、下記組成式(I)で表されることを特徴とする請求項1又は2に記載の鉄・アンチモン・テルル含有金属酸化物触媒の製造方法。
Fe10SbTe・(SiO・・・(I)
(但し、式中、Aはバナジウム、モリブデン、及びタングステンからなる群より選ばれた少なくとも一種の元素、Dはマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニオブ、クロム、マンガン、コバルト、ニッケル、銅、銀、亜鉛、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、スズ、鉛、リン、ヒ素、及びビスマスからなる群より選ばれた少なくとも一種の元素、Eはリチウム、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれた少なくとも一種の元素を表す。添字a〜e、x、及びyは原子比を表し、a=3〜100、b=0.1〜15、c=0.1〜12、d=0〜50、e=0〜5、y=10〜200である。xはFe〜Eが結合して生成する金属酸化物の酸素数を示す。)
The method for producing an iron / antimony / tellurium-containing metal oxide catalyst according to claim 1, wherein the catalyst is represented by the following composition formula (I).
Fe 10 Sb a A b Te c D d E e O x · (SiO 2) y ··· (I)
(Wherein, A is at least one element selected from the group consisting of vanadium, molybdenum and tungsten, D is magnesium, calcium, strontium, barium, titanium, zirconium, niobium, chromium, manganese, cobalt, nickel, At least one element selected from the group consisting of copper, silver, zinc, boron, aluminum, gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic, and bismuth, E is lithium, sodium, potassium, rubidium, And at least one element selected from the group consisting of cesium, subscripts a to e, x, and y represent atomic ratios, a = 3 to 100, b = 0.1 to 15, c = 0.1. -12, d = 0 to 50, e = 0 to 5, and y = 10 to 200. x is formed by combining Fe to E. Shows the number of oxygen genus oxide.)
前記触媒が、アンチモン酸鉄を結晶相として含有することを特徴とする請求項1〜3のいずれかに記載の鉄・アンチモン・テルル含有金属酸化物触媒の製造方法。   The method for producing an iron / antimony / tellurium-containing metal oxide catalyst according to claim 1, wherein the catalyst contains iron antimonate as a crystal phase. 前記触媒が、プロピレンのアンモ酸化反応によるアクリロニトリル製造用であることを特徴とする請求項1〜4のいずれかに記載の鉄・アンチモン・テルル含有金属酸化物触媒の製造方法。   The method for producing an iron / antimony / tellurium-containing metal oxide catalyst according to claim 1, wherein the catalyst is for producing acrylonitrile by an ammoxidation reaction of propylene.
JP2004065848A 2004-03-09 2004-03-09 Method for producing iron / antimony / tellurium-containing metal oxide catalyst Expired - Lifetime JP4503315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065848A JP4503315B2 (en) 2004-03-09 2004-03-09 Method for producing iron / antimony / tellurium-containing metal oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065848A JP4503315B2 (en) 2004-03-09 2004-03-09 Method for producing iron / antimony / tellurium-containing metal oxide catalyst

Publications (2)

Publication Number Publication Date
JP2005254058A true JP2005254058A (en) 2005-09-22
JP4503315B2 JP4503315B2 (en) 2010-07-14

Family

ID=35080322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065848A Expired - Lifetime JP4503315B2 (en) 2004-03-09 2004-03-09 Method for producing iron / antimony / tellurium-containing metal oxide catalyst

Country Status (1)

Country Link
JP (1) JP4503315B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220008A (en) * 2008-03-14 2009-10-01 Daiyanitorikkusu Kk Catalyst for acrylonitrile synthesis and manufacturing method of acrylonitrile
WO2013129385A1 (en) * 2012-02-29 2013-09-06 三菱レイヨン株式会社 Method for producing acrylonitrile
WO2013129424A1 (en) * 2012-02-29 2013-09-06 三菱レイヨン株式会社 Method for producing acrylonitrile
WO2014129566A1 (en) * 2013-02-25 2014-08-28 三菱レイヨン株式会社 Method for producing catalyst for acrylonitrile production and method for producing acrylonitrile
CN113584518A (en) * 2021-07-02 2021-11-02 武汉工程大学 Tellurium/nickel telluride hydrogen evolution catalyst and preparation method and application thereof
CN114639813A (en) * 2022-03-31 2022-06-17 四川大学 Vanadium B-site doped pyrochlore type poly-antimonic acid material and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117194A (en) * 1974-08-01 1976-02-10 Nitto Chemical Industry Co Ltd
JPS56126448A (en) * 1980-03-12 1981-10-03 Nitto Chem Ind Co Ltd Production of antimony-containing oxide catalyst
JPS5811041A (en) * 1981-07-13 1983-01-21 Nitto Chem Ind Co Ltd Production of antimony-containing metallic oxide catalyst
JPH04118051A (en) * 1990-09-10 1992-04-20 Nitto Chem Ind Co Ltd Iron-antimony-molybdenum-containing oxide catalyst composition and its manufacture
JP2001029788A (en) * 1999-07-21 2001-02-06 Mitsubishi Rayon Co Ltd Production of fluidized bed catalyst comprising molybdenum-bismuth-iron-containing metal oxide
JP2003117397A (en) * 2001-10-11 2003-04-22 Daiyanitorikkusu Kk Production method of catalyst for ammoxidation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117194A (en) * 1974-08-01 1976-02-10 Nitto Chemical Industry Co Ltd
JPS56126448A (en) * 1980-03-12 1981-10-03 Nitto Chem Ind Co Ltd Production of antimony-containing oxide catalyst
JPS5811041A (en) * 1981-07-13 1983-01-21 Nitto Chem Ind Co Ltd Production of antimony-containing metallic oxide catalyst
JPH04118051A (en) * 1990-09-10 1992-04-20 Nitto Chem Ind Co Ltd Iron-antimony-molybdenum-containing oxide catalyst composition and its manufacture
JP2001029788A (en) * 1999-07-21 2001-02-06 Mitsubishi Rayon Co Ltd Production of fluidized bed catalyst comprising molybdenum-bismuth-iron-containing metal oxide
JP2003117397A (en) * 2001-10-11 2003-04-22 Daiyanitorikkusu Kk Production method of catalyst for ammoxidation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220008A (en) * 2008-03-14 2009-10-01 Daiyanitorikkusu Kk Catalyst for acrylonitrile synthesis and manufacturing method of acrylonitrile
CN104136412B (en) * 2012-02-29 2016-12-28 三菱丽阳株式会社 The manufacture method of acrylonitrile
US9328063B2 (en) 2012-02-29 2016-05-03 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile
JP2017149737A (en) * 2012-02-29 2017-08-31 三菱ケミカル株式会社 Method for producing acrylonitrile
CN104136412A (en) * 2012-02-29 2014-11-05 三菱丽阳株式会社 Method for producing acrylonitrile
JPWO2013129385A1 (en) * 2012-02-29 2015-07-30 三菱レイヨン株式会社 Method for producing acrylonitrile
JPWO2013129424A1 (en) * 2012-02-29 2015-07-30 三菱レイヨン株式会社 Method for producing acrylonitrile
US9181178B2 (en) 2012-02-29 2015-11-10 Mitsubishi Rayon Co., Ltd. Method for producing acrylonitrile
WO2013129424A1 (en) * 2012-02-29 2013-09-06 三菱レイヨン株式会社 Method for producing acrylonitrile
WO2013129385A1 (en) * 2012-02-29 2013-09-06 三菱レイヨン株式会社 Method for producing acrylonitrile
JP2017149736A (en) * 2012-02-29 2017-08-31 三菱ケミカル株式会社 Method for producing acrylonitrile
WO2014129566A1 (en) * 2013-02-25 2014-08-28 三菱レイヨン株式会社 Method for producing catalyst for acrylonitrile production and method for producing acrylonitrile
CN113584518A (en) * 2021-07-02 2021-11-02 武汉工程大学 Tellurium/nickel telluride hydrogen evolution catalyst and preparation method and application thereof
CN113584518B (en) * 2021-07-02 2023-04-07 武汉工程大学 Tellurium/nickel telluride hydrogen evolution catalyst and preparation method and application thereof
CN114639813A (en) * 2022-03-31 2022-06-17 四川大学 Vanadium B-site doped pyrochlore type poly-antimonic acid material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4503315B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
KR101772247B1 (en) Improved mixed metal oxide ammoxidation catalysts
JP5919870B2 (en) Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst
JP4954750B2 (en) Method for producing molybdenum, bismuth, iron, silica-containing composite oxide catalyst
JP3371112B2 (en) Iron / antimony-containing metal oxide catalyst composition and method for producing the same
JPWO2008050767A1 (en) Fluid bed catalyst for acrylonitrile production and process for producing acrylonitrile
US20200171468A1 (en) Catalyst for ethane odh
WO1999058241A1 (en) Method for regenerating molybdenum-containing oxide fluidized-bed catalyst
JP4588533B2 (en) Catalyst for acrylonitrile synthesis
JP4503315B2 (en) Method for producing iron / antimony / tellurium-containing metal oxide catalyst
JP2011078946A (en) Process for production of composite oxide catalyst
JP5707841B2 (en) Method for producing fluidized bed catalyst and method for producing acrylonitrile
JP2004008834A (en) Method for producing catalyst for use in manufacturing methacrylic acid
JP5020514B2 (en) Method for producing fluidized bed catalyst and method for producing nitriles
KR101785181B1 (en) Catalyst for acrylonitrile production and method for producing acrylonitrile
JP6439819B2 (en) Method for producing acrylonitrile
JP5609285B2 (en) Method for producing composite oxide catalyst
RU2806328C2 (en) Method of producing catalyst for synthesis of unsaturated carboxylic acid
JP3720626B2 (en) Method for preparing molybdenum-bismuth-tellurium-containing composite oxide catalyst
JPH0259046A (en) Preparation of molybdenum-containing ammoxidation catalyst
JP2004141823A (en) Manufacturing method of catalyst for production of methacrylic acid and manufacturing method of methacrylic acid
JP6237497B2 (en) Method for producing fluidized bed catalyst and method for producing nitrile compound
JPH11309374A (en) Production of molybdenum-containing oxide catalyst
JP5609254B2 (en) Method for producing composite oxide catalyst
JP2020163383A (en) Method of producing catalyst for synthesizing unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent or registration of utility model

Ref document number: 4503315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250