JP2005252172A - 太陽光発電システムの電力見積方法、設計支援方法およびプログラム - Google Patents

太陽光発電システムの電力見積方法、設計支援方法およびプログラム Download PDF

Info

Publication number
JP2005252172A
JP2005252172A JP2004064122A JP2004064122A JP2005252172A JP 2005252172 A JP2005252172 A JP 2005252172A JP 2004064122 A JP2004064122 A JP 2004064122A JP 2004064122 A JP2004064122 A JP 2004064122A JP 2005252172 A JP2005252172 A JP 2005252172A
Authority
JP
Japan
Prior art keywords
power
solar cell
value
control circuit
procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004064122A
Other languages
English (en)
Inventor
Yoichi Hirata
陽一 平田
Tatsuo Tani
辰夫 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2004064122A priority Critical patent/JP2005252172A/ja
Publication of JP2005252172A publication Critical patent/JP2005252172A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

【課題】 パワーコンディショナの制御回路の消費電力を考慮した上での正確な最大電力値を求める。
【解決手段】 複数の太陽電池モジュールを備える太陽電池アレイと、前記太陽電池アレイからの電力を変換する電力変換部および当該電力変換部を制御する制御回路を備えるパワーコンディショナと、を有する太陽光発電システムの電力見積方法において、太陽電池アレイの環境条件ごとに設定されるアレイ出力電力−電圧特性データの電力値から、前記制御回路の消費電力特性である制御回路電力−電圧特性データの電力値を差し引くことにより、前記電力変換部の入力点での電力変換部入力電力−電圧特性データを求める手順と、前記電力変換部入力電力−電圧特性データから電力変換部最大電力値を求める手順と、を有する。
【選択図】 図6

Description

本発明は、太陽光発電システムの電力見積方法、設計支援方法およびこれらの方法をコンピュータに実行させるプログラムに関する。特に、太陽光発電システムの備えるパワーコンディショナの制御回路用電力の特性などの影響を考慮することで、不整合による出力低下を正確に評価し、これに基づいて太陽電池アレイの最適なアレイ電圧を求め、直列モジュール数を決定する方法に関する。
従来、太陽電池モジュールを組み合わせた太陽電池アレイ、およびその発生電力を一般商用電力に変換するためのパワーコンディショナを備えた太陽光発電システムについて、太陽電池モジュールの組合せと、パワーコンディショナとの適切な組合せを選択しようとする方法が知られている(例えば、非特許文献1および特許文献1参照。)。
太陽光発電システムでは、複数個の太陽電池モジュールを直列に接続し太陽電池ストリングを構成し、さらに複数の太陽電池ストリングを並列に接続して太陽電池アレイを構成する。すなわち太陽電池アレイは、太陽電池モジュールの直並列組合せにより構成される。太陽電池アレイはパワーコンディショナに接続される。そして、太陽電池アレイが発生する直流電力を交流電力に変換し、一般の交流負荷または商用電力系統に供給する。
一般に、太陽電池の出力電力特性である出力電流と電圧の関係は非線形であり、定電圧でも定電流でもない。この特性は、太陽からの日射強度、太陽電池のセル温度および入射光スペクトルといった環境の条件の変化に応じて絶えず変動する。このため、太陽電池は電源としての取り扱いが容易でない。
パワーコンディショナは、太陽電池の能力を常に最大限発揮させるために、最大出力点追尾(Maximum Power Point Tracking:MPPT)機能を備えている。MPPT装置は、太陽電池アレイから入力する電流および電圧を検出しながら自らの負荷特性を絶えず変化させ、太陽電池アレイのその時点の環境下における最大出力電力を取出そうとするものである。MPPT装置を経た電力はインバータに入力され、一般の交流負荷や商用電力系統に対し供給可能な形式に変換される。
パワーコンディショナには、上述のMPPT装置やインバータによる電力変換部の他に、パワーコントローラ内の、MPPT装置およびインバータや系統連系装置を各種監視する装置および制御装置を制御するための制御回路も備えられている。制御回路には、この制御回路自体を駆動する電力を得るための電源回路を備えており、電源回路への入力電力は、太陽電池アレイから入力する電力の一部が割り当てられている。
すなわち、太陽電池アレイから入力する電力は、電力変換部を経て交流負荷に供給されるものと、制御回路が備える電源回路を経て制御回路に供給されるものと、に分かれる。
太陽光発電システムで用いられるパワーコンディショナは、定格で使用したときに最も効率良く動作するように設計され、制御用電力も定格電圧での消費電力が最小になるよう考慮される。つまり、制御回路が消費する電力も、通常、太陽電池アレイから入力する電圧がパワーコントローラの定格値であるとき最小となるように設定されている。そして、太陽光発電システムの設計においては、太陽電池アレイを構成する太陽電池モジュールの配列は、パワーコントローラの定格運転時の特性を考慮して決定される。
特開2003−142704号公報 「太陽光発電」浜川, シーエムシー, p.202, (2000)
このような太陽光発電システムの設計において電力を見積もる場合には、太陽電池アレイの特性の実測値や理論値から、所定の環境条件における最大電力を求め、この変数にパワーコントローラの変換効率を乗じるなどして結果を求める。
しかしながら、太陽電池の最適動作電圧は、日射強度やセル温度など環境条件の変化に応じて絶えず変化するものであり、太陽電池アレイは、定格電圧とは異なる電圧で動作する場合も多い。実際の太陽光発電システムにおいては、太陽電池アレイの電流−電圧特性(以下、I−V特性とも言う)または電力−電圧特性(以下、P−V特性とも言う)とMPPT装置の入力部に対して設定される電流−電圧特性との間に制御回路の消費電力による差異が生じるため、特に定格電圧とは異なる電圧で動作する場合には、太陽電池アレイが最大電力を発生する電圧とパワーコンディショナの最大出力点追尾により設定される電圧との間に差異が生じ、太陽電池の発電出力は、最大能力の出力より低くなる。これを不整合という。
このため、実際の太陽光発電システムにおいて、太陽電池の発電能力が最大限に発揮されないため、正確な出力を評価できず、原因不明な出力低下が生じたりといったおそれがあった。
本発明は、太陽電池の電力特性と、パワーコンディショナの制御回路の電力特性による不整合が、太陽光発電システムの発電効率の見積に影響を与えるという知見に基づき、不整合を考慮した太陽光発電システムの動作出力をより正確に求め、システムの出力積算量を正確に評価する方法を提供するものである。
また、この太陽電池アレイとパワーコンディショナとの不整合を考慮した出力見積方法を用いて、太陽電池の年間発電能力の低下を最小に抑える最適なアレイ電圧、つまりモジュールの組合せを決定する設計方法を提供することを目的とする。
(1) 複数の太陽電池モジュールを備える太陽電池アレイと、前記太陽電池アレイからの電力を変換する電力変換部および当該電力変換部を制御する制御回路を備えるパワーコンディショナと、を有する太陽光発電システムの電力見積方法であって、太陽電池アレイの環境条件ごとに設定されるアレイ出力電力−電圧特性データの電力値から、前記制御回路の消費電力特性である制御回路電力−電圧特性データの電力値を差し引くことにより、前記電力変換部の入力点での電力変換部入力電力−電圧特性データを求める手順と、前記電力変換部入力電力−電圧特性データから電力変換部最大電力値を求める手順と、を有する太陽光発電システムの電力見積方法。
(2) (1)記載の太陽光発電システムの電力見積方法であって、前記環境条件を仮想的な時間の進行とともに想定させながら、前記電力変換部入力電力−電圧特性データを求める手順、および、前記電力変換部最大電力値を求める手順を繰り返す手順と、前記電力変換部最大電力値の累積値を求める手順と、を有する太陽光発電システムの電力見積方法。
(3) 前記制御回路電力−電圧特性は制御回路電圧の自乗項を含む近似式に基づいて算出されることを特徴とする(2)記載の太陽光発電システムの電力見積方法。
(4) (2)または(3)記載の電力見積方法を含む太陽光発電システムの設計支援方法であって、前記アレイ出力電力−電圧特性データは、さらに前記太陽電池モジュールの複数の直並列組合せごとに設定され、当該接続組合せのそれぞれについて、請求項2または3記載の電力見積方法により電力変換部最大電力値の累積値を求める手順と、前記接続組合せのうち電力変換部最大電力値の累積値が最大となる直並列数を求める手順を有する太陽光発電システム設計支援方法。
(5) 複数の太陽電池モジュールを備える太陽電池アレイと、前記太陽電池アレイからの電力を変換する電力変換部および当該電力変換部を制御する制御回路を備えるパワーコンディショナと、を有する太陽光発電システムの電力見積プログラムであって、太陽電池アレイの環境条件ごとに設定されるアレイ出力電力−電圧特性データの電力値から、前記制御回路の消費電力特性である制御回路電力−電圧特性データの電力値を差し引いて前記電力変換部の入力点での電力変換部入力電力−電圧特性データを求める手順と、前記電力変換部入力電力−電圧特性データから電力変換部最大電力値を求める手順と、をコンピュータに実行させるための電力見積プログラム。
(6) (5)記載の太陽光発電システムの電力見積プログラムであって、前記環境条件を仮想的な時間の進行とともに想定させながら、前記電力変換部入力電力−電圧特性データを求める手順、および、前記電力変換部最大電力値を求める手順を繰り返す手順と、前記電力変換部最大電力値の累積値を求める手順と、をコンピュータに実行させるための電力見積プログラム。
(7) 前記制御回路電力−電圧特性は制御回路電圧の自乗項を含む近似式に基づいて算出されることを特徴とする(6)記載の太陽光発電システムの電力見積プログラム。
(8) (6)または(7)記載の電力見積プログラムを含む太陽光発電システムの設計支援プログラムであって、前記アレイ出力電力−電圧特性データは、さらに前記太陽電池モジュールの複数の直並列組合せごとに設定され、当該複数の直並列組合せのそれぞれについて、前記電力見積プログラムにより電力変換部最大電力値の累積値を求める手順と、前記複数の組合せのうち電力変換部最大電力値の累積値が最大となる直並列数を求める手順と、をコンピュータに実行させるための太陽光発電システム設計支援プログラム。
(1)または(5)の発明によれば、アレイ出力電力−電圧特性データの電力値から、制御回路の消費電力値を差し引いて求めた特性のデータにより電力変換部の入力点における電力変換部最大電力値を求めるため、制御回路の消費電力特性が考慮されることとなる。したがって、より実際のシステムの特性に近い、制御回路の消費電力を考慮した上での正確な最大電力値を求めることができる。なお、環境条件は、例えば、環境条件データとして用いることができる。
(2)または(6)の発明によれば、仮想的な時間の進行とともに時間ごとに想定された環境条件も変化するが、この時々での電力変換部最大電力値を求め、その累積値を得るため、特定期間のシミュレーション結果として積算電力を得ることができる。ここで仮想的な時間とは、それぞれの値を計算するにあたり設定される仮の時間であり、いわゆるシミュレーション時間である。本発明により、より正確な積算電力を得ることができる。
(3)または(7)の発明によれば、制御回路電力−電圧特性は制御回路電圧による単純な式に基づいて計算される。したがって、単純な式を用いて計算の負担を低減することができる。
(4)または(8)の発明によれば、太陽電池モジュールの複数の直並列組合せごと電力変換部最大電力値を求め、このうち最大値を得る接続組合せを求める。このため、制御回路の消費電力による不整合を考慮した上で、太陽電池アレイを構成する太陽電池モジュールの最適な直並列組合せを得ることができる。
本発明により、太陽光発電システムの出力電力を見積もる精度が向上し、システムに対する信頼性を向上させることができる。つまり、原因不明な出力低下を抑えることができる。また、不整合による出力低下を最小にするアレイ動作電圧および直並列モジュール数を定めることが可能となる。
[見積対象のシステムの構成]
図1は、本発明に係る方法の対象となる太陽光発電システムの構成の例を示す。太陽光発電システム11は、太陽電池アレイ13およびこの太陽電池アレイ13が接続されるパワーコンディショナ15から構成されている。太陽光発電システム11には、発電した電力により駆動される負荷31が接続されている。
太陽電池アレイ13は、複数の太陽電池ストリングが並列に接続されたもので構成され、この太陽電池ストリングは複数枚の太陽電池モジュールが直列に接続されたものである。パワーコンディショナ15は、太陽電池アレイ13に接続される逆流防止用のダイオード17と、ダイオード17の他端側に接続され負荷31へ供給する電力の変換を行うための電力変換回路19と、この電力変換回路19の制御を行うための制御回路21とを備える。ここで、制御回路21には、電力変換回路19を直接に制御する回路以外にも、一般の商用交流系統の状態を監視する回路、蓄電池を備えるシステムにおいては蓄電池の状態を監視する回路、ユーザの操作部やそのインターフェースのための回路も含む。電力変換回路19は、太陽電池アレイ13が置かれる環境の変化に応じて変化する入力電圧を一定の値に変換しつつ、入力される電流および電圧を監視しながら入力電力が常に最大となるよう入力インピーダンスを変動するための、DC−DCコンバータからなるMPPT装置23と、この出力電力を一般の商用交流に変換し、負荷31に供給するためのDC−ACインバータ25とを備える。なお、図1に示す太陽光発電システム11において、太陽電池アレイ13の出力点をIV1、ダイオード17の出力点をIV2、電力変換回路19の入力点をIV3、電力変換回路19の出力点をAC4、としている。
次に、上述の例の太陽光発電システム11を対象とする、本発明の第1実施形態である電力の見積方法について説明する。
[パワーコンディショナの制御部電力特性]
まず、パワーコンディショナ15の制御回路21での消費電力の特性である、制御回路電力−電圧特性を設定する。一般的な制御回路21の消費電力は、パワーコンディショナ15の入力の標準的な定格電圧において最小となるように設計され、消費電力は、入力電圧が定格電圧から外れて大きくなっても、逆に小さくなっても増加する。ここで、制御回路21の消費電力Pctrl(V)を、式(1)に示すように入力電圧Vすなわち制御回路電圧の自乗の項を有する近似式として設定する。
Figure 2005252172
ここでVは、電力変換回路19の入力点IV3における電圧である。なお、ダイオード17の順方向電圧は、常にほぼ一定であり、パワーコンディショナ15の定格電圧に比較して非常に低い。このため、ダイオード17の順方向電圧は無視し、IV1における電圧、IV2における電圧に等しく電圧Vであるとする。また制御回路21は電力変換回路19に並列接続されており、IV2における電圧は、IV3における電圧に等しく、これも電圧Vであるとした。
図2は、制御回路21の消費電力を示す上式に、パワーコンディショナ15の特性の例として、VR=300V、PC0=30Wと設定した場合の制御回路電力−電圧特性を示すグラフである。ここで、パワーコンディショナ15の内部の制御用電力は、電圧Vが定格電圧300Vのとき最小値(PC0)となる。なお、式(1)に示される制御回路21の消費する電力の特性は、入力部IV1点(図1)から、MPPT装置の最大出力点検索用電流、電圧計測点である電力変換回路19の入力点IV3(図1)に至るまでに失う電力の特性ということができる。
[パワーコンディショナのMPPT入力電力特性]
次に、上述した制御回路21の消費電力の特性、および、太陽電池アレイ13の出力特性から、電力変換回路19の入力点IV3における電力−電圧特性を次式により求める。
Figure 2005252172
このように、アレイ出力電力−電圧特性データの電力値から、前記制御回路の消費電力特性である制御回路電力−電圧特性データのそれぞれ等しい電圧値における電力値を差し引いて電力変換部入力電力−電圧特性データを求める。
図3は、上式により求められるPdyc(V)の例を示す。ここで、出力電力−電圧特性Pstc(V)は、太陽電池アレイ13の出力の特性であり、本来は、太陽電池アレイ13を電子負荷装置内蔵のカーブトレーサといった測定器に単独で接続して実測したデータにより得られるものである。なお、出力電力−電圧特性Pstc(V)は、太陽電池アレイ13を構成する太陽電池モジュールの個数および直並列の組合せ数によって異なるものである。この出力電力−電圧特性は、また、環境条件(日射強度、セル温度、入射光スペクトル)ごとに異なるものであり、後に説明する見積方法や設計支援の方法では、太陽電池セルの等価回路モデルに、環境因子を示す環境条件データを適用することによって計算により求める。ただし、環境条件ごとに出力電力−電圧特性の実測値を記憶しておき、必要に応じて環境条件データに対応して読み出されるものでもよい。
図3のグラフに示すPstc(V)は、特定の環境条件および太陽電池モジュール構成の例である。この例において、太陽電池アレイ13の最大出力電力は約10kWの容量を想定し、この最大出力電力を発生する電圧VをVpmaxとする。
図3の例で設定した環境条件においては、最大出力電力を発生する電圧Vpmaxがパワーコンディショナの定格電圧に等しい。このため、Pdyc(V)の最大値を得る電圧もVpmaxとなっている。実際の太陽光発電システム11のMPPT装置23は、電力変換回路19の入力電圧がPdyc(V)の最大値を得る電圧Vopとなるように入力インピーダンスを調節する。したがって、図3に示す特性の場合、MPPT装置23は、太陽電池アレイ13が最大電力を発生する電圧に設定し、電力変換回路19を作動させるため、不整合の問題は生じていない。
図4は、太陽電池アレイ13の置かれた環境条件が図3と比べ変化した場合の特性の例を示す。この例では、Pstc(V)の最大値を得る電圧Vが定格電圧よりも低くなっている。しかし、制御回路21の消費電力特性Pctrl(V)は環境条件の変動に拘わらない。したがって、上式(2)により、求めるPdyc(V)の最大値を得る電圧VopはVpmaxと異なる。このように、MPPT装置23による設定されるVopと太陽電池アレイ13の最大出力電圧Vpmaxとのずれにより不整合が生じる。
図5は、太陽電池アレイ13の置かれた環境条件が同様に変化し、図4に示す例とは逆に、Pstc(V)の最大値を得る電圧Vが定格電圧よりも高くなっている例を示す。この場合にも、Pdyc(V)の最大値を得る電圧VopはVpmaxと異なり、VopとVpmaxとのずれにより不整合が生じる。なお、図4または図5の例では、V=Vopのとき、IV3での出力Pdyc(Vop)は最大となり、これが、パワーコンディショナ15の電力変換部19の入力点での電力変換部入力電力−電圧特性となる。
また、太陽光発電システム11の全体の電力を評価するため、電圧Vopにおける太陽電池アレイの出力電力Pstc(Vop)を求めておく。
実際の太陽光発電システムがおかれる環境条件は、時刻の経過とともに変化する。電力見積では、見積を行う設定期間(例えば、1年間)の各時刻ごとに、理論値や気象記録データや理論値に基づいて環境条件を変更しながら、この環境条件での出力特性Pstc(V)を設定して出力Pdyc(Vop)を求め、この累計値を設定期間の積算電力とする。
不整合を生じなかったとした場合の太陽電池アレイ13の出力はPstc(Vpmax)であり、この積算量も比較基準として求めておく。このPstc(Vpmax)に対するPstc(Vop)の積算量の差が、不整合による年間の発電能力低下分となる。
[システム全体の出力電力特性]
電力Pdyc(Vop)は、電力変換回路19に入力され、交流出力としてAC4に出力される。電力変換回路19での、入力電流、電圧に対する出力の変換効率特性は下式により求められる。
Figure 2005252172
このようにして、最終的なシステムの交流出力を求める。なお、上式の特性は、実際のパワーコンディショナ15における電力変換部特性の実測値データに基づいて設定されるが、電力変換部の回路から近似式の形で論理値として設定するものであってもよい。
例えば、太陽光発電システムの年間の発電量は、各時刻ごとに環境条件を変更しながら、出力Pdyc(Vop)を求め、このときのVop、opから、上式により求めることができる。
[積算電力量見積方法および設計支援方法]
次に、図6を参照しながら、上述の方法を利用した、本発明の第2実施形態である太陽光発電システムの設計支援方法について説明する。上述の計算法で、太陽電池アレイ13の電流、電圧比を変えて再び計算を行うことで、太陽電池の発電能力の低下を抑える最適なアレイ電圧および直列モジュール数を決定することができる。
図6は、データフローを考慮した、太陽光発電システムの設計方法の手順を示す計算流れ図(フローチャート)である。
太陽電池アレイ13の構成および想定される設置環境により、日射強度およびセル温度などの環境因子が決まり、その環境因子から、ある直並列モジュール数の太陽電池アレイ13のI−V特性およびP−V特性が定められる。これを基に、パワーコンディショナ15における不整合を考慮した動作出力を求め、DC−ACインバータの電力変換効率から交流出力を求める。これより、年間の出力積算量が算出される(図6のST4)。なお、太陽電池アレイ13のP−V特性であるPstc(V)は、太陽電池セルの等価回路モデルに、環境因子を示す環境条件データを適用して計算により求める。あるいは、環境条件ごとの出力電力−電圧特性の実測値等を記憶しておき、環境条件データに対応する出力電力−電圧特性Pstc(V)を読み出すことによりもとめるものでもよい。
この出力積算量をPstc0とする。次に、太陽電池アレイ13を構成する太陽電池ストリングの直列モジュール数を変えて、最適動作電圧を設定し年間の出力積算量を求める。例えば、直列モジュール数を1個増加した場合の出力積算量はPstc+1、1個減少した場合はPstc−1とする。このようにして、複数種類の直列モジュール数について出力積算量を求め、その中で値が最大となる直列モジュール数を決定する。なお、太陽電池アレイ13を構成できるモジュールの総数は、パワーコンディショナ15の定格容量から制約されているため、アレイの直列モジュール数を変えたときは、並列モジュール数も調整する。
それぞれのステップを具体的に説明する。まず、システムの太陽電池アレイ13を構成する太陽電池モジュールの直並列数、すなわち直並列組合せを一つ定め、このモジュール組合せにおけるアレイのI−V特性を基に、設置環境の影響を受けたI−V特性Pstc(V)を求める(図6のST1)。ここで求められたI−V特性の電力は、パワーコンディショナ15に入力される電力の特性となる。次に、式(1)および式(2)の計算により、パワーコンディショナ15の制御回路21での消費電力特性を考慮した、上述のPdyc(V)によるP−V特性を求める(図6のST2)。
続いて、Pdyc(V)が最大となる電圧Vを、パワーコンディショナ15のMPPT装置23が動作する電圧Vopとして計算し、このときのMPPT装置23の入力電力すなわち電力変換部の入力電力Pdyc(Vop)および出力電力Pacを計算する(ST3)。また、MPPT装置23が動作する電圧Vopにおける。太陽電池アレイ13の出力電力Pstc(Vop)、および、パワーコンディショナ15の制御回路21の電力を考慮しない場合の最大出力電力Pstc(Vpmax)も計算しておく。
なお、図6のST3またはST4での計算値を、IV1またはAC4(図1)における実測値と比較することにより、計算による評価の精度を確認することができる。
図6の計算流れ図のST1での特性は、同じ設置環境下における太陽電池アレイ13のI−V特性実測値を利用することもできる。つまり、特性の同じ太陽電池アレイ13をもう一組用意し、同様の環境に設定する。そして、そのI−V特性をI−Vカーブトレーサ(I−V特性計測装置)により測定する。この場合のセル温度は、発電していない分若干高いので、パワーコンディショナ使用時のセル温度に補正しておく。
なお、このI−V特性をST1に当てはめ、計算値のST3’またはST4を実測値IV1かAC4(図1)と比較することにより、評価法の精度を確認することができる。
ST5のステップで、太陽電池アレイ13を構成する太陽電池モジュールの組合せを変更して、最適動作電流、電圧の比率を変え、再びST1〜ST4の計算を行う。このようにして、設置環境による影響を考慮した年間の不整合による出力低下量が最小となる、つまり発電量が最大となる、最適動作電流、電圧の値が求められる。これより、太陽電池アレイ13の最適なモジュール直並列数比が定まり、その比でシステムを構成したときの出力の計測値と実測値と比較する。計算値が実測値に等しければ、評価法の精度が確認される。この方法により、太陽電池を実際に屋外環境下で使用したときに、変化するI−V特性に対して生じる、パワーコンディショナ15における不整合を、年間で定量的に評価することができる。また、不整合による太陽電池の発電能力低下を評価することができる。
[太陽光発電システムの電力見積プログラム、設計支援プログラム、設計支援装置]
次に、上述の方法を実現するための第3実施形態である太陽光発電システムの電力見積プログラム、太陽光発電システムの設計支援プログラム、およびこれらのプログラムを実行する装置(以下、設計支援装置)について、図7から9を参照しながら説明する。
図7は、本実施形態に係る設計支援装置40の概略構成図を示す。設計支援装置40は、例えばパーソナルコンピュータやワークステーションといったコンピュータであり、データやプログラムを記憶するための記憶装置43、演算や他の装置の制御を行うための制御装置45、ユーザの操作によりデータを入力するための入力装置47、およびユーザに対して演算結果を示すための表示装置49を主要部として備える。これらの装置は、バスにより接続されている。
記憶装置43は、例えば、RAMやROMといった半導体メモリ、ハードディスク、フレキシブルディスク、または光磁気ディスクといった記憶媒体および装置、もしくは、これらの組合せからなる。また、記憶装置43には、記憶されたデータを読み出すだけのCD−ROMといった光ディスクも含む。記憶装置43には、制御装置45が実行するコンピュータプログラムの他、各種データが記憶される。
制御装置45は、例えば、中央演算装置(CPU)からなり、コンピュータプログラムに従って、データの演算、記憶装置43が記憶するデータの読み書き、他の装置に対する制御、およびデータの入力を行う。設計支援装置40の各種計算や探索の処理は、制御装置45が、記憶装置43に記憶されたプログラムに従って記憶装置43からデータを読み出し、データの演算を行い、演算の結果を記憶装置43に書き込み、または表示装置に表すことにより実行される。
入力装置47は、例えば、キーボードやマウスからなる。表示装置49は、例えば液晶ディスプレイやCRTディスプレイおよびこれらに接続する表示制御回路からなる。
[データ]
記憶装置43に記憶されているデータには、例えば以下のものがある。環境条件データは、特定の場所に設置される太陽電池アレイ13が置かれる環境条件を、例えば1時間ごとに1年分というように所定の期間に渡り記録したデータである。例えば、新エネルギー・産業技術総合開発機構(NEDO)により、METPVといった太陽光発電の環境についてのデータが提供されている。太陽電池アレイ13が置かれる環境条件のうち、発電電力に影響を与えるものとしては、日射強度、セル温度、入射光スペクトルがあり、これらは、実際の環境では日によって異なり、1日の中では時々刻々と変化するものである。環境条件データは、該当する地域での実測や過去の気象記録から求められている。見積に用いる際の環境条件データの形式としては、日射強度、セル温度、入射光スペクトルの環境条件を統合した条件変数として持つものであってもよい。
太陽電池アレイ特性データは、太陽電池アレイ13の出力電力−電圧特性のデータである。出力電力−電圧特性は、太陽電池を構成する最小単位である太陽電池セルの等価回路モデルに環境条件を適用して、計算により求めることができる。なお、この特性データは、各環境条件での太陽電池アレイ13の実測値を記録したものであってもよい。また、出力電力−電圧特性は太陽電池モジュールの直並列組合せによっても異なるため、太陽電池モジュール単体のデータを設定し、太陽電池アレイ13の特性が、太陽電池モジュールの組合せに応じて計算により求められる。
シミュレーション時刻データは、特定の期間における電力量のデータを計算する際に、特定の期間(例えば1年)でのシミュレーション上の仮想的な時間の経過(例えば何月何日の何時)に対する環境因子(日射強度、セル温度、入射光スペクトル)を示すデータである。
[処理]
図8は、図1に示す太陽光発電システム11の、制御回路21での消費電力の特性を考慮した、電力見積プログラムの処理を示すフローチャートである。以下に、制御装置45が、プログラムに従って実行する処理を説明する。
ステップST11で、制御装置45は、処理に必要なデータの初期化を行う。具体的には、記憶装置43に記憶された、シミュレーション時刻データ、積算電力データの値を初期値に設定する。この後、ステップST12の処理に移る。
ステップST12で、制御装置45は、設定されたシミュレーション時刻における、太陽電池アレイ13の環境条件を設定する。具体的には、シミュレーション時刻に該当する環境条件データを記憶装置43から読み出す。この後、ステップST13で、制御装置45は、太陽電池アレイ13の特性の設定処理を行う。具体的には、太陽電池セルの等価回路モデルに、ステップST12で読み出した環境条件データを適用して、シミュレーション時刻の環境における出力電力−電圧特性Pstc(V)を計算により求める。なお、設計支援装置40の記憶装置43に環境条件ごとの出力電力−電圧特性の実測値等が記憶されている構成として、制御装置45は本ステップにおいて、上述の計算を行わずステップST12で読み出した環境条件データに対応する出力電力−電圧特性Pstc(V)を記憶装置43から読み出すものとしてもよい。この後、ステップST14で、制御装置45は、最大電力および電圧探索の処理を行う。具体的には、ステップST13で読み出した太陽電池アレイ特性データの中から、電力の最大値を探索し、この最大電力に対応する電圧を求める。この電圧をVpmaxとし、最大電力値をPstc(Vpmax)とする。この後、ステップST15の処理に移る。
ステップST15で、制御装置45は、制御回路21の消費電力を差し引く処理を行う。具体的には、式(1)により求めた電圧に対する消費電力Pctrl(V)を、ステップST13で読み出した太陽電池アレイ特性データの同じ電圧における電力値Pstc(V)から引く(式(2))。この処理により、制御回路21の消費電力を考慮した、電力変換部の入力点(図1のIV3)での特性データPdyc(V)が求められる。この特性データPdyc(V)は、すなわち電力変換部に入力される電力についての電力変換部入力電力−電圧特性データである。この後、ステップST16で、制御装置45は、最大電力および電圧探索の処理を行う。具体的には、ステップST15で求めた特性データの中から、電力の最大値を探索し、最大電力値に対応する電圧を求める。この電圧をVopとし、最大電力値をPdyc(Vop)とし、式(3)を用いてPacを求める。また、Vopに対応する太陽電池アレイ特性データの電力値を求めPstc(Vop)とする。この後、ステップST17で、制御装置45は、電力の加算の処理を行う。具体的には、先のステップで求めたPstc(Vpmax)、Pdyc(Vop)およびPstc(Vop)を、記憶装置43に配置されたそれぞれの累積データに加算する。この後、ステップST18の処理に移る。
ステップST18で、制御装置45は、シミュレーション時刻の進行の処理を行う。具体的には、シミュレーション時刻データを加算する。この後、ステップST19で、制御装置45は、シミュレーションが1年分の時刻を経過したか否か判別する処理を行う。シミュレーションを1年分行ったと判別した場合には、ステップST20の処理に移り、まだ、1年分行っていないと判別した場合には、ステップST12からの処理を繰り返す。このように、シミュレーション時間を1年分繰り返すことにより、1年間の積算電力量を求めることができる。
ステップST20で、制御装置45は、積算電力、積算電力差の記憶処理を行う。具体的には、ステップST12からステップST20で求めたPstc(Vpmax)、Pdyc(Vop)、Pstc(Vop)およびPacの累積データを、積算電力の結果データとして記憶装置43に書き込み、また、Pstc(Vpmax)の累積データとPstc(Vop)の累積データとの差を積算電力差として書き込む。この後、電力見積プログラムの処理を終了する。
図9は、図8の電力見積の処理を利用した、太陽光発電システムの設計支援プログラムの処理を示すフローチャートである。以下に、制御装置45が、プログラムに従って実行する処理を説明する。
ステップST31で、制御装置45は、処理に必要なデータの初期化を行う。具体的には、記憶装置43に記憶された、モジュール組合せデータの値を初期値に設定する。この後、ステップST32の処理に移る。
ステップST32で、制御装置45は、図8に示す電力見積の処理を行う。この処理により、太陽電池モジュールのある特定の組合せによる太陽電池アレイ13における、1年間の出力電力すなわち積算電力、不整合による積算電力差を求めることができる。この後、ステップST33で、制御装置45は、モジュールの組合せ変更の処理を行う。具体的には、見積の対象となる太陽電池アレイ13において直列接続する太陽電池モジュール数データの値を変更する。また、これに合わせて太陽電池モジュールを直列接続した太陽電池ストリングの並列接続数を調節する。この後、ステップST34の処理に移る。
ステップST34で、制御装置45は、すべての組合せを見積もったか否か判別する処理を行う。太陽電池アレイ13を構成する太陽電池モジュールの総数は、パワーコンディショナが許容できる電力の範囲にある必要がある。また、太陽電池モジュールの直列接続数もパワーコンディショナが許容できる電圧の範囲に収める必要がある。したがって、ステップST33において行った組合せ変更により、これらの範囲において可能な太陽電池モジュールの組合せをすべて見積もったか否か判別する。本ステップで、すべての可能な組合せをすべて見積もっていないと判別した場合には、ステップST32からの処理を繰り返し、まだ、見積もったと判別した場合には、ステップST35の処理に移る。このように、すべての組合せを見積もるまで処理を繰り返すことにより、太陽電池モジュールの可能な組合せのそれぞれについて、電力の見積を求めることができる。
ステップST35で、制御装置45は、出力電力が最大となる組合せの探索の処理を行う。具体的には、ステップST32からST34までの処理によって求めた出力電力のうち、最大の出力電力と、この最大値を得る太陽電池モジュールの組合せを探索する。この後、処理を終了する。
従来は、定格における太陽電池アレイの最適動作電圧を、どのような値に設定すれば、不整合による年間の発電能力低下量が最小に抑えられるか、つまりモジュール直列数をどの位にすれば、年間発電能力を高く機能させることができるか不明であったが、上述の支援プログラムおよび設計支援装置によって、制御回路の電力特性を考慮した、太陽光発電システムの年間発電量の見積を行い、最大の発電量を得る太陽電池モジュールの直並列組合せを得ることができる。つまり、パワーコントローラに対し、最適な太陽電池モジュールの直並列組合せを持つ太陽電池アレイ13を示し、太陽光発電システムの設計支援がなされる。
なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
本実施形態においては、太陽電池を用いた太陽光発電システムを対象とする見積方法や設計支援方法およびプログラムを説明したが、本発明の対象となるものはこれに限らない。すなわち本発明は、太陽電池のほか風力発電機といった、エネルギー源のエネルギー発生量の制御が受動的となる受動型発電装置を用いた受動型発電システムに広く適用可能である。すなわち、これらの受動型発電装置は、例えば火力発電のようにエネルギー源のエネルギー発生量を能動的に制御するといったことが困難であり、発電装置に与えられるエネルギー源の状態に応じてパワーコントローラのインピーダンスを動的に適応する必要がある。図10には、太陽電池と別の受動型発電装置の例としての風力発電装置における出力電力−電圧特性の例を示す。このような受動型発電システムにおいては、接続されるパワーコンディショナ内の制御回路の電力特性を考慮することにより、より正確な発電量の見積が行える。つまり、本発明の見積方法や設計支援方法およびプログラムが適用することができる。
また、燃料電池でも、自動車や一般家庭用途のようにダイナミックに変動する負荷に電力を供給することを想定した場合には、エネルギーの発生量を変化させる必要が生じる(例えば、電気学会・燃料電池発電次世代システム技術調査専門委員会編「燃料電池の技術」p.70−71、オーム社)。このように出力電力−電圧特性が、エネルギー源の負荷に対する状態によって変化する点では、太陽光発電システムや風力発電システムと同様であり、制御回路の電力特性を考慮することにより、より正確な発電量の見積が行える。したがって、本発明の見積方法や設計支援方法およびプログラムを適用することができる。
電力見積方法において想定される、太陽光発電システムのブロック図である。 太陽光発電システムの制御回路の消費電力特性の例を示すグラフである。 太陽光発電システムの電力変換回路の入力点での電力−電圧特性の例を示すグラフである。 太陽光発電システムのアレイ最大出力時の電圧が、定格値よりも小さい場合における電力変換回路の入力点の電力−電圧特性の例を示すグラフである。 太陽光発電システムのアレイ最大出力時の電圧が、定格値よりも大きい場合における電力変換回路の入力点の電力−電圧特性の例を示すグラフである。 太陽光発電システムの設計支援方法の手順を示すフローチャートである。 太陽光発電システムの設計支援装置の構成を示すブロック図である。 太陽光発電システムの電力見積プログラムの処理を示すフローチャートである。 太陽光発電システムの設計支援プログラムの処理を示すフローチャートである。 風力発電装置の出力電力−電圧特性の例を示すグラフである。
符号の説明
11 太陽光発電システム
13 太陽電池アレイ
15 パワーコンディショナ
17 ダイオード
19 電力変換回路
21 制御回路
23 MPPT装置
25 DC−ACインバータ
31 負荷
40 設計支援装置
43 記憶装置
45 制御装置
47 入力装置
49 表示装置

Claims (8)

  1. 複数の太陽電池モジュールを備える太陽電池アレイと、前記太陽電池アレイからの電力を変換する電力変換部および当該電力変換部を制御する制御回路を備えるパワーコンディショナと、を有する太陽光発電システムの電力見積方法であって、
    太陽電池アレイの環境条件ごとに設定されるアレイ出力電力−電圧特性データの電力値から、前記制御回路の消費電力特性である制御回路電力−電圧特性データの電力値を差し引くことにより、前記電力変換部の入力点での電力変換部入力電力−電圧特性データを求める手順と、
    前記電力変換部入力電力−電圧特性データから電力変換部最大電力値を求める手順と、を有する太陽光発電システムの電力見積方法。
  2. 請求項1記載の太陽光発電システムの電力見積方法であって、
    前記環境条件を仮想的な時間の進行とともに想定させながら、
    前記電力変換部入力電力−電圧特性データを求める手順、および、前記電力変換部最大電力値を求める手順を繰り返す手順と、
    前記電力変換部最大電力値の累積値を求める手順と、を有する太陽光発電システムの電力見積方法。
  3. 前記制御回路電力−電圧特性は制御回路電圧の自乗項を含む近似式に基づいて算出されることを特徴とする請求項2記載の太陽光発電システムの電力見積方法。
  4. 請求項2または3記載の電力見積方法を含む太陽光発電システムの設計支援方法であって、
    前記アレイ出力電力−電圧特性データは、さらに前記太陽電池モジュールの複数の直並列組合せごとに設定され、
    当該接続組合せのそれぞれについて、請求項2または3記載の電力見積方法により電力変換部最大電力値の累積値を求める手順と、
    前記接続組合せのうち電力変換部最大電力値の累積値が最大となる直並列数を求める手順を有する太陽光発電システム設計支援方法。
  5. 複数の太陽電池モジュールを備える太陽電池アレイと、前記太陽電池アレイからの電力を変換する電力変換部および当該電力変換部を制御する制御回路を備えるパワーコンディショナと、を有する太陽光発電システムの電力見積プログラムであって、
    太陽電池アレイの環境条件ごとに設定されるアレイ出力電力−電圧特性データの電力値から、前記制御回路の消費電力特性である制御回路電力−電圧特性データの電力値を差し引いて前記電力変換部の入力点での電力変換部入力電力−電圧特性データを求める手順と、
    前記電力変換部入力電力−電圧特性データから電力変換部最大電力値を求める手順と、をコンピュータに実行させるための電力見積プログラム。
  6. 請求項5記載の太陽光発電システムの電力見積プログラムであって、
    前記環境条件を仮想的な時間の進行とともに想定させながら、
    前記電力変換部入力電力−電圧特性データを求める手順、および、前記電力変換部最大電力値を求める手順を繰り返す手順と、
    前記電力変換部最大電力値の累積値を求める手順と、をコンピュータに実行させるための電力見積プログラム。
  7. 前記制御回路電力−電圧特性は制御回路電圧の自乗項を含む近似式に基づいて算出されることを特徴とする請求項6記載の太陽光発電システムの電力見積プログラム。
  8. 請求項6または7記載の電力見積プログラムを含む太陽光発電システムの設計支援プログラムであって、
    前記アレイ出力電力−電圧特性データは、さらに前記太陽電池モジュールの複数の直並列組合せごとに設定され、
    当該複数の直並列組合せのそれぞれについて、前記電力見積プログラムにより電力変換部最大電力値の累積値を求める手順と、
    前記複数の組合せのうち電力変換部最大電力値の累積値が最大となる直並列数を求める手順と、をコンピュータに実行させるための太陽光発電システム設計支援プログラム。
JP2004064122A 2004-03-08 2004-03-08 太陽光発電システムの電力見積方法、設計支援方法およびプログラム Withdrawn JP2005252172A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064122A JP2005252172A (ja) 2004-03-08 2004-03-08 太陽光発電システムの電力見積方法、設計支援方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064122A JP2005252172A (ja) 2004-03-08 2004-03-08 太陽光発電システムの電力見積方法、設計支援方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2005252172A true JP2005252172A (ja) 2005-09-15

Family

ID=35032341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064122A Withdrawn JP2005252172A (ja) 2004-03-08 2004-03-08 太陽光発電システムの電力見積方法、設計支援方法およびプログラム

Country Status (1)

Country Link
JP (1) JP2005252172A (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133765A (ja) * 2005-11-11 2007-05-31 Sharp Corp インバータ装置
WO2010098976A2 (en) * 2009-02-25 2010-09-02 Solfocus, Inc. Field level inverter controller
WO2010121211A2 (en) * 2009-04-17 2010-10-21 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
US7962249B1 (en) 2008-05-14 2011-06-14 National Semiconductor Corporation Method and system for providing central control in an energy generating system
US7969133B2 (en) 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US7991511B2 (en) 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
KR101065862B1 (ko) 2010-12-08 2011-09-20 주식회사 다인산전 태양전지 어레이의 부분 음영 판단에 따른 태양광 발전 시스템의 최대전력 추정방법
US8076625B2 (en) 2009-02-25 2011-12-13 Solfocus, Inc. Field level tracker controller
US8139382B2 (en) 2008-05-14 2012-03-20 National Semiconductor Corporation System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
US8279644B2 (en) 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
JP2012195495A (ja) * 2011-03-17 2012-10-11 Toshiba Corp 異常診断装置およびその方法、コンピュータプログラム
US8289183B1 (en) 2008-04-25 2012-10-16 Texas Instruments Incorporated System and method for solar panel array analysis
US8294451B2 (en) 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
US8421400B1 (en) 2009-10-30 2013-04-16 National Semiconductor Corporation Solar-powered battery charger and related system and method
US8686332B2 (en) 2011-03-07 2014-04-01 National Semiconductor Corporation Optically-controlled shunt circuit for maximizing photovoltaic panel efficiency
JP5554866B1 (ja) * 2013-06-21 2014-07-23 シャープ株式会社 冷凍サイクル装置
JP2014528235A (ja) * 2011-09-28 2014-10-23 レフソル ゲーエムベーハー 装置を備える分散型エネルギー形成施設およびアイランド電源網の識別方法
US8884465B2 (en) 2009-04-17 2014-11-11 National Semiconductor Corporation System and method for over-voltage protection in a photovoltaic system
JP2015089235A (ja) * 2013-10-30 2015-05-07 株式会社Ihi 電力変換装置
US9077206B2 (en) 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
US10153383B2 (en) 2008-11-21 2018-12-11 National Semiconductor Corporation Solar string power point optimization
JP2020505774A (ja) * 2017-01-31 2020-02-20 ソーラーワット リミテッド マトリクス接続された太陽電池サブセルを有する太陽光モジュール
CN111414582A (zh) * 2020-03-12 2020-07-14 广西电网有限责任公司 一种光伏理论功率计算方法、装置、设备和存储介质
CN114400603A (zh) * 2021-12-24 2022-04-26 国核电力规划设计研究院有限公司 高压输电和光伏发电的一体化系统及一体化设计方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133765A (ja) * 2005-11-11 2007-05-31 Sharp Corp インバータ装置
US8294451B2 (en) 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
US8289183B1 (en) 2008-04-25 2012-10-16 Texas Instruments Incorporated System and method for solar panel array analysis
US8139382B2 (en) 2008-05-14 2012-03-20 National Semiconductor Corporation System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
US9077206B2 (en) 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
US7962249B1 (en) 2008-05-14 2011-06-14 National Semiconductor Corporation Method and system for providing central control in an energy generating system
US7969133B2 (en) 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US7991511B2 (en) 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8279644B2 (en) 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
US10153383B2 (en) 2008-11-21 2018-12-11 National Semiconductor Corporation Solar string power point optimization
WO2010098976A3 (en) * 2009-02-25 2011-02-03 Solfocus, Inc. Field level inverter controller
US8076625B2 (en) 2009-02-25 2011-12-13 Solfocus, Inc. Field level tracker controller
WO2010098976A2 (en) * 2009-02-25 2010-09-02 Solfocus, Inc. Field level inverter controller
WO2010121211A3 (en) * 2009-04-17 2011-03-10 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
US8884465B2 (en) 2009-04-17 2014-11-11 National Semiconductor Corporation System and method for over-voltage protection in a photovoltaic system
WO2010121211A2 (en) * 2009-04-17 2010-10-21 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
US8810068B2 (en) 2009-04-17 2014-08-19 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
US8421400B1 (en) 2009-10-30 2013-04-16 National Semiconductor Corporation Solar-powered battery charger and related system and method
KR101065862B1 (ko) 2010-12-08 2011-09-20 주식회사 다인산전 태양전지 어레이의 부분 음영 판단에 따른 태양광 발전 시스템의 최대전력 추정방법
US8686332B2 (en) 2011-03-07 2014-04-01 National Semiconductor Corporation Optically-controlled shunt circuit for maximizing photovoltaic panel efficiency
JP2012195495A (ja) * 2011-03-17 2012-10-11 Toshiba Corp 異常診断装置およびその方法、コンピュータプログラム
JP2014528235A (ja) * 2011-09-28 2014-10-23 レフソル ゲーエムベーハー 装置を備える分散型エネルギー形成施設およびアイランド電源網の識別方法
JP5554866B1 (ja) * 2013-06-21 2014-07-23 シャープ株式会社 冷凍サイクル装置
CN105324926A (zh) * 2013-06-21 2016-02-10 夏普株式会社 冷冻循环装置
CN105324926B (zh) * 2013-06-21 2018-03-06 夏普株式会社 冷冻循环装置
WO2014203561A1 (ja) * 2013-06-21 2014-12-24 シャープ株式会社 冷凍サイクル装置
JP2015089235A (ja) * 2013-10-30 2015-05-07 株式会社Ihi 電力変換装置
JP2020505774A (ja) * 2017-01-31 2020-02-20 ソーラーワット リミテッド マトリクス接続された太陽電池サブセルを有する太陽光モジュール
JP7274419B2 (ja) 2017-01-31 2023-05-16 ソーラーワット リミテッド 太陽光発電システム
CN111414582A (zh) * 2020-03-12 2020-07-14 广西电网有限责任公司 一种光伏理论功率计算方法、装置、设备和存储介质
CN111414582B (zh) * 2020-03-12 2022-12-27 广西电网有限责任公司 一种光伏理论功率计算方法、装置、设备和存储介质
CN114400603A (zh) * 2021-12-24 2022-04-26 国核电力规划设计研究院有限公司 高压输电和光伏发电的一体化系统及一体化设计方法
CN114400603B (zh) * 2021-12-24 2024-02-06 国核电力规划设计研究院有限公司 高压输电和光伏发电的一体化系统及一体化设计方法

Similar Documents

Publication Publication Date Title
JP2005252172A (ja) 太陽光発電システムの電力見積方法、設計支援方法およびプログラム
US6892165B2 (en) Diagnosis method and diagnosis apparatus of photovoltaic power system
Gibson et al. Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices
Bakelli et al. Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept
Coelho et al. A MPPT approach based on temperature measurements applied in PV systems
JP6278912B2 (ja) 太陽光発電システム、及びその故障診断方法
JP5083425B2 (ja) 太陽電力変換部の制御装置、及びその制御方法、及び太陽光発電装置
Rahman et al. Novel distributed power generating system of PV-ECaSS using solar energy estimation
US9506971B2 (en) Failure diagnosis method for photovoltaic power generation system
Park et al. Flexible PV-cell modeling for energy harvesting in wearable IoT applications
CN103226373B (zh) 与包括串联的光伏模块的光伏发电装置有关的方法和设备
US20150013748A1 (en) Maximum power point tracking (mppt)
JP6096099B2 (ja) 太陽光発電システム及び太陽電池モジュールの診断方法
KR20120129910A (ko) 최대 전력점 추적기의 작동 방법
JP2011228598A (ja) 太陽光発電システムおよび太陽光発電制御装置
TW201737614A (zh) 太陽能板發電異常測試方法及其系統
KR101065862B1 (ko) 태양전지 어레이의 부분 음영 판단에 따른 태양광 발전 시스템의 최대전력 추정방법
CN103729013B (zh) 跟踪光伏系统最大功率点的方法及设备
Billinton et al. Reliability/cost implications of utilizing photovoltaics in small isolated power systems
JP2008043148A (ja) 電源システム、電源システムの制御方法およびプログラム
CN112417656B (zh) 光储系统的能量调度策略的优化方法、装置和存储介质
Choulli et al. A novel hybrid analytical/iterative method to extract the single-diode model's parameters using Lambert's W-function
CN102637056A (zh) 一种维持光伏发电系统最大功率点的方法
Hwang et al. Dynamic modeling of a solar hydrogen system under leakage conditions
KR20100029033A (ko) 태양광 발전 시스템의 최적 설계 시스템

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605