JP2005251795A - Light source equipped with light emitting diode, and distance measuring equipment using the same - Google Patents

Light source equipped with light emitting diode, and distance measuring equipment using the same Download PDF

Info

Publication number
JP2005251795A
JP2005251795A JP2004056392A JP2004056392A JP2005251795A JP 2005251795 A JP2005251795 A JP 2005251795A JP 2004056392 A JP2004056392 A JP 2004056392A JP 2004056392 A JP2004056392 A JP 2004056392A JP 2005251795 A JP2005251795 A JP 2005251795A
Authority
JP
Japan
Prior art keywords
light
emitting diode
emitted
lens
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004056392A
Other languages
Japanese (ja)
Inventor
Makoto Sato
佐藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2004056392A priority Critical patent/JP2005251795A/en
Publication of JP2005251795A publication Critical patent/JP2005251795A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Led Device Packages (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light source which can emit only of the light out of emission light from a light emitting diode which is emitted from an LED chip directly toward the convex lens of a molded body and is reflected by the convex lens into such a direction that an angle of divergence may become smaller and then is emitted in a regular direction. <P>SOLUTION: The light emitting diode 2 is such that the LED chip 5 is connected to a pair of leads 3 and the connecting sections are molded by the molded body 7 wherein the convex lens 8 is formed on a face facing an emission face 5a of the LED chip 5 for reflecting and emitting the emission light from the LED chip 5, in such a direction that the angle of divergence may become smaller. On the emission side of the light emitting diode 2, a condensing lens 9 is located which condenses, out of the emission light from the light emitting diode 2, only of the light which is emitted from the LED chip 5 directly toward the convex lens 8 of the molded body 7 and then is reflected by the convex lens 8 in such a direction that the angle of divergence may become smaller. A shade 10 which passes only of the light condensed at the condensing point out of the light emitted from the light emitting diode 2 and passed through the condensing lens 9 while interrupting the other light is so located as to cross the condensing point of the condensing lens 9. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、発光ダイオードを備えた光源及びそれを用いた測距装置に関する。   The present invention relates to a light source including a light emitting diode and a distance measuring device using the light source.

発光ダイオードは、例えばオートフォーカスカメラにおける被写体までの距離を測定するための測距装置の光源に利用されている(特許文献1、2、3、4参照)。
特開平6―265346号公報 特開平7―35544号公報 特開平7―63549号公報 特開2001―311619号公報
For example, the light emitting diode is used as a light source of a distance measuring device for measuring a distance to a subject in an autofocus camera (see Patent Documents 1, 2, 3, and 4).
JP-A-6-265346 JP-A-7-35544 JP 7-63549 A Japanese Patent Laid-Open No. 2001-311619

前記発光ダイオードは、一対のリードに発光ダイオードチップ(以下、LEDチップという)を接続し、その接続部を、前記LEDチップの出射面に対向する面に凸レンズ部が形成されたモールド体によりモールドしたものであり、前記LEDチップからの出射光を前記モールド体の凸レンズ部により広がり角が小さくなる方向に屈折させて出射する。   In the light emitting diode, a light emitting diode chip (hereinafter referred to as an LED chip) is connected to a pair of leads, and the connection portion is molded by a mold body in which a convex lens portion is formed on a surface facing the emission surface of the LED chip. The emitted light from the LED chip is refracted by the convex lens portion of the mold body in a direction in which the divergence angle becomes smaller and emitted.

しかし、前記発光ダイオードは、前記LEDチップからの出射光のうち、前記LEDチップから直接前記凸レンズ部に向かって出射した光が、前記凸レンズ部により広がり角が小さくなる方向に屈折されて正規の方向に出射するだけでなく、前記LEDチップからその出射面とは反対方向に出射した光のうち、前記リードにより反射された光や、前記モールド体の後面(凸レンズ部の形成面とは反対側の面)で内面反射された光の一部が前記凸レンズ部に入射し、その光も前記凸レンズ部により屈折されて前記正規の方向とは異なる方向に出射するため、前記測距装置に、前記正規の方向とは異なる方向に出射する光の影響による測定誤差を生じさせてしまう。   However, in the light emitting diode, the light emitted from the LED chip directly toward the convex lens portion out of the light emitted from the LED chip is refracted by the convex lens portion in a direction in which the spread angle becomes smaller, and the normal direction In addition to the light emitted from the LED chip in the direction opposite to the light emission surface, the light reflected by the lead, the rear surface of the mold body (on the side opposite to the surface on which the convex lens portion is formed) Part of the light internally reflected by the surface) is incident on the convex lens part, and the light is also refracted by the convex lens part and emitted in a direction different from the normal direction. Measurement error due to the influence of light emitted in a direction different from the direction of.

この発明は、発光ダイオードからの出射光のうち、LEDチップから直接モールド体の凸レンズ部に向かって出射し、前記凸レンズ部により広がり角が小さくなる方向に屈折されて正規の方向に出射した光だけを出射することができる光源を提供するとともに、その光源を用いた、精度の高い距離測定を行なうことができる測距装置を提供することを目的としたものである。   In the present invention, of the light emitted from the light emitting diode, only the light emitted directly from the LED chip toward the convex lens portion of the mold body and refracted in the direction in which the divergence angle decreases by the convex lens portion and emitted in the normal direction. It is an object of the present invention to provide a distance measuring device that can perform distance measurement with high accuracy using the light source.

この発明の光源は、
一対のリードにLEDチップを接続し、その接続部を、前記LEDチップの出射面に対向する面に前記LEDチップからの出射光をその広がり角が小さくなる方向に屈折させて出射する凸レンズ部が形成されたモールド体によりモールドした発光ダイオードと、
前記発光ダイオードの出射側に配置され、前記発光ダイオードからの出射光のうち、前記LEDチップから直接前記モールド体の凸レンズ部に向かって出射して前記凸レンズ部により広がり角が小さくなる方向に屈折された出射光を一点に集光させる集光レンズと、
前記集光レンズの集光点を横切って配置され、前記発光ダイオードから出射して前記集光レンズを透過した光のうち、前記集光点に集光した光を透過させ、他の光を遮る遮光体とを備えたことを特徴とする。
The light source of the present invention is
A convex lens part that connects the LED chip to a pair of leads, and refracts the light emitted from the LED chip to a surface facing the emission surface of the LED chip in a direction in which the spread angle decreases, and emits the light. A light emitting diode molded by the molded body formed;
Arranged on the emission side of the light emitting diode, out of the light emitted from the light emitting diode, it is emitted directly from the LED chip toward the convex lens portion of the mold body and is refracted in a direction in which the divergence angle is reduced by the convex lens portion. A condensing lens that condenses the emitted light at one point;
Out of the light emitted from the light emitting diode and transmitted through the condenser lens, the light condensed at the condenser point is transmitted and blocked from other light. A light shielding body is provided.

この光源において、前記遮光体は、前記発光ダイオードから出射して前記集光レンズを透過した光の前記集光レンズの集光点を横切る面上における断面積よりも大きい面積を有し、その中央部に1つのピンホールが設けられた光吸収板からなっており、前記ピンホールを集光レンズの集光点に一致させて配置されているのが好ましい。   In this light source, the light blocking body has an area larger than a cross-sectional area on a surface crossing a condensing point of the condensing lens of light emitted from the light emitting diode and transmitted through the condensing lens, and a center thereof It is preferable that the light-absorbing plate is provided with a single pinhole in the portion, and the pinhole is arranged so as to coincide with the condensing point of the condensing lens.

また、この光源においては、前記遮光体の前記集光レンズに対向する側とは反対側に、前記集光レンズの集光点に集光して前記遮光体を透過した光を実質的に平行光に補正して出射する投射レンズを配置するのが望ましい。   Further, in this light source, the light which is condensed at the condensing point of the condensing lens and transmitted through the light shielding body is substantially parallel to the side opposite to the side facing the condensing lens of the light shielding body. It is desirable to arrange a projection lens that emits light after correcting it.

また、この発明の測距装置は、
一対のリードに発光ダイオードチップを接続し、その接続部を、前記発光ダイオードチップの出射面に対向する面に前記発光ダイオードチップからの出射光をその広がり角が小さくなる方向に屈折させて出射する凸レンズ部が形成されたモールド体によりモールドした発光ダイオードと、前記発光ダイオードの出射側に配置され、前記発光ダイオードからの出射光のうち、前記発光ダイオードチップから直接前記モールド体の凸レンズ部に向かって出射して前記凸レンズ部により広がり角が小さくなる方向に屈折された出射光を一点に集光させる集光レンズと、前記集光レンズの集光点を横切って配置され、前記発光ダイオードから出射して前記集光レンズを透過した光のうち、前記集光点に集光した光を透過させ、他の光を遮る遮光体と、前記遮光体の前記集光レンズに対向する側とは反対側に配置され、前記集光レンズの集光点に集光して前記遮光体を透過した光を実質的に平行光に補正して出射する投射レンズとを備えた光源と、
前記光源の側方に配置され、前記光源の投射レンズから出射し、測距対象物により反射された戻り光を受光してその信号を出力する光センサとからなることを特徴とする。
The distance measuring device of the present invention is
A light-emitting diode chip is connected to a pair of leads, and the light emitted from the light-emitting diode chip is refracted in a direction in which the divergence angle is reduced to the surface facing the light-emitting diode chip. A light emitting diode molded by a molded body having a convex lens portion and a light emitting diode disposed on the light emitting side of the light emitting diode, out of the light emitted from the light emitting diode, directly from the light emitting diode chip toward the convex lens portion of the mold body A condensing lens that condenses the emitted light that is emitted and refracted in a direction in which the divergence angle is reduced by the convex lens portion, and a converging lens that is disposed across the condensing point of the condensing lens and is emitted from the light emitting diode. A light-shielding body that transmits the light condensed at the condensing point among the light transmitted through the condensing lens and blocks other light; The light-shielding body is disposed on the opposite side of the light-condensing lens from the side facing the condensing lens, and condenses light at the condensing point of the condensing lens and transmits the light-shielding body to substantially parallel light. A light source comprising a projection lens that emits;
The light sensor is arranged on the side of the light source, and includes an optical sensor that receives the return light emitted from the projection lens of the light source and reflected by the distance measuring object and outputs the signal.

この発明の測距装置は、前記光センサに、前記投射レンズからの光の出射方向に対して交差する方向に配列した複数の光電変換素子を備え、前記投射レンズから出射して測距対象物により反射され、前記投射レンズから前記測距対象物までの距離に対応した角度で前記光センサに向かって戻った光を、前記複数の光電変換素子のうちの前記戻り光の入射点の光電変換素子により受光してその信号を出力するものを用いて三角測距を行なうものに好適である。   The distance measuring apparatus of the present invention includes a plurality of photoelectric conversion elements arranged in a direction intersecting with an emission direction of light from the projection lens in the optical sensor, and is emitted from the projection lens to be a distance measurement object. Photoelectric conversion of the return light incident point of the plurality of photoelectric conversion elements, the light reflected toward the optical sensor at an angle corresponding to the distance from the projection lens to the distance measuring object. It is suitable for a device that performs triangulation using a device that receives light by an element and outputs the signal.

この発明の光源は、一対のリードにLEDチップを接続し、その接続部を、前記LEDチップの出射面に対向する面に前記LEDチップからの出射光をその広がり角が小さくなる方向に屈折させて出射する凸レンズ部が形成されたモールド体によりモールドした発光ダイオードの出射側に、前記発光ダイオードからの出射光のうち、前記LEDチップから直接前記モールド体の凸レンズ部に向かって出射して前記凸レンズ部により広がり角が小さくなる方向に屈折された出射光を一点に集光させる集光レンズを配置し、前記集光レンズの集光点を横切って、前記発光ダイオードから出射して前記集光レンズを透過した光のうち、前記集光点に集光した光を透過させ、他の光を遮る遮光体を配置したものであるため、前記発光ダイオードからの出射光のうち、前記LEDチップから直接前記モールド体の凸レンズ部に向かって出射し、前記凸レンズ部により広がり角が小さくなる方向に屈折されて正規の方向に出射した光だけを出射することができる。   In the light source of the present invention, the LED chip is connected to a pair of leads, and the connection portion refracts the light emitted from the LED chip to the surface facing the light emission surface of the LED chip in a direction in which the spread angle decreases. Of the light emitted from the light emitting diode, the light emitted from the light emitting diode is directly emitted from the LED chip toward the convex lens portion of the mold body on the emission side of the light emitting diode molded by the mold body on which the convex lens portion is emitted. A condensing lens that condenses the outgoing light refracted in the direction in which the divergence angle becomes smaller at one point, crosses the condensing point of the condensing lens and exits from the light emitting diode, and the condensing lens Of the light transmitted through the light collecting point, the light collected at the condensing point is transmitted and a light shielding body that blocks other light is disposed. Of Shako, the LED emitted toward the convex lens portion directly the mold body from the chip, the refracted in a direction divergent angle by the convex lens portion is small can be emitted only light emitted in the normal direction.

この光源において、前記遮光体は、前記発光ダイオードから出射して集光レンズを透過した光の前記集光レンズの集光点を横切る面上における断面積よりも大きい面積を有し、その中央部に1つのピンホールが設けられた光吸収板とし、この光吸収板を、前記ピンホールを前記集光レンズの集光点に一致させて配置するのが好ましく、このようにすることにより、前記発光ダイオードからの出射光のうち、前記正規の方向に出射した光だけを確実に出射することができる。   In this light source, the light shielding body has an area larger than a cross-sectional area on a surface crossing a condensing point of the condensing lens of light emitted from the light emitting diode and transmitted through the condensing lens, and a central portion thereof It is preferable that the light absorbing plate is provided with a single pinhole, and the light absorbing plate is arranged so that the pinhole coincides with the condensing point of the condensing lens. Of the light emitted from the light emitting diode, only the light emitted in the normal direction can be reliably emitted.

また、この光源は、前記遮光体の前記集光レンズに対向する側とは反対側に、前記集光レンズの集光点に集光して前記遮光体を透過した光を実質的に平行光に補正して出射する投射レンズを配置した構成とするのが望ましく、このようにすることにより、例えばオートフォーカスカメラ等の測距装置の光源に利用するとともに、前記測距装置に精度の高い距離測定を行なわせることができる。   In addition, the light source substantially collimates the light that is condensed at the condensing point of the condensing lens and transmitted through the light shielding body on the side opposite to the side facing the condensing lens of the light shielding body. It is desirable to have a configuration in which a projection lens that is corrected and emitted is arranged. By doing so, for example, it is used as a light source of a distance measuring device such as an autofocus camera, and the distance measuring device has a high accuracy. Measurements can be made.

また、この発明の測距装置は、前記発光ダイオードの出射側に前記集光レンズを配置し、前記集光レンズの集光点を横切って前記遮光体を配置するとともに、前記遮光体の前記集光レンズに対向する側とは反対側に前記投射レンズを配置した光源を備え、この光源の側方に、前記光源の投射レンズから出射し、測距対象物により反射された戻り光を受光してその信号を出力する光センサを配置したものであるため、前記光源から、前記発光ダイオードからの出射光のうち、前記LEDチップから直接前記モールド体の凸レンズ部に向かって出射し、前記凸レンズ部により広がり角が小さくなる方向に屈折されて正規の方向に出射した光だけを、前記投射レンズにより平行光に補正して測距対象物に投射することができ、したがって、前記測距対象物により反射された戻り光を前記光センサに受光させることによる前記測距対象物までの距離測定を高い精度で行なうことができる。   In the distance measuring device according to the present invention, the condensing lens is disposed on an emission side of the light emitting diode, the light shielding body is disposed across a condensing point of the condensing lens, and the light collecting body includes the light collecting body. A light source having the projection lens arranged on the side opposite to the side facing the optical lens is provided, and the return light emitted from the projection lens of the light source and reflected by the distance measuring object is received on the side of the light source. Since the light sensor for outputting the signal is disposed, the light emitted from the light source from the light source is directly emitted from the LED chip toward the convex lens portion of the mold body, and the convex lens portion. Therefore, only the light refracted in the direction in which the divergence angle is reduced and emitted in the normal direction can be corrected to parallel light by the projection lens and projected onto the object to be measured. The distance measurement the return light reflected by the elephant was to the distance measuring object by be received by the optical sensor can be performed with high accuracy.

この発明の測距装置は、前記光センサに、前記投射レンズからの光の出射方向に対して交差する方向に配列した複数の光電変換素子を備え、前記投射レンズから出射して測距対象物により反射され、前記投射レンズから前記測距対象物までの距離に対応した角度で前記光センサに向かって戻った光を、前記複数の光電変換素子のうちの前記戻り光の入射点の光電変換素子により受光してその信号を出力するものを用いて三角測距を行なうものに好適であり、この発明の測距装置によれば、前記三角測距の精度を飛躍的に高くすることができる。   The distance measuring apparatus of the present invention includes a plurality of photoelectric conversion elements arranged in a direction intersecting with an emission direction of light from the projection lens in the optical sensor, and is emitted from the projection lens to be a distance measurement object. Photoelectric conversion of the return light incident point of the plurality of photoelectric conversion elements, the light reflected toward the optical sensor at an angle corresponding to the distance from the projection lens to the distance measuring object. It is suitable for a device that performs triangulation using a device that receives light by an element and outputs the signal, and according to the distance measuring device of the present invention, the accuracy of the triangulation can be remarkably increased. .

図1〜図4はこの発明の光源の一実施例を示しており、図1は光源の構成図、図2及び図3は発光ダイオードの断面図及び一部切開正面図、図4は前記発光ダイオードからの出射光を示す図である。   1 to 4 show an embodiment of a light source of the present invention. FIG. 1 is a block diagram of the light source, FIGS. 2 and 3 are sectional views and partially cut front views of a light emitting diode, and FIG. It is a figure which shows the emitted light from a diode.

この実施例の光源1は、例えばオートフォーカスカメラ等の測距装置に用いられるものであり、図1に示したように、発光ダイオード2と、前記発光ダイオード2の出射側に配置された集光レンズ9と、前記集光レンズ9の集光点を横切って配置され、前記発光ダイオード2から出射して前記集光レンズ9を透過した光のうち、前記集光点に集光した光を透過させ、他の光を遮る遮光体10と、前記遮光体10の前記集光レンズ9に対向する側とは反対側に配置された投射レンズ13とからなっている。   The light source 1 of this embodiment is used for a distance measuring device such as an autofocus camera, for example, and as shown in FIG. 1, the light emitting diode 2 and the light condensing arranged on the emission side of the light emitting diode 2. The lens 9 is disposed across the condensing point of the condensing lens 9, and transmits the light condensed from the condensing point out of the light emitted from the light emitting diode 2 and transmitted through the condensing lens 9. The light shielding body 10 shields other light, and the projection lens 13 is arranged on the opposite side of the light shielding body 10 from the side facing the condenser lens 9.

まず、発光ダイオード2について説明すると、この発光ダイオード2は、図2及び図3に示したように、一対のリード3,4の一端部にLEDチップ(発光ダイオードチップ)5を接続し、その接続部を、前記LEDチップ5の出射面5aに対向する面に凸レンズ部8が形成されたモールド体7によりモールドしたものであり、前記LEDチップ5からの出射光を前記モールド体7の凸レンズ部8により広がり角が小さくなる方向に屈折させて出射する。   First, the light-emitting diode 2 will be described. The light-emitting diode 2 has an LED chip (light-emitting diode chip) 5 connected to one end of a pair of leads 3 and 4 as shown in FIGS. Is molded by a mold body 7 having a convex lens portion 8 formed on a surface facing the emission surface 5 a of the LED chip 5, and the emitted light from the LED chip 5 is converted into a convex lens portion 8 of the mold body 7. As a result, the light is refracted in the direction in which the divergence angle becomes smaller and emitted.

前記一対のリード3,4は、表面に半田メッキが施された鉄系金属からなっており、これらのリード3,4のうち、一方のリード3の一端部に、前記LEDチップ5の平面形状よりも若干大きい面積のチップ搭載部が形成されている。   The pair of leads 3, 4 is made of an iron-based metal having a surface plated with solder, and the planar shape of the LED chip 5 is formed at one end of one of the leads 3, 4. A chip mounting portion having a slightly larger area is formed.

前記LEDチップ5は、その構造は図示しないが、一方の面側の中心部にpn接合面からなる点状の発光部を形成したチップ状半導体のp層及びn層にそれぞれ電極を設けたものであり、前記チップ状半導体の前記発光部側の面が出射面5aとされている。   Although the structure of the LED chip 5 is not shown, an electrode is provided on each of the p-layer and n-layer of a chip-like semiconductor in which a dot-like light-emitting portion composed of a pn junction surface is formed at the center on one surface side The surface on the light emitting part side of the chip-like semiconductor is an emission surface 5a.

このLEDチップ5は、前記一方のリード3の一端部に形成されたチップ搭載部の上に、LEDチップ5の出射面5aとは反対面を前記リード3に接着して配置されており、一方の電極を前記一方のリード3の一端部に接続し、他方の電極を他方のリード4の一端部にリードワイヤ6を介して接続されている。   The LED chip 5 is disposed on a chip mounting portion formed at one end of the one lead 3 with the surface opposite to the emission surface 5a of the LED chip 5 adhered to the lead 3. The other electrode is connected to one end of the one lead 3 and the other electrode is connected to one end of the other lead 4 via a lead wire 6.

また、前記モールド体7は、エポキシ樹脂等の透明樹脂からなっており、その凸レンズ部8の軸線は、前記LEDチップ5の出射面5aからの出射光軸(出射面に垂直で且つ点状発光部の中心を通る線)に一致している。   The mold body 7 is made of a transparent resin such as an epoxy resin, and the axis of the convex lens portion 8 has an emission optical axis from the emission surface 5a of the LED chip 5 (perpendicular to the emission surface and a point light emission). Line that passes through the center of the part).

この発光ダイオード2は、前記LEDチップ5の点状発光部が様々な方向に光を放射するため、前記LEDチップ5からの出射光のうち、前記LEDチップ5から直接前記凸レンズ部8に向かって出射した光が、図4に矢線で示したように前記凸レンズ部8により広がり角が小さくなる方向に屈折されて正規の方向に出射するだけでなく、前記LEDチップ5からその出射面5aとは反対方向に出射した光のうち、前記リード3,4により反射された光や、前記モールド体7の後面、つまり凸レンズ部8の形成面とは反対側の面で内面反射された光の一部が図4に破矢線で示したように前記凸レンズ部8に入射し、その光も前記凸レンズ部8により屈折されて前記正規の方向とは異なる方向に出射する。   In the light emitting diode 2, since the point light emitting portion of the LED chip 5 emits light in various directions, the light emitted from the LED chip 5 directly from the LED chip 5 toward the convex lens portion 8. The emitted light is not only refracted in the direction in which the divergence angle becomes smaller and emitted in the normal direction by the convex lens portion 8 as indicated by the arrow in FIG. 4, but also from the LED chip 5 to its emission surface 5a. Among the light emitted in the opposite direction, one of the light reflected by the leads 3 and 4 and the light internally reflected by the rear surface of the mold body 7, that is, the surface opposite to the surface on which the convex lens portion 8 is formed. As shown by the broken line in FIG. 4, the portion enters the convex lens portion 8, and the light is also refracted by the convex lens portion 8 and emitted in a direction different from the normal direction.

以下、前記発光ダイオード2からの出射光のうち、前記正規の方向に出射する光を正規光といい、その正規光とは異なる方向に出射する光をゴースト光という。   Hereinafter, among the light emitted from the light emitting diode 2, light emitted in the normal direction is referred to as normal light, and light emitted in a direction different from the normal light is referred to as ghost light.

一方、前記発光ダイオード2の出射側に配置された集光レンズ9は、前記発光ダイオード2からの出射光のうち、前記LEDチップ5から直接前記モールド体7の凸レンズ部8に向かって出射して前記凸レンズ部により広がり角が小さくなる方向に屈折された出射光を一点に集光させるレンズ特性をもっている。なお、この集光レンズ9は、図1のような1枚レンズでも、複数枚のレンズを組み合わせたものでもよい。   On the other hand, the condensing lens 9 disposed on the emission side of the light emitting diode 2 emits light emitted from the light emitting diode 2 directly from the LED chip 5 toward the convex lens portion 8 of the mold body 7. It has a lens characteristic that condenses the outgoing light refracted in the direction in which the divergence angle is reduced by the convex lens portion at one point. The condensing lens 9 may be a single lens as shown in FIG. 1 or a combination of a plurality of lenses.

したがって、前記発光ダイオード2から出射光して前記集光レンズ9を透過した前記正規光とゴースト光のうち、正規光は、図1に矢線で示したように前記集光レンズ9の集光点に集光され、ゴースト光は、図1に破矢線で示したように前記集光レンズ9の集光点以外の方向に向かう。   Therefore, among the normal light and ghost light emitted from the light emitting diode 2 and transmitted through the condenser lens 9, the normal light is condensed by the condenser lens 9 as indicated by the arrow in FIG. The ghost light is condensed at the point and travels in a direction other than the condensing point of the condensing lens 9 as shown by a broken line in FIG.

また、前記集光レンズ9の集光点を横切って配置された遮光体10は、前記発光ダイオード2から出射して前記集光レンズ9を透過した光(正規光とゴースト光の両方を含む光)の集光レンズ9の集光点を横切る面上における断面積よりも大きい面積を有し、その中央部に1つのピンホール12が設けられた光吸収板11からなっており、この光吸収板11は、前記ピンホール12を前記集光レンズ9の集光点に一致させて配置されている。   The light blocking body 10 disposed across the condensing point of the condensing lens 9 is light that has been emitted from the light emitting diode 2 and transmitted through the condensing lens 9 (light including both regular light and ghost light). ) And a light absorbing plate 11 having a larger area than the cross-sectional area on the surface crossing the condensing point of the condensing lens 9 and having one pinhole 12 at the center thereof. The plate 11 is arranged with the pinhole 12 aligned with the condensing point of the condenser lens 9.

さらに、前記光吸収板11からなる遮光体10の集光レンズ9に対向する側とは反対側に配置された投射レンズ13は、前記発光ダイオード2から出射して前記集光レンズ9を透過した光のうち、前記集光レンズ9の集光点に集光して前記遮光体10を透過した光、つまり前記光吸収板11のピンホール12内を透過した正規光を、図1に矢線で示したように実質的に平行光に補正して出射するレンズ特性をもっている。なお、この投射レンズ13は、図1のような1枚レンズでも、複数枚のレンズを組み合わせたものでもよい。   Further, the projection lens 13 disposed on the side opposite to the side facing the condenser lens 9 of the light shielding body 10 composed of the light absorbing plate 11 is emitted from the light emitting diode 2 and transmitted through the condenser lens 9. Of the light, the light condensed at the condensing point of the condenser lens 9 and transmitted through the light shield 10, that is, the regular light transmitted through the pinhole 12 of the light absorbing plate 11 is indicated by an arrow in FIG. As shown in FIG. 4, the lens characteristic is that the light is substantially corrected into parallel light and emitted. The projection lens 13 may be a single lens as shown in FIG. 1 or a combination of a plurality of lenses.

前記光源1は、一対のリード3,4にLEDチップ5を接続し、その接続部を、前記LEDチップ5の出射面5aに対向する面に前記LEDチップ5からの出射光をその広がり角が小さくなる方向に屈折させて出射する凸レンズ部8が形成されたモールド体7によりモールドした発光ダイオード2の出射側に、前記発光ダイオード2からの出射光のうち、前記LEDチップ5から直接前記モールド体7の凸レンズ部8に向かって出射して前記凸レンズ部8により広がり角が小さくなる方向に屈折された出射光を一点に集光させる集光レンズ9を配置し、前記集光レンズ9の集光点を横切って、前記発光ダイオード2から出射して前記集光レンズ9を透過した光のうち、前記集光点に集光した光を透過させ、他の光を遮る遮光体10を配置したものであるため、前記発光ダイオードからの出射光のうち、前記LEDチップ5から直接前記モールド体7の凸レンズ部8に向かって出射し、前記凸レンズ部8により広がり角が小さくなる方向に屈折されて正規の方向に出射した正規光だけを出射することができる。   The light source 1 connects the LED chip 5 to a pair of leads 3, 4, and the connecting portion has a divergence angle of the light emitted from the LED chip 5 on the surface facing the emission surface 5 a of the LED chip 5. Of the light emitted from the light emitting diode 2, the mold body directly out of the LED chip 5 is directly emitted from the light emitting diode 2 molded by the mold body 7 formed with the convex lens portion 8 that is refracted and emitted in a decreasing direction. A condensing lens 9 that condenses the outgoing light that is emitted toward the convex lens portion 8 and refracted by the convex lens portion 8 in a direction in which the divergence angle is reduced. A light-shielding body 10 that transmits the light condensed at the condensing point out of the light emitted from the light-emitting diode 2 and transmitted through the condensing lens 9 across the point is arranged. Therefore, out of the light emitted from the light emitting diode, the light is emitted directly from the LED chip 5 toward the convex lens portion 8 of the mold body 7 and is refracted by the convex lens portion 8 in a direction in which the divergence angle becomes smaller. Only the regular light emitted in the direction can be emitted.

すなわち、この光源1においては、前記発光ダイオードからの出射光のうち、前記正規の方向に出射して前記集光レンズ9を透過した正規光が図1に矢線で示したように前記集光レンズ9の集光点に集光され、前記発光ダイオード2から前記正規の方向とは異なる方向に出射したゴースト光は図1に破矢線で示したように前記集光レンズ9の集光点以外の方向に向かう。   That is, in the light source 1, out of the light emitted from the light emitting diode, the normal light emitted in the normal direction and transmitted through the condenser lens 9 is condensed as shown by the arrow in FIG. The ghost light which is condensed at the condensing point of the lens 9 and emitted from the light emitting diode 2 in a direction different from the normal direction is the condensing point of the condensing lens 9 as shown by the broken line in FIG. Head in the other direction.

そして、この光源1では、前記集光レンズの集光点を横切って前記遮光体10を配置しているため、前記発光ダイオード2から出射して集光レンズ9を透過した光のうち、前記集光レンズ9の集光点以外の方向に向かうゴースト光は前記遮光体10により遮られ、前記集光レンズ9の集光点に集光した正規光だけが、前記遮光体10を透過して出射する。   In this light source 1, since the light shielding body 10 is disposed across the condensing point of the condensing lens, the light collected from the light emitting diode 2 and transmitted through the condensing lens 9 is the condensing lens 9. Ghost light traveling in a direction other than the condensing point of the optical lens 9 is blocked by the light shielding body 10, and only regular light condensed at the condensing point of the condensing lens 9 is transmitted through the light shielding body 10 and emitted. To do.

したがって、この光源1によれば、前記発光ダイオードからの出射光のうち、前記正規の方向に出射した正規光だけを出射することができる。   Therefore, according to the light source 1, only the normal light emitted in the normal direction can be emitted out of the light emitted from the light emitting diode.

また、上記実施例では、前記遮光体10を、前記発光ダイオード2から出射して集光レンズ9を透過した光の前記集光レンズ9の集光点を横切る面上における断面積よりも大きい面積を有し、その中央部に1つのピンホール12が設けられた光吸収板11とし、この光吸収板11を、前記ピンホール12を前記集光レンズ9の集光点に一致させて配置しているため、前記発光ダイオード2からの出射光のうち、前記正規の方向に出射した正規光だけを確実に出射することができる。   Moreover, in the said Example, the area larger than the cross-sectional area on the surface which crosses the condensing point of the said condensing lens 9 of the said light-shielding body 10 which radiate | emitted from the said light emitting diode 2, and permeate | transmitted the condensing lens 9 The light absorption plate 11 is provided with a single pinhole 12 at the center, and the light absorption plate 11 is arranged so that the pinhole 12 coincides with the condensing point of the condensing lens 9. Therefore, only the regular light emitted in the regular direction out of the light emitted from the light emitting diode 2 can be reliably emitted.

そして、上記実施例の光源1は、前記遮光体10の集光レンズ9に対向する側とは反対側、つまり出射側に、前記集光レンズ9の集光点に集光して前記遮光体10を透過した正規光を実質的に平行光に補正して出射する投射レンズ13を配置しているため、前記遮光体10を透過した正規光をビーム光として投射することができ、したがって、例えばオートフォーカスカメラ等の測距装置の光源に利用するとともに、前記測距装置に精度の高い距離測定を行なわせることができる。   The light source 1 of the above embodiment condenses the light shielding body on the condensing point of the condensing lens 9 on the side opposite to the side facing the condensing lens 9 of the light shielding body 10, that is, on the emission side. Since the projection lens 13 that emits the normal light that has passed through the light-shielding member 10 after being corrected to substantially parallel light is disposed, the normal light that has passed through the light-shielding body 10 can be projected as beam light. In addition to being used as a light source of a distance measuring device such as an autofocus camera, the distance measuring device can perform distance measurement with high accuracy.

図5はこの発明の測距装置の一実施例を示しており、この測距装置は、前記発光ダイオード2の出射側に前記集光レンズ9を配置し、前記集光レンズ9の集光点を横切って前記遮光体10を配置するとともに、前記遮光体10の出射側(集光レンズ9に対向する側とは反対側)に、前記集光レンズ9の集光点に集光して前記遮光体10を透過した前記正規光を実質的に平行光に補正して出射する投射レンズ13を配置した前記実施例の光源1を備え、この光源1の側方に、十分な間隔をおいて、前記光源1の投射レンズ13から出射し、測距対象物Aにより反射された戻り光を受光してその信号を出力する光センサ14を配置したものである。   FIG. 5 shows an embodiment of the distance measuring device of the present invention. In the distance measuring device, the condensing lens 9 is disposed on the emission side of the light emitting diode 2, and the condensing point of the condensing lens 9 is shown. The light shielding body 10 is disposed across the light source, and is condensed on the light condensing point of the condenser lens 9 on the emission side of the light shielding body 10 (the side opposite to the side facing the condenser lens 9). The light source 1 of the above-described embodiment in which the projection lens 13 that emits the regular light that has passed through the light shield 10 after being corrected to substantially parallel light is disposed, and a sufficient distance is provided on the side of the light source 1. The optical sensor 14 which receives the return light emitted from the projection lens 13 of the light source 1 and reflected by the distance measuring object A and outputs the signal is disposed.

なお、この実施例の測距装置は、オートフォーカスカメラに実装される赤外線測距装置であり、前記光源1の発光ダイオード2のLEDチップ5は、赤外線光を発するチップ状半導体からなっている。   The distance measuring device of this embodiment is an infrared distance measuring device mounted on an autofocus camera, and the LED chip 5 of the light emitting diode 2 of the light source 1 is made of a chip-like semiconductor that emits infrared light.

この測距装置において、前記光センサ14は、一方の面に、複数の光電変換素子、例えばフォトダイオード15を、前記光源1の投射レンズ13からの光(実質的に平行光に補正されたビーム光)の出射方向に対して交差する方向に1列に密に並べて配列形成したものであり、前記投射レンズ13により投射されて測距対象物(以下、被写体と言う)Aにより反射され、前記光センサ14に対して前記投射レンズ13から前記被写体Aまでの距離に対応した角度方向から入射する戻り光を、前記複数のフォトダイオード15のうちの前記戻り光の入射点のフォトダイオード15により受光してその信号を出力する。   In this distance measuring apparatus, the optical sensor 14 has a plurality of photoelectric conversion elements, for example, photodiodes 15 on one surface, and light from the projection lens 13 of the light source 1 (a beam corrected to substantially parallel light). The light is emitted in the direction intersecting with the emission direction of light, and is closely arranged in a line. The light is projected by the projection lens 13 and reflected by a distance measuring object (hereinafter referred to as a subject) A. Return light incident on the optical sensor 14 from an angular direction corresponding to the distance from the projection lens 13 to the subject A is received by the photodiode 15 at the incident point of the return light among the plurality of photodiodes 15. And output the signal.

この光センサ14は、そのフォトダイオード形成面を前記投射レンズ13からの投射光が向かう方向に向けて、フォトダイオード形成面が前記投射レンズ13からの投射光の軸線Oに対して垂直になるように配置されており、したがって、この光センサ14の複数のフォトダイオード15は、前記投射レンズ13からの投射光の軸線Oと直交する方向に配列している。   This photosensor 14 has its photodiode formation surface directed in the direction in which the projection light from the projection lens 13 is directed so that the photodiode formation surface is perpendicular to the axis O of the projection light from the projection lens 13. Accordingly, the plurality of photodiodes 15 of the optical sensor 14 are arranged in a direction orthogonal to the axis O of the projection light from the projection lens 13.

そして、前記光センサ14の入射側、つまりフォトダイオード形成面の前方には、前記被写体Aにより反射された戻り光を集光させて前記フォトダイオード15の受光面に入射させるセンサ側レンズ16が配置されている。なお、このセンサ側レンズ16は、図5のような1枚レンズでも、複数枚のレンズを組み合わせたものでもよい。   A sensor-side lens 16 that collects the return light reflected by the subject A and makes it incident on the light-receiving surface of the photodiode 15 is disposed on the incident side of the optical sensor 14, that is, in front of the photodiode formation surface. Has been. The sensor side lens 16 may be a single lens as shown in FIG. 5 or a combination of a plurality of lenses.

この測距装置は、三角測距を行なうものであり、前記光源1から前記投射レンズ13により平行光に補正されて出射したビーム光を被写体Aに向けて投射することにより、前記被写体Aにより反射され、前記投射レンズ13から前記被写体Aまでの距離に対応した角度方向から前記光センサ14に向かって戻った光を、前記光センサ14の複数のフォトダイオード15のうちの前記戻り光の入射点に位置するフォトダイオード15により受光し、その信号を前記光センサ14から測距回路17に出力する。   This distance measuring device performs triangulation, and is reflected by the subject A by projecting beam light emitted from the light source 1 after being corrected to parallel light by the projection lens 13 toward the subject A. The light returned from the angular direction corresponding to the distance from the projection lens 13 to the subject A toward the optical sensor 14 is the incident point of the return light among the plurality of photodiodes 15 of the optical sensor 14. The light is received by the photodiode 15 located at the position, and the signal is output from the optical sensor 14 to the distance measuring circuit 17.

なお、前記被写体Aにより反射された戻り光は、前記センサ側レンズ16により集光され、前記光センサ14の複数のフォトダイオード15のうち、前記戻り光の入射点に位置するフォトダイオード15に入射する。   The return light reflected by the subject A is collected by the sensor-side lens 16 and is incident on the photodiode 15 located at the return light incident point among the plurality of photodiodes 15 of the optical sensor 14. To do.

図5において、実線は前記投射レンズ13から被写体Aまでの距離が短いときの光路、鎖線は前記投射レンズ13から被写体Aまでの距離が長いときの光路を示しており、前記投射レンズ13から被写体Aまでの距離が短いときは、前記被写体Aにより反射された戻り光が前記光センサ14の光源1に近い側のフォトダイオード15に入射し、前記投射レンズ13から被写体Aまでの距離が長いときは、前記被写体Aにより反射された戻り光が前記光センサ14の光源1から遠い側のフォトダイオード15に入射する。   In FIG. 5, the solid line indicates the optical path when the distance from the projection lens 13 to the subject A is short, and the chain line indicates the optical path when the distance from the projection lens 13 to the subject A is long. When the distance to A is short, the return light reflected by the subject A is incident on the photodiode 15 on the side close to the light source 1 of the optical sensor 14, and the distance from the projection lens 13 to the subject A is long. The return light reflected by the subject A is incident on the photodiode 15 far from the light source 1 of the optical sensor 14.

そして、前記光センサ14は、その複数のフォトダイオード15のうち、前記戻り光を受光したフォトダイオード15の位置に対応する信号を測距回路17に出力する。   The optical sensor 14 outputs a signal corresponding to the position of the photodiode 15 that has received the return light among the plurality of photodiodes 15 to the distance measuring circuit 17.

一方、前記測距回路17には、前記光源1から前記投射レンズ13により平行光に補正されて投射される被写体投射光の軸線Oから前記光センサ14の配置位置までの距離データが予め設定されており、この測距回路17は、前記光センサ14からの出力信号に基づいて、前記被写体投射光の軸線Oに対して直交する線上における前記軸線Oから前記光センサ14の戻り光入射点までの距離と、前記光センサ14に対する前記戻り光の入射角とを求め、これらの距離及び角度から三角測量の原理により前記被写体Aまでの距離を判定し、その測距データを図示しないレンズ焦点調整部に出力する。   On the other hand, the distance measuring circuit 17 is preset with distance data from the axis O of the subject projection light projected from the light source 1 to the parallel light corrected by the projection lens 13 and the arrangement position of the optical sensor 14. This distance measuring circuit 17 is based on the output signal from the optical sensor 14 and from the axis O on the line orthogonal to the axis O of the subject projection light to the return light incident point of the optical sensor 14. And the incident angle of the return light with respect to the optical sensor 14, determine the distance to the subject A based on the principle of triangulation from these distances and angles, and adjust the focus of the distance measurement data (not shown) To the output.

この測距装置は、前記発光ダイオード2の出射側に前記集光レンズ9を配置し、前記集光レンズ9の集光点を横切って前記遮光体10を配置するとともに、前記遮光体10の前記集光レンズ9に対向する側とは反対側に、前記集光レンズ9の集光点に集光して前記遮光体10を透過した前記正規光を実質的に平行光に補正して出射する投射レンズ13を配置した光源1を備え、この光源1の側方に、前記光源1の投射レンズ13から出射し、測距対象物Aにより反射された戻り光を受光してその信号を出力する光センサ14を配置したものであるため、前記光源1から、前記発光ダイオード2からの出射光のうち、前記LEDチップ5から直接前記モールド体7の凸レンズ部8に向かって出射し、前記凸レンズ部8により広がり角が小さくなる方向に屈折されて正規の方向に出射した正規光だけを、前記投射レンズ13により平行光に補正して被写体Aに投射することができ、したがって、前記被写体Aにより反射された戻り光を前記光センサ14に受光させることによる前記被写体Aまでの距離測定を高い精度で行なうことができる。   In this distance measuring device, the condensing lens 9 is disposed on the light emission side of the light emitting diode 2, the light shielding body 10 is disposed across the condensing point of the condensing lens 9, and the light shielding body 10 On the opposite side to the side facing the condenser lens 9, the regular light condensed at the condensing point of the condenser lens 9 and transmitted through the light shielding body 10 is corrected to substantially parallel light and emitted. A light source 1 provided with a projection lens 13 is provided, and the return light emitted from the projection lens 13 of the light source 1 and reflected by the distance measuring object A is received on the side of the light source 1 and the signal is output. Since the optical sensor 14 is disposed, the light emitted from the light source 2 from the light source 1 is directly emitted from the LED chip 5 toward the convex lens portion 8 of the mold body 7, and the convex lens portion. 8 reduces the spread angle Only normal light refracted in a normal direction and emitted in a normal direction can be corrected to parallel light by the projection lens 13 and projected onto the subject A. Therefore, the return light reflected by the subject A can be reflected on the light. The distance to the subject A can be measured with high accuracy by causing the sensor 14 to receive light.

すなわち、この実施例の測距装置は、前記光センサ14に、前記光源1の投射レンズ13からの光の出射方向に対して交差する方向に配列した複数のフォトダイオード15を備え、前記投射レンズ13から出射して被写体Aにより反射され、前記光センサ14に対して前記投射レンズ13から前記被写体Aまでの距離に対応した角度方向から入射する戻り光を、前記複数のフォトダイオード15のうちの前記戻り光の入射点のフォトダイオード15により受光してその信号を出力するものを用いて三角測距を行なうものであり、この三角測距では、前記発光ダイオード2から出射し、前記投射レンズ13により被写体Aに投射される光がその軸線に対して傾いた方向に向かうゴースト光を含んでいると、そのゴースト光が測距精度に影響するが、この測距装置によれば、前記光源1からゴースト光をほとんど含まない正規光を前記投射レンズ13により実質的に補正して被写体Aに投射することができるため、前記三角測距の精度を飛躍的に高くすることができる。   That is, the distance measuring device of this embodiment includes a plurality of photodiodes 15 arranged in a direction intersecting the light emitting direction from the projection lens 13 of the light source 1 in the optical sensor 14, and the projection lens. Return light that is emitted from 13 and reflected by the subject A and incident on the optical sensor 14 from an angle direction corresponding to the distance from the projection lens 13 to the subject A is selected from among the plurality of photodiodes 15. Triangular distance measurement is performed using the light received by the photodiode 15 at the incident point of the return light and the signal is output. In this triangular distance measurement, the light is emitted from the light emitting diode 2 and the projection lens 13 is output. If the light projected on the subject A includes ghost light directed in a direction inclined with respect to the axis, the ghost light affects the distance measurement accuracy. According to this distance measuring apparatus, since the regular light that hardly contains ghost light from the light source 1 can be substantially corrected by the projection lens 13 and projected onto the subject A, the accuracy of the triangular distance measurement is improved. It can be dramatically increased.

なお、上記実施例の測距装置は三角測距を行なうものであるが、この発明は、前記光源1から前記投射レンズ13により実質的に平行光に補正した光を被写体Aに向けて投射し、前記被写体Aにより反射された戻り光を前記光源1の側方に配置された光センサにより受光して、前記光源1からの光出射と前記光センサへの戻り光入射との時間差に基づいて前記被写体Aまでの距離を判定する時間差測距を行なう測距装置にも適用することができる。   Although the distance measuring apparatus of the above embodiment performs triangulation, the present invention projects light, which is substantially corrected to parallel light from the light source 1 by the projection lens 13, toward the subject A. The return light reflected by the subject A is received by a light sensor arranged on the side of the light source 1, and based on the time difference between the light emission from the light source 1 and the return light incidence to the light sensor. The present invention can also be applied to a distance measuring device that performs time difference ranging to determine the distance to the subject A.

また、この発明の測距装置は、オートフォーカスカメラの測距装置に限らず、他の測距装置にも適用することができる。   Further, the distance measuring device of the present invention is not limited to the distance measuring device of the autofocus camera, but can be applied to other distance measuring devices.

この発明の光源の一実施例を示す構成図。The block diagram which shows one Example of the light source of this invention. 発光ダイオードの断面図。Sectional drawing of a light emitting diode. 前記発光ダイオードの断面図及び一部切開正面図。Sectional drawing and the partial cutaway front view of the said light emitting diode. 前記発光ダイオードからの出射光を示す図。The figure which shows the emitted light from the said light emitting diode. この発明の測距装置の一実施例を示す構成図。The block diagram which shows one Example of the distance measuring device of this invention.

符号の説明Explanation of symbols

1…光源、2…発光ダイオード、3,4…リード、5…LEDチップ、5a…出射面、6…リードワイヤ、7…モールド体、8…凸レンズ部、9…集光レンズ、10…遮光体、11…光吸収板、12…ピンホール、13…投射レンズ、14…光センサ、15…フォトダイオード(光電変換素子)、16…センサ側レンズ、17…測距回路、A…被写体(測距対象物)。   DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Light emitting diode, 3, 4 ... Lead, 5 ... LED chip, 5a ... Outgoing surface, 6 ... Lead wire, 7 ... Mold body, 8 ... Convex lens part, 9 ... Condensing lens, 10 ... Light-shielding body DESCRIPTION OF SYMBOLS 11 ... Light absorption board, 12 ... Pinhole, 13 ... Projection lens, 14 ... Optical sensor, 15 ... Photodiode (photoelectric conversion element), 16 ... Sensor side lens, 17 ... Distance measuring circuit, A ... Subject (distance measurement) Object).

Claims (5)

一対のリードに発光ダイオードチップを接続し、その接続部を、前記発光ダイオードチップの出射面に対向する面に前記発光ダイオードチップからの出射光をその広がり角が小さくなる方向に屈折させて出射する凸レンズ部が形成されたモールド体によりモールドした発光ダイオードと、
前記発光ダイオードの出射側に配置され、前記発光ダイオードからの出射光のうち、前記発光ダイオードチップから直接前記モールド体の凸レンズ部に向かって出射して前記凸レンズ部により広がり角が小さくなる方向に屈折された出射光を一点に集光させる集光レンズと、
前記集光レンズの集光点を横切って配置され、前記発光ダイオードから出射して前記集光レンズを透過した光のうち、前記集光点に集光した光を透過させ、他の光を遮る遮光体とを備えたことを特徴とする光源。
A light-emitting diode chip is connected to a pair of leads, and the light emitted from the light-emitting diode chip is refracted in a direction in which the divergence angle is reduced to the surface facing the light-emitting diode chip. A light emitting diode molded by a molded body having a convex lens portion;
Arranged on the emission side of the light-emitting diode, out of the light emitted from the light-emitting diode, the light is emitted directly from the light-emitting diode chip toward the convex lens portion of the mold body and refracted in a direction in which the divergence angle is reduced by the convex lens portion. A condensing lens that condenses the emitted light at one point;
Out of the light emitted from the light emitting diode and transmitted through the condenser lens, the light condensed at the condenser point is transmitted and blocked from other light. A light source comprising a light shielding body.
遮光体は、発光ダイオードから出射して集光レンズを透過した光の前記集光レンズの集光点を横切る面上における断面積よりも大きい面積を有し、その中央部に1つのピンホールが設けられた光吸収板からなっており、前記ピンホールを集光レンズの集光点に一致させて配置されていることを特徴とする請求項1に記載の光源。   The light-shielding body has an area larger than the cross-sectional area on the surface crossing the condensing point of the condensing lens of the light emitted from the light emitting diode and transmitted through the condensing lens, and one pinhole is formed at the center thereof. 2. The light source according to claim 1, comprising a light absorbing plate provided and arranged so that the pinhole coincides with a condensing point of a condensing lens. 遮光体の集光レンズに対向する側とは反対側に、前記集光レンズの集光点に集光して前記遮光体を透過した光を実質的に平行光に補正して出射する投射レンズを配置したことを特徴とする請求項1または2に記載の光源。   A projection lens that condenses light at the condensing point of the condensing lens on the side opposite to the side facing the condensing lens of the light shielding body, and corrects the light transmitted through the light shielding body to substantially parallel light and emits the light. The light source according to claim 1, wherein the light source is disposed. 一対のリードに発光ダイオードチップを接続し、その接続部を、前記発光ダイオードチップの出射面に対向する面に前記発光ダイオードチップからの出射光をその広がり角が小さくなる方向に屈折させて出射する凸レンズ部が形成されたモールド体によりモールドした発光ダイオードと、前記発光ダイオードの出射側に配置され、前記発光ダイオードからの出射光のうち、前記発光ダイオードチップから直接前記モールド体の凸レンズ部に向かって出射して前記凸レンズ部により広がり角が小さくなる方向に屈折された出射光を一点に集光させる集光レンズと、前記集光レンズの集光点を横切って配置され、前記発光ダイオードから出射して前記集光レンズを透過した光のうち、前記集光点に集光した光を透過させ、他の光を遮る遮光体と、前記遮光体の前記集光レンズに対向する側とは反対側に配置され、前記集光レンズの集光点に集光して前記遮光体を透過した光を実質的に平行光に補正して出射する投射レンズとを備えた光源と、
前記光源の側方に配置され、前記光源の投射レンズから出射し、測距対象物により反射された戻り光を受光してその信号を出力する光センサとからなることを特徴とする測距装置。
A light-emitting diode chip is connected to a pair of leads, and the light emitted from the light-emitting diode chip is refracted in a direction in which the divergence angle is reduced and emitted from the connection portion to a surface opposite to the emission surface of the light-emitting diode chip. A light emitting diode molded by a molded body having a convex lens portion and a light emitting diode disposed on the light emitting side of the light emitting diode, out of the light emitted from the light emitting diode, directly from the light emitting diode chip toward the convex lens portion of the mold body A condensing lens that condenses the emitted light that is emitted and refracted in a direction in which the divergence angle is reduced by the convex lens portion, and a converging lens that is disposed across the condensing point of the condensing lens and is emitted from the light emitting diode. A light-shielding body that transmits the light condensed at the condensing point among the light transmitted through the condensing lens and blocks other light; The light-shielding body is disposed on the opposite side of the light-condensing lens from the side facing the condensing lens, and condenses light at the condensing point of the condensing lens and transmits the light-shielding body to substantially parallel light. A light source comprising a projection lens that emits;
A distance measuring device comprising: an optical sensor disposed on a side of the light source, receiving a return light emitted from a projection lens of the light source and reflected by a distance measuring object and outputting the signal. .
光センサは、光源の投射レンズからの光の出射方向に対して交差する方向に配列した複数の光電変換素子を備え、前記投射レンズから出射して測距対象物により反射され、前記投射レンズから前記測距対象物までの距離に対応した角度で前記光センサに向かって戻った光を、前記複数の光電変換素子のうちの前記戻り光の入射点の光電変換素子により受光してその信号を出力することを特徴とする請求項4に記載の測距装置。   The optical sensor includes a plurality of photoelectric conversion elements arranged in a direction intersecting with an emission direction of light from a projection lens of a light source, is emitted from the projection lens, is reflected by a distance measuring object, and is reflected from the projection lens. Light returned to the optical sensor at an angle corresponding to the distance to the distance measuring object is received by the photoelectric conversion element at the incident point of the return light among the plurality of photoelectric conversion elements, and the signal is received. The distance measuring device according to claim 4, wherein the distance measuring device outputs the distance measuring device.
JP2004056392A 2004-03-01 2004-03-01 Light source equipped with light emitting diode, and distance measuring equipment using the same Pending JP2005251795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056392A JP2005251795A (en) 2004-03-01 2004-03-01 Light source equipped with light emitting diode, and distance measuring equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056392A JP2005251795A (en) 2004-03-01 2004-03-01 Light source equipped with light emitting diode, and distance measuring equipment using the same

Publications (1)

Publication Number Publication Date
JP2005251795A true JP2005251795A (en) 2005-09-15

Family

ID=35032025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056392A Pending JP2005251795A (en) 2004-03-01 2004-03-01 Light source equipped with light emitting diode, and distance measuring equipment using the same

Country Status (1)

Country Link
JP (1) JP2005251795A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216922A (en) * 2009-03-16 2010-09-30 Sigma Koki Kk Optical displacement meter and optical displacement measurement method
KR101446600B1 (en) * 2012-09-13 2014-11-03 한국건설기술연구원 Sunlight Shut-out Device and Road Variable Message Signboard Therof
CN106838666A (en) * 2017-04-13 2017-06-13 上海睿铄光电科技有限公司 A kind of controllable aperture light outlet lamp of lamp shielding angle
CN107102314A (en) * 2017-04-18 2017-08-29 导装光电科技(深圳)有限公司 Rangefinder based on LED/light source
WO2023141880A1 (en) * 2022-01-27 2023-08-03 许俊甫 Active sensor high-efficiency light field projection device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153211A (en) * 1981-03-17 1982-09-21 Minolta Camera Co Ltd Distance detecting device
JPS62185115A (en) * 1986-02-10 1987-08-13 Kawasaki Steel Corp Displacement measuring apparatus
JPH01502411A (en) * 1986-05-10 1989-08-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Hand tools, preferably a drill
JPH0552550A (en) * 1991-08-28 1993-03-02 Hamamatsu Photonics Kk Detecting apparatus of distance
JPH06137864A (en) * 1992-05-25 1994-05-20 Brother Ind Ltd Common focusing type focus position detection device
JPH06235633A (en) * 1992-12-15 1994-08-23 Olympus Optical Co Ltd Range-finding device
JPH09325025A (en) * 1996-06-05 1997-12-16 Olympus Optical Co Ltd Distance-measuring apparatus
JPH10332326A (en) * 1997-05-20 1998-12-18 Sick Ag Photoelectronic sensor
JP2003290154A (en) * 2002-03-29 2003-10-14 Sumitomo Osaka Cement Co Ltd Monitoring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153211A (en) * 1981-03-17 1982-09-21 Minolta Camera Co Ltd Distance detecting device
JPS62185115A (en) * 1986-02-10 1987-08-13 Kawasaki Steel Corp Displacement measuring apparatus
JPH01502411A (en) * 1986-05-10 1989-08-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Hand tools, preferably a drill
JPH0552550A (en) * 1991-08-28 1993-03-02 Hamamatsu Photonics Kk Detecting apparatus of distance
JPH06137864A (en) * 1992-05-25 1994-05-20 Brother Ind Ltd Common focusing type focus position detection device
JPH06235633A (en) * 1992-12-15 1994-08-23 Olympus Optical Co Ltd Range-finding device
JPH09325025A (en) * 1996-06-05 1997-12-16 Olympus Optical Co Ltd Distance-measuring apparatus
JPH10332326A (en) * 1997-05-20 1998-12-18 Sick Ag Photoelectronic sensor
JP2003290154A (en) * 2002-03-29 2003-10-14 Sumitomo Osaka Cement Co Ltd Monitoring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216922A (en) * 2009-03-16 2010-09-30 Sigma Koki Kk Optical displacement meter and optical displacement measurement method
KR101446600B1 (en) * 2012-09-13 2014-11-03 한국건설기술연구원 Sunlight Shut-out Device and Road Variable Message Signboard Therof
CN106838666A (en) * 2017-04-13 2017-06-13 上海睿铄光电科技有限公司 A kind of controllable aperture light outlet lamp of lamp shielding angle
CN106838666B (en) * 2017-04-13 2022-11-01 上海睿铄光电科技有限公司 Small hole light emitting lamp with controllable shading angle
CN107102314A (en) * 2017-04-18 2017-08-29 导装光电科技(深圳)有限公司 Rangefinder based on LED/light source
WO2023141880A1 (en) * 2022-01-27 2023-08-03 许俊甫 Active sensor high-efficiency light field projection device

Similar Documents

Publication Publication Date Title
JP5178393B2 (en) Optical distance measuring sensor and electronic device
JP2008051764A (en) Range finding sensor, and electronic device having sensor mounted
JP2005241340A (en) Multi-range finding device
US20070030474A1 (en) Optical range finder
US20070127038A1 (en) Optical measuring device
JPH10221064A (en) Optical distance-measuring device
JP2013509699A5 (en)
JP2013509699A (en) Optical transmitter and optical receiver for optical sensors
JP4466083B2 (en) Ranging light source and ranging device
JP2004251874A (en) Optical detector
JP2005251795A (en) Light source equipped with light emitting diode, and distance measuring equipment using the same
JP2018040748A (en) Laser range measuring device
JPS6130689B2 (en)
JPH04248509A (en) Multipoint range finder
JP5278276B2 (en) Ranging light source and ranging device using the same
TW201426073A (en) Optical communication device
JP2010256183A (en) Reflection-type photoelectric sensor
JP2011044125A (en) Optical device
JP3348908B2 (en) Distance measuring device
US5719663A (en) Range finder apparatus
JPS62174607A (en) Optical system for measuring instrument
JP3377976B2 (en) Parallel light emitting device
JP4906626B2 (en) Photoelectric sensor
JPH11142110A (en) Charge coupled device photodetector and distance measuring apparatus using the same
JP3001302B2 (en) Distance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019