JP2005250115A - Optical waveguide module - Google Patents

Optical waveguide module Download PDF

Info

Publication number
JP2005250115A
JP2005250115A JP2004060596A JP2004060596A JP2005250115A JP 2005250115 A JP2005250115 A JP 2005250115A JP 2004060596 A JP2004060596 A JP 2004060596A JP 2004060596 A JP2004060596 A JP 2004060596A JP 2005250115 A JP2005250115 A JP 2005250115A
Authority
JP
Japan
Prior art keywords
optical
adhesive
optical fiber
optical waveguide
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004060596A
Other languages
Japanese (ja)
Inventor
Katsumi Sawada
克巳 澤田
Shibun Ishikawa
紫文 石川
Tetsuo Nozawa
哲郎 野澤
Hideyuki Hosoya
英行 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004060596A priority Critical patent/JP2005250115A/en
Publication of JP2005250115A publication Critical patent/JP2005250115A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4212Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element being a coupling medium interposed therebetween, e.g. epoxy resin, refractive index matching material, index grease, matching liquid or gel

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide module reliable and excellent in durability against intense incident light. <P>SOLUTION: This is an optical waveguide module equipped with an optical waveguide connected to optical fibers, and it uses an adhesive 12 whose modulus of light absorption is 90% or less at the junctions of the optical waveguide and optical fibers 5, 6 (This modulus of light absorption of the adhesive is for the light within the wavelength range used in this optical waveguide when the adhesive is 1 mm thick). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高強度入射光に対する耐久性に優れた基板型光導波路モジュールに関する。   The present invention relates to a substrate type optical waveguide module excellent in durability against high intensity incident light.

従来より、基板型光導波路に光ファイバまたは光ファイバアレイを光結合可能に接合して作られた光導波路モジュールが知られている(例えば、非特許文献1,2参照。)。
図1は光導波路モジュールの一例として基板導波路型スプリッタモジュールの構成を示す斜視図である。この基板導波路型スプリッタモジュール1は、中央の基板型導波路2と、その長手方向一端面に接着固定された光ファイバアレイ3と、基板型導波路2の長手方向他端面に接着固定された光ファイバアレイ4とを備えて構成されている。本例示において、一方の光ファイバアレイ3には1心の光ファイバ5が接続され、他方の光ファイバアレイ4には8心の光ファイバ6が接続されている。基板型導波路2とそれぞれの光ファイバアレイ3,4とは、接着剤7で接着固定されている。従来、この接着剤7としては、紫外線硬化型や熱硬化型のエポキシ接着剤、アクリル接着剤などが用いられている。
また、基板型導波路2と光ファイバ5,6との接合は、レーザ接合が用いられる場合もある。
1996年電子情報通信学会エレクトロニクスソサエティ大会、C−159、石英系導波路型1×8光スプリッタの架空実フィールド試験 石英系プレーナ光波回路(PLC)における実装技術、回路実装学会誌第10巻5号、1995年
2. Description of the Related Art Conventionally, there has been known an optical waveguide module made by joining an optical fiber or an optical fiber array to a substrate type optical waveguide so as to be optically coupled (see, for example, Non-Patent Documents 1 and 2).
FIG. 1 is a perspective view showing a configuration of a substrate waveguide type splitter module as an example of an optical waveguide module. The substrate waveguide type splitter module 1 includes a central substrate type waveguide 2, an optical fiber array 3 bonded and fixed to one longitudinal end surface thereof, and an adhesive fixed to the other longitudinal end surface of the substrate type waveguide 2. And an optical fiber array 4. In this example, one optical fiber 5 is connected to one optical fiber array 3, and eight optical fibers 6 are connected to the other optical fiber array 4. The substrate-type waveguide 2 and the respective optical fiber arrays 3 and 4 are bonded and fixed with an adhesive 7. Conventionally, an ultraviolet curable or thermosetting epoxy adhesive, an acrylic adhesive, or the like is used as the adhesive 7.
Further, laser bonding may be used for bonding the substrate-type waveguide 2 and the optical fibers 5 and 6.
1996 IEICE Electronics Society Conference, C-159, Fictive Field Test of Silica-based Waveguide Type 1 × 8 Optical Splitter Mounting technology in quartz planar lightwave circuit (PLC), Journal of Circuit Packaging Society, Vol. 10, No. 5, 1995

近年、高増幅率の光ファイバアンプの出現などにより、光通信に用いられる光は映像伝送用などを中心に高強度化している。光通信に用いられる基板型光導波路モジュールでは、一般に光ファイバと導波路との接続に有機材料の接着剤を用いている。このため、従来の光導波路モジュールに高強度光を入射した場合、モジュール内部での発熱があると、光ファイバと導波路を固定している接着剤が劣化し、モジュールの長期信頼性を低下させる問題がある。   In recent years, with the advent of high-amplification optical fiber amplifiers, etc., the light used for optical communication has been strengthened mainly for video transmission. In a substrate type optical waveguide module used for optical communication, an organic material adhesive is generally used for connection between an optical fiber and a waveguide. For this reason, when high-intensity light is incident on a conventional optical waveguide module, if there is heat generated inside the module, the adhesive that fixes the optical fiber and the waveguide deteriorates, reducing the long-term reliability of the module. There's a problem.

本発明者らは、光導波路モジュールに高強度光を入射した場合に、接続部が高温になる原因を調査した。その結果、接続部に使用する接着剤の光吸収だけでなく、周囲の接着剤の光吸収も大きく影響していることが分かった。基板型光導波路と光ファイバの接続点では、光ファイバのコアと基板型光導波路のコアとの軸ズレや端面間ギャップにより光が漏れる。この漏れ光は、接続面の周囲を覆う接着剤に吸収され温度を上昇させる原因となる。図2は、光導波路モジュールの接続部における漏れ光発生及び温度上昇のメカニズムを説明するための図であり、図2(a)は基板導波路型スプリッタモジュール1の斜視図、(b)は(a)中の接続部の拡大断面図である。図2(b)に示すように、この接続部は導波路コア9とその周囲の導波路クラッド8からなる導波路側と、光ファイバコア11とその周囲の光ファイバクラッド10からなる光ファイバ側とが、それぞれのコア9,11の端面を接近させた状態で接合されている。それぞれのコア9,11の軸ズレ等により、導波路側からの光が光ファイバコア11に入射されず、光ファイバクラッド10を透過して外部に漏れ出す。図2(a)に示すように、光ファイバアレイ4の光ファイバ6外に出た漏れ光は、周囲の接着剤7に吸収され、温度上昇を起こす。   The inventors investigated the cause of the high temperature of the connection part when high-intensity light is incident on the optical waveguide module. As a result, it was found that not only the light absorption of the adhesive used for the connection portion but also the light absorption of the surrounding adhesive greatly affected. At the connection point between the substrate type optical waveguide and the optical fiber, light leaks due to an axial shift between the core of the optical fiber and the core of the substrate type optical waveguide or a gap between the end faces. This leakage light is absorbed by the adhesive covering the periphery of the connection surface and causes the temperature to rise. 2A and 2B are diagrams for explaining the mechanism of leakage light generation and temperature rise in the connection portion of the optical waveguide module. FIG. 2A is a perspective view of the substrate waveguide type splitter module 1, and FIG. It is an expanded sectional view of the connection part in a). As shown in FIG. 2 (b), the connecting portions are a waveguide side composed of the waveguide core 9 and the surrounding waveguide cladding 8, and an optical fiber side composed of the optical fiber core 11 and the surrounding optical fiber cladding 10. Are joined in a state in which the end faces of the respective cores 9 and 11 are brought close to each other. Due to axial misalignment of the cores 9 and 11, light from the waveguide side is not incident on the optical fiber core 11, but passes through the optical fiber cladding 10 and leaks outside. As shown in FIG. 2A, the leaked light that has come out of the optical fiber 6 of the optical fiber array 4 is absorbed by the surrounding adhesive 7 and causes a temperature rise.

基板型光導波路モジュールの基本的な光学特性の一つである挿入損失をできるだけ小さくするため、従来から光ファイバと基板型光導波路間の接続には、光の吸収が小さい接着剤を選定して使用している。しかし、その他の部分に用いる接着剤は光学特性に影響を及ぼさないため、光の吸収率については考慮されていなかった。   In order to minimize the insertion loss, which is one of the basic optical characteristics of substrate-type optical waveguide modules, an adhesive that absorbs less light has been selected for connection between optical fibers and substrate-type optical waveguides. I use it. However, since the adhesive used for the other portions does not affect the optical characteristics, the light absorption rate has not been considered.

本発明は前記事情に鑑みてなされ、高強度入射光に対する耐久性に優れ、信頼性の高い光導波路モジュールの提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical waveguide module that is excellent in durability against high-intensity incident light and has high reliability.

前記目的を達成するため、本発明は、光導波路とそれに接合された光ファイバとを備えた光導波路モジュールであって、光導波路と光ファイバとの接合部周辺に、光吸収率(ただし、この光吸収率は、接着剤の厚さを1mmとし、その光導波路モジュールの使用波長範囲の光に対する接着剤の光吸収率である。)が90%以下の接着剤を用いたことを特徴とする光導波路モジュールを提供する。
本発明の光導波路モジュールにおいて、光ファイバの先端に光ファイバアレイが形成され、該光ファイバアレイと光導波路とが、光吸収率が90%以下の前記接着剤を用いて接合された構成とすることができる。
また、光ファイバアレイのV溝基板と光ファイバ裸線、あるいはV溝基板と光ファイバ裸線及び光ファイバアレイの接合に光吸収率が90%以下の前記接着剤を用いた構成とすることができる。
また、光ファイバアレイのV溝基板テラス部に光吸収率が90%以下の前記接着剤を用いた構成とすることができる。
また、光導波路と光ファイバアレイをケース内に収め、ケース内に光吸収率が90%以下の充填剤を設けた構成とすることができる。
本発明の光導波路モジュールにおいて、固定部材上の光導波路に光ファイバがレーザ接合されてなり、その接合部近傍の光ファイバの一部が固定部材に、光吸収率が90%以下の前記接着剤を用いて接着固定された構成としてもよい。
In order to achieve the above object, the present invention provides an optical waveguide module comprising an optical waveguide and an optical fiber bonded to the optical waveguide. The optical absorptance is defined as the adhesive having a thickness of 1 mm and the optical absorptivity of the adhesive with respect to light in the wavelength range of use of the optical waveguide module. An optical waveguide module is provided.
In the optical waveguide module of the present invention, an optical fiber array is formed at the tip of an optical fiber, and the optical fiber array and the optical waveguide are bonded using the adhesive having a light absorption rate of 90% or less. be able to.
Further, the adhesive having an optical absorptance of 90% or less may be used for joining the V-groove substrate and the bare optical fiber of the optical fiber array, or joining the V-groove substrate and the bare optical fiber and the optical fiber array. it can.
Moreover, it can be set as the structure which used the said adhesive agent whose light absorptivity is 90% or less for the V-groove board | substrate terrace part of an optical fiber array.
Further, the optical waveguide and the optical fiber array can be housed in a case, and a filler having a light absorption rate of 90% or less can be provided in the case.
In the optical waveguide module of the present invention, an optical fiber is laser-bonded to an optical waveguide on a fixing member, a part of the optical fiber in the vicinity of the bonding portion is fixed to the fixing member, and the adhesive has a light absorption rate of 90% or less. It is good also as a structure fixed by adhesion using.

本発明の光導波路モジュールは、光導波路と光ファイバとの接合部周辺に、光吸収率90%以下の接着剤を用いた構成としたので、接合部からの漏れ光が接着剤に吸収され難く、漏れ光の吸収による接着剤の温度上昇を低く抑えることができ、高強度入射光に対する耐久性に優れ、信頼性の高い光導波路モジュールを提供することができる。   Since the optical waveguide module of the present invention uses an adhesive having a light absorption rate of 90% or less around the joint between the optical waveguide and the optical fiber, light leaked from the joint is hardly absorbed by the adhesive. In addition, an increase in the temperature of the adhesive due to absorption of leakage light can be suppressed to a low level, and an optical waveguide module having excellent durability against high-intensity incident light and high reliability can be provided.

以下、図面を参照して本発明の実施形態を説明する。
図3は本発明の光導波路モジュールの第1実施形態を示す斜視図であり、図3中、符号1は光導波路モジュールの一例である基板導波路型スプリッタモジュール、2は光導波路の一例である基板型導波路(詳しくは、8分岐スプリッタ)、3及び4は光ファイバアレイ、5及び6は光ファイバ、12は接着剤である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 3 is a perspective view showing a first embodiment of the optical waveguide module of the present invention. In FIG. 3, reference numeral 1 denotes a substrate waveguide type splitter module which is an example of the optical waveguide module, and 2 is an example of the optical waveguide. A substrate-type waveguide (specifically, an 8-branch splitter), 3 and 4 are optical fiber arrays, 5 and 6 are optical fibers, and 12 is an adhesive.

この基板導波路型スプリッタモジュール1は、中央の基板型導波路2と、その長手方向一端面に接着固定された光ファイバアレイ3と、基板型導波路2の長手方向他端面に接着固定された光ファイバアレイ4とを備えて構成されている。本例示において、一方の光ファイバアレイ3には1心の光ファイバ5が接続され、他方の光ファイバアレイ4には8心の光ファイバ6(光ファイバテープ心線)が接続されている。基板型導波路2とそれぞれの光ファイバアレイ3,4とは、光吸収率(ただし、この光吸収率は、接着剤の厚さを1mmとし、その光導波路モジュールの使用波長範囲の光に対する接着剤の光吸収率である。)が90%以下の接着剤12を用いて接着固定されている。   The substrate waveguide type splitter module 1 includes a central substrate type waveguide 2, an optical fiber array 3 bonded and fixed to one longitudinal end surface thereof, and an adhesive fixed to the other longitudinal end surface of the substrate type waveguide 2. And an optical fiber array 4. In this example, one optical fiber 5 is connected to one optical fiber array 3, and eight optical fibers 6 (optical fiber tape cores) are connected to the other optical fiber array 4. The substrate-type waveguide 2 and the respective optical fiber arrays 3 and 4 have an optical absorptivity (however, this optical absorptivity has an adhesive thickness of 1 mm and adheres to light in the wavelength range of use of the optical waveguide module) The light absorptivity of the agent is adhesively fixed using an adhesive 12 having a 90% or less.

接着剤12は、前記光吸収率が90%以下であればよく、各種の接着剤12の中から適宜選択して使用できる。前記接着剤12の光吸収率が90%を超えると、基板型導波路2と光ファイバアレイ3,4との接合部から発生した漏れ光が接着剤に吸収される割合が多くなり、この基板導波路型スプリッタモジュール1に光通信で使用されるハイパワー光(数百mW〜1W程度)を送り、接合部の過剰損失が1〜2dB程度である場合、接着剤の温度がその耐熱温度を超え、接着剤の劣化が促進される可能性があるので好ましくない。   The adhesive 12 only needs to have a light absorption rate of 90% or less, and can be appropriately selected from various adhesives 12 and used. If the optical absorptance of the adhesive 12 exceeds 90%, the ratio of the leakage light generated from the joint between the substrate-type waveguide 2 and the optical fiber arrays 3 and 4 being absorbed by the adhesive increases. When high power light (several hundred mW to 1 W) used for optical communication is sent to the waveguide splitter module 1 and the excess loss of the junction is about 1 to 2 dB, the temperature of the adhesive is set to the heat resistant temperature. This is not preferable because deterioration of the adhesive may be promoted.

基板導波路型スプリッタモジュール1は、基板型導波路2と光ファイバアレイ3,4との接合部周辺に、光吸収率90%以下の接着剤12を用いた構成としたので、接合部からの漏れ光が接着剤12に吸収され難く、漏れ光の吸収による接着剤の温度上昇を低く抑えることができ、高強度入射光に対する耐久性に優れ、信頼性の高いものとなる。
なお、この光導波路モジュールは、プラスチックケースや金属チューブなどの適当なケース内に収め、ケース内に充填剤を設けた構成とすることもできる。この充填剤は光吸収率が90%以下の前記接着剤12と同じものでも良いし、例えば光吸収率が90%以下のグリスなど別種のものでもよい。この充填剤の機能としては、防湿、防水、振動・衝撃吸収などである。
Since the substrate waveguide type splitter module 1 has a configuration in which the adhesive 12 having a light absorption rate of 90% or less is used around the joint portion between the substrate waveguide 2 and the optical fiber arrays 3 and 4. Leakage light is not easily absorbed by the adhesive 12, the temperature rise of the adhesive due to absorption of the leaking light can be kept low, and it has excellent durability against high-intensity incident light and high reliability.
The optical waveguide module may be housed in a suitable case such as a plastic case or a metal tube, and a filler may be provided in the case. This filler may be the same as the adhesive 12 having a light absorption rate of 90% or less, or may be another type such as grease having a light absorption rate of 90% or less. Functions of this filler are moisture proofing, waterproofing, vibration / impact absorption, and the like.

図4は本発明の光導波路モジュールの第2実施形態を示す斜視図であり、図4中、符号1Bは光導波路モジュールの一例である基板導波路型スプリッタモジュール、2Bは光導波路の一例である基板型導波路(詳しくは、8分岐スプリッタ)、3B及び4Bは光ファイバアレイ、5及び6は光ファイバ、12,13は接着剤である。   FIG. 4 is a perspective view showing a second embodiment of the optical waveguide module of the present invention. In FIG. 4, reference numeral 1B denotes a substrate waveguide type splitter module, which is an example of the optical waveguide module, and 2B denotes an example of the optical waveguide. A substrate type waveguide (specifically, an 8-branch splitter), 3B and 4B are optical fiber arrays, 5 and 6 are optical fibers, and 12 and 13 are adhesives.

本実施形態では、リッド無し基板型導波路2Bと、リッド無し光ファイバアレイ3B,4Bを用い、基板型導波路2Bと光ファイバアレイ3B,4Bとの接合部と、光ファイバアレイ3B,4B上面とに複数の接着剤12,13を用いていることを特徴としている。このように接合部周辺に複数の接着剤12,13が複合して使用されている場合にも、本発明を適用することができる。   In the present embodiment, the substrate waveguide 2B without lid and the optical fiber arrays 3B and 4B without lid are used, the joint portion between the substrate waveguide 2B and the optical fiber arrays 3B and 4B, and the upper surfaces of the optical fiber arrays 3B and 4B. And a plurality of adhesives 12 and 13 are used. As described above, the present invention can also be applied to the case where a plurality of adhesives 12 and 13 are used in combination around the joint.

図5は本発明の光導波路モジュールの第3実施形態を示す斜視図であり、図5中、符号1Cは光導波路モジュールの一例である基板導波路型スプリッタモジュール、2Cは光導波路の一例である基板型導波路(詳しくは、8分岐スプリッタ)、5及び6は光ファイバ、12は接着剤、14はレーザ接合部である。   FIG. 5 is a perspective view showing a third embodiment of the optical waveguide module of the present invention. In FIG. 5, reference numeral 1C denotes a substrate waveguide type splitter module which is an example of the optical waveguide module, and 2C is an example of the optical waveguide. A substrate-type waveguide (specifically, an 8-branch splitter), 5 and 6 are optical fibers, 12 is an adhesive, and 14 is a laser junction.

この基板導波路型スプリッタモジュール1Cは、ガラス板や金属板などの平坦な固定部材上に基板型導波路2を固定し、その両端にそれぞれ光ファイバ5,6をレーザ融着して接合し、これらの光ファイバ5,6の被覆部分を、光吸収率90%以下の接着剤12を用いて固定部材上に接着固定した構成になっている。   This substrate waveguide type splitter module 1C fixes a substrate type waveguide 2 on a flat fixing member such as a glass plate or a metal plate, and optical fibers 5 and 6 are bonded to both ends thereof by laser fusion, The covering portions of these optical fibers 5 and 6 are bonded and fixed on a fixing member using an adhesive 12 having a light absorption rate of 90% or less.

本実施形態による光導波路モジュールについても、前記第1実施形態の光導波路モジュールと同様の効果を得ることができる。   Also for the optical waveguide module according to the present embodiment, the same effects as those of the optical waveguide module of the first embodiment can be obtained.

なお、前述した各実施形態では、光導波路として8分岐スプリッタを例示しているが、本発明はこれに限定されることなく、他のタイプの光スプリッタ、方向性結合器、アレイ導波路型合分波器(AWG)などの各種の基板型導波路を含む光導波路モジュールに適用することができる。   In each of the above-described embodiments, an eight-branch splitter is exemplified as the optical waveguide. However, the present invention is not limited to this, and other types of optical splitters, directional couplers, arrayed waveguide type couplers are used. The present invention can be applied to an optical waveguide module including various substrate-type waveguides such as a duplexer (AWG).

[サンプル1]
図3に示すように、基板型導波路2(8分岐スプリッタ)と光ファイバアレイ3,4とを接着剤で接合した。この接合部の過剰損失は1dBであった。図3に示すように接合部周辺に、光吸収率10%(波長1.55μm、厚さ1mmで測定した光吸収率)の接着剤を塗布して基板導波路型スプリッタモジュールを製造した。この光吸収率10%の接着剤は、エポキシ系紫外線硬化型接着剤であり、ガラス転移点130℃、せん断接着強さ120kgf/cm以上のものを用いた。
[Sample 1]
As shown in FIG. 3, the substrate-type waveguide 2 (8-branch splitter) and the optical fiber arrays 3 and 4 were joined with an adhesive. The excess loss at this junction was 1 dB. As shown in FIG. 3, a substrate waveguide type splitter module was manufactured by applying an adhesive having a light absorptivity of 10% (light absorptivity measured at a wavelength of 1.55 μm and a thickness of 1 mm) around the joint. The adhesive having a light absorption rate of 10% is an epoxy-based ultraviolet curable adhesive having a glass transition point of 130 ° C. and a shear adhesive strength of 120 kgf / cm 2 or more.

[サンプル2]
接着剤として、光吸収率50%の接着剤を用いた以外は、サンプル1と同様にして基板導波路型スプリッタモジュールを製造した。この光吸収率50%の接着剤は、エポキシ系紫外線硬化型接着剤であり、ガラス転移点34℃、せん断接着強さ146kgf/cm以上のものを用いた。
[Sample 2]
A substrate waveguide type splitter module was manufactured in the same manner as Sample 1 except that an adhesive having a light absorption rate of 50% was used as the adhesive. The adhesive having a light absorption rate of 50% is an epoxy-based ultraviolet curable adhesive having a glass transition point of 34 ° C. and a shear adhesive strength of 146 kgf / cm 2 or more.

[サンプル3]
接着剤として、光吸収率90%の接着剤を用いた以外は、サンプル1と同様にして基板導波路型スプリッタモジュールを製造した。この光吸収率90%の接着剤は、アクリル系紫外線硬化型接着剤であり、ガラス転移点99℃、せん断接着強さ200kgf/cm以上のものを用いた。
[Sample 3]
A substrate waveguide type splitter module was manufactured in the same manner as Sample 1 except that an adhesive having a light absorption rate of 90% was used as the adhesive. The adhesive having a light absorption rate of 90% is an acrylic ultraviolet curable adhesive having a glass transition point of 99 ° C. and a shear adhesive strength of 200 kgf / cm 2 or more.

[サンプル4]
接合部の過剰損失を2dBとした以外は、サンプル1と同様にして基板導波路型スプリッタモジュールを製造した。
[Sample 4]
A substrate waveguide type splitter module was manufactured in the same manner as Sample 1 except that the excess loss at the junction was 2 dB.

[サンプル5]
接合部の過剰損失を2dBとした以外は、サンプル2と同様にして基板導波路型スプリッタモジュールを製造した。
[Sample 5]
A substrate waveguide type splitter module was manufactured in the same manner as Sample 2 except that the excess loss at the junction was 2 dB.

[サンプル6]
接合部の過剰損失を2dBとした以外は、サンプル3と同様にして基板導波路型スプリッタモジュールを製造した。
[Sample 6]
A substrate waveguide type splitter module was manufactured in the same manner as Sample 3 except that the excess loss at the junction was 2 dB.

製造したサンプル1〜6の導波路タイプ、過剰損失、接着剤吸収率をまとめて表1に示す。   Table 1 summarizes the waveguide types, excess losses, and adhesive absorption rates of the manufactured samples 1 to 6.

Figure 2005250115
Figure 2005250115

製造したサンプル1〜6を用い、表2に示す試験条件で入射光強度を変化させ、接着剤の最高到達温度を測定した。サンプル1〜3の測定結果を図6に、サンプル4〜6の測定結果を図7にそれぞれ示す。   Using the manufactured samples 1 to 6, the incident light intensity was changed under the test conditions shown in Table 2, and the maximum temperature reached by the adhesive was measured. The measurement results of samples 1 to 3 are shown in FIG. 6, and the measurement results of samples 4 to 6 are shown in FIG.

Figure 2005250115
Figure 2005250115

一般の接着剤あるいは充填剤樹脂の耐熱温度は100〜120℃程度である。例えば、光通信部品で汎用的に用いられているエポキシ接着剤(エポテック353ND)は、150℃/1時間の硬化条件でガラス転移点が100℃である。一方、現在使用されているハイパワー光は、22dBm(300mW)程度であるが、年々ハイパワー化が進んでおり、30dBm(1W)程度のハイパワー光をも想定する必要がある。従って、図6,7のグラフより光パワー1Wのとき、光吸収率が90%で120℃であるので、これ以上の光吸収率は適さないことが容易にわかる。また、2002年電子情報通信学会通信ソサエティ大会B−10−86に記載されているようなラマンアンプを用いた電送システムでは、2W程度のハイパワー光が用いられる可能性がある。こうしたことをも考慮すれば、グラフより2Wで120℃以下にするためには、光吸収率が50%以下の接着剤を使用するのが望ましいことがわかる。
また、過剰損失を1dBに抑えたとしても、2Wでは120℃以下にするためには、光吸収率が90%以下の接着剤を用いることが望ましい。
The heat resistance temperature of a general adhesive or filler resin is about 100 to 120 ° C. For example, an epoxy adhesive (Epotech 353ND), which is widely used in optical communication parts, has a glass transition point of 100 ° C. under a curing condition of 150 ° C./1 hour. On the other hand, the high power light currently used is about 22 dBm (300 mW). However, the high power light is increasing year by year, and it is necessary to assume high power light of about 30 dBm (1 W). Therefore, it can be easily understood from the graphs of FIGS. 6 and 7 that when the optical power is 1 W, the optical absorptance is 90% and 120 ° C., so that an optical absorptance higher than this is not suitable. In addition, in a power transmission system using a Raman amplifier as described in the 2002 IEICE Communication Society B-10-86, high power light of about 2 W may be used. Considering these facts, it can be seen from the graph that it is desirable to use an adhesive having a light absorptivity of 50% or less in order to achieve 120 ° C. or less at 2 W.
Further, even if the excessive loss is suppressed to 1 dB, it is desirable to use an adhesive having a light absorption rate of 90% or less in order to make it 120 ° C. or less at 2 W.

光導波路モジュールの一例として基板導波路型スプリッタモジュールの構造を示す斜視図である。It is a perspective view which shows the structure of the board | substrate waveguide type | mold splitter module as an example of an optical waveguide module. 基板導波路型スプリッタモジュールにおける漏れ光の発生と温度上昇のメカニズムを説明するための図であり、(a)は基板導波路型スプリッタモジュールの斜視図、(b)は(a)の要部拡大断面図である。It is a figure for demonstrating the mechanism of generation | occurrence | production of leak light and a temperature rise in a substrate waveguide type | mold splitter module, (a) is a perspective view of a substrate waveguide type | mold splitter module, (b) is the principal part expansion of (a). It is sectional drawing. 本発明の光導波路モジュールの第1実施形態を示す基板導波路型スプリッタモジュールの斜視図である。1 is a perspective view of a substrate waveguide type splitter module showing a first embodiment of an optical waveguide module of the present invention. FIG. 本発明の光導波路モジュールの第2実施形態を示す基板導波路型スプリッタモジュールの斜視図である。It is a perspective view of the board | substrate waveguide type | mold splitter module which shows 2nd Embodiment of the optical waveguide module of this invention. 本発明の光導波路モジュールの第3実施形態を示す基板導波路型スプリッタモジュールの斜視図である。It is a perspective view of the substrate waveguide type splitter module which shows 3rd Embodiment of the optical waveguide module of this invention. 本発明の実施例の結果を示すグラフである。It is a graph which shows the result of the Example of this invention. 本発明の別の実施例の結果を示すグラフである。It is a graph which shows the result of another Example of this invention.

符号の説明Explanation of symbols

1,1B,1C…基板導波路型スプリッタモジュール(光導波路モジュール)、2,2B,2C…基板型導波路、3,3B,4,4B…光ファイバアレイ、5,6…光ファイバ、12,13…接着剤、14…レーザ接合部。
1, 1B, 1C ... Substrate waveguide type splitter module (optical waveguide module), 2, 2B, 2C ... Substrate type waveguide, 3, 3B, 4, 4B ... Optical fiber array, 5, 6 ... Optical fiber, 12, 13 ... Adhesive, 14 ... Laser junction.

Claims (6)

光導波路とそれに接合された光ファイバとを備えた光導波路モジュールであって、光導波路と光ファイバとの接合部周辺に、光吸収率(ただし、この光吸収率は、接着剤の厚さを1mmとし、その光導波路モジュールの使用波長範囲の光に対する接着剤の光吸収率である。)が90%以下の接着剤を用いたことを特徴とする光導波路モジュール。   An optical waveguide module including an optical waveguide and an optical fiber bonded to the optical waveguide, and an optical absorptance (however, this optical absorptivity is the thickness of the adhesive) around the joint between the optical waveguide and the optical fiber. An optical waveguide module using an adhesive having a thickness of 1 mm and an optical absorptance of the adhesive with respect to light in the wavelength range of use of the optical waveguide module) of 90% or less. 光ファイバの先端に光ファイバアレイが形成され、該光ファイバアレイと光導波路とが、光吸収率が90%以下の前記接着剤を用いて接合されたことを特徴とする光導波路モジュール。   An optical waveguide module, wherein an optical fiber array is formed at a tip of an optical fiber, and the optical fiber array and the optical waveguide are bonded using the adhesive having a light absorption rate of 90% or less. 光ファイバアレイのV溝基板と光ファイバ裸線、あるいはV溝基板と光ファイバ裸線及び光ファイバアレイの接合に光吸収率が90%以下の前記接着剤を用いたことを特徴とする請求項2に記載の光導波路モジュール。   The adhesive having an optical absorptance of 90% or less is used for bonding a V-groove substrate and an optical fiber bare wire of an optical fiber array or a joint between a V-groove substrate and an optical fiber bare wire and an optical fiber array. 2. The optical waveguide module according to 2. 光ファイバアレイのV溝基板テラス部に光吸収率が90%以下の前記接着剤を用いたことを特徴とする請求項2又は3に記載の光導波路モジュール。   4. The optical waveguide module according to claim 2, wherein the adhesive having a light absorptivity of 90% or less is used for a V-groove substrate terrace portion of the optical fiber array. 光導波路と光ファイバアレイをケース内に収め、ケース内に光吸収率が90%以下の充填剤を設けたことを特徴とする請求項2〜4のいずれかに記載の光導波路モジュール。   The optical waveguide module according to claim 2, wherein the optical waveguide and the optical fiber array are housed in a case, and a filler having a light absorption rate of 90% or less is provided in the case. 固定部材上の光導波路に光ファイバがレーザ接合されてなり、その接合部近傍の光ファイバの一部が固定部材に、光吸収率が90%以下の前記接着剤を用いて接着固定されたことを特徴とする請求項1に記載の光導波路モジュール。

An optical fiber is laser-bonded to the optical waveguide on the fixing member, and a part of the optical fiber in the vicinity of the bonding portion is bonded and fixed to the fixing member using the adhesive having a light absorption rate of 90% or less. The optical waveguide module according to claim 1.

JP2004060596A 2004-03-04 2004-03-04 Optical waveguide module Pending JP2005250115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004060596A JP2005250115A (en) 2004-03-04 2004-03-04 Optical waveguide module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004060596A JP2005250115A (en) 2004-03-04 2004-03-04 Optical waveguide module

Publications (1)

Publication Number Publication Date
JP2005250115A true JP2005250115A (en) 2005-09-15

Family

ID=35030651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060596A Pending JP2005250115A (en) 2004-03-04 2004-03-04 Optical waveguide module

Country Status (1)

Country Link
JP (1) JP2005250115A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209206A (en) * 2013-03-25 2014-11-06 日本碍子株式会社 Connection structure between holding component and optical waveguide component of light inputting member, and manufacturing method of the same
WO2015012693A1 (en) * 2013-07-24 2015-01-29 Effect Photonics B.V. Optical subassembly, optical system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191105A (en) * 1988-01-27 1989-08-01 Mitsubishi Gas Chem Co Inc Connecting method for optical waveguide device and optical waveguide element
JPH0279805A (en) * 1988-09-16 1990-03-20 Nippon Telegr & Teleph Corp <Ntt> Method for connecting optical waveguide and optical fiber
JPH0527139A (en) * 1991-07-08 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide circuit module
JPH07198990A (en) * 1993-12-28 1995-08-01 Sumitomo Electric Ind Ltd Packaging structure of optical module
JPH0894876A (en) * 1994-09-29 1996-04-12 Kyocera Corp Optical waveguide module
JPH095566A (en) * 1995-06-15 1997-01-10 Fujikura Ltd Method for connecting optical waveguide and optical fiber
JPH09159865A (en) * 1995-12-08 1997-06-20 Nippon Telegr & Teleph Corp <Ntt> Connection structure of optical waveguide
JPH10142445A (en) * 1996-11-12 1998-05-29 Toyo Commun Equip Co Ltd Connection structure of optical waveguide device
JPH10206685A (en) * 1997-01-24 1998-08-07 Kyocera Corp Structure of optical waveguide module
JP2002509564A (en) * 1996-12-13 2002-03-26 コーニング インコーポレイテッド Light transmitting material and adhesive layer
JP2003248143A (en) * 2001-12-21 2003-09-05 Furukawa Electric Co Ltd:The Optical module and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191105A (en) * 1988-01-27 1989-08-01 Mitsubishi Gas Chem Co Inc Connecting method for optical waveguide device and optical waveguide element
JPH0279805A (en) * 1988-09-16 1990-03-20 Nippon Telegr & Teleph Corp <Ntt> Method for connecting optical waveguide and optical fiber
JPH0527139A (en) * 1991-07-08 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide circuit module
JPH07198990A (en) * 1993-12-28 1995-08-01 Sumitomo Electric Ind Ltd Packaging structure of optical module
JPH0894876A (en) * 1994-09-29 1996-04-12 Kyocera Corp Optical waveguide module
JPH095566A (en) * 1995-06-15 1997-01-10 Fujikura Ltd Method for connecting optical waveguide and optical fiber
JPH09159865A (en) * 1995-12-08 1997-06-20 Nippon Telegr & Teleph Corp <Ntt> Connection structure of optical waveguide
JPH10142445A (en) * 1996-11-12 1998-05-29 Toyo Commun Equip Co Ltd Connection structure of optical waveguide device
JP2002509564A (en) * 1996-12-13 2002-03-26 コーニング インコーポレイテッド Light transmitting material and adhesive layer
JPH10206685A (en) * 1997-01-24 1998-08-07 Kyocera Corp Structure of optical waveguide module
JP2003248143A (en) * 2001-12-21 2003-09-05 Furukawa Electric Co Ltd:The Optical module and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209206A (en) * 2013-03-25 2014-11-06 日本碍子株式会社 Connection structure between holding component and optical waveguide component of light inputting member, and manufacturing method of the same
JP2018081316A (en) * 2013-03-25 2018-05-24 日本碍子株式会社 Connection structure between holding component and optical waveguide component of light inputting member, and method of manufacturing the same
WO2015012693A1 (en) * 2013-07-24 2015-01-29 Effect Photonics B.V. Optical subassembly, optical system and method
US20160147020A1 (en) * 2013-07-24 2016-05-26 Effect Photonics B.V. Optical subassembly, optical system and method
US9766406B2 (en) 2013-07-24 2017-09-19 Effect Photonics B.V. Optical subassembly, optical system and method

Similar Documents

Publication Publication Date Title
US9116296B2 (en) Optical fiber device having mode stripper thermally protecting structural adhesive
US8615149B2 (en) Photonics chip with efficient optical alignment and bonding and optical apparatus including the same
KR100294041B1 (en) Optical part packaging method and collimatior assembly mounting method
WO2007116792A1 (en) Light input/output port of optical component and beam converting apparatus
EP0148012B1 (en) Optical-fiber coupling device
JP5319624B2 (en) Optical parts
JP2007072007A (en) Optical waveguide module
JP2016194658A (en) Optical device, optical processing device, and method of producing optical device
JP4877067B2 (en) Optical fiber, optical fiber connection structure and optical connector
US9116291B2 (en) Integrated optical module
WO2014017109A1 (en) Integrated optical module
JP2016090614A (en) Optical device
JP2005250115A (en) Optical waveguide module
JP2002040290A (en) Fiber array part and its manufacturing method
JP4872551B2 (en) Mechanical splice
JP2010066474A (en) Optical connection structure
JP4649369B2 (en) Manufacturing method of optical fiber array
WO2016054986A1 (en) Energy-transferring optical fiber connector
JPH0534543A (en) Waveguide type optical parts
JP4712591B2 (en) Optical circuit module
JPS6343111A (en) Optical fiber branching device
WO2022003880A1 (en) Optical component
US7083335B2 (en) Strength added epoxy fiber bonding in non-hermetic fiber optic packaging
JP2006293195A (en) Optical fiber connecting device
JP2013214115A (en) Optical coupling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081031

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419