JP2005249572A - Micro flow-path chip manufacturing method, micro flow-path chip, biomolecule separating method using the micro flow-path chip, and electrophoresis device comprising the micro flow-path chip - Google Patents

Micro flow-path chip manufacturing method, micro flow-path chip, biomolecule separating method using the micro flow-path chip, and electrophoresis device comprising the micro flow-path chip Download PDF

Info

Publication number
JP2005249572A
JP2005249572A JP2004060215A JP2004060215A JP2005249572A JP 2005249572 A JP2005249572 A JP 2005249572A JP 2004060215 A JP2004060215 A JP 2004060215A JP 2004060215 A JP2004060215 A JP 2004060215A JP 2005249572 A JP2005249572 A JP 2005249572A
Authority
JP
Japan
Prior art keywords
polymer compound
base material
film
cover material
compound film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004060215A
Other languages
Japanese (ja)
Other versions
JP4450368B2 (en
JP2005249572A5 (en
Inventor
Kenji Yokoyama
憲二 横山
Satoru Koide
哲 小出
Koji Sakairi
幸司 坂入
Kazuyoshi Yano
和義 矢野
Masao Karube
征夫 輕部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Katayanagi Institute
Toppan Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Katayanagi Institute
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Katayanagi Institute, Toppan Printing Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004060215A priority Critical patent/JP4450368B2/en
Priority to PCT/JP2005/003604 priority patent/WO2005084794A1/en
Priority to GB0619521A priority patent/GB2429428C/en
Priority to US10/591,335 priority patent/US8012430B2/en
Publication of JP2005249572A publication Critical patent/JP2005249572A/en
Publication of JP2005249572A5 publication Critical patent/JP2005249572A5/ja
Application granted granted Critical
Publication of JP4450368B2 publication Critical patent/JP4450368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/006Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • B01D67/0062Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/40Details relating to membrane preparation in-situ membrane formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00801Means to assemble
    • B01J2219/00804Plurality of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00853Employing electrode arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple micro flow-path chip manufacturing method with excellent adhesion strength in bonding. <P>SOLUTION: According to this micro flow-path chip manufacturing method, a base material with its base material surface coated with a high-polymer compound film is stuck together with a cover material. This method includes a process for covering the surface of the base material with a mask allowing the whole of the flow-path to be exposed, with a groove-shaped flow path formed in the surface, to form a high-polymer compound film on the surface of the exposed base material, and a process for sticking the cover material on a surface of the base material on its side with the flow path formed thereon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マイクロ流路チップの製造方法に関する。また、本発明は、マイクロ流路チップ、該マイクロ流路チップを用いる生体分子の分離方法および電気泳動装置に関する。   The present invention relates to a method for manufacturing a microchannel chip. The present invention also relates to a microchannel chip, a biomolecule separation method using the microchannel chip, and an electrophoresis apparatus.

キャピラリー電気泳動あるいはマイクロ流路チップ電気泳動は、微量の生体分子を分離分析する方法として非常に優れており、分析の自動化、高速化が可能になるため、これまで数多くの研究がなされている。(非特許文献1)   Capillary electrophoresis or microchannel chip electrophoresis is extremely excellent as a method for separating and analyzing a small amount of biomolecules, and can be automated and accelerated, so that many studies have been conducted so far. (Non-Patent Document 1)

キャピラリー電気泳動あるいはマイクロ流路チップ電気泳動に使用される一般的な材料は、ガラスが挙げられるが、蛋白質を分離するためには、解決すべき課題が数多くある。
たとえば、ガラスにより作成されたキャピラリー電気泳動あるいはマイクロ流路チップ電気泳動は、電気浸透流の影響があった。
A common material used for capillary electrophoresis or microchannel chip electrophoresis is glass, but there are many problems to be solved in order to separate proteins.
For example, capillary electrophoresis or microchannel chip electrophoresis made of glass was affected by electroosmotic flow.

このため、たとえばキャピラリー内部に発生する電気浸透流の制御のために、キャピラリーの内壁にポリマーをコーティングする試みがなされている(特許文献1、2、3)。
コーティング方法としては、化合物を化学的に表面に結合させる方法や、物理的な吸着による方法が試みられている。
For this reason, for example, in order to control the electroosmotic flow generated inside the capillary, attempts have been made to coat the inner wall of the capillary with a polymer (Patent Documents 1, 2, and 3).
As a coating method, a method of chemically bonding a compound to a surface or a method by physical adsorption has been attempted.

化学的なコーティング方法としては、ガラスを用いたキャピラリーあるいはマイクロ流路チップを用いる場合に、シランカップリング剤を被覆する方法が知られている。この方法は、共有結合によりシランカップリング剤を結合させるため、非常に強くマイクロ流路内をコーティングすることができるが、均一にコーティングすることが困難であり、高い再現性が求められるキャピラリーあるいはマイクロ流路チップを作製することができない。また、化学反応によるため、複雑なコーティング方法となり、製品化する上で有効な方法とはいえなかった。   As a chemical coating method, a method of coating a silane coupling agent when a capillary using glass or a microchannel chip is used is known. In this method, since the silane coupling agent is bonded by a covalent bond, the inside of the microchannel can be coated very strongly. However, it is difficult to uniformly coat the capillaries or microspheres that require high reproducibility. A channel chip cannot be produced. In addition, due to the chemical reaction, it is a complicated coating method and cannot be said to be an effective method for commercialization.

また、物理的なコーティング方法として、流路内にコーティング剤を流して、被覆する方法が知られている。たとえば、コーティング剤を混合した泳動緩衝液を流して被覆する方法がある。この方法は非常に簡便な方法であるが、静電相互作用、あるいは疎水性相互作用による吸着であるため、吸着状態が非常に弱く、簡単にコーティングが剥がれるという問題があった。また、静電的相互作用による場合、pHの影響を受けやすいため、適用範囲が狭いという問題もあった。   As a physical coating method, a coating method is known in which a coating agent is allowed to flow in a flow path. For example, there is a method of coating by running an electrophoresis buffer mixed with a coating agent. Although this method is a very simple method, there is a problem that the adsorption state is very weak and the coating is easily peeled off due to adsorption by electrostatic interaction or hydrophobic interaction. Further, in the case of electrostatic interaction, there is a problem that the application range is narrow because it is easily affected by pH.

このため、基材表面に均一で安定なコーティングを行う方法が求められていた。たとえば、ガラスの基材表面にマイクロ流路が存在するチップの基材表面全体を、プラズマ重合膜でコーティングする試みがなされている(非特許文献2)。 For this reason, the method of performing uniform and stable coating on the base-material surface was calculated | required. For example, an attempt has been made to coat the entire substrate surface of a chip having a microchannel on the glass substrate surface with a plasma polymerization film (Non-patent Document 2).

しかし、ガラスの基材およびカバー上にプラズマ重合膜をコーティングする場合、基材とカバーとの貼り合わせを熱圧着で行おうとすると、極めて高温(たとえば、500〜600℃)の温度が必要となり、プラズマ重合膜が劣化する場合がある。このため、基材とカバー材とを接着剤で結合させる方法が採られている(非特許文献2)が、接着剤を使用すると、接着剤の使用量あるいは塗布する場所によっては、マイクロ流路内に接着剤が滲出する場合があり、使用量や塗布箇所等を制御するなど製造プロセスが煩雑となる場合があった。
ジャーナル オブ クロマトグラフィー(F. E. P. Mikkers, F. M. Everaerts, Th. P. E. M. Veerheggen, J. Chromatogr.), 169, 11, 1979 Analyst, 2003, 128, 237-244 特表平5−503989号公報 特表平7−506432号公報 特表平9−504375号公報
However, when a plasma polymerized film is coated on a glass substrate and a cover, an extremely high temperature (for example, 500 to 600 ° C.) is required to bond the substrate and the cover by thermocompression bonding. The plasma polymerized film may be deteriorated. For this reason, a method of bonding the base material and the cover material with an adhesive is employed (Non-Patent Document 2). However, when an adhesive is used, depending on the amount of the adhesive used or the location where it is applied, the micro flow path is used. In some cases, the adhesive oozes out, and the manufacturing process may be complicated, such as controlling the amount used and the application location.
Journal of Chromatography (FEP Mikkers, FM Everaerts, Th. PEM Veerheggen, J. Chromatogr.), 169, 11, 1979 Analyst, 2003, 128, 237-244 Japanese National Patent Publication No. 5-50389 Japanese National Patent Publication No. 7-506432 JP 9-504375 gazette

マイクロ流路チップは、通常、表面に流路を有する基材とカバー材とを貼り合わせて得られるが、本件発明者らは、基材表面全体を、プラズマ重合膜、表面重合膜などの高分子化合物膜でコーティングすると、貼り合わせにおける接着強度が弱いあるいは低下し易く、基材にカバー材を貼り合わせても、流路を流れる媒体が、流路から基材とカバーとの隙間に滲出する可能性があることを見出している(本件出願時非公知)。
すなわち、本件発明は、高分子化合物膜で該基材表面をコーティングした場合において、基材とカバー材との貼り合わせの際の接着強度を向上させることが可能な、簡便なマイクロ流路チップの製造方法を提供することを課題とする。
The microchannel chip is usually obtained by laminating a substrate having a channel on the surface and a cover material, but the inventors of the present invention have made the entire surface of the substrate as a plasma polymerized film, a surface polymerized film or the like. When coated with a molecular compound film, the adhesive strength at the time of bonding is weak or easily lowered, and even if the cover material is bonded to the base material, the medium flowing through the flow path oozes out from the flow path into the gap between the base material and the cover. It has been found that there is a possibility (not known at the time of filing this application).
That is, the present invention provides a simple micro-channel chip capable of improving the adhesive strength when the base material and the cover material are bonded when the base material surface is coated with a polymer compound film. It is an object to provide a manufacturing method.

本件発明者らは、上記課題を解決すべく鋭意研究し、以下の工程を経ることにより、基材とカバー材との貼り合わせの際の接着強度を向上させることが可能で、しかも、簡便なマイクロ流路チップの製造方法を提供できることを見出し、本件発明を完成するに至った。すなわち、本件発明は以下を含む。   The inventors of the present invention have intensively studied to solve the above-mentioned problems, and can improve the adhesive strength at the time of bonding between the base material and the cover material through the following steps. The present inventors have found that a method for manufacturing a microchannel chip can be provided, and have completed the present invention. That is, the present invention includes the following.

〔1〕 表面に溝状の流路が形成された基材の表面を、該流路が露出するマスクで遮蔽し、露出した基材表面に、高分子化合物膜を形成する工程、および
前記基材の流路が形成されている側の表面に、カバー材を貼り合わせる工程
を含む、マイクロ流路チップの製造方法。
〔2〕 前記基材を貼り合わせる側のカバー材表面に、高分子化合物膜を形成する工程を含む、〔1〕に記載の方法。
〔3〕 前記基材を貼り合わせる側のカバー材表面に、高分子化合物膜を形成するに際し、
前記カバー材の表面を、前記基材のマスクの露出部分の一部又は全部と露出部分が同一形状のマスクで遮蔽し、露出したカバー材表面に、高分子化合物膜を形成する、〔2〕に記載のマイクロ流路チップの製造方法。
〔4〕 前記基材表面の高分子化合物膜が、
(a)基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜、
(b)基材表面で重合性モノマーを重合して形成する表面重合膜、または
(c)基材表面に高分子化合物を結合して形成する高分子結合膜
である、〔1〕〜〔3〕のいずれかに記載の方法。
〔5〕 前記基材表面の高分子化合物膜が、プラズマ重合膜である、〔1〕〜〔4〕のいずれかに記載の方法。
〔6〕 前記カバー材表面の高分子化合物膜が、
(a)基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜、
(b)基材表面で重合性モノマーを重合して形成する表面重合膜、または
(c)基材表面に高分子化合物を結合して形成する高分子結合膜
である、〔2〕〜〔5〕のいずれかに記載の方法。
〔7〕 前記カバー材表面の高分子化合物膜が、プラズマ重合膜である、〔2〕〜〔6〕のいずれかに記載の方法。
〔8〕 前記基材の表面に形成する高分子化合物膜と、前記カバー材の表面に形成する高分子化合物膜とが、同一の高分子化合物膜である、〔2〕〜〔7〕のいずれかに記載の方法。
〔9〕 前記貼り合わせを、圧着または熱圧着により行う、〔1〕〜〔8〕のいずれかに記載の方法。
〔10〕 前記基材および前記カバー材の少なくとも一方が、プラスチックである〔1〕〜〔9〕のいずれかに記載の方法。
〔11〕 前記基材およびカバー材が、プラスチックである、〔1〕〜〔10〕のいずれかに記載の方法。
〔12〕 前記基材およびカバー材のいずれもが、熱可塑性樹脂であり、
前記貼り合わせる工程が、基材とカバー材とを、熱圧着により貼り付ける方法である、〔11〕に記載の方法。
〔13〕 前記熱圧着を200℃以下の温度で行う、〔12〕に記載の方法。
〔14〕 前記基材およびカバー材のいずれか一方がケイ素樹脂であり、残りの一方がガラスまたはプラスチックであり、
前記貼り合わせる工程が、基材とカバー材とを、圧着により貼り付ける方法である、〔10〕に記載の方法。
〔15〕 前記マスクが、フォトレジストマスクまたは金属マスクである、〔1〕〜〔14〕のいずれかに記載の方法。
〔16〕 表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の一部又は全部の表面に高分子化合物膜が被覆されている、マイクロ流路チップ。
〔17〕 前記カバー材の基材側の表面に、高分子化合物膜が被覆されている、〔16〕に記載のマイクロ流路チップ。
〔18〕 前記カバー材の基材側の表面の、基材の高分子化合物膜が形成されている領域と対向する領域に、前記基材の高分子化合物膜が形成されている部分の一部又は全部と同一形状の高分子化合物膜が被覆されている、〔17〕に記載のマイクロ流路チップ。
〔19〕 次の工程を含む生体分子の分離方法:
a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップに、分析すべき生体分子を加える工程、および
b)分離媒体に分離圧を加える工程。
〔20〕 前記分離圧が電気泳動によるものである、〔19〕に記載の方法。
〔21〕 前記電気泳動が、キャピラリー電気泳動である、〔20〕に記載の方法。
〔22〕 前記生体分子が、蛋白質である、〔19〕〜〔21〕のいずれかに記載の方法。
〔23〕 次の要素で構成される電気泳動分析装置:
a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップ、
b)該マイクロ流路チップを保持するための支持体、および
c)支持体に保持されたマイクロ流路チップに電圧を印加するための電極。
[1] A step of shielding the surface of a base material having a groove-like flow path formed on the surface with a mask exposing the flow path, and forming a polymer compound film on the exposed base material surface; A method for manufacturing a microchannel chip, comprising a step of bonding a cover material to a surface on which a material channel is formed.
[2] The method according to [1], including a step of forming a polymer compound film on the surface of the cover material on which the substrate is bonded.
[3] When forming a polymer compound film on the surface of the cover material on which the substrate is bonded,
The surface of the cover material is shielded by a mask having a part of or the entire exposed portion of the mask of the base material and the exposed portion having the same shape, and a polymer compound film is formed on the exposed cover material surface [2] The manufacturing method of the microchannel chip | tip of description.
[4] The polymer compound film on the substrate surface is
(a) a plasma polymerized film formed by plasma polymerizing a plasma polymerizable monomer on the substrate surface;
(b) a surface polymerized film formed by polymerizing a polymerizable monomer on the surface of the substrate, or
(c) The method according to any one of [1] to [3], which is a polymer-bonded film formed by bonding a polymer compound to the substrate surface.
[5] The method according to any one of [1] to [4], wherein the polymer compound film on the substrate surface is a plasma polymerization film.
[6] The polymer compound film on the surface of the cover material is
(A) a plasma polymerized film formed by plasma polymerizing a plasma polymerizable monomer on the substrate surface;
[2] to [5] (b) a surface polymerized film formed by polymerizing a polymerizable monomer on the substrate surface, or (c) a polymer-bonded film formed by bonding a polymer compound to the substrate surface. ] The method in any one of.
[7] The method according to any one of [2] to [6], wherein the polymer compound film on the surface of the cover material is a plasma polymerization film.
[8] Any of [2] to [7], wherein the polymer compound film formed on the surface of the substrate and the polymer compound film formed on the surface of the cover material are the same polymer compound film. The method of crab.
[9] The method according to any one of [1] to [8], wherein the bonding is performed by pressure bonding or thermocompression bonding.
[10] The method according to any one of [1] to [9], wherein at least one of the base material and the cover material is plastic.
[11] The method according to any one of [1] to [10], wherein the base material and the cover material are plastic.
[12] Both the base material and the cover material are thermoplastic resins,
The method according to [11], wherein the bonding step is a method of bonding the base material and the cover material by thermocompression bonding.
[13] The method according to [12], wherein the thermocompression bonding is performed at a temperature of 200 ° C. or lower.
[14] Either one of the base material and the cover material is a silicon resin, and the other one is glass or plastic,
The method according to [10], wherein the bonding step is a method of bonding the base material and the cover material by pressure bonding.
[15] The method according to any one of [1] to [14], wherein the mask is a photoresist mask or a metal mask.
[16] A surface of the base material having a flow channel formed on the surface thereof is bonded to the surface of the flow channel and a cover material, and a polymer compound is formed on a part or all of the flow channel surface of the base material surface. A microchannel chip coated with a membrane.
[17] The microchannel chip according to [16], wherein a surface of the cover material on the base material side is coated with a polymer compound film.
[18] A part of a portion of the surface of the cover material on which the polymer compound film of the substrate is formed in a region facing the region of the substrate on which the polymer compound film is formed Alternatively, the microchannel chip according to [17], wherein a polymer compound film having the same shape as the whole is coated.
[19] A method for separating biomolecules comprising the following steps:
a) The surface of the base material on which the flow path is formed on the surface is bonded to the cover material, and the surface of the base material surface is covered with the polymer compound film. Adding a biomolecule to be analyzed to the microchannel chip, and b) applying a separation pressure to the separation medium.
[20] The method according to [19], wherein the separation pressure is by electrophoresis.
[21] The method according to [20], wherein the electrophoresis is capillary electrophoresis.
[22] The method according to any one of [19] to [21], wherein the biomolecule is a protein.
[23] Electrophoresis analyzer comprising the following elements:
a) The surface of the base material on which the flow path is formed on the surface is bonded to the cover material, and the surface of the base material surface is covered with the polymer compound film. , Microchannel chip,
b) a support for holding the microchannel chip, and c) an electrode for applying a voltage to the microchannel chip held on the support.

本発明に係るマイクロ流路チップの製造方法は、基材、さらに好ましくは基材およびカバー材の表面において、高分子化合物膜で被覆されていない領域が存在するようにして高分子化合物膜を形成するため、基材とカバー材との貼り合わせにおいて接着強度に優れ、また、簡便である。   The method of manufacturing a microchannel chip according to the present invention includes forming a polymer compound film so that a region not covered with the polymer compound film exists on the surface of the substrate, more preferably the substrate and the cover material. Therefore, the bonding strength between the base material and the cover material is excellent in adhesive strength and simple.

<マイクロ流路チップの製造方法>
本発明に係るマイクロ流路チップの製造方法は、表面に溝状の流路が形成された基材の表面を、該流路が露出するマスクで遮蔽し、露出した基材表面に、高分子化合物膜を形成する工程、および前記基材の流路が形成されている側の表面に、カバー材を貼り合わせる工程を含むことを特徴としている。
<Manufacturing method of microchannel chip>
The method of manufacturing a microchannel chip according to the present invention is such that the surface of a substrate on which a groove-like channel is formed is shielded with a mask that exposes the channel, and a polymer is formed on the exposed substrate surface. It includes a step of forming a compound film and a step of bonding a cover material to the surface of the base material on the side where the flow path is formed.

この場合、流路を露出させるマスクは、流路の全部、または流路の全部および流路の近傍が露出するマスクであることが好ましく、流路近傍の露出部分は小さいほど好ましい。
マスクの種類は限定されず、たとえば、フォトレジストマスク、金属マスクなどを用いることができる。
In this case, the mask that exposes the flow path is preferably a mask that exposes the entire flow path, or the entire flow path and the vicinity of the flow path, and the smaller the exposed portion in the vicinity of the flow path, the more preferable.
The type of mask is not limited, and for example, a photoresist mask, a metal mask, or the like can be used.

このようにして得られるマイクロ流路チップでは、基材の表面は、流路が高分子化合物膜で被覆され、他の部分は高分子化合物膜で被覆されていないので、カバー材との貼り合わせの際の接着強度に優れている。   In the microchannel chip obtained in this way, the surface of the substrate is bonded to the cover material because the channel is coated with the polymer compound film and the other part is not coated with the polymer compound film. Excellent adhesion strength at the time.

この場合、前記基材と貼り合わせる側のカバー材表面に、高分子化合物膜を形成する工程が含まれていてもよい。すなわち、基材とカバー材の表面は、ともに、高分子化合物膜が形成されていてもよい。カバー材の表面にも高分子化合物膜が形成されていれば、マイクロ流路チップを用いて分離すべき試料の分解能をより高めることができる。   In this case, a step of forming a polymer compound film may be included on the surface of the cover material to be bonded to the base material. That is, a polymer compound film may be formed on both the surface of the base material and the cover material. If a polymer compound film is also formed on the surface of the cover material, the resolution of the sample to be separated using the microchannel chip can be further increased.

また、カバー材の表面に、高分子化合物膜を形成する場合、前記カバー材の表面を、前記基材のマスクの露出部分の一部又は全部と露出部分が同一形状のマスクで遮蔽し、露出したカバー材表面に、高分子化合物膜を形成することが好ましい。   In the case where a polymer compound film is formed on the surface of the cover material, the exposed surface of the cover material is shielded with a mask having the same shape as a part or all of the exposed portion of the mask of the base material. It is preferable to form a polymer compound film on the surface of the cover material.

この場合において、カバー材の露出部分は小さいほど好ましいが、前記基材のマスクの露出部分の全部と露出部分が同一形状であることがより好ましい。   In this case, the exposed portion of the cover material is preferably as small as possible, but it is more preferable that all of the exposed portion of the mask of the substrate and the exposed portion have the same shape.

また、基材表面に設けた流路内、あるいはカバー材表面には、分離能を向上させるため、高分子化合物膜を各種のパターン、グラジュエントで形成させることができる。この場合は、たとえば、カバー材側に、基材のマスク形状とは異なる形状の高分子化合物膜を形成させてもよい。   Moreover, in order to improve the separation ability, the polymer compound film can be formed in various patterns and gradients in the flow path provided on the substrate surface or on the cover material surface. In this case, for example, a polymer compound film having a shape different from the mask shape of the base material may be formed on the cover material side.

このようにして得られるマイクロ流路チップでは、基材およびカバー材のいずれの表面も、高分子化合物膜で被覆されていない領域が存在するため、基材とカバー材との貼り合わせの際の接着強度により優れている。   In the microchannel chip obtained in this way, since the surface of both the base material and the cover material is not covered with the polymer compound film, the base material and the cover material are bonded together. Excellent adhesion strength.

貼り合わせは、基材とカバー材の表面に被覆された高分子化合物膜同士が、相対する形状でちょうど重なるように行うことが好ましい。   The pasting is preferably performed so that the polymer compound films coated on the surface of the base material and the cover material are just overlapped with each other in an opposing shape.

前記基材表面に形成させる前記高分子化合物膜は、
(a)基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜、
(b)基材表面で重合性モノマーを重合して形成する表面重合膜、または
(c)基材表面に高分子化合物を結合して形成する高分子結合膜
のいずれかであることが好ましい。
これらのうちでは、プラズマ重合膜が好ましい。プラズマ重合膜であると、より均一で、安定性に優れた膜を形成できる。
The polymer compound film formed on the substrate surface is
(a) a plasma polymerized film formed by plasma polymerizing a plasma polymerizable monomer on the substrate surface;
(b) a surface polymerized film formed by polymerizing a polymerizable monomer on the surface of the substrate, or
(c) It is preferably any one of polymer-bonded films formed by bonding a polymer compound to the substrate surface.
Among these, a plasma polymerization film is preferable. When it is a plasma polymerized film, a more uniform film having excellent stability can be formed.

また、前記カバー材表面に形成させる高分子化合物膜は、
(a)基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜、
(b)基材表面で重合性モノマーを重合して形成する表面重合膜、または
(c)基材表面に高分子化合物を結合して形成する高分子結合膜
のいずれかであることが好ましい。
これらのうちでは、プラズマ重合膜が好ましい。プラズマ重合膜であると、より均一で、安定性に優れた膜を形成できる。
The polymer compound film formed on the cover material surface is
(a) a plasma polymerized film formed by plasma polymerizing a plasma polymerizable monomer on the substrate surface;
(b) a surface polymerized film formed by polymerizing a polymerizable monomer on the surface of the substrate, or
(c) It is preferably any one of polymer-bonded films formed by bonding a polymer compound to the substrate surface.
Among these, a plasma polymerization film is preferable. When it is a plasma polymerized film, a more uniform film having excellent stability can be formed.

基材およびカバー材
カバー材表面にも高分子化合物膜を形成させる場合、基材とカバー材とに設けられる高分子化合物膜の種類の組み合わせは特に限定されず、同一の高分子化合物膜を用いても、異なる高分子化合物膜を用いてもよい。このうち、前記基材の表面に形成する高分子化合物膜と、前記カバー材の表面に形成する高分子化合物膜とは、同一の高分子化合物膜であることが好ましい。同一の高分子化合物膜の場合、ともにプラズマ重合膜であることが好ましく、プラズマ重合膜のうちでも、同一のモノマー原料からなるプラズマ重合膜であることがより好ましい。
When the polymer compound film is also formed on the surface of the base material and the cover material, the combination of the types of polymer compound films provided on the base material and the cover material is not particularly limited, and the same polymer compound film is used. Alternatively, different polymer compound films may be used. Among these, the polymer compound film formed on the surface of the base material and the polymer compound film formed on the surface of the cover material are preferably the same polymer compound film. In the case of the same polymer compound film, both are preferably plasma polymerized films, and among the plasma polymerized films, more preferably plasma polymerized films made of the same monomer raw material.

前記基材を構成する素材は任意である。本発明においては、少なくとも、基材表面に形成された流路表面がプラズマ重合膜、表面重合膜または高分子結合膜によって改質されている。そのため、基材そのものの素材は電気泳動等の分離の結果には直接的な影響を与えない。したがって、たとえば次に示すような最低限の条件を満たす任意の素材を選択することができる。
−電気泳動等の泳動に伴う発熱に耐えなければならないこと、
−一定の物理的な強度を有すること
−絶縁体であること
The material which comprises the said base material is arbitrary. In the present invention, at least the surface of the flow path formed on the substrate surface is modified with a plasma polymerized film, a surface polymerized film, or a polymer-bonded film. Therefore, the material of the substrate itself does not directly affect the result of separation such as electrophoresis. Therefore, for example, an arbitrary material that satisfies the following minimum conditions can be selected.
-Must withstand the heat generated by electrophoresis, etc.
-Having a certain physical strength-Being an insulator

また基材には、一般に透明な素材が利用される。透明な素材を利用することによって、外部からの光学的な観測が可能となる。具体的には、たとえば、ガラスやプラスチックなどを基材として利用することができる。   Further, a transparent material is generally used for the substrate. By using a transparent material, optical observation from the outside becomes possible. Specifically, for example, glass or plastic can be used as the base material.

プラスチックとしては、たとえば、熱可塑性樹脂、ケイ素樹脂などが挙げられる。   Examples of the plastic include a thermoplastic resin and a silicon resin.

熱可塑性樹脂としては、たとえば、ポリメタクリル酸メチル(PMMA)などのポリ(メタ)アクリル酸エステル;ポリカーボネート(PC);ポリエチレンテレフタレート(PET);ポリエチレン、ポリプロピレンなどのポリビニル系化合物;ポリスチレンなどが挙げられる。   Examples of the thermoplastic resin include poly (meth) acrylic esters such as polymethyl methacrylate (PMMA); polycarbonate (PC); polyethylene terephthalate (PET); polyvinyl compounds such as polyethylene and polypropylene; polystyrene and the like. .

熱可塑性樹脂は、種類にもよるが、熱変形温度が好ましくは200℃以下、さらに好ましくは150℃以下、特に好ましくは120℃以下である。このような温度範囲であると、高分子化合物膜の性能劣化を防ぐことができる。   The thermoplastic resin has a heat distortion temperature of preferably 200 ° C. or less, more preferably 150 ° C. or less, and particularly preferably 120 ° C. or less, depending on the type. Within such a temperature range, performance degradation of the polymer compound film can be prevented.

ケイ素樹脂としては、ポリジメチルシロキサン(PDMS)などのシリコーンゴムが挙げられる。このようなケイ素樹脂を用いると、基材あるいはカバー材表面が粘着性を有し、圧着による接着が可能となる。   Examples of the silicon resin include silicone rubber such as polydimethylsiloxane (PDMS). When such a silicon resin is used, the surface of the base material or the cover material has adhesiveness and can be bonded by pressure bonding.

基材の形状は、板状の平面基板が好ましい。基材の厚さは限定されないが、たとえば、好ましくは1〜20mm程度の範囲である。   The shape of the substrate is preferably a plate-like planar substrate. Although the thickness of a base material is not limited, For example, Preferably it is the range of about 1-20 mm.

前記カバー材としては、前記基材と同様の材質のものを用いることができる。
カバー材は、基材をカバーするものであるため、その形状、大きさは基材と同一であることが好ましい。
カバー材の厚さは限定されないが、たとえば、好ましくは1〜20mm程度の範囲である。
As the cover material, the same material as the base material can be used.
Since the cover material covers the base material, the shape and size are preferably the same as the base material.
Although the thickness of a cover material is not limited, For example, Preferably it is the range of about 1-20 mm.

基材とカバー材の材質の組み合わせは特に限定されず、同一の材質を用いても、異なる材質を用いてもよい。
このうち、前記基材および前記カバー材の少なくとも一方が、プラスチックであることが好ましい。
The combination of the base material and the cover material is not particularly limited, and the same material or different materials may be used.
Among these, it is preferable that at least one of the base material and the cover material is plastic.

また、前記基材およびカバー材は、ともに、プラスチックであることが好ましく、この場合、ともに熱可塑性樹脂であることがより好ましい。   Moreover, it is preferable that both the base material and the cover material are plastics, and in this case, it is more preferable that both are thermoplastic resins.

また、前記基材およびカバー材の一方がケイ素樹脂の場合、残りの一方はガラスまたはプラスチックであってもよく、残りの一方はプラスチックであることがより好ましい。   When one of the base material and the cover material is a silicon resin, the remaining one may be glass or plastic, and the other one is more preferably plastic.

たとえば、前記基材およびカバー材のいずれもが、熱可塑性樹脂である場合、前記貼り合わせる方法としては、基材とカバー材とを、熱圧着する方法が採用できる。熱圧着の際の温度は、用いるプラスチックの種類にもよるが、好ましくは200℃以下、さらに好ましくは150℃以下、特に好ましくは120℃以下である。   For example, when both of the base material and the cover material are thermoplastic resins, a method of thermocompression bonding the base material and the cover material can be employed as the method of bonding. The temperature during thermocompression bonding depends on the type of plastic used, but is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 120 ° C. or lower.

またたとえば、前記基材およびカバー材のいずれか一方がケイ素樹脂であり、残りの一方が任意のプラスチックまたはガラスである場合、貼り合わせる方法としては、基材とカバー材との圧着する方法が採用できる。   In addition, for example, when either one of the base material and the cover material is a silicon resin and the other one is an arbitrary plastic or glass, a method of bonding the base material and the cover material is adopted as a method of bonding. it can.

このような基材とカバー材の材質における好ましい組み合わせ(基材:カバー材、またはカバー材:基材)としては、たとえば、下記のものが挙げられる。
PMMA:PMMA、PDMS:PDMS、PDMS:PMMA、PDMS:ガラス、PET:PET、PMMA:PET、PDMS:PET、PC:PC、PDMS:PC、PMMA:PC、PS:PS、PDMS:PS、PMMA:PS
Examples of preferable combinations of the base material and the cover material (base material: cover material or cover material: base material) include the following.
PMMA: PMMA, PDMS: PDMS, PDMS: PMMA, PDMS: Glass, PET: PET, PMMA: PET, PDMS: PET, PC: PC, PDMS: PC, PMMA: PC, PS: PS, PDMS: PS, PMMA: PS

これらのうちでは、PMMA:PMMA、PDMS:PDMS、PDMS:PMMA、PMMA:PET、PDMS:PET、PDMS:PC、PMMA:PC、PDMS:PS、PMMA:PSなどの組み合わせを好ましく用いることができる。   Among these, combinations such as PMMA: PMMA, PDMS: PDMS, PDMS: PMMA, PMMA: PET, PDMS: PET, PDMS: PC, PMMA: PC, PDMS: PS, PMMA: PS can be preferably used.

これらのうちでは、PDMSと他のプラスチックの組み合わせ、PMMAとPMMAの組み合わせが特に好ましい。   Of these, combinations of PDMS and other plastics, and combinations of PMMA and PMMA are particularly preferable.

上記のような組み合わせであると、低温で、しかも、接着剤を使用しなくても、接着強度に優れた接着が可能となる。具体的には、このような材料を適宜組み合わせることにより、基材とカバー材との貼り合わせを、上述のように圧着または熱圧着で行うことができる。   When the combination is as described above, it is possible to bond with excellent adhesive strength at a low temperature and without using an adhesive. Specifically, by appropriately combining such materials, the base material and the cover material can be bonded together by pressure bonding or thermocompression bonding as described above.

さらに、本発明に係るマイクロ流路チップの製造方法では、マスクにより基材表面等への高分子化合物膜の形成領域を最小限にしているため、このようなプラスチックの接着効果を最大限に発揮することができる。   Furthermore, in the method of manufacturing a microchannel chip according to the present invention, the formation area of the polymer compound film on the substrate surface or the like is minimized by the mask, so that the plastic adhesive effect is maximized. can do.

流路
前記流路は、基材の表面に形成される溝である。たとえば溝の幅は、1〜100μmといった微細な空間とすることができる。溝の断面は、三角形や四角形のような多角形、あるいはU字型や半円状とすることができる。このような微細な構造の溝をガラス、プラスチック等の基材に設けるには、次のような方法を利用することができる。
・半導体加工技術のウェットエッチング法(フッ酸を使う方法)
・半導体加工技術のドライエッチング法(イオンスパッタリング、リアクティブイオンエッチング(ICPエッチングなど))
・レーザーせん孔
・ダイシングソー
Channel The channel is a groove formed on the surface of the substrate. For example, the width of the groove can be a fine space of 1 to 100 μm. The cross section of the groove may be a polygon such as a triangle or a quadrangle, or a U shape or a semicircle. In order to provide such a finely structured groove on a substrate such as glass or plastic, the following method can be used.
・ Wet etching method of semiconductor processing technology (method using hydrofluoric acid)
・ Dry etching method of semiconductor processing technology (ion sputtering, reactive ion etching (ICP etching, etc.))
・ Laser drilling ・ Dicing saw

ウエットエッチング、ドライエッチング、あるいはレーザーせん孔の方法を利用すれば、自由な形状を有する微細な構造を容易に設けることができる。たとえば、10〜100μmの幅、ならびに深さを有する溝を、ガラス表面に設ける技術が公知である。
たとえば本発明者らは、リアクティブイオンエッチング(reactive ion etching)を利用した微小流路の作製に成功している。基材の素材に応じた異なる種類のエッチングガスを利用して、選択性の良い、またエッチレートの大きいエッチングが可能となっている。
If wet etching, dry etching, or laser drilling is used, a fine structure having a free shape can be easily provided. For example, a technique of providing a groove having a width of 10 to 100 μm and a depth on the glass surface is known.
For example, the present inventors have succeeded in producing a micro flow channel using reactive ion etching. Etching with high selectivity and high etch rate is possible by using different types of etching gases according to the material of the substrate.

基材表面に形成された溝は、カバー材を重ねることにより閉鎖系とすることができる。   The groove formed on the surface of the substrate can be a closed system by overlapping the cover material.

また、カバー材表面にも、溝を設けることができる。この場合、基材に設けられた溝と重なるように設けることが好ましい。   A groove can also be provided on the surface of the cover material. In this case, it is preferable to provide it so as to overlap the groove provided in the base material.

さらに、カバー材に、基材またはカバー材に設けられた溝と重なる位置に穴を設けることによって、溝に試料や分離媒体を供給するための連絡流路を形成することができる。あるいは、カバー材に設けられた穴は、試料や緩衝液を保持するリザーバーとして利用することもできる。   Furthermore, by providing a hole in the cover material at a position overlapping with the base material or the groove provided in the cover material, a communication channel for supplying a sample or a separation medium to the groove can be formed. Alternatively, the hole provided in the cover material can be used as a reservoir for holding a sample or a buffer solution.

高分子化合物膜
本発明に係るマイクロ流路チップの製造方法は、表面に溝状の流路が形成された基材の表面を、該流路全体が露出するマスクで遮蔽し、露出した基材表面に、高分子化合物膜を形成する工程を含む。また、前記基材と貼り合わせる側のカバー材表面に、高分子化合物膜を形成する工程を含んでもよい。前記のとおり高分子化合物膜としては、プラズマ重合膜、表面重合膜または高分子結合膜などが挙げられる。
Polymer compound film The method for producing a micro-channel chip according to the present invention includes the step of shielding the surface of a substrate having a groove-shaped channel formed on the surface with a mask that exposes the entire channel, and exposing the substrate Forming a polymer compound film on the surface; Moreover, you may include the process of forming a polymeric compound film | membrane on the cover material surface of the side bonded together with the said base material. As described above, examples of the polymer compound film include a plasma polymerized film, a surface polymerized film, and a polymer-bonded film.

プラズマ重合によれば、微細な溝表面に対しても、プラズマ重合膜を形成することが可能である。しかもプラズマ重合によれば、得られる膜は極めて均質なものとなる。このため、基材表面のピンホールの発生を抑制し、信頼性の高い分離分析用基材を作成することができる。
表面重合によれば、膜の剥離が抑制された所望の表面重合膜を、基材表面の所望の位置に、形成させることができる。
さらに、基材表面に高分子化合物を結合させる高分子結合膜によれば、基材表面に、膜厚の制御をしながら、所望の高分子化合物膜を、所望の位置に形成させることができる。
According to the plasma polymerization, it is possible to form a plasma polymerization film even on a fine groove surface. Moreover, according to plasma polymerization, the resulting film is very homogeneous. For this reason, generation | occurrence | production of the pinhole on a base-material surface can be suppressed, and the reliable base material for a separation analysis can be created.
According to the surface polymerization, a desired surface polymerized film in which film peeling is suppressed can be formed at a desired position on the substrate surface.
Furthermore, according to the polymer binding film that bonds the polymer compound to the substrate surface, a desired polymer compound film can be formed on the substrate surface at a desired position while controlling the film thickness. .

これらのプラズマ重合膜、表面重合膜または高分子結合膜で被覆された基材、あるいはカバー材は、公知の方法によって得ることができる。以下、それぞれの膜について説明する。   The substrate or cover material coated with these plasma polymerized film, surface polymerized film or polymer-bonded film can be obtained by a known method. Hereinafter, each film will be described.

(プラズマ重合膜)
具体的には、プラズマ重合は、真空中でモノマー物質をプラズマ励起によって直接支持体表面に成膜を行う技術である。モノマー物質の成分を換えることによって、さまざまな特徴を持つプラズマ重合膜を得ることができる。プラズマ重合では原理的にはどのようなモノマーを用いても、重合が可能である。通常のポリマーを得るためには二重結合の開裂が必要となるのに対して、プラズマ中ではモノマー物質がばらばらになり多くの活性種を介した重合反応が起きるためである。
(Plasma polymerized film)
Specifically, plasma polymerization is a technique in which a monomer material is directly formed on a support surface by plasma excitation in a vacuum. By changing the components of the monomer material, plasma polymerized films having various characteristics can be obtained. In principle, plasma polymerization can be carried out using any monomer. This is because, in order to obtain a normal polymer, cleavage of a double bond is required, whereas in a plasma, a monomer substance is dispersed and a polymerization reaction through many active species occurs.

本発明におけるプラズマ重合膜のためのモノマー物質は、基材あるいはカバー材表面に電気泳動分離等の分離に応じた好適な性状を与える重合膜を形成できるものであればよい。たとえば電気泳動分離に応じた好適な性状としては、以下に示すような性状を示すことができる。これらの性状のうち、いずれかの任意の性状を与えることができるモノマー物質は、本発明に利用することができる。
−被分離物質の基材への吸着の抑制
−被分離物質に対する親和性
The monomer substance for the plasma polymerization film in the present invention may be any substance that can form a polymer film that gives suitable properties according to separation such as electrophoretic separation on the surface of the base material or the cover material. For example, the following properties can be shown as suitable properties according to electrophoretic separation. Among these properties, monomeric substances that can give any property can be used in the present invention.
-Suppression of adsorption of substances to be separated on substrate-Affinity for substances to be separated

基材あるいはカバー材がプラスチックの場合、上記表面重合膜または高分子結合膜を形成することは困難な場合があるが、プラズマ重合によれば、プラスチック表面であっても、微細な溝表面に対しても、プラズマ重合膜を形成することが可能である。しかも得られる膜は極めて均質であり、プラスチックへのコーティングに特に優れる。   When the base material or cover material is plastic, it may be difficult to form the above surface polymerized film or polymer-bonded film, but according to plasma polymerization, even on the plastic surface, However, it is possible to form a plasma polymerized film. Moreover, the resulting film is very homogeneous and particularly excellent for coating on plastics.

プラズマ重合膜が被覆された基材とカバー材との貼り合わせは、他の高分子化合物膜が被覆された場合と比較して貼り合わせ強度の向上が必要な場合があったが、本発明に係るマイクロ流路チップの製造方法では、マスクにより基材表面等への高分子化合物膜の形成領域を最小限にしているので、前記プラスチックを用いる接着効果を最大限に発揮することができる。   The bonding between the base material coated with the plasma polymerized film and the cover material may require improvement in the bonding strength as compared with the case where the other polymer compound film is coated. In such a microchannel chip manufacturing method, the formation area of the polymer compound film on the substrate surface or the like is minimized by the mask, so that the adhesive effect using the plastic can be maximized.

したがって、本発明に係るマイクロ流路チップの製造方法においては、好ましくはプラズマ重合膜でコーティングされた流路を用い、前記プラスチックの組み合わせを採用することが望ましく、これにより、極めて均一にコーティングされた流路を有し、しかも基板とカバー材との接着強度にも優れるマイクロ流路チップを、簡便かつ歩留まりよく製造することができる。   Therefore, in the method of manufacturing a microchannel chip according to the present invention, it is preferable to use a channel that is preferably coated with a plasma polymerized film, and to employ the combination of the plastics. A microchannel chip having a channel and excellent in the adhesive strength between the substrate and the cover material can be manufactured simply and with a high yield.

なお、キャピラリー電気泳動に利用されるガラスは、表面に蛋白質を吸着しやすい。蛋白質の基材への吸着はプラズマ重合膜によって制御することができる。たとえば、基材の疎水性度や表面電荷によって制御可能である。   Note that the glass used for capillary electrophoresis tends to adsorb proteins on the surface. The adsorption of the protein to the substrate can be controlled by the plasma polymerized film. For example, it can be controlled by the hydrophobicity and surface charge of the substrate.

前記条件を満足するプラズマ重合膜を与えるモノマー物質としては、以下のようなものを示すことができる(「プラズマ重合」長田義人・編、角田光雄、中島薫、宮村雅隆、森田慎三、他著、東京化学同人1986年発行)。   Examples of the monomer substance that gives the plasma polymerized film satisfying the above conditions can include the following ("Plasma Polymerization" Yoshito Nagata, edited by Mitsuo Kakuta, Jun Nakajima, Masataka Miyamura, Shinzo Morita, et al., Tokyo Chemical Doujin 1986).

アルカン、またはシクロアルカンとして、次の化合物を示すことができる。
メタン、エタン、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ネオペンタン、ヘキサン、イソヘキサン、3−メチルペンタン、2,2−ジメチルブタン、2,3−ジメチルブタン、ヘプタン、2,2,3−トリメチルブタン、オクタン、ノナン、デカン、メタン−d1、メタン−d2、メタン−d3、メタン−d4、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロオクタン、cis−デカリン、およびtrans−デカリン。
The following compounds can be shown as alkanes or cycloalkanes.
Methane, ethane, propane, butane, isobutane, pentane, isopentane, neopentane, hexane, isohexane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, 2,2,3-trimethylbutane, Octane, nonane, decane, methane-d1, methane-d2, methane-d3, methane-d4, cyclopropane, cyclobutane, cyclopentane, cyclohexane, methylcyclohexane, cyclooctane, cis-decalin, and trans-decalin.

アルケン、アルキン、あるいはシクロアルケンとしては、次の化合物を示すことができる。
エチレン、プロピレン、1−ブテン、(Z)−2−ブテン、(E)−2−ブテン、2−メチルプロペン、1−ペンテン、2−メチル−1−ブテン、3−メチル−1−ブテン、2−メチル−2−ブテン、1−ヘキセン、(E)−2−ヘキセン、(E)−3−ヘキセン、3−メチル−1−ペンテン、2,3−ジメチル−2−ブテン、1−ヘプテン、1−オクテン、(E)−2−オクテン、1−デセン、1,3−ブタジエン、(Z)−1,3−ペンタジエン、(E)−1,3−ペンタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、ヘキサジエン、アセチレン、プロピン、1−ブチン、2−ブチン、1−ペンチン、3−メチル−1−ブチン、ビニルアセチレン、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロペンタジエン、1,3−シクロヘプタジエン、およびシクロオクタテトラエン。
As the alkene, alkyne, or cycloalkene, the following compounds can be shown.
Ethylene, propylene, 1-butene, (Z) -2-butene, (E) -2-butene, 2-methylpropene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 2 -Methyl-2-butene, 1-hexene, (E) -2-hexene, (E) -3-hexene, 3-methyl-1-pentene, 2,3-dimethyl-2-butene, 1-heptene, 1 -Octene, (E) -2-octene, 1-decene, 1,3-butadiene, (Z) -1,3-pentadiene, (E) -1,3-pentadiene, isoprene, 2,3-dimethyl-1 , 3-butadiene, hexadiene, acetylene, propyne, 1-butyne, 2-butyne, 1-pentyne, 3-methyl-1-butyne, vinylacetylene, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclopentadiene, 1, 3-cycloheptadiene, And cyclooctatetraene.

アルコール、アルデヒド、ケトン、カルボン酸、あるいはエステルとしては次の化合物を示すことができる。
メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、アリルアルコール、1,3−ブタンジオール、2,3−ブタンジオール、2,3−エポキシ−1−プロパノール、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、バレルアルデヒド、イソバレルアルデヒド、アクリルアルデヒド、クロトンアルデヒド、グリオキサール、アセトン、2−ブタノン、2−ペンタノン、3−メチル−2−ブタノン、3−ペンタノン、2−ヘキサノン、4−メチル−2−ペンタノン、2−ヘプタノン、シクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、4−メチル−3−ペンテン−2−オン、2,3−ブタンジオン、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、アクリル酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸s−ブチル、プロピオン酸メチル、酪酸メチル、酢酸ビニル、および酢酸アリル。
As the alcohol, aldehyde, ketone, carboxylic acid, or ester, the following compounds can be shown.
Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, allyl alcohol, 1,3-butanediol, 2,3- Butanediol, 2,3-epoxy-1-propanol, formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, isovaleraldehyde, acrylic aldehyde, crotonaldehyde, glyoxal, acetone, 2-butanone, 2-pentanone, 3- Methyl-2-butanone, 3-pentanone, 2-hexanone, 4-methyl-2-pentanone, 2-heptanone, cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, 4-methyl-3-pentene- 2-on, 2,3-pig Dione, formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, acrylic acid, methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, S-butyl acetate, methyl propionate, methyl butyrate, vinyl acetate, and allyl acetate.

エーテル、アミン、あるいはその他のモノマー物質として利用可能な化合物を以下に示す。
ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、エチレンオキシド、1,3−ジオキソラン、1,3−ジオキサン、1,4−ジオキサン、メチルビニルエーテル、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、s−ブチルアミン、t−ブチルアミン、ペンチルアミン、へキシルアミン、ジメチルアミン、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジプロピルアミン、ジイソプロピルアミン、トリプロピルアミン、ジブチルアミン、アリルアミン、ホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、メタンチオール、エタンチオール、硫化ジメチル、硫化ジエチル、硫化ジプロピル、二硫化ジメチル、二硫化ジエチル、メタンジチオール、1,2−エタンジチオール、ニトロメタン、ニトロエタン、1−ニトロプロパン、2−ニトロプロパン、1−ニトロブタン、2−ニトロブタン、アセトニトリル、プロピオニトリル、アクリロニトリル、アミノアセトアルデヒドジメチルアセタール、ヘキサメチルジシロキサンなどが挙げられる。
The following compounds can be used as ethers, amines, or other monomer substances.
Dimethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, ethylene oxide, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl vinyl ether, methylamine, ethylamine, propylamine, isopropylamine, butylamine , Isobutylamine, s-butylamine, t-butylamine, pentylamine, hexylamine, dimethylamine, trimethylamine, diethylamine, triethylamine, dipropylamine, diisopropylamine, tripropylamine, dibutylamine, allylamine, formamide, acetamide, N-methyl Acetamide, N, N-dimethylformamide, N, N-dimethylacetamide, methanethiol, ethanethiol, dimethyl sulfide Diethyl sulfide, dipropyl sulfide, dimethyl disulfide, diethyl disulfide, methanedithiol, 1,2-ethanedithiol, nitromethane, nitroethane, 1-nitropropane, 2-nitropropane, 1-nitrobutane, 2-nitrobutane, acetonitrile, propio Nitrile, acrylonitrile, aminoacetaldehyde dimethyl acetal, hexamethyldisiloxane and the like can be mentioned.

また、次のようなハロゲン化物をモノマー物質に利用することができる。
フルオロメタン、ジフルオロメタン、フルオロホルム、テトラフルオロメタン(四フッ化炭素)、フッ化ビニル、1,1−ジフルオロエチレン、(Z)−1,2−ジフルオロエチレン、(E)−1,2−ジフルオロエチレン、トリフルオロエチレン、テトラフルオロエチレン、1,1,4,4−テトラフルオロブタジエン、ペルフルオロブタジエン、2−フルオロエタノール、トリフルオロ酢酸、1,1,1−トリフルオロ−2−プロパノン、ペルフルオロアセトン、クロロメタン、ジクロロメタン、クロロホルム、テトラクロロメタン(四塩化炭素)、クロロエタン、1,1−ジクロロエタン、1,2−ジクロロエタン、1−クロロプロパン、2−クロロプロパン、1,2−ジクロロプロパン、1,3−ジクロロプロパン、1−クロロブタン、2−クロロブタン、1−クロロ−2−メチルプロパン、2−クロロ−2−メチルプロパン、クロロシクロプロパン、1,1−ジクロロシクロプロパン、塩化ビニル、1,1−ジクロロエチレン、(Z)−1,2−ジクロロエチレン、(E)−1,2−ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン、3−クロロプロペン、1,3−ジクロロプロペン、クロロアセチレン、ジクロロアセチレン、1−クロロプロピン、2−クロロエタノール、クロロアセトアルデヒド、クロロアセトニトリル、ジクロロアセトニトリル、トリクロロアセトニトリル、ブロモメタン、ジブロモメタン、ブロモホルム、テトラブロモメタン(四臭化炭素)、ブロモエタン、1,1−ジブロモエタン、1,2−ジブロモエタン、1−ブロモプロパン、2−ブロモプロパン、1,3−ジブロモプロパン、1−ブロモブタン、2−ブロモブタン、1−ブロモ−2−メチルプロパン、2−ブロモ−2−メチルプロパン、1,4−ジブロモブタン、1−ブロモビシクロ[2.2.1]ヘプタン、1−ブロモビシクロ[2.2.2]オクタン、臭化ビニル、3−ブロモプロペン、1,3−ジブロモプロペン、ブロモアセチレン、ジブロモアセチレン、1−ブロモプロピン、2−ブロモエタノール、ヨードメタン、ジヨードメタン、ヨードホルム、テトラヨードメタン(四ヨウ化炭素)、ヨードエタン、1−ヨードプロパン、2−ヨードプロパン、1−ヨードブタン、2−ヨードブタン、1−ヨード−2−メチルプロパン、2−ヨード−2−メチルプロパン、1−ヨードペンタン、3−ヨードプロペン、ヨードアセチレン、ジヨードアセチレン、2−ヨードエタノール、1−ブロモ−2−クロロエタン、1,1,1−トリフルオロ−2−ヨードエタン、2−クロロ−1,1−ジフルオロエチレン、1−クロロ−1,2,2−トリフルオロエチレン、1,1−ジクロロ−2,2−ジフルオロエチレン、1−ブロモ−2−クロロアセチレン、1−クロロ−2−ヨードアセチレン、および1−ブロモ−2−ヨードアセチレン。
In addition, the following halides can be used as the monomer substance.
Fluoromethane, difluoromethane, fluoroform, tetrafluoromethane (carbon tetrafluoride), vinyl fluoride, 1,1-difluoroethylene, (Z) -1,2-difluoroethylene, (E) -1,2-difluoro Ethylene, trifluoroethylene, tetrafluoroethylene, 1,1,4,4-tetrafluorobutadiene, perfluorobutadiene, 2-fluoroethanol, trifluoroacetic acid, 1,1,1-trifluoro-2-propanone, perfluoroacetone, Chloromethane, dichloromethane, chloroform, tetrachloromethane (carbon tetrachloride), chloroethane, 1,1-dichloroethane, 1,2-dichloroethane, 1-chloropropane, 2-chloropropane, 1,2-dichloropropane, 1,3-di Chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, 2 Chloro-2-methylpropane, chlorocyclopropane, 1,1-dichlorocyclopropane, vinyl chloride, 1,1-dichloroethylene, (Z) -1,2-dichloroethylene, (E) -1,2-dichloroethylene, trichloroethylene, Tetrachloroethylene, 3-chloropropene, 1,3-dichloropropene, chloroacetylene, dichloroacetylene, 1-chloropropyne, 2-chloroethanol, chloroacetaldehyde, chloroacetonitrile, dichloroacetonitrile, trichloroacetonitrile, bromomethane, dibromomethane, bromoform, Tetrabromomethane (carbon tetrabromide), bromoethane, 1,1-dibromoethane, 1,2-dibromoethane, 1-bromopropane, 2-bromopropane, 1,3-dibromopropane, 1-bromobutane, 2-bromobutane 1-bromo-2- Tylpropane, 2-bromo-2-methylpropane, 1,4-dibromobutane, 1-bromobicyclo [2.2.1] heptane, 1-bromobicyclo [2.2.2] octane, vinyl bromide, 3-bromopropene, 1 , 3-dibromopropene, bromoacetylene, dibromoacetylene, 1-bromopropyne, 2-bromoethanol, iodomethane, diiodomethane, iodoform, tetraiodomethane (carbon tetraiodide), iodoethane, 1-iodopropane, 2-iodopropane, 1 -Iodobutane, 2-iodobutane, 1-iodo-2-methylpropane, 2-iodo-2-methylpropane, 1-iodopentane, 3-iodopropene, iodoacetylene, diiodoacetylene, 2-iodoethanol, 1-bromo -2-chloroethane, 1,1,1-trifluoro-2-iodoethane, 2-chloro-1,1-diflu 1-chloro-1,2,2-trifluoroethylene, 1,1-dichloro-2,2-difluoroethylene, 1-bromo-2-chloroacetylene, 1-chloro-2-iodoacetylene, and 1- Bromo-2-iodoacetylene.

更に、以下のような芳香族炭化水素がモノマー物質として利用できる。
ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、クメン、ブチルベンゼン、s−ブチルベンゼン、t−ブチルベンゼン、o−キシレン、m−キシレン、p−キシレン、o−ジエチルベンゼン、m−ジエチルベンゼン、p−ジエチルベンゼン、メシチレン、1,2,4,5−テトラメチルベンゼン、スチレン、フェニルアセチレン、(E)−1−プロペニルベンゼン、(E)−1−フェニルブタジエン、2−フェニルブタジエン、ビフェニル、ナフタレン、1−メチルナフタレン、2−メチルナフタレン、アントラセン、フェナントレン、ピレン、ナフタセン、クリセン、およびペンタセン。
Furthermore, the following aromatic hydrocarbons can be used as the monomer material.
Benzene, toluene, ethylbenzene, propylbenzene, cumene, butylbenzene, s-butylbenzene, t-butylbenzene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, mesitylene, 1,2,4,5-tetramethylbenzene, styrene, phenylacetylene, (E) -1-propenylbenzene, (E) -1-phenylbutadiene, 2-phenylbutadiene, biphenyl, naphthalene, 1-methylnaphthalene, 2 -Methylnaphthalene, anthracene, phenanthrene, pyrene, naphthacene, chrysene and pentacene.

加えて、次のベンゼン誘導体等も本発明のモノマー物質に有用である。
フェノール、ベンズアンデヒド、アセトフェノン、アニソール、ベンジルメチルエーテル、アニリン、ペンジルアミン、チオフェノール、ベンゾニトリル、フルオロベンゼン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼン、p−ジクロロベンゼン、o−ジブロモベンゼン、m−ジブロモベンゼン、p−ジブロモベンゼン、トリフルオロベンゼン、ヘキサフルオロベンゼン、o−フルオロトルエン、m−フルオロトルエン、p−フルオロトルエン、o−クロロトルエン、p−クロロトルエン、o−ブロモトルエン、p−ブロモトルエン、o−ヨードトルエン、m−ヨードトルエン、p−ヨードトルエン、p−クロロフルオロベンゼン、およびo−クロロヨードベンゼン。
In addition, the following benzene derivatives and the like are also useful for the monomeric substance of the present invention.
Phenol, benzaldehyde, acetophenone, anisole, benzylmethyl ether, aniline, pendylamine, thiophenol, benzonitrile, fluorobenzene, chlorobenzene, bromobenzene, iodobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, o-dibromobenzene, m-dibromobenzene, p-dibromobenzene, trifluorobenzene, hexafluorobenzene, o-fluorotoluene, m-fluorotoluene, p-fluorotoluene, o-chlorotoluene, p-chlorotoluene, o- Bromotoluene, p-bromotoluene, o-iodotoluene, m-iodotoluene, p-iodotoluene, p-chlorofluorobenzene, and o-chloroiodobenzene.

また、次のような複素環式化合物がモノマー物質として利用できる。
ピリジン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、2,6−ジメチルピリジン、2,5−ジメチルピリジン、2,4−ジメチルピリジン、ピリダジン、ピリミジン、ピラジン、1,3,5−トリアジン、ピリジンN−オキシド、2−メチルピリジンN−オキシド、3−メチルピリジンN−オキシド、4−メチルピリジンN−オキシド、2,6−ジメチルピリジンN−オキシド、フラン、メチルフラン、テトラヒドロフラン、ピロール、ピロリジン、チオフェン、および2−クロロチオフェン。
Moreover, the following heterocyclic compounds can be used as monomer substances.
Pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,6-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, pyridazine, pyrimidine, pyrazine, 1,3,5- Triazine, pyridine N-oxide, 2-methylpyridine N-oxide, 3-methylpyridine N-oxide, 4-methylpyridine N-oxide, 2,6-dimethylpyridine N-oxide, furan, methylfuran, tetrahydrofuran, pyrrole, Pyrrolidine, thiophene, and 2-chlorothiophene.

その他、トロポンやトロポロンのようなトロポノイド化合物、またテトラメチルシラン、テトラメチルスズ、テトラメチル鉛に代表される有機金属化合物をモノマー物質に用いることもできる。   In addition, troponoid compounds such as tropone and tropolone, and organometallic compounds represented by tetramethylsilane, tetramethyltin, and tetramethyllead can also be used as the monomer substance.

これらのうちpHが中性付近の条件において基材表面が中性付近の電荷を持つ場合には、アセトニトリル、ヘキサジエンを好ましく用いることができる。
pHが中性付近の条件において基材表面が負の電荷を持つ場合には、ヘキサメチルジシロキサンを好ましく用いることができる。
pHが中性付近の条件において基材表面が正の電荷を持つ場合には、ヘキシルアミンやアミノアセトアルデヒドジメチルアセタールを好ましく用いることができる。
Of these, acetonitrile and hexadiene can be preferably used when the surface of the substrate has a neutral charge under conditions where the pH is near neutral.
If the surface of the substrate has a negative charge under conditions where the pH is near neutral, hexamethyldisiloxane can be preferably used.
When the surface of the substrate has a positive charge under conditions where the pH is near neutral, hexylamine or aminoacetaldehyde dimethyl acetal can be preferably used.

これらのモノマー物質によってプラズマ重合膜を成膜する条件は公知である。具体的には、プラズマ重合反応の再現性に影響を与える主な要因として、たとえば流速、放電電力、放電時間、そして圧力といった条件が重要であるとされている。プラズマ重合においては、装置やモノマーに合わせて最適な重合条件を設定する必要がある。W/FM(ここでWは放電電力、Fは流速、Mはモノマーの分子量)が同じであれば、膜質はほぼ同じであるとする報告(Yasuda, Plasma Polymerization, Academic Press, New York,1985)がある。   Conditions for forming a plasma polymerized film with these monomer substances are known. Specifically, for example, conditions such as flow rate, discharge power, discharge time, and pressure are important as main factors affecting the reproducibility of the plasma polymerization reaction. In plasma polymerization, it is necessary to set optimum polymerization conditions according to the apparatus and the monomer. A report that the film quality is almost the same if W / FM (W is the discharge power, F is the flow velocity, and M is the molecular weight of the monomer) is the same (Yasuda, Plasma Polymerization, Academic Press, New York, 1985) There is.

利用するモノマー物質や、最終的に必要なプラズマ重合膜の膜厚等を考慮して、これらの条件を適切に調整することは当業者が日常的に行っていることである。また文献的にも各種のパラメーターがプラズマ重合膜の性質に及ぼす影響は明らかにされている(Surface and Coatings Technology 82:1-15,1996, Polymer Engineering and Science 37/7:1188-1194,1997)。後にポリヌクレオチドの固定化を目的とする場合に有利なモノマー物質として説明するヘキサメチルジシロキサンでプラズマ重合膜を作成するには、たとえば次のような範囲のもとで最適な条件を選択することにより、およそ0を超えて240Å以下のプラズマ重合膜を形成することができる。   Those skilled in the art routinely adjust these conditions appropriately in consideration of the monomer substance to be used, the finally required plasma polymerized film thickness, and the like. In addition, the influence of various parameters on the properties of plasma polymerized films has been clarified in the literature (Surface and Coatings Technology 82: 1-15, 1996, Polymer Engineering and Science 37/7: 1188-1194, 1997). . To create a plasma polymerized film with hexamethyldisiloxane, which will be described later as an advantageous monomeric substance for the purpose of immobilizing polynucleotides, select the optimal conditions within the following range, for example. Thus, a plasma polymerized film having a thickness exceeding about 0 to 240 mm or less can be formed.

流速:0〜50cm3/min.
放電電力:0〜300W
圧力:10−6〜10 Torr
放電時間0〜5分
(温度:0〜100℃)
Flow rate: 0-50cm 3 / min.
Discharge power: 0-300W
Pressure: 10 −6 to 10 Torr
Discharge time 0-5 minutes (Temperature: 0-100 ° C)

あるいは、0を超えて240Å以下のプラズマ重合膜を形成するための、より望ましい条件として、次の条件を示すことができる。
流速:0〜50cm3/min.
放電電力:20〜100W
圧力:0.05〜0.6Torr
放電時間30秒〜5分
(温度:室温)
Alternatively, the following conditions can be shown as more desirable conditions for forming a plasma polymerized film of more than 0 and not more than 240 mm.
Flow rate: 0-50cm 3 / min.
Discharge power: 20-100W
Pressure: 0.05 to 0.6 Torr
Discharge time 30 seconds to 5 minutes (Temperature: room temperature)

このようなプラズマ重合によれば、モノマー物質の選択によって、種々の官能基を基材表面に付与することができるので、種々の性状を有する膜を容易に形成することができる。たとえば、種々の範囲の表面電荷、疎水性/親水性を有する基材表面を得ることができる。   According to such plasma polymerization, various functional groups can be imparted to the surface of the substrate by selecting the monomer substance, so that films having various properties can be easily formed. For example, substrate surfaces having various ranges of surface charges and hydrophobic / hydrophilic properties can be obtained.

たとえば、pHにより異なるが、物質の荷電状態を示すゼータ電位を好ましくは−100〜+100mVの範囲にコントロールすることができる。
またたとえば、表面の接触角を、好ましくは1度〜140度の範囲にコントロールすることができる。
このようなプラズマ重合膜の膜厚は、たとえば、好ましくは1〜200nmの範囲にあることが望ましい。
また、このようにして得られるプラズマ重合膜は、極めて均質な膜であり、ピンホールの発生が著しく抑制されている。
またプラズマ重合によれば、プラズマ重合膜を任意の形状の基材表面に形成させることができる。
For example, although it varies depending on the pH, the zeta potential indicating the charged state of the substance can be preferably controlled in the range of −100 to +100 mV.
Further, for example, the contact angle of the surface can be controlled preferably in the range of 1 to 140 degrees.
The film thickness of such a plasma polymerized film is preferably in the range of 1 to 200 nm, for example.
Further, the plasma polymerized film thus obtained is a very homogeneous film, and the generation of pinholes is remarkably suppressed.
Moreover, according to plasma polymerization, a plasma polymerization film | membrane can be formed in the base-material surface of arbitrary shapes.

導入された官能基を利用して、蛋白質と多様な相互作用をさせながら各種方法による分離が可能となる。例えば、アセトニトリルのような窒素原子を持つ有機物質をモノマー物質とすると、表面にアミノ基を持つプラズマ重合膜が合成できることが公知である。このようなプラズマ重合膜コート表面を利用して、静電的な相互作用(膜のプラス電荷と蛋白質のマイナス電荷)を行わせながら蛋白質の電気泳動等を行うことが可能である。   Separation by various methods is possible using the introduced functional group and various interactions with proteins. For example, it is known that a plasma polymerized film having an amino group on its surface can be synthesized when an organic substance having nitrogen atoms such as acetonitrile is used as a monomer substance. Using such a plasma polymerized film coated surface, it is possible to perform protein electrophoresis or the like while performing an electrostatic interaction (a positive charge of the film and a negative charge of the protein).

また酢酸などカルボン酸やエステルなどの有機物質をモノマー物質とすると、表面にカルボキシル基を持つプラズマ重合膜が合成される。その結果、膜のマイナス電荷と蛋白質のプラス電荷の間での相互作用による電気泳動分離等が可能になる。   When an organic substance such as carboxylic acid or ester such as acetic acid is used as a monomer substance, a plasma polymerization film having a carboxyl group on the surface is synthesized. As a result, electrophoretic separation or the like by interaction between the negative charge of the membrane and the positive charge of the protein becomes possible.

さらにアルカンやシクロアルカン、芳香族炭化水素などをモノマー物質とすると、表面が極めて疎水的なプラズマ重合膜が合成されるので、疎水的相互作用に基づく分離が可能である。すなわち上記3つの例では、それぞれ陰イオン交換クロマトグラフィー、陽イオン交換クロマトグラフィー、疎水クロマトグラフィーと類似の作用を有する表面を実現できる。   Further, when alkane, cycloalkane, aromatic hydrocarbon, or the like is used as a monomer substance, a plasma polymerized film having an extremely hydrophobic surface is synthesized, so that separation based on hydrophobic interaction is possible. That is, in the above three examples, surfaces having actions similar to those of anion exchange chromatography, cation exchange chromatography, and hydrophobic chromatography can be realized.

本発明に係るマイクロ流路チップの製造方法において、表面に溝状の流路が形成された基材の表面を、該流路全体が露出するマスクで遮蔽し、露出した基材表面に、高分子化合物膜を形成する工程を含むが、フォトマスクのパターンを光で一括転写すること(フォトファブリケーション:楢岡清威、二瓶公志、フォトエッチングと微細加工、総合出版社、1989)により、マイクロ流路チップを大量生産することができる。
フォトファブリケーションを利用すれば、超LSIに代表されるように数百万個からなる部品が組み立てられたデバイスを、数mm角のシリコン基板上に、一体構造として作製可能である。更にフォトファブリケーションにおいては、複数のフォトマスクのパターンを組み合せて利用することができる。この特徴を利用すれば、付着加工、表面改質加工といった異なる処理工程を組み合せることが可能である。
In the method for manufacturing a microchannel chip according to the present invention, the surface of the substrate on which a groove-like channel is formed is shielded with a mask that exposes the entire channel, and the exposed substrate surface is It includes a process of forming a molecular compound film, but the photomask pattern is transferred by light (Photofabrication: Kiyoi Tsujioka, Koji Ninobe, Photoetching and Microfabrication, General Publishing Company, 1989). The channel chip can be mass-produced.
Using photofabrication, a device in which millions of parts are assembled, as represented by VLSI, can be fabricated on a silicon substrate of several mm square as an integral structure. Furthermore, in photofabrication, a plurality of photomask patterns can be used in combination. By utilizing this feature, it is possible to combine different processing steps such as adhesion processing and surface modification processing.

フォトファブリケーションに応用される表面改質や薄膜形成のための技術は、ドライプロセスである。前記プラズマ重合法はドライプロセスなので、フォトファブリケーションによるデバイス作成に好適である。更にプラズマ重合法を利用すれば、適切なモノマー物質を選択することにより表面に官能基を持つ薄膜を作製することができる。またプラズマ重合膜は、高度な橋かけ構造を持つピンホールフリーな膜であることから流路内部の修飾薄膜として最適である。   The technique for surface modification and thin film formation applied to photofabrication is a dry process. Since the plasma polymerization method is a dry process, it is suitable for device fabrication by photofabrication. Furthermore, if a plasma polymerization method is used, a thin film having a functional group on the surface can be produced by selecting an appropriate monomer substance. In addition, the plasma polymerized film is a pinhole-free film having a high degree of cross-linking structure, and is therefore optimal as a modified thin film inside the channel.

(表面重合膜)
表面重合膜は、前記基材表面上で重合性モノマーを重合して得られる重合膜である。
重合は、基材表面上の、末端に二重結合を有する疎水性官能基に重合性モノマーを重合して実施することが好ましい。
(Surface polymerized film)
The surface polymerized film is a polymerized film obtained by polymerizing a polymerizable monomer on the substrate surface.
The polymerization is preferably carried out by polymerizing a polymerizable monomer on a hydrophobic functional group having a double bond at the terminal on the substrate surface.

前記疎水性官能基としては、好ましくは炭素原子数2〜6、さらに好ましくは炭素原子数3〜6、特に好ましくは4〜6の末端に二重結合を有するアルケニル基が挙げられる。
このような疎水性官能基としては、ビニル基、アリル基、1−ブテニル基、1−ペンテニル基、1−ヘキシニル基などが挙げられる。
The hydrophobic functional group is preferably an alkenyl group having a double bond at the terminal having 2 to 6 carbon atoms, more preferably 3 to 6 carbon atoms, and particularly preferably 4 to 6 carbon atoms.
Examples of such a hydrophobic functional group include a vinyl group, an allyl group, a 1-butenyl group, a 1-pentenyl group, and a 1-hexynyl group.

このような疎水性官能基と重合性モノマーとを重合させることにより、表面重合膜は、該疎水性官能基をスペーサーとして、炭素−炭素単結合により共有結合することとなる。   By polymerizing such a hydrophobic functional group and a polymerizable monomer, the surface polymerized film is covalently bonded by a carbon-carbon single bond using the hydrophobic functional group as a spacer.

したがって、このような表面重合膜が結合した基材は、疎水性のスペーサーにより水分子の接近が抑制されているので、pH等の影響による加水分解による疎水性スペーサー自体の脱離が抑制される。また、疎水性スペーサーと表面重合膜とが炭素−炭素結合により結合しているので、表面重合膜が疎水性スペーサーとの結合位置で剥離することもない。   Accordingly, since the base material to which such a surface polymerized film is bonded is prevented from approaching water molecules by the hydrophobic spacer, the elimination of the hydrophobic spacer itself due to hydrolysis due to the influence of pH or the like is suppressed. . Further, since the hydrophobic spacer and the surface polymerized film are bonded by a carbon-carbon bond, the surface polymerized film does not peel at the bonding position with the hydrophobic spacer.

したがって、分析すべき物質がタンパク質の場合に、水溶性溶媒中で分析を行ってもpHの影響による表面重合膜の剥離がなく、信頼性の高い分析を行うことができる。   Therefore, when the substance to be analyzed is protein, even if the analysis is performed in a water-soluble solvent, the surface polymerization film is not peeled off due to the influence of pH, and a highly reliable analysis can be performed.

また、表面重合法では、重合性モノマーを重合させて表面のポリマー膜を形成させるので、ポリマー自体を結合させる場合と比較して、ポリマーの凝集がないので、基材表面との結合を効率的に行うことができる。   In addition, in the surface polymerization method, a polymerizable monomer is polymerized to form a polymer film on the surface, so there is no aggregation of the polymer compared to the case where the polymer itself is bonded, so that the bonding with the substrate surface is more efficient. Can be done.

疎水性官能基の基材表面への導入は、トルエン、メタノール、エタノール等の溶媒に、前記末端に二重結合を有する疎水性官能基を誘導する化合物を溶解し、ガラス等の基材を接触させて実施することができる。接触反応は、たとえば、室温(25℃程度)〜100℃程度の温度で、たとえば、1〜24時間程度の時間実施する。   Hydrophobic functional groups are introduced onto the substrate surface by dissolving a compound that induces a hydrophobic functional group having a double bond at the terminal in a solvent such as toluene, methanol, ethanol, etc., and contacting the substrate such as glass Can be implemented. The contact reaction is performed, for example, at a temperature of room temperature (about 25 ° C.) to about 100 ° C., for example, for a time of about 1 to 24 hours.

このような前記末端に二重結合を有する疎水性官能基を誘導する化合物は、一方の末端がガラス表面のシラノール基と反応しうるものであることが好ましい。このような化合物としては、たとえば、トリエトキシビニルシラン、トリエトキシアリルシラン、トリエトキシブテニルシラン、トリエトキシペンテニルシラン、トリエトキシへキシルシランなどのアルケニルシランが挙げられる。   In such a compound that induces a hydrophobic functional group having a double bond at the terminal, it is preferable that one terminal can react with a silanol group on the glass surface. Examples of such compounds include alkenyl silanes such as triethoxy vinyl silane, triethoxy allyl silane, triethoxy butenyl silane, triethoxy pentenyl silane, and triethoxy hexyl silane.

これらのうちでは、より好ましくはトリエトキシアリルシラン、トリエトキシブテニルシラン、トリエトキシペンテニルシラン、トリエトキシへキシルシラン、特に好ましくはトリエトキシブテニルシラン、トリエトキシペンテニルシラン、トリエトキシへキシルシランを用いることが望ましい。これらのアルケニルシランは、市販品又は公知の方法により製造することができる。たとえば、溶媒の存在下、所望のアルケニル基を含有するグリニャール試薬又はアルキルリチウム化合物と、クロロシラン等のハロゲン化シラン又はアルコキシシランとを反応させて、容易に合成することができる。   Among these, it is more preferable to use triethoxyallylsilane, triethoxybutenylsilane, triethoxypentenylsilane, triethoxyhexylsilane, and particularly preferably triethoxybutenylsilane, triethoxypentenylsilane, triethoxyhexylsilane. These alkenyl silanes can be produced commercially or by known methods. For example, it can be easily synthesized by reacting a Grignard reagent or alkyllithium compound containing a desired alkenyl group with a halogenated silane such as chlorosilane or alkoxysilane in the presence of a solvent.

前記重合性モノマーとしては、ビニル基、アリル基、ジエンなどを有するものであればよく、限定されない。   The polymerizable monomer is not limited as long as it has a vinyl group, an allyl group, a diene, or the like.

このような重合性モノマーとしては、ノニオン性モノマー、アニオン性モノマー、カチオン性モノマーなどが挙げられる。   Examples of such polymerizable monomers include nonionic monomers, anionic monomers, and cationic monomers.

ノニオン性(疎水性、親水性など)表面を作るノニオン性モノマーとしては、たとえば、
アクリルアミド、メタクリルアミドなどのアミド類;
アクリル酸メチル、メタクリル酸メチル、酢酸ビニル、酢酸アリル、アセト酢酸アリル、トリメチル酢酸ビニル、ビニル蟻酸、ヘキサン酸ビニル、ラウリン酸ビニル、メタクリル酸ビニル、オクタン酸ビニル、パルミチン酸ビニル、ピバル酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル、ヘキサヒドロフタル酸モノ2-(メタクリロイルオキシ)エチル、フタル酸モノ-2-(メタクリロイルオキシ)エチル、安息香酸ビニル、p-ビニル安息香酸、酪酸ビニル、カプリン酸ビニル、カプロン酸ビニル、クロトン酸ビニル、デカン酸ビニル、けい皮酸ビニル、アリルブチレート安息香酸アリル、n-酪酸アリル、n-カプリン酸アリル、n-カプロン酸アリル、エナント酸アリル、ヘプタン酸アリル、イソフタル酸アリル、イソチオシアン酸アリル、イソ吉草酸アリル、n-吉草酸アリルなどのエステル類;
ビニルメチルケトンなどのケトン類;
ビニルブチルエーテル、アリルエーテル、アリルエチルエーテル、アリルブチルエーテル、ビニルエチルエーテル、n-デカン酸 アリルなどのエーテル類;
ビニルアルコール、アリルアルコールなどのアルコール類;
塩化ビニル、塩化アリル、塩化メタクリロイル、クロロ酢酸ビニル、塩化アクリロイル、臭化アリル、よう化アリル、クロロ酢酸アリル、クロロぎ酸アリル、アリルクロロホルメートなどのハロゲン化物;
スチレン、アリルベンゼン、4-メタアクリルオキシ-2-ヒドロキシベンゾフェノン、ビニルトルエン、アリルベンジルエーテル、4-アリル-2,6-ジメトキシフェノール、アリルアリソール、4-アリル-1,2-ジメトキシベンゼンなどのベンゼン環を有する芳香族化合物;
3-メタクリルオキシプロピルトリメトキシシラン、ビニルトリクロロシラン、アリルクロロジメチルシラン、アリルクロロメチルジメチルシランなどのシラン類;
メタクリロニトリル、ビニルアセトニトリル、アクリロニトリル、シアノ酢酸アリル、シアン化アリルなどのシアン類;
2-アリルシクロヘキサノン、1-アリルシクロヘキサノール、アリルシクロペンタンなどのシクロアルカン誘導体;
その他、ビニルアントラセン、ビニルスルホン、アリルアルコールプロポキシレート、アリル-L-システイン、アリルエチレン、アリルグリシジルエーテル、アリルトリフルオロ酢酸、アリルシクロペンタジエニルニッケル、ジエチルホスホノ酢酸アリル、アリルジフェニルホスフィン、アリルジフェニルホスフィンオキシド、アリルジスルフィドなどが挙げられる。
Examples of nonionic monomers that create nonionic (hydrophobic, hydrophilic, etc.) surfaces include:
Amides such as acrylamide and methacrylamide;
Methyl acrylate, methyl methacrylate, vinyl acetate, allyl acetate, allyl acetoacetate, vinyl trimethyl acetate, vinyl formic acid, vinyl hexanoate, vinyl laurate, vinyl methacrylate, vinyl octoate, vinyl palmitate, vinyl pivalate, propion Vinyl acetate, vinyl stearate, mono-2- (methacryloyloxy) ethyl hexahydrophthalate, mono-2- (methacryloyloxy) ethyl phthalate, vinyl benzoate, p-vinylbenzoic acid, vinyl butyrate, vinyl caprate, capron Vinyl acid, vinyl crotonate, vinyl decanoate, vinyl cinnamate, allyl butyrate allyl benzoate, allyl n-butyrate, allyl n-caprate, allyl n-caproate, allyl enanthate, allyl heptanoate, isophthalic acid Allyl, allyl isothiocyanate, Valeric acid allyl esters such as n- valerate allyl;
Ketones such as vinyl methyl ketone;
Ethers such as vinyl butyl ether, allyl ether, allyl ethyl ether, allyl butyl ether, vinyl ethyl ether, allyl n-decanoate;
Alcohols such as vinyl alcohol and allyl alcohol;
Halides such as vinyl chloride, allyl chloride, methacryloyl chloride, vinyl chloroacetate, acryloyl chloride, allyl bromide, allyl iodide, allyl chloroacetate, allyl chloroformate, allyl chloroformate;
Styrene, allylbenzene, 4-methacryloxy-2-hydroxybenzophenone, vinyl toluene, allyl benzyl ether, 4-allyl-2,6-dimethoxyphenol, allyl allyl, 4-allyl-1,2-dimethoxybenzene, etc. An aromatic compound having a benzene ring;
3-silanes such as 3-methacryloxypropyltrimethoxysilane, vinyltrichlorosilane, allylchlorodimethylsilane, allylchloromethyldimethylsilane;
Cyanides such as methacrylonitrile, vinylacetonitrile, acrylonitrile, allyl cyanoacetate, allyl cyanide;
Cycloalkane derivatives such as 2-allylcyclohexanone, 1-allylcyclohexanol, allylcyclopentane;
Others, vinyl anthracene, vinyl sulfone, allyl alcohol propoxylate, allyl-L-cysteine, allyl ethylene, allyl glycidyl ether, allyl trifluoroacetic acid, allyl cyclopentadienyl nickel, allyl diethylphosphonoacetate, allyl diphenyl phosphine, allyl diphenyl Examples thereof include phosphine oxide and allyl disulfide.

これらのうち、親水性ノニオン性表面として、アクリルアミドやビニルアルコール、疎水性ノニオン性表面として、スチレンやアリルベンゼンなどを好ましく用いることができる。   Of these, acrylamide and vinyl alcohol can be preferably used as the hydrophilic nonionic surface, and styrene and allylbenzene can be preferably used as the hydrophobic nonionic surface.

アニオン性表面を作るアニオン性モノマーとしては、たとえば、
アクリル酸、メタクリル酸、モノ-2-(アクリロイルオキシ)エチルスクシネートなどのカルボキシル基含有化合物;
アリルスルホン酸、ビニルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸、p-ビニルベンゼンスルホン酸などのスルホン酸基含有化合物などが挙げられる。
As an anionic monomer for making an anionic surface, for example,
Carboxyl group-containing compounds such as acrylic acid, methacrylic acid, mono-2- (acryloyloxy) ethyl succinate;
Examples include sulfonic acid group-containing compounds such as allylsulfonic acid, vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 3-allyloxy-2-hydroxy-1-propanesulfonic acid, and p-vinylbenzenesulfonic acid. .

これらのうち、強アニオン性として、ビニルスルホン酸やアリルスルホン酸、弱アニオン性としてアクリル酸やメタクリル酸などを好ましく用いることができる。   Of these, vinyl sulfonic acid and allyl sulfonic acid can be preferably used as strong anionic properties, and acrylic acid and methacrylic acid can be used as weak anionic properties.

カチオン性表面を作るカチオン性モノマーとしては、たとえば、
アリルアミン、3-アクリルアミド-N,N- ジメチルプロピルアミン、アリルシクロヘキシルアミン、3-メタクリルアミド-N-ジメチルプロピルアミンなどの第一級アミン;
メチルアリルアミンなどの第二級アミン;
N-アリルジエチルアミン、N-アリルジメチルアミンなどの第三級アミン;
アリルトリエチルアンモニウム、(3-アクリルアミドプロピル)トリメチルアンモニウムクロリド、ビニルトリメチルアンモニウムブロミド、3-(メタクリロイルアミノ)プロピルトリメチルアンモニウムクロリド、メタクリル酸エチルトリメチルアンモニウムクロリド、ジアリルジメチルアンモニウムなどの第四級アンモニウムが挙げられる。
Examples of the cationic monomer that forms the cationic surface include:
Primary amines such as allylamine, 3-acrylamide-N, N-dimethylpropylamine, allylcyclohexylamine, 3-methacrylamide-N-dimethylpropylamine;
Secondary amines such as methylallylamine;
Tertiary amines such as N-allyldiethylamine and N-allyldimethylamine;
Quaternary ammonium such as allyltriethylammonium, (3-acrylamidopropyl) trimethylammonium chloride, vinyltrimethylammonium bromide, 3- (methacryloylamino) propyltrimethylammonium chloride, ethyltrimethylammonium methacrylate, diallyldimethylammonium and the like can be mentioned.

また、上記ノニオン性モノマー、アニオン性モノマー、カチオン性モノマーの他、たとえば、複素環式化合物を側鎖に有する、アリルヒドラジン、2-ビニルピラジン、2-ビニルピリジン、4-ビニルピリジン、N-ビニル-2-ピロリドン、1-アリルベンゾトリアゾール、アリル-1-ベンゾトリアゾールカーボネートなどを用いることもできる。   In addition to the above nonionic monomers, anionic monomers, and cationic monomers, for example, allylhydrazine, 2-vinylpyrazine, 2-vinylpyridine, 4-vinylpyridine, N-vinyl having a heterocyclic compound in the side chain -2-pyrrolidone, 1-allylbenzotriazole, allyl-1-benzotriazole carbonate, and the like can also be used.

これらのうち、強カチオン性としてジアリルジメチルアンモニウム塩、弱カチオン性として、アリルアミンなどを好ましく用いることができる。   Of these, diallyldimethylammonium salt can be preferably used as the strong cationic and allylamine can be used as the weak cationic.

このような重合性モノマーは、1種単独で、または複数を併用して用いることができる。   Such polymerizable monomers can be used alone or in combination of two or more.

基材表面上での前記重合性モノマーのラジカル重合は、公知の方法を採用することができる。たとえば、溶媒の存在下又は非存在下で、必要に応じ重合開始剤を添加して、重合性モノマーを重合性官能基が導入された基材表面で重合させて行うことができる。   A known method can be adopted for radical polymerization of the polymerizable monomer on the surface of the substrate. For example, in the presence or absence of a solvent, a polymerization initiator can be added as necessary, and the polymerizable monomer can be polymerized on the surface of the base material into which a polymerizable functional group has been introduced.

溶媒としては、重合性モノマーが溶解するものであればよく、限定されない。たとえば、THF、メタノール、DMF、DMSOなどを用いることができる。   The solvent is not limited as long as it can dissolve the polymerizable monomer. For example, THF, methanol, DMF, DMSO, etc. can be used.

重合開始剤としては、たとえば2,2'−アゾビス(イソブチロニトリル)(AIBN)、1,1'−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2'−アゾビス(2−メチルブチロニトリル)などを用いることができる。また、このようなアゾ化合物の他に、過酸化物、有機金属化合物などを用いることもできる。   Examples of the polymerization initiator include 2,2′-azobis (isobutyronitrile) (AIBN), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2-methylbutyro). Nitrile) or the like can be used. In addition to such azo compounds, peroxides, organometallic compounds, and the like can also be used.

上記THF等の溶媒に溶解しない重合性モノマーを用いる場合は、たとえば、超純水を溶媒として用い、N,N,N',N'−テトラメチルエチレンジアミン、4,4'−アゾビスシアノ吉草酸などの重合開始剤を用いて重合を行うことができる。   When a polymerizable monomer that does not dissolve in a solvent such as THF is used, for example, ultrapure water is used as a solvent, and N, N, N ′, N′-tetramethylethylenediamine, 4,4′-azobiscyanovaleric acid, etc. Polymerization can be performed using a polymerization initiator.

重合は、重合性モノマーの種類により異なり限定されないが、通常、たとえば、室温〜100℃程度の温度範囲で、1〜72時間程度の時間で実施することができる。   The polymerization varies depending on the kind of the polymerizable monomer and is not limited. Usually, the polymerization can be performed, for example, in a temperature range of about room temperature to about 100 ° C. for a time of about 1 to 72 hours.

このようにして得られる表面重合膜を、用いる重合性モノマーの種類あるいは複数のポリマーの組み合わせにより、種々の範囲の電荷、疎水性/親水性の表面とさせることができる。   The surface polymer film thus obtained can have various ranges of charge and hydrophobic / hydrophilic surfaces depending on the type of polymerizable monomer used or a combination of a plurality of polymers.

たとえば、pHにより異なるが、物質の荷電状態を示すゼータ電位を好ましくは−100〜+100mVの範囲にコントロールすることができる。
またたとえば、表面の接触角を、好ましくは1〜140度の範囲にコントロールすることができる。
For example, although it varies depending on the pH, the zeta potential indicating the charged state of the substance can be preferably controlled in the range of −100 to +100 mV.
Further, for example, the contact angle of the surface can be controlled preferably in the range of 1 to 140 degrees.

表面重合膜においては、ピンホールなどのモノマー未修飾部分が発生する場合がある。このため、さらに、重合性モノマーまたはポリマーを結合させることができる。   In the surface polymerized film, monomer-unmodified portions such as pinholes may occur. For this reason, a polymerizable monomer or polymer can be further bonded.

本発明で用いることができる表面重合膜では、さらに、表面重合膜のポリマー側鎖中の官能基に、別のポリマーまたはモノマーを反応させてもよい。
導入された官能基を利用して、蛋白質と多様な相互作用をさせながら電気泳動による分離が可能となる。例えば、前記カチオン性モノマーを重合性モノマーとして用いることにより、表面にカチオン性官能基を有する表面重合膜が合成できる。このような表面重合膜が被覆された表面を利用して、静電的な相互作用(膜のプラス電荷と蛋白質のマイナス電荷)を行わせながら蛋白質の電気泳動を行うことが可能である。
In the surface polymerized film that can be used in the present invention, another polymer or monomer may be reacted with the functional group in the polymer side chain of the surface polymerized film.
Separation by electrophoresis is possible while using the introduced functional group and various interactions with proteins. For example, a surface polymer film having a cationic functional group on the surface can be synthesized by using the cationic monomer as a polymerizable monomer. By using the surface coated with such a surface polymerized film, it is possible to perform protein electrophoresis while performing electrostatic interaction (positive charge of the film and negative charge of the protein).

また、アニオン性モノマーを重合性モノマーとして用いることにより、表面にアニオン性官能基を有する表面重合膜が合成される。その結果、膜のマイナス電荷と蛋白質のプラス電荷の間での相互作用による電気泳動分離が可能になる。   Moreover, the surface polymer film which has an anionic functional group on the surface is synthesize | combined by using an anionic monomer as a polymerizable monomer. As a result, electrophoretic separation by interaction between the negative charge of the membrane and the positive charge of the protein becomes possible.

さらにノニオン性の重合性モノマーを適宜使い分けることにより、表面が極めて疎水的あるいは親水的な表面重合膜が合成されるので、疎水的相互作用あるいは親水的相互作用に基づく分離が可能である。   Furthermore, by appropriately using nonionic polymerizable monomers appropriately, a surface polymer film having a very hydrophobic or hydrophilic surface is synthesized. Therefore, separation based on hydrophobic interaction or hydrophilic interaction is possible.

したがって、すなわち上記3つの例では、それぞれ陰イオン交換クロマトグラフィー、陽イオン交換クロマトグラフィー、疎水/親水クロマトグラフィーと類似の作用を有する表面を実現できる。 Therefore, in the above three examples, surfaces having actions similar to those of anion exchange chromatography, cation exchange chromatography, and hydrophobic / hydrophilic chromatography can be realized.

(高分子結合膜)
高分子結合膜は、基材表面に反応性官能基を導入し、該官能性反応基にポリマーを共有結合させて得られるものである。
(Polymer binding membrane)
The polymer-bonded film is obtained by introducing a reactive functional group on the surface of a substrate and covalently bonding a polymer to the functional reactive group.

高分子化合物を結合させる部位となる反応性官能基としては、アミノ基、エポキシ基、カルボキシル基、アルデヒド基などが挙げられる。これらのうちでは、アミノ基、エポキシ基を好ましく用いることができる。   Examples of the reactive functional group serving as a site to which the polymer compound is bonded include an amino group, an epoxy group, a carboxyl group, and an aldehyde group. Of these, amino groups and epoxy groups can be preferably used.

このような反応性官能基を有する結合基は、さらに、疎水性のスペーサーを介して基材表面に結合していることが好ましい。   The binding group having such a reactive functional group is preferably further bonded to the substrate surface via a hydrophobic spacer.

疎水性スペーサーとしては、好ましくは炭素原子数2〜6、さらに好ましくは炭素原子数3〜6、特に好ましくは炭素原子数4〜6のアルキル基を含むことが望ましい。   The hydrophobic spacer preferably contains an alkyl group having 2 to 6 carbon atoms, more preferably 3 to 6 carbon atoms, and particularly preferably 4 to 6 carbon atoms.

このような疎水性スペーサーを介した反応性官能基に、高分子化合物を結合した基材は、疎水性のスペーサーにより水分子の接近が抑制されているので、pH等の影響による加水分解による高分子結合膜の剥離が抑制される。   The base material in which the polymer compound is bonded to the reactive functional group via the hydrophobic spacer is prevented from approaching water molecules by the hydrophobic spacer. The peeling of the molecular bond film is suppressed.

前記スペーサーを有する反応性官能基の基材表面への導入は、基材の種類により異なるが、たとえば、基材がガラスの場合シランカップリング法により行うことができ、基材が金属であればセルフアセンブルモノレイヤー法により行うことができる。   The introduction of the reactive functional group having a spacer to the surface of the base material varies depending on the type of the base material. For example, when the base material is glass, it can be performed by a silane coupling method. The self-assembled monolayer method can be used.

シランカップリング法を用いる場合は、たとえば、トルエン、メタノール、水等の溶媒に、アミノプロピルトリエトキシシラン、アミノブチルトリエトキシシラン、アミノペンチルトリエトキシシラン、アミノヘキシルトリエトキシシランなどのアミノアルキル系シランカップリング剤、あるいは、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシブチルトリエトキシシラン、3−グリシドキシペンチルトリエトキシシラン、3−グリシドキシヘキシルトリエトキシシランなどのエポキシアルキル系シランカップリング剤を溶解し、ガラス等の基材を接触させて実施することができる。これらは、市販品又は公知の方法により製造することができる。たとえば、アミノアルキル系シランカップリング剤あるいはエポキシアルキル系シランカップリング剤は、溶媒の存在下、所望のアルキル基および官能基を含有するグリニャール試薬又はアルキルリチウム化合物と、クロロシラン等のハロゲン化シラン又はアルコキシシランとを反応させて、容易に合成することができる。   When using the silane coupling method, for example, an aminoalkyl silane such as aminopropyltriethoxysilane, aminobutyltriethoxysilane, aminopentyltriethoxysilane, and aminohexyltriethoxysilane in a solvent such as toluene, methanol, or water. Coupling agents or epoxy alkyls such as 3-glycidoxypropyltriethoxysilane, 3-glycidoxybutyltriethoxysilane, 3-glycidoxypentyltriethoxysilane, 3-glycidoxyhexyltriethoxysilane It can be carried out by dissolving a silane coupling agent and contacting a substrate such as glass. These can be manufactured by a commercial item or a well-known method. For example, an aminoalkyl-based silane coupling agent or an epoxyalkyl-based silane coupling agent includes a Grignard reagent or an alkyllithium compound containing a desired alkyl group and functional group, a halogenated silane such as chlorosilane, or an alkoxy in the presence of a solvent. It can be easily synthesized by reacting with silane.

接触反応は、たとえば、室温(25℃程度)〜100℃程度の温度で、たとえば、1〜24時間程度の時間実施する。   The contact reaction is performed, for example, at a temperature of room temperature (about 25 ° C.) to about 100 ° C., for example, for a time of about 1 to 24 hours.

セルフアセンブルモノレイヤー法を用いる場合は、たとえばスパッタリングなどによって基材表面に金などの金属薄膜を形成し、その金属薄膜表面に官能基とチオール基を有するスペーサーを導入し、さらにポリマー(あるいは重合開始剤を官能基と反応させ、モノマーを用いて重合することも可能である。)を反応させ、高分子結合膜を形成することができる。また、チオール基を有するポリマーを先に調製しておき、これを金属表面に修飾させて高分子膜を形成することができる。   When using the self-assembled monolayer method, a metal thin film such as gold is formed on the surface of the substrate by sputtering or the like, a spacer having a functional group and a thiol group is introduced on the surface of the metal thin film, and a polymer (or polymerization starts) It is also possible to react an agent with a functional group and polymerize using a monomer.) To form a polymer-bonded film. In addition, a polymer having a thiol group can be prepared in advance, and this can be modified on the metal surface to form a polymer film.

金属としては、金、銀、銅などが挙げられる。スペーサーとしては、アミノ基を有するアミノエタンチオール、カルボキシル基を有するチオクト酸などが挙げられる。   Examples of the metal include gold, silver, and copper. Examples of the spacer include aminoethanethiol having an amino group, thioctic acid having a carboxyl group, and the like.

基材上にスペーサーあるいは、チオール基を修飾したポリマーを導入するための溶媒はDMSO、水などの溶媒中にスペーサーを溶解し、金属薄膜に接触させて実施することができる。   A solvent for introducing a spacer or a polymer modified with a thiol group onto a substrate can be carried out by dissolving the spacer in a solvent such as DMSO or water and contacting the metal thin film.

接触反応は、例えば室温〜100℃程度の温度で、例えば1〜24時間程度の時間実施する。   The contact reaction is performed, for example, at a temperature of room temperature to about 100 ° C., for example, for a time of about 1 to 24 hours.

前記ポリマーとしては、前記表面重合において用いる重合性モノマーを、あらかじめ重合して得られるポリマーが挙げられる。これらのうちでは、好ましくは、ポリスチレン、ポリアリルベンゼン、ポリビニルアルコール、ポリアクリルアミド、ポリビニルスルホン酸、ポリアクリル酸、ポリジアリルジメチルアンモニウム塩、ポリアリルアミン、ポリエチレングリコールなどを好ましく用いることができる。   Examples of the polymer include a polymer obtained by previously polymerizing a polymerizable monomer used in the surface polymerization. Among these, preferably, polystyrene, polyallylbenzene, polyvinyl alcohol, polyacrylamide, polyvinyl sulfonic acid, polyacrylic acid, polydiallyldimethylammonium salt, polyallylamine, polyethylene glycol, and the like can be preferably used.

これらのうち、ノニオン性表面として、ポリビニルアルコール、ポリアリルアルコールをさらに好ましく用いることができる。   Of these, polyvinyl alcohol and polyallyl alcohol can be more preferably used as the nonionic surface.

強アニオン性表面として、ポリアクリル酸などをさらに好ましく用いることができる。
強カチオン性表面として、ポリアリルアミンをさらに好ましく用いることができる。
As the strong anionic surface, polyacrylic acid or the like can be more preferably used.
Polyallylamine can be more preferably used as the strong cationic surface.

このようなポリマーは、1種単独で、または複数を組み合わせて用いることができる。
このようなポリマーの重量平均分子量としては、たとえば、好ましくは5000〜500000、さらに好ましくは10000〜250000の範囲にあることが望ましい。
Such polymers can be used singly or in combination.
The weight average molecular weight of such a polymer is, for example, preferably in the range of 5,000 to 500,000, more preferably 10,000 to 250,000.

ポリマーを基材あるいはカバー材に結合させて得られる高分子結合膜においては、ピンホールのような反応性官能基がポリマーと結合していないポリマー未修飾部分が発生する場合がある。このため、さらに、ポリマーを結合させることができる。   In a polymer-bonded film obtained by bonding a polymer to a base material or a cover material, a polymer unmodified portion in which a reactive functional group such as a pinhole is not bonded to the polymer may be generated. For this reason, a polymer can be further combined.

このような高分子結合膜の製造は公知の方法が採用でき限定されない。たとえば、前記ポリマーを溶媒に溶解し、前記表面に反応性官能基を導入した基材を溶液に接触させて製造することができる。   The production of such a polymer-bonded membrane is not limited and a known method can be adopted. For example, it can be produced by dissolving the polymer in a solvent and bringing a substrate having a reactive functional group introduced into the surface into contact with the solution.

溶媒としては、ポリマーを溶解するものであれば限定されないが、たとえば、DMSO(ジメチルスルホキシド)、HEPES(2−[4−(2−ヒドロキシエチル)1−ピペラジニル]エタンスルホン酸)緩衝液、などが挙げられる。   The solvent is not limited as long as it dissolves the polymer. Examples thereof include DMSO (dimethyl sulfoxide), HEPES (2- [4- (2-hydroxyethyl) 1-piperazinyl] ethanesulfonic acid) buffer, and the like. Can be mentioned.

また、結合反応には、必要に応じ活性化剤を用いることもできる。たとえば、アミノ基が導入された基材に、ポリアクリル酸を結合させる場合、HEPESにポリアクリル酸を溶解させた後、N−ヒドロキシスクシンイミド、塩酸1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドを添加して結合させる。   Moreover, an activator can also be used for coupling | bonding reaction as needed. For example, when polyacrylic acid is bonded to a substrate into which an amino group has been introduced, after dissolving polyacrylic acid in HEPES, N-hydroxysuccinimide, 1-ethyl-3- (3-dimethylaminopropyl) hydrochloride Add carbodiimide and bond.

このようにして得られる高分子結合膜は、ポリマーが未修飾部分を有する場合があるが、該ポリマー未修飾部分に対し、別のポリマーを結合させることもできる。さらに、結合したポリマー側鎖中の官能基に、別のポリマーまたはモノマーを反応させることもできる。   In the polymer-bonded membrane thus obtained, the polymer may have an unmodified part, but another polymer can be bonded to the polymer-unmodified part. Furthermore, another polymer or monomer can be reacted with a functional group in the attached polymer side chain.

このようにポリマーの種類、あるいは複数のポリマーの組み合わせによって種々の範囲の電荷、疎水性/親水性の表面を有する高分子結合膜を得ることができる。
たとえば、pHにより異なるが、物質の荷電状態を示すゼータ電位を好ましくは−100〜+100mVの範囲にコントロールすることができる。
またたとえば、表面の接触角を、好ましくは1〜140度の範囲にコントロールすることができる。
As described above, polymer-bound membranes having various ranges of charge and hydrophobic / hydrophilic surfaces can be obtained depending on the type of polymer or a combination of a plurality of polymers.
For example, although it varies depending on the pH, the zeta potential indicating the charged state of the substance can be preferably controlled in the range of −100 to +100 mV.
Further, for example, the contact angle of the surface can be controlled preferably in the range of 1 to 140 degrees.

このような高分子結合膜は、予め結合すべきポリマーを調製することにより、膜厚を容易に制御することができる。   Such a polymer-bonded film can be easily controlled by preparing a polymer to be bonded in advance.

導入された官能基を利用して、蛋白質と多様な相互作用をさせながら電気泳動等による分離が可能となる。例えば、前記カチオン性モノマーに由来するポリマーを用いることにより、表面にカチオン性官能基を有する高分子結合膜が合成できる。このような高分子結合膜が被覆された表面を利用して、静電的な相互作用(膜のプラス電荷と蛋白質のマイナス電荷)を行わせながら蛋白質の電気泳動等を行うことが可能である。   Separation by electrophoresis or the like becomes possible while making various interactions with proteins using the introduced functional groups. For example, by using a polymer derived from the cationic monomer, a polymer binding film having a cationic functional group on the surface can be synthesized. Using the surface coated with such a polymer binding membrane, it is possible to perform protein electrophoresis and the like while performing electrostatic interaction (positive charge of the membrane and negative charge of the protein). .

アニオン性モノマーに由来するポリマーを用いることにより、表面にアニオン性官能基を有する高分子結合膜を合成することができる。その結果、アミノ基と同様の静電的な相互作用であり、かつ膜のマイナス電荷と蛋白質のプラス電荷の間での相互作用による電気泳動分離等が可能になる。   By using a polymer derived from an anionic monomer, a polymer binding film having an anionic functional group on the surface can be synthesized. As a result, it is possible to perform electrophoretic separation or the like by the interaction between the negative charge of the membrane and the positive charge of the protein, which is the same electrostatic interaction as that of the amino group.

ノニオン性の重合性モノマーに由来するポリマーを適宜使い分けることにより、表面が極めて疎水的あるいは親水的な高分子結合膜を合成できるので、疎水的相互作用あるいは親水的相互作用に基づく分離が可能である。   By appropriately using polymers derived from nonionic polymerizable monomers, it is possible to synthesize polymer binding membranes with extremely hydrophobic or hydrophilic surfaces, so separation based on hydrophobic interactions or hydrophilic interactions is possible. .

また、アニオン性官能基を有するポリマーを修飾した後、該アニオン性官能基に、たとえば、疎水性(または親水性)の官能基を有するノニオン性ポリマーまたはノニオン性モノマーを結合させることにより、アニオン性と疎水性(または親水性)の性質を併せ持つ基材表面を形成することができる。また、ノニオン性ポリマー又はモノマーの修飾率を変えれば、疎水性(または親水性)のバランスをコントロールすることができる。   In addition, after modifying a polymer having an anionic functional group, the anionic functional group is bonded with, for example, a nonionic polymer or a nonionic monomer having a hydrophobic (or hydrophilic) functional group. And a substrate surface having both hydrophobic (or hydrophilic) properties. Further, the hydrophobic (or hydrophilic) balance can be controlled by changing the modification rate of the nonionic polymer or monomer.

このようにして得られるマイクロ流路チップでは、基材、さらに好ましくは基材およびカバー材の表面において、高分子化合物膜で被覆されていない領域が存在するため、基材とカバー材との貼り合わせの際の接着強度に優れている。   In the microchannel chip obtained in this way, there is a region that is not covered with the polymer compound film on the surface of the base material, more preferably the base material and the cover material. Excellent adhesion strength when mating.

<マイクロ流路チップ>
本発明に係るマイクロ流路チップは、表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の一部又は全部の表面に高分子化合物膜が被覆されている。
また、前記カバー材の基材側の表面には、高分子化合物膜が被覆されていることが好ましい。
<Microchannel chip>
The microchannel chip according to the present invention is formed by bonding a surface of a base material having a channel formed on the surface thereof to the channel side and a cover material. The entire surface is coated with a polymer compound film.
The surface of the cover material on the base material side is preferably coated with a polymer compound film.

さらに、前記カバー材の基材側の表面の、基材の高分子化合物膜が形成されている領域と対向する領域に、前記基材の高分子化合物膜が形成されている部分の一部又は全部と同一形状の高分子化合物膜が被覆されていることがより好ましい。
このようなマイクロ流路チップは、前記本発明に係るマイクロ流路チップの製造方法により製造することが好ましい。
Further, a part of the surface where the polymer compound film of the substrate is formed in a region facing the region where the polymer compound film of the substrate is formed on the substrate side surface of the cover material or It is more preferable that the polymer compound film having the same shape as the whole is coated.
Such a microchannel chip is preferably manufactured by the method for manufacturing a microchannel chip according to the present invention.

前記基材、前記カバー材、前記流路、前記高分子化合物膜は、前記マイクロチップの製造方法で示したものと同意義である。   The base material, the cover material, the flow path, and the polymer compound film are the same as those shown in the microchip manufacturing method.

<生体分子の分離方法>
本発明に係る生体分子の分離方法は、次の工程を含む。
a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップに、分析すべき生体分子を加える工程、および
b)分離媒体に分離圧を加える工程。
<Separation method of biomolecule>
The method for separating biomolecules according to the present invention includes the following steps.
a) The surface of the base material on which the flow path is formed on the surface is bonded to the cover material, and the surface of the base material surface is covered with a polymer compound film. Adding a biomolecule to be analyzed to the microchannel chip, and b) applying a separation pressure to the separation medium.

該生体分子の分離方法で用いることのできるマイクロ流路チップは、本発明に係る前記マイクロ流路チップである。また、前記基材、前記カバー材、前記流路、前記高分子化合物膜は、前記マイクロチップの製造方法で示したものと同意義である。   The microchannel chip that can be used in the biomolecule separation method is the microchannel chip according to the present invention. The base material, the cover material, the flow path, and the polymer compound film are the same as those shown in the method for manufacturing the microchip.

分離媒体としては、電気泳動等における泳動媒体として公知のものを採用でき限定されない。たとえば分離媒体としては、有機溶媒、ポリアクリルアミド、アガロースなどのゲル、緩衝液等の液体が挙げられる。好ましくは電気泳動媒体を用いる。電気泳動媒体としては、たとえば、ゲル、緩衝液などを用いることが好ましい。圧送の場合、用いる分離媒体に特に限定はない。   As a separation medium, a well-known thing can be employ | adopted as an electrophoresis medium in electrophoresis etc., It is not limited. For example, examples of the separation medium include organic solvents, polyacrylamides, gels such as agarose, and liquids such as buffers. Preferably an electrophoresis medium is used. As the electrophoresis medium, for example, it is preferable to use a gel, a buffer solution, or the like. In the case of pressure feeding, the separation medium to be used is not particularly limited.

分離圧としては、用いる分離媒体などにより異なり特に限定されず、電気泳動、圧送などを採用することができる。このうち電気泳動が好ましい。   The separation pressure varies depending on the separation medium to be used and is not particularly limited, and electrophoresis, pressure feeding, and the like can be employed. Of these, electrophoresis is preferred.

生体分子としては、蛋白質、DNA、ウィルス、細菌、糖類、アミノ酸、その他の代謝産物などが挙げられ、これらのうち、本発明は蛋白質の分離に有効である。   Examples of biomolecules include proteins, DNA, viruses, bacteria, saccharides, amino acids, and other metabolites. Of these, the present invention is effective for separating proteins.

前記電気泳動方法の分離原理は限定されない。前記表面に高分子化合物膜が被覆された基材を用いる電気泳動分離は、分離媒体の条件によって、様々な性状に基づく分離を可能とする。電気泳動分離の分離条件として、pH勾配、分子篩(ふるい)、分離媒体中で接触する官能基との相互作用等を示すことができる。pH勾配を備えた分離媒体中における電気泳動を蛋白質に利用すれば、等電点電気泳動となる。またポリアクリルアミドゲルのような分子篩効果を持つ媒体中で電気泳動を行うとき、SDS、尿素、あるいはグアニジンのような蛋白質変性剤を共存させれば、変性条件下での分子篩電気泳動が成立する。あるいは、変性剤を用いなければ、ネイティブな条件下での電気泳動となる。   The separation principle of the electrophoresis method is not limited. Electrophoretic separation using a substrate having a polymer compound film coated on the surface enables separation based on various properties depending on the conditions of the separation medium. Separation conditions for electrophoretic separation can include pH gradient, molecular sieve (sieving), interaction with functional groups in contact with the separation medium, and the like. If electrophoresis in a separation medium having a pH gradient is used as a protein, isoelectric focusing is achieved. In addition, when electrophoresis is performed in a medium having a molecular sieving effect such as polyacrylamide gel, if a protein denaturant such as SDS, urea, or guanidine coexists, molecular sieving electrophoresis is established under denaturing conditions. Alternatively, if no denaturant is used, electrophoresis is performed under native conditions.

同様に分子篩(ふるい)に基づいて核酸を泳動するとき、核酸は長さに基づいて分離される。PCR-SSCPのように非変性条件と変性条件下で同じ核酸を電気泳動分離して、両者の結果を比較して立体構造の違いを明らかにする分析方法も公知である。   Similarly, when migrating nucleic acids based on molecular sieves, the nucleic acids are separated based on length. An analysis method is also known in which the same nucleic acid is electrophoretically separated under non-denaturing conditions and denaturing conditions, such as PCR-SSCP, and the results of the two are compared to reveal the difference in conformation.

更に、さまざまな官能基を備えた分離媒体の利用も可能である。具体的には、静電的相互作用、水素結合、疎水結合、あるいは任意の組み合わせの親和性物質などを示すことができる。親和性物質としては、抗原−抗体、相補的な塩基配列からなる核酸のハイブリダイゼーション、アビジン−ビオチンや、糖−レクチンのような親和性物質の組み合わせ等がある。   Furthermore, it is possible to use separation media having various functional groups. Specifically, an electrostatic interaction, a hydrogen bond, a hydrophobic bond, or any combination of affinity substances can be shown. Examples of the affinity substance include an antigen-antibody, hybridization of a nucleic acid consisting of a complementary base sequence, a combination of affinity substances such as avidin-biotin and sugar-lectin.

本発明に好適な電気泳動の原理の一つに、キャピラリー電気泳動を示すことができる。本発明に基づいてキャピラリー電気泳動を行う場合、前記高分子化合物膜が施されているので、電気浸透流を制御することのできる流路を形成できる。   One of the principles of electrophoresis suitable for the present invention is capillary electrophoresis. When capillary electrophoresis is performed according to the present invention, since the polymer compound film is applied, a flow path capable of controlling the electroosmotic flow can be formed.

本発明において、キャピラリー電気泳動に有用な好ましいモノマー物質には、例えば、プラズマ重合膜の場合、ヘキサジエン、ヘキサメチルジシロキサン、アセトニトリル、ヘキシルアミン、アミノアセトアルデヒドジメチルアセタールを示すことができる。
表面重合膜の場合、スチレン、アクリルアミド、ビニルスルホン酸、アクリル酸、ジアリルジメチルアンモニウム塩、アリルアミンが挙げられる。
高分子結合膜の場合、ポリビニルアルコール、ポリアクリル酸、ポリアリルアミンが挙げられる。
In the present invention, preferable monomeric substances useful for capillary electrophoresis include, for example, hexadiene, hexamethyldisiloxane, acetonitrile, hexylamine, and aminoacetaldehyde dimethyl acetal in the case of a plasma polymerized film.
In the case of the surface polymerized film, styrene, acrylamide, vinyl sulfonic acid, acrylic acid, diallyldimethylammonium salt, and allylamine are exemplified.
In the case of a polymer binding film, polyvinyl alcohol, polyacrylic acid, and polyallylamine are exemplified.

以下は、プラズマ重合膜を用いる例である。陽極液と、陰極液を両端に導入し、両端に電圧を印加する。陽極液には、電解質の中で最も酸性の強いものよりも低いpHを与える酸性の溶液が用いられる。一方、陰極液には、最も塩基性の強いものよりも高いpHを与えるアルカリ性の溶液を利用する。それぞれの両性電解質は等電点の位置まで移動した後停止する。蛋白質成分は、流路内に形成されたpH勾配上の等電点の位置で濃縮され、細いゾーンとして観測される。   The following is an example using a plasma polymerized film. An anolyte and a catholyte are introduced into both ends, and a voltage is applied to both ends. As the anolyte, an acidic solution that gives a pH lower than that of the most acidic electrolyte is used. On the other hand, as the catholyte, an alkaline solution that gives a higher pH than the most basic one is used. Each ampholyte stops after moving to the position of the isoelectric point. The protein component is concentrated at the position of the isoelectric point on the pH gradient formed in the flow path, and is observed as a narrow zone.

キャピラリーゾーン電気泳動(CZE)では、1種類の電解質溶液を流路内に導入することにより、流路内壁および内壁に接する電解質溶液の間に電気二重層が形成される。電圧がかけられると電解質溶液が溶媒を伴って移動し、電気浸透流が生じる。電気浸透流は分離された成分イオンを移動させる駆動力となる。試料成分はそれぞれの電荷とサイズに応じた静電気力を受けて対極へ引き寄せられ、電荷とサイズの違いが移動度の違いとなり成分が分離される。   In capillary zone electrophoresis (CZE), an electric double layer is formed between the inner wall of the channel and the electrolyte solution in contact with the inner wall by introducing one type of electrolyte solution into the channel. When a voltage is applied, the electrolyte solution moves with the solvent and an electroosmotic flow is generated. The electroosmotic flow becomes a driving force for moving the separated component ions. The sample component receives an electrostatic force corresponding to each charge and size and is attracted to the counter electrode, and the difference between the charge and size becomes the difference in mobility and the components are separated.

CZEでは、電気浸透流を用いて生体分子の分離を行っているが、電気浸透流はpHによって大きく変わり、キャピラリー間の個体差もあるため問題である。この電気浸透流をコントロールすることができれば、様々なモード(キャピラリー電気泳動全般(CZE、キャピラリーゲル電気泳動(CGE)、キャピラリー等電点電気泳動(CIFE)など)及び、クロマトグラフィー的な分離(イオン交換、逆相、順相、アフィニティークロマトグラフィー等))で生体分子を分離することが可能になると考えられる。本発明で用いる高分子化合物膜(特にプラズマ重合膜)によってコーティングされた流路は、電気浸透流をコントロールすることができるため非常に有効である。   In CZE, biomolecules are separated using electroosmotic flow. However, electroosmotic flow varies greatly depending on pH, and there are individual differences between capillaries. If this electroosmotic flow can be controlled, various modes (capillary electrophoresis in general (CZE, capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIFE), etc.) and chromatographic separation (ion It is considered that biomolecules can be separated by exchange, reverse phase, normal phase, affinity chromatography, etc.)). The flow path coated with the polymer compound film (especially plasma polymerized film) used in the present invention is very effective because the electroosmotic flow can be controlled.

<電気泳動分析装置>
更に本発明は、次の要素で構成される電気泳動分析装置に関する。
a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップ、
b)該マイクロ流路チップを保持するための支持体、および
c)支持体に保持されたマイクロ流路チップに電圧を印加するための電極。
<Electrophoresis analyzer>
Furthermore, the present invention relates to an electrophoretic analyzer comprising the following elements.
a) The surface of the base material on which the flow path is formed on the surface is bonded to the cover material, and the surface of the base material surface is covered with a polymer compound film. , Microchannel chip,
b) a support for holding the microchannel chip, and c) an electrode for applying a voltage to the microchannel chip held on the support.

該電気泳動分析装置で用いることのできるマイクロ流路チップは、本発明に係る前記マイクロ流路チップである。また、前記基材、前記カバー材、前記流路、前記高分子化合物膜は、前記マイクロチップの製造方法で示したものと同意義である。支持体は特に限定されず、マイクロ流路チップが安定に固定されるものであればよい。   The microchannel chip that can be used in the electrophoretic analyzer is the microchannel chip according to the present invention. The base material, the cover material, the flow path, and the polymer compound film are the same as those shown in the method for manufacturing the microchip. The support is not particularly limited as long as the microchannel chip is stably fixed.

以下実施例により本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。実施例において用いた装置等は下記の通りである。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The apparatus etc. which were used in the Example are as follows.

[プラズマ重合装置]
実施例において、プラズマ重合膜の重合方式として、RF電源、外部電極方式によるAfter glow方式を利用した。サムコ社製のプラズマ基礎研究装置BP-1をベースに種々のユニットを追加して、流量、圧力、およびパワーマッチングを自動で制御可能な装置を作製した。装置の構成を以下に示す。
[Plasma polymerization equipment]
In the examples, an after glow method using an RF power source and an external electrode method was used as a polymerization method of the plasma polymerization film. Various units were added based on the basic plasma research device BP-1 manufactured by Samco, and a device capable of automatically controlling the flow rate, pressure, and power matching was fabricated. The configuration of the apparatus is shown below.

反応器(チャンバー):パイレックス(登録商標)製210mmφ、
試料ステージ:チャンバー下部に、SUS304製、ヒーター加熱制御ステージ設置
排気系:ファイファー社製ターボ分子ポンプ+エドワーズ社製ロータリーポンプ
RF電源:サムコ社製13.56MHz、300W、水晶発振
マッチング:サムコ社製オートマッチング方式
圧力コントロール:MKS社製バラトロン真空計からの圧力をVAT社製オートマチックプレッシャーコントロール(APC)バルブユ ニットで自動制御
ガス導入系:試料モノマー、アルゴン、酸素ラインをSTEC社製電磁弁とマスフローコントロール(MFC)ユニットで自動制御
Reactor (chamber): Pyrex (registered trademark) 210 mmφ,
Sample stage: SUS304, heater heating control stage installed at the bottom of the chamber Exhaust system: Pfeiffer turbo molecular pump + Edwards rotary pump
RF power source: Samco 13.56MHz, 300W, crystal oscillation Matching: Samco auto matching method Pressure control: Automatic pressure control from MKS Baratron vacuum gauge with VAT automatic pressure control (APC) valve unit Gas Introduction system: Sample monomer, argon and oxygen lines are automatically controlled by STEC solenoid valves and mass flow control (MFC) units.

[電子顕微鏡]
電子プローブマイクロアナライザーJXA−8100(日本電子社製)
[electronic microscope]
Electronic probe microanalyzer JXA-8100 (manufactured by JEOL Ltd.)

[電子プローブマイクロアナライザ]
電子プローブマイクロアナライザーJXA−8100(日本電子社製)
[Electron probe microanalyzer]
Electronic probe microanalyzer JXA-8100 (manufactured by JEOL Ltd.)

〔実施例1〕
[マスクを用いてプラズマ重合膜が成膜されたチップの作製]
ポリメチルメタクリレート(PMMA)(クラレックス000(商品名)、日東樹脂社製、厚さ3mm×縦70mm×横70mm)基板に、幅200μmのステンレス製マスクを載せ、これらを、プラズマ重合装置のチャンバー内に入れた。チャンバー内の真空度を3×10-5Torrとした。ヘキサメチルジシロキサン(HMDS)をチャンバー内に満たし、放電電力(RFパワー)150W、圧力0.1Pa、流速100sccmとし、180秒放電を行い、プラズマ重合膜を成膜した。膜厚は100nmであった。
[Example 1]
[Fabrication of chip with plasma polymerized film using mask]
A stainless steel mask with a width of 200 μm is placed on a polymethyl methacrylate (PMMA) (Clarex 000 (trade name), manufactured by Nitto Resin Co., Ltd., thickness 3 mm × length 70 mm × width 70 mm), and these are placed in the chamber of the plasma polymerization apparatus. Put it inside. The degree of vacuum in the chamber was 3 × 10 −5 Torr. Hexamethyldisiloxane (HMDS) was filled into the chamber, the discharge power (RF power) was 150 W, the pressure was 0.1 Pa, the flow rate was 100 sccm, and discharge was performed for 180 seconds to form a plasma polymerized film. The film thickness was 100 nm.

図1に示すように、プラズマ重合膜が、200μmの幅で成膜されたことが、電子顕微鏡により確認できた。   As shown in FIG. 1, it was confirmed with an electron microscope that the plasma polymerization film was formed with a width of 200 μm.

図2に示すように、電子プローブマイクロアナライザにより、成膜部の元素マッピング組成分析を行ったところ、基材のPMMAには含まれず、HMDSに含まれるSiが、200μm幅で強く検出された。また基材のPMMAに比較してHMDSでは含有が少ないCの検出が小さくなっており、マスク幅で膜が形成されていることが確認された。   As shown in FIG. 2, when element mapping composition analysis of the film forming part was performed using an electron probe microanalyzer, Si contained in HMDS was strongly detected with a width of 200 μm, not included in PMMA of the base material. Further, detection of C, which is less contained in HMDS, is smaller than that of PMMA as a base material, and it was confirmed that a film was formed with a mask width.

〔実施例2〕
[マイクロ流路チップの製造]
成型チップ(ポリメチルメタクリレート:PMMA)とポリジメチルシロキサン:PDMSとの貼り付けによって電気泳動用チップを作製し、これを用いてタンパク質の分離を行った。
[Example 2]
[Manufacture of microchannel chip]
A chip for electrophoresis was prepared by attaching a molded chip (polymethyl methacrylate: PMMA) and polydimethylsiloxane: PDMS, and proteins were separated using this.

PMMA(厚さ8mm)を射出成型することによって、十字型のマイクロ流路を設けたプラズマ重合用チップ(基材)を作製した(小林精工社製、図3を参照)。マイクロ流路の深さと幅は、それぞれ100μm、リザーバーの径:4mm、導入チャネル:10mm、分離チャネル:50mmである。   PMMA (thickness 8 mm) was injection-molded to produce a plasma polymerization chip (base material) having a cross-shaped microchannel (see Kobayashi Seiko Co., Ltd., see FIG. 3). The depth and width of the microchannel are 100 μm, the diameter of the reservoir: 4 mm, the introduction channel: 10 mm, and the separation channel: 50 mm.

カバー材は、ポリジメチルシロキサン(PDMS)(商品名SYLGARD 184:信越シリコーン社製)をポリスチレンケース内で重合することにより作製した。重合は、モノマーと触媒を10:1で混合し、真空ポンプにて脱気後、ポリエチレンケースにキャストし、70℃で1時間反応させて蓋材であるPDMSを得た。   The cover material was produced by polymerizing polydimethylsiloxane (PDMS) (trade name SYLGARD 184: manufactured by Shin-Etsu Silicone) in a polystyrene case. In the polymerization, the monomer and the catalyst were mixed at a ratio of 10: 1, deaerated with a vacuum pump, cast into a polyethylene case, and reacted at 70 ° C. for 1 hour to obtain PDMS as a lid material.

プラズマ重合用チップのマイクロ流路内へ成膜するため、3種類の金属マスク(幅150、200、1000μm)(ステンレス製:健正堂社製)を使用した。
基材とカバー材の両方に、3種類の金属マスク(幅150、200、1000μm)を施し、重合用モノマーを用い、各プラズマ重合膜が100nm程度の膜厚になるようプラズマ重合を行った。重合用モノマーとして、HMDS、ヘキシルアミン、アセト二トリルを用いた。
Three types of metal masks (width 150, 200, 1000 μm) (stainless steel: manufactured by Kensho-do Co., Ltd.) were used to form a film in the microchannel of the plasma polymerization chip.
Three types of metal masks (widths 150, 200, and 1000 μm) were applied to both the base material and the cover material, and plasma polymerization was performed using a polymerization monomer so that each plasma polymerization film had a thickness of about 100 nm. As polymerization monomers, HMDS, hexylamine, and acetonitrile were used.

各モノマーのプラズマ重合の条件は下記の通りである。
HMDS
・ RFパワー:150W
・ MF:100sccm(HMDSに対する値、アセトニトリル用マスフローメーターの値は22.0sccm)
・ 時間:180秒
The conditions for plasma polymerization of each monomer are as follows.
HMDS
・ RF power: 150W
・ MF: 100 sccm (value for HMDS, the value of the mass flow meter for acetonitrile is 22.0 sccm)
・ Time: 180 seconds

ヘキシルアミン
・ RFパワー:200W
・ MF:4.0sccm(アセトニトリル用マスフローメーターの値)
・ 時間:900秒
Hexylamine RF power: 200W
・ MF: 4.0sccm (value of mass flow meter for acetonitrile)
・ Time: 900 seconds

アセト二トリル
・ RFパワー:200W
・ MF:10.0sccm(アセトニトリル用マスフローメーターの値)
・ 時間:180秒
Acetonitrile / RF power: 200W
・ MF: 10.0sccm (value of mass flow meter for acetonitrile)
・ Time: 180 seconds

成膜後、金属マスクをはがし、基材とカバー材のアライメントを取りながら貼り付け、電気泳動用チップを作製した。
作製したマイクロ流路チップのマイクロ流路内に、泳動バッファー(0.6%セルロースを含む0.1Mリン酸緩衝液(pH8.5))を流したところ、全てのプラズマ重合膜、および幅150、200、1000μmの全てにおいてチャネル外への泳動バッファーの漏出がなく、基材とカバー材の貼り付けは十分であることが確認できた。
After the film formation, the metal mask was peeled off, and the substrate was attached while aligning the base material and the cover material to produce an electrophoresis chip.
When a migration buffer (0.1 M phosphate buffer (pH 8.5) containing 0.6% cellulose) was flowed into the microchannel of the manufactured microchannel chip, all plasma polymerized membranes and widths of 150, 200, In all of 1000 μm, there was no leakage of the electrophoresis buffer outside the channel, and it was confirmed that the base material and the cover material were sufficiently attached.

〔実施例3〕
[マイクロ流路チップを用いる電気泳動によるタンパク質の分離]
実施例2で、HMDS、幅1000μmの金属マスクを使用して調製したマイクロ流路チップを用い、タンパク質としてカルボニックアンヒドラーゼを用いて分離実験を行った。比較対象用に、被膜していないチップを用いた。
カルボニックアンヒドラーゼ1mgを下記の蛍光試薬(Cy5)によって染色し、これを用いた。
Example 3
[Separation of proteins by electrophoresis using microchannel chip]
In Example 2, a separation experiment was performed using carbonic anhydrase as a protein using a microchannel chip prepared using a metal mask having a width of 1000 μm and HMDS. For comparison, an uncoated chip was used.
1 mg of carbonic anhydrase was stained with the following fluorescent reagent (Cy5) and used.

蛍光試薬による染色方法
(Cy5によるタンパク質の染色方法)
蛍光色素であるCy5はタンパク質染色用としてキット化されており、安定で量子効率の良い蛍光試薬である。このため、Cy5を蛍光色素としてタンパク質を染色し、これを使用した。染色方法を以下に示す。カルボニックアンヒドラーゼ1mg(タンパク質重量)(等電点pI=7.3、分子量30kDa(Sigma社製))とアマシャムCy5染色キット1パックを0.1M炭酸緩衝液(pH9.2)1mL中に溶解し、室温、1時間攪拌下で反応させた。反応後、未反応Cy5を除去するため、マイクロコンYM3(ミリポア社製、分画分子量3000)中に500μL入れ、14000Gで100分間遠心し(限外ろ過)、その後、同じ炭酸緩衝液を400μL加えて遠心を行った。これを4回繰り返し精製した。最終液量を1mLとし、Cy5染色タンパク質を調製した。
Staining method with fluorescent reagent (Protein staining method with Cy5)
Cy5, a fluorescent dye, is kited for protein staining and is a stable and highly efficient fluorescent reagent. For this reason, proteins were stained using Cy5 as a fluorescent dye and used. The staining method is shown below. Dissolve 1 mg of carbonic anhydrase (protein weight) (isoelectric point pI = 7.3, molecular weight 30 kDa (manufactured by Sigma)) and 1 pack of Amersham Cy5 staining kit in 1 mL of 0.1 M carbonate buffer (pH 9.2). And allowed to react at room temperature for 1 hour with stirring. After the reaction, to remove unreacted Cy5, put 500 μL in Microcon YM3 (Millipore, molecular weight cut off 3000), centrifuge at 14000G for 100 minutes (ultrafiltration), and then add 400 μL of the same carbonate buffer. And centrifuged. This was repeated 4 times and purified. The final solution volume was 1 mL, and Cy5 stained protein was prepared.

泳動バッファーのチップへの導入方法
図3に示すように、チップのリザーバー3に泳動バッファーを17μL入れ、シリンジで圧を加えることによってチャネル内を泳動バッファーで満たした(気泡が入らないように注意して行った)。
3. Method of introducing electrophoresis buffer into chip As shown in Fig. 3, 17 μL of electrophoresis buffer is placed in reservoir 3 of the chip, and the inside of the channel is filled with electrophoresis buffer by applying pressure with a syringe (be careful not to introduce air bubbles). )

それぞれのリザーバーまでのチャネル内を泳動バッファーで満たした後、泳動バッファーをリザーバー1、2には17μL、リザーバー4には15.5μL、それぞれ添加した。リザーバー4にサンプルを1.5μL添加し、ピペッティングしてよく攪拌した。   After filling the channel up to each reservoir with the running buffer, 17 μL of running buffer was added to reservoirs 1 and 2 and 15.5 μL was added to reservoir 4 respectively. 1.5 μL of the sample was added to the reservoir 4, and pipetting was performed and well agitated.

各リザーバーに白金線で作った電極を入れ、ハイボルテージ・シーケンサーで電圧を制御しながら電気泳動を実施した。電気泳動の検出は、リザーバー4に入る直前の流路で行った。導入時の電圧、分離時の電圧、導入時間、分離時間は、以下の通りである。電圧の加え方は図3の通りである。
導入電圧 600V
導入時間 60秒
分離電圧 V1 130V
V2 750V
分離時間 1200秒
Electrodes made of platinum wire were placed in each reservoir, and electrophoresis was performed while controlling the voltage with a high voltage sequencer. Electrophoresis was detected in the flow channel immediately before entering the reservoir 4. The voltage at the time of introduction, the voltage at the time of separation, the introduction time, and the separation time are as follows. The method of applying the voltage is as shown in FIG.
Introduction voltage 600V
Introduction time 60 seconds Separation voltage V1 130V
V2 750V
Separation time 1200 seconds

結果
図4にサンプルとしてカルボニックアンヒドラーゼを用いたときの電気泳動結果を示す。最初に検出されたピークは、未反応Cy5によるものと考えられる(成膜なし:約160秒、HMDS成膜:約180秒)。続いて検出された複数のピークがカルボニックアンヒドラーゼによるものであると考えられるが、成膜なしチップで検出されたピーク群(約170〜1200秒)とHMDS成膜チップで検出されたピーク群(約190〜460秒)ではCy5のピークを基準にしてみた場合、ほぼ同じ時間に検出された(約10秒後)。分離能は、HMDS成膜チップの方が速く多数のピークが検出されたことから良好であると判断される。ここでの分離能とは、電気泳動パターンの相違とピークの数(多いほど分離能が高いと解釈される)を示している。Cy5によるピークを基準として検出されたタンパク質のピークを考察した。
Results FIG. 4 shows the results of electrophoresis when carbonic anhydrase was used as a sample. The first peak detected is thought to be due to unreacted Cy5 (no film formation: about 160 seconds, HMDS film formation: about 180 seconds). Subsequent peaks detected by carbonic anhydrase are considered to be due to carbonic anhydrase, but peaks detected with the non-deposition chip (approximately 170 to 1200 seconds) and peaks detected with the HMDS deposition chip In the case of (about 190 to 460 seconds), when the Cy5 peak was used as a reference, it was detected at about the same time (after about 10 seconds). The resolving power is judged to be good because the HMDS film-forming chip is faster and many peaks are detected. Here, the resolution indicates the difference in electrophoresis pattern and the number of peaks (the greater the number, the higher the resolution is interpreted). The peak of the protein detected on the basis of the peak by Cy5 was considered.

図1は、プラズマ重合膜が、200μmの幅で成膜されたことを示す電子顕微鏡写真の例である。電子顕微鏡の加速電圧5.00kV、写真倍率100倍である。FIG. 1 is an example of an electron micrograph showing that a plasma polymerization film is formed with a width of 200 μm. The electron microscope has an acceleration voltage of 5.00 kV and a photographic magnification of 100 times. 図2は、電子プローブマイクロアナライザによる成膜部の元素マッピング分析組成を示す図である。FIG. 2 is a diagram showing an element mapping analysis composition of a film forming portion by an electronic probe microanalyzer. 図3は、チップへの試料導入時、分離時における電圧の加え方を示す模式図である。FIG. 3 is a schematic diagram showing how to apply a voltage at the time of sample introduction to the chip and at the time of separation. 図4は、プラズマ重合膜を有するチップと、成膜なしのチップとで、Cy5染色したカルボニックアンヒドラーゼを電気泳動した結果を示す例である。図4中、Aはプラズマ重合膜(HMDS)を有するチップの場合を示し、Bは成膜なしのチップの場合を示す。FIG. 4 is an example showing the result of electrophoresis of carbonic anhydrase stained with Cy5 with a chip having a plasma polymerized film and a chip without film formation. In FIG. 4, A shows the case of a chip having a plasma polymerized film (HMDS), and B shows the case of a chip without film formation.

Claims (23)

表面に溝状の流路が形成された基材の表面を、該流路が露出するマスクで遮蔽し、露出した基材表面に、高分子化合物膜を形成する工程、および
前記基材の流路が形成されている側の表面に、カバー材を貼り合わせる工程
を含む、マイクロ流路チップの製造方法。
A step of shielding the surface of the base material having a groove-shaped flow path formed on the surface with a mask exposing the flow path, and forming a polymer compound film on the exposed base material surface; A method for manufacturing a microchannel chip, comprising a step of bonding a cover material to a surface on which a path is formed.
前記基材を貼り合わせる側のカバー材表面に、高分子化合物膜を形成する工程を含む、請求項1に記載の方法。 The method of Claim 1 including the process of forming a polymer compound film | membrane on the cover material surface of the side which bonds the said base material together. 前記基材を貼り合わせる側のカバー材表面に、高分子化合物膜を形成するに際し、
前記カバー材の表面を、前記基材のマスクの露出部分の一部又は全部と露出部分が同一形状のマスクで遮蔽し、露出したカバー材表面に、高分子化合物膜を形成する、請求項2に記載のマイクロ流路チップの製造方法。
When forming a polymer compound film on the cover material surface on the side where the substrate is bonded,
The surface of the cover material is shielded with a mask in which part or all of the exposed portion of the mask of the base material and the exposed portion have the same shape, and a polymer compound film is formed on the exposed cover material surface. The manufacturing method of the microchannel chip | tip of description.
前記基材表面の高分子化合物膜が、
(a) 基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜、
(b) 基材表面で重合性モノマーを重合して形成する表面重合膜、または
(c) 基材表面に高分子化合物を結合して形成する高分子結合膜
である、請求項1〜3のいずれかに記載の方法。
The polymer compound film on the substrate surface is
(A) a plasma polymerized film formed by plasma polymerizing a plasma polymerizable monomer on the substrate surface;
(B) A surface polymerized film formed by polymerizing a polymerizable monomer on the surface of the substrate, or (c) a polymer-bonded film formed by bonding a polymer compound to the substrate surface. The method according to any one.
前記基材表面の高分子化合物膜が、プラズマ重合膜である、請求項1〜4のいずれかに記載の方法。 The method according to claim 1, wherein the polymer compound film on the substrate surface is a plasma polymerization film. 前記カバー材表面の高分子化合物膜が、
(a)基材表面でプラズマ重合性モノマーをプラズマ重合して形成するプラズマ重合膜、
(b)基材表面で重合性モノマーを重合して形成する表面重合膜、または
(c)基材表面に高分子化合物を結合して形成する高分子結合膜
である、請求項2〜5のいずれかに記載の方法。
The polymer compound film on the surface of the cover material is
(A) a plasma polymerized film formed by plasma polymerizing a plasma polymerizable monomer on the substrate surface;
(B) a surface polymerized film formed by polymerizing a polymerizable monomer on the substrate surface, or (c) a polymer-bonded film formed by bonding a polymer compound to the substrate surface. The method according to any one.
前記カバー材表面の高分子化合物膜が、プラズマ重合膜である、請求項2〜6のいずれかに記載の方法。 The method according to claim 2, wherein the polymer compound film on the surface of the cover material is a plasma polymerization film. 前記基材の表面に形成する高分子化合物膜と、前記カバー材の表面に形成する高分子化合物膜とが、同一の高分子化合物膜である、請求項2〜7のいずれかに記載の方法。 The method according to claim 2, wherein the polymer compound film formed on the surface of the substrate and the polymer compound film formed on the surface of the cover material are the same polymer compound film. . 前記貼り合わせを、圧着または熱圧着により行う、請求項1〜8のいずれかに記載の方法。 The method according to claim 1, wherein the bonding is performed by pressure bonding or thermocompression bonding. 前記基材および前記カバー材の少なくとも一方が、プラスチックである請求項1〜9のいずれかに記載の方法。 The method according to claim 1, wherein at least one of the base material and the cover material is plastic. 前記基材およびカバー材が、プラスチックである、請求項1〜10のいずれかに記載の方法。 The method according to claim 1, wherein the base material and the cover material are plastic. 前記基材およびカバー材のいずれもが、熱可塑性樹脂であり、
前記貼り合わせる工程が、基材とカバー材とを、熱圧着により貼り付ける方法である、請求項11に記載の方法。
Both the base material and the cover material are thermoplastic resins,
The method according to claim 11, wherein the bonding step is a method of bonding the base material and the cover material by thermocompression bonding.
前記熱圧着を200℃以下の温度で行う、請求項12に記載の方法。 The method according to claim 12, wherein the thermocompression bonding is performed at a temperature of 200 ° C. or lower. 前記基材およびカバー材のいずれか一方がケイ素樹脂であり、残りの一方がガラスまたはプラスチックであり、
前記貼り合わせる工程が、基材とカバー材とを、圧着により貼り付ける方法である、請求項10に記載の方法。
Either one of the base material and the cover material is silicon resin, and the other one is glass or plastic,
The method according to claim 10, wherein the bonding step is a method of bonding the base material and the cover material by pressure bonding.
前記マスクが、フォトレジストマスクまたは金属マスクである、請求項1〜14のいずれかに記載の方法。 The method according to claim 1, wherein the mask is a photoresist mask or a metal mask. 表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の一部又は全部の表面に高分子化合物膜が被覆されている、マイクロ流路チップ。 The surface of the base material on which the flow channel is formed is bonded to the surface of the flow channel and the cover material, and a part or all of the flow channel of the base material surface is covered with a polymer compound film. A micro-channel chip that has been. 前記カバー材の基材側の表面に、高分子化合物膜が被覆されている、請求項16に記載のマイクロ流路チップ。 The microchannel chip according to claim 16, wherein the surface of the cover material on the base material side is coated with a polymer compound film. 前記カバー材の基材側の表面の、基材の高分子化合物膜が形成されている領域と対向する領域に、前記基材の高分子化合物膜が形成されている部分の一部又は全部と同一形状の高分子化合物膜が被覆されている、請求項17に記載のマイクロ流路チップ。 A part or all of the portion where the polymer compound film of the substrate is formed in a region facing the region where the polymer compound film of the substrate is formed on the substrate side surface of the cover material The microchannel chip according to claim 17, which is coated with a polymer compound film having the same shape. 次の工程を含む生体分子の分離方法:
a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップに、分析すべき生体分子を加える工程、および
b)分離媒体に分離圧を加える工程。
Biomolecule separation method comprising the following steps:
a) The surface of the base material on which the flow path is formed on the surface is bonded to the cover material, and the surface of the base material surface is covered with a polymer compound film. Adding a biomolecule to be analyzed to the microchannel chip, and b) applying a separation pressure to the separation medium.
前記分離圧が電気泳動によるものである、請求項19に記載の方法。 The method according to claim 19, wherein the separation pressure is by electrophoresis. 前記電気泳動が、キャピラリー電気泳動である、請求項20に記載の方法。 21. The method of claim 20, wherein the electrophoresis is capillary electrophoresis. 前記生体分子が、蛋白質である、請求項19〜21のいずれかに記載の方法。 The method according to any one of claims 19 to 21, wherein the biomolecule is a protein. 次の要素で構成される電気泳動分析装置:
a)表面に流路が形成された基材の該流路側の表面と、カバー材とが貼り合わされてなり、前記基材表面のうち、流路の表面に高分子化合物膜が被覆されている、マイクロ流路チップ、
b)該マイクロ流路チップを保持するための支持体、および
c)支持体に保持されたマイクロ流路チップに電圧を印加するための電極。
Electrophoresis analyzer with the following elements:
a) The surface of the base material on which the flow path is formed on the surface is bonded to the cover material, and the surface of the base material surface is covered with a polymer compound film. , Microchannel chip,
b) a support for holding the microchannel chip, and c) an electrode for applying a voltage to the microchannel chip held on the support.
JP2004060215A 2004-03-04 2004-03-04 Microchannel chip manufacturing method, microchannel chip, biomolecule separation method using the microchannel chip, and electrophoresis apparatus having the microchannel chip Expired - Lifetime JP4450368B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004060215A JP4450368B2 (en) 2004-03-04 2004-03-04 Microchannel chip manufacturing method, microchannel chip, biomolecule separation method using the microchannel chip, and electrophoresis apparatus having the microchannel chip
PCT/JP2005/003604 WO2005084794A1 (en) 2004-03-04 2005-03-03 Micro flow channel chip producing method, micro flow channel chip, method of separating biomolecules using such micro flow channel chip, and electrophoresis device having such micro flow channel chip
GB0619521A GB2429428C (en) 2004-03-04 2005-03-03 Methods for producing microchannel chips, microchannel chips, methods for separating biomolecules using the microchannel chips and electrophoretic apparatus hav.
US10/591,335 US8012430B2 (en) 2004-03-04 2005-03-03 Methods for producing microchannel chips, microchannel chips, methods for separating biomolecules using the microchannel chips, and electrophoretic apparatus having the microchannel chips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004060215A JP4450368B2 (en) 2004-03-04 2004-03-04 Microchannel chip manufacturing method, microchannel chip, biomolecule separation method using the microchannel chip, and electrophoresis apparatus having the microchannel chip

Publications (3)

Publication Number Publication Date
JP2005249572A true JP2005249572A (en) 2005-09-15
JP2005249572A5 JP2005249572A5 (en) 2009-08-06
JP4450368B2 JP4450368B2 (en) 2010-04-14

Family

ID=34918008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060215A Expired - Lifetime JP4450368B2 (en) 2004-03-04 2004-03-04 Microchannel chip manufacturing method, microchannel chip, biomolecule separation method using the microchannel chip, and electrophoresis apparatus having the microchannel chip

Country Status (4)

Country Link
US (1) US8012430B2 (en)
JP (1) JP4450368B2 (en)
GB (1) GB2429428C (en)
WO (1) WO2005084794A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199931A (en) * 2004-12-20 2006-08-03 Tohoku Ricoh Co Ltd Diketone polymer and method for producing the same
JP2007309741A (en) * 2006-05-17 2007-11-29 Olympus Corp Blood separation method and blood separator
WO2008041718A1 (en) * 2006-10-04 2008-04-10 National University Corporation Hokkaido University Microchip, and microchip electrophoresis device
JP2009118773A (en) * 2007-11-14 2009-06-04 Sumitomo Bakelite Co Ltd Method for analyzing nucleic acid
JP2010512242A (en) * 2006-12-14 2010-04-22 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus for inhaling or manipulating liquids
JP4814944B2 (en) * 2006-09-04 2011-11-16 独立行政法人産業技術総合研究所 Sample analysis method by capillary electrophoresis
US8137512B2 (en) 2006-09-04 2012-03-20 National Institute Of Advanced Industrial Science And Technology Process for analyzing sample by capillary electrophoresis method
JP2013544362A (en) * 2010-11-23 2013-12-12 ザ リージェンツ オブ ユニバーシティ オブ カリフォルニア Multi-directional microfluidic device with pan-trapping binding region and method of use
JP2014173178A (en) * 2013-03-12 2014-09-22 Stanley Electric Co Ltd Production method of metal coating member, and vehicular lamp including metal coating member
EP2910306A1 (en) 2014-02-14 2015-08-26 ARKRAY, Inc. Method for manufacturing chip comprising microchannel and chip manufactured by the method
CN108021041A (en) * 2016-11-02 2018-05-11 中国科学院大连化学物理研究所 A kind of digital microfluidic chip liquid drop driving control system and its control method
JP2019051515A (en) * 2014-12-15 2019-04-04 プレクセンス・インコーポレイテッド Surface plasmon detection apparatus and method
JP2020066161A (en) * 2018-10-24 2020-04-30 日本ゼオン株式会社 Manufacturing method of conjugate
CN111151313A (en) * 2019-12-26 2020-05-15 重庆创芯生物科技有限公司 Material for preparing hydrophilic microfluidic chip and microfluidic chip

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984648B2 (en) * 2006-05-26 2012-07-25 富士通株式会社 Detection element, manufacturing method thereof, and target detection apparatus
CN101095697A (en) * 2006-06-28 2008-01-02 李振国 Extractive of bdella and/or lumbricus with the molecular weight below 5800 dalton
US20100155242A1 (en) * 2006-09-04 2010-06-24 Arkray, Inc. Method of Analyzing a Sample by Capillary Electrophoresis
JP2009186445A (en) * 2008-02-08 2009-08-20 Arkray Inc Method of analyzing hemoglobin by capillary electrophoresis, and reagent used for it
US20120182548A1 (en) * 2009-07-23 2012-07-19 Insight Nanofluidics Inc Nanofluidic cell
JP5640557B2 (en) * 2010-08-24 2014-12-17 株式会社島津製作所 Cleaning method and cleaning liquid for microfluidic device
EP2761304A4 (en) 2011-09-30 2015-01-28 Univ California Microfluidic devices and methods for assaying a fluid sample using the same
US9303239B2 (en) 2013-02-27 2016-04-05 Shimadzu Corporation Method for cleaning microfluidic device and cleaning liquid
KR102115548B1 (en) 2013-12-16 2020-05-26 삼성전자주식회사 Organic material-cleaning composition and method of forming a semiconductor device using the composition
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
GB201815405D0 (en) * 2018-09-21 2018-11-07 Fujifilm Mfg Europe Bv Membranes suitable for detecting, filtering and/or purifying biomolecules
JP7166889B2 (en) * 2018-11-20 2022-11-08 ダイキン工業株式会社 Method for producing 1,2-difluoroethylene
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding
CN113522379B (en) * 2020-04-20 2023-04-07 中国科学院化学研究所 Micro-wall array and preparation method and application thereof, micro-channel and preparation method thereof, micro-channel reactor and application thereof
CA3194915A1 (en) * 2021-05-11 2022-11-17 Euidon HAN Lipid nanoparticles manufacturing chip, lipid nanoparticles manufacturing system having the same, and lipid nanoparticles manufacturing method
DE112022002939A5 (en) * 2021-06-08 2024-04-25 Werner Döbelin CAPILLARY ELECTROPHORESIS APPARATUS

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015350A (en) 1989-11-06 1991-05-14 Applied Biosystems, Inc. Flow-rate-controlled surface-charge coating for capillary electrophoresis
US5264101A (en) 1989-11-06 1993-11-23 Applied Biosystems, Inc. Capillary electrophoresis molecular weight separation of biomolecules using a polymer-containing solution
WO1995016910A1 (en) 1993-12-17 1995-06-22 Perkin-Elmer Corporation Uncharged polymers for separation of biomolecules by capillary electrophoresis
US5989402A (en) * 1997-08-29 1999-11-23 Caliper Technologies Corp. Controller/detector interfaces for microfluidic systems
JP4074713B2 (en) 1998-07-29 2008-04-09 財団法人川村理化学研究所 Liquid feeding device and manufacturing method thereof
US6326083B1 (en) * 1999-03-08 2001-12-04 Calipher Technologies Corp. Surface coating for microfluidic devices that incorporate a biopolymer resistant moiety
AU7698500A (en) * 1999-10-14 2001-04-23 Ce Resources Pte Ltd Microfluidic structures and methods of fabrication
JP2001252896A (en) * 2000-03-06 2001-09-18 Hitachi Ltd Micro-flow passage, and micro-pump using the same
JP2002148236A (en) 2000-11-08 2002-05-22 Hitachi Ltd Electrophoretic apparatus
US6418968B1 (en) * 2001-04-20 2002-07-16 Nanostream, Inc. Porous microfluidic valves
JP2003107080A (en) 2001-09-30 2003-04-09 Jun Kikuchi Blood analyzer and method therefor
JP2003121453A (en) 2001-10-09 2003-04-23 Ryokusei Mes Kk Manufacturing system for deoxyribonucleic acid examination microplate
US7220345B2 (en) * 2001-10-18 2007-05-22 The Board Of Trustees Of The University Of Illinois Hybrid microfluidic and nanofluidic system
US7005050B2 (en) * 2001-10-24 2006-02-28 The Regents Of The University Of Michigan Electrophoresis in microfabricated devices using photopolymerized polyacrylamide gels and electrode-defined sample injection
JP2003220330A (en) 2002-01-31 2003-08-05 Asahi Kasei Corp Transparent polymer chip
JP3885674B2 (en) 2002-06-28 2007-02-21 株式会社島津製作所 Electrophoresis chip and manufacturing method thereof
WO2004008132A1 (en) 2002-07-11 2004-01-22 Mitsubishi Denki Kabushiki Kaisha Bio-molecule separation cell, manufacturing method thereof, and dna fragmentation apparatus
JP2004061319A (en) 2002-07-29 2004-02-26 Kawamura Inst Of Chem Res Micro fluid device and its using method
US7010964B2 (en) * 2002-10-31 2006-03-14 Nanostream, Inc. Pressurized microfluidic devices with optical detection regions

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199931A (en) * 2004-12-20 2006-08-03 Tohoku Ricoh Co Ltd Diketone polymer and method for producing the same
JP2007309741A (en) * 2006-05-17 2007-11-29 Olympus Corp Blood separation method and blood separator
US9121821B2 (en) 2006-09-04 2015-09-01 National Institute Of Advanced Industrial Science And Technology Process for analyzing sample by capillary electrophoresis method
JP4814944B2 (en) * 2006-09-04 2011-11-16 独立行政法人産業技術総合研究所 Sample analysis method by capillary electrophoresis
US8137512B2 (en) 2006-09-04 2012-03-20 National Institute Of Advanced Industrial Science And Technology Process for analyzing sample by capillary electrophoresis method
WO2008041718A1 (en) * 2006-10-04 2008-04-10 National University Corporation Hokkaido University Microchip, and microchip electrophoresis device
JP4862115B2 (en) * 2006-10-04 2012-01-25 国立大学法人北海道大学 Microchip and microchip electrophoresis apparatus
JP2010512242A (en) * 2006-12-14 2010-04-22 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus for inhaling or manipulating liquids
JP2009118773A (en) * 2007-11-14 2009-06-04 Sumitomo Bakelite Co Ltd Method for analyzing nucleic acid
JP2013544362A (en) * 2010-11-23 2013-12-12 ザ リージェンツ オブ ユニバーシティ オブ カリフォルニア Multi-directional microfluidic device with pan-trapping binding region and method of use
JP2014173178A (en) * 2013-03-12 2014-09-22 Stanley Electric Co Ltd Production method of metal coating member, and vehicular lamp including metal coating member
EP2910306A1 (en) 2014-02-14 2015-08-26 ARKRAY, Inc. Method for manufacturing chip comprising microchannel and chip manufactured by the method
JP2015166127A (en) * 2014-02-14 2015-09-24 アークレイ株式会社 Method for manufacturing chip having micro flow passage, and chip manufactured thereby
EP3260202A1 (en) 2014-02-14 2017-12-27 ARKRAY, Inc. Chip comprising microchannel
US9989494B2 (en) 2014-02-14 2018-06-05 Arkray, Inc. Method for manufacturing chip comprising microchannel and chip
JP2019051515A (en) * 2014-12-15 2019-04-04 プレクセンス・インコーポレイテッド Surface plasmon detection apparatus and method
CN108021041A (en) * 2016-11-02 2018-05-11 中国科学院大连化学物理研究所 A kind of digital microfluidic chip liquid drop driving control system and its control method
JP2020066161A (en) * 2018-10-24 2020-04-30 日本ゼオン株式会社 Manufacturing method of conjugate
JP7230426B2 (en) 2018-10-24 2023-03-01 日本ゼオン株式会社 Method for manufacturing conjugate
CN111151313A (en) * 2019-12-26 2020-05-15 重庆创芯生物科技有限公司 Material for preparing hydrophilic microfluidic chip and microfluidic chip

Also Published As

Publication number Publication date
GB2429428A9 (en) 2007-06-08
GB2429428B8 (en) 2009-04-08
JP4450368B2 (en) 2010-04-14
GB2429428A (en) 2007-02-28
GB2429428B (en) 2008-04-16
WO2005084794A1 (en) 2005-09-15
US20100101953A1 (en) 2010-04-29
GB2429428C (en) 2009-04-08
US8012430B2 (en) 2011-09-06
GB0619521D0 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP4450368B2 (en) Microchannel chip manufacturing method, microchannel chip, biomolecule separation method using the microchannel chip, and electrophoresis apparatus having the microchannel chip
JP6279654B2 (en) Polymer compound substrate having glass-like surface, and chip made of said polymer compound substrate
US8945478B2 (en) Microfabricated devices with coated or modified surface and method of making same
Zhou et al. Recent developments in PDMS surface modification for microfluidic devices
Hu et al. Surface modification of poly (dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting
Vickers et al. Generation of hydrophilic poly (dimethylsiloxane) for high-performance microchip electrophoresis
Dolník Wall coating for capillary electrophoresis on microchips
JP5162074B2 (en) Polymer surface modification
Bodas et al. Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma
US6749813B1 (en) Fluid handling devices with diamond-like films
Wu et al. A facile method for permanent and functional surface modification of poly (dimethylsiloxane)
Long et al. Water-vapor plasma-based surface activation for trichlorosilane modification of PMMA
Tsougeni et al. Plasma nanotextured PMMA surfaces for protein arrays: increased protein binding and enhanced detection sensitivity
JP2005249572A5 (en)
Wang et al. Aging effects on oxidized and amine-modified poly (dimethylsiloxane) surfaces studied with chemical force titrations: effects on electroosmotic flow rate in microfluidic channels
FR2668473A1 (en) METHOD FOR COATING A SOLID SURFACE CARRYING EXPOSED SILANOL GROUPS TO REDUCE THE PRESENCE OF THEIR ELECTROSTATIC CHARGES, AND APPLICATION TO PROTEIN SEPARATION
JP4480081B2 (en) Substance separation method
WO2001033227A1 (en) Method for immobilizing material
Liu et al. Adsorption-resistant acrylic copolymer for prototyping of microfluidic devices for proteins and peptides
Wang et al. Bulk modification of polymeric microfluidic devices
Pan et al. In‐channel atom‐transfer radical polymerization of thermoset polyester microfluidic devices for bioanalytical applications
JP4411421B2 (en) Microstructure manufacturing method
Fernández‐Abedul et al. Improving the separation in microchip electrophoresis by surface modification
Eichler et al. Surface functionalization of microfluidic devices
Bryuzgin et al. Control of surface wetting via production of graft polymer chains with adaptive behavior

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

R150 Certificate of patent or registration of utility model

Ref document number: 4450368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250