JP2002148236A - Electrophoretic apparatus - Google Patents

Electrophoretic apparatus

Info

Publication number
JP2002148236A
JP2002148236A JP2000345469A JP2000345469A JP2002148236A JP 2002148236 A JP2002148236 A JP 2002148236A JP 2000345469 A JP2000345469 A JP 2000345469A JP 2000345469 A JP2000345469 A JP 2000345469A JP 2002148236 A JP2002148236 A JP 2002148236A
Authority
JP
Japan
Prior art keywords
sample
channel
analysis
flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000345469A
Other languages
Japanese (ja)
Inventor
Hironobu Yamakawa
寛展 山川
Yoshihiro Nagaoka
嘉浩 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000345469A priority Critical patent/JP2002148236A/en
Publication of JP2002148236A publication Critical patent/JP2002148236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrophoretic apparatus whose detection accuracy is enhanced by a method wherein the flow direction of an electroosmotic flow in a part of an analytical flow channel on the side opposite to a detector is reversed regarding a flow-channel crossing part. SOLUTION: The flow direction of the electroosmotic flow in an analytical supply flow channel 31 as a part of the analytical flow channel 3 is reversed. Thereby, the width of a sample region inside the flow channel 3 is narrowed, and the flow into the flow channel 3 of a sample as an object, to be analyzed, to become a detection noise is prevented. Since the width is made narrow at a point of time when the sample is introduced to the flow channel 3, a region in which adjacent sample zones are overlapped is reduced, the noise is reduced, and the detection accuracy of the electrophoretic apparatus is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は生体中の蛋白質,ペ
プチド,アミノ酸,神経伝達物質,ホルモン,核酸等
や、環境,食品,薬品等に含まれる極微量物質の分析に
用いられる電気泳動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophoresis apparatus used for analyzing proteins, peptides, amino acids, neurotransmitters, hormones, nucleic acids and the like in living organisms and trace substances contained in environment, food, medicine and the like. .

【0002】[0002]

【従来の技術】近年、一対の透明基板からなり、一方の
基板の表面に互いに交差する試料流路、分析流路を形成
し、他方の基板には試料流路及び分析流路の端に対応す
る位置にリザーバを貫通穴として設けた電気泳動装置の
開発が盛んである。各リザーバに差し込んだ電極に高電
圧を印加して、流路交差部分に存在する試料を分析流路
で電気泳動する。多成分から構成されている混合溶液で
あるサンプルでは、成分毎の電気泳動の速度が異なるの
で、分析流路で各々分離する。この技術は一般に電気泳
動チップと呼ばれ、分析対象を非常に微量とすることが
可能となっている。
2. Description of the Related Art In recent years, a sample flow path and an analysis flow path which are composed of a pair of transparent substrates and cross each other are formed on the surface of one substrate, and the other substrate corresponds to the ends of the sample flow path and the analysis flow path. An electrophoresis apparatus having a reservoir as a through hole at a position where the electrophoresis is performed has been actively developed. A high voltage is applied to the electrodes inserted into each reservoir, and the sample existing at the intersection of the flow paths is electrophoresed in the analysis flow path. In a sample that is a mixed solution composed of multiple components, the speed of electrophoresis is different for each component, and therefore, each sample is separated in the analysis channel. This technique is generally called an electrophoresis chip, and enables a very small amount of an object to be analyzed.

【0003】このような従来の電気泳動装置として、特
開平11−326274号公報に記載のものがある。この装置で
は、分析流路との交差部にシースフローを形成するため
のシース形成形成用流路を備え、試料導入時には、試料
流路と分析流路との交差部にシースフローを形成して試
料を均一な厚みをもつ薄い層として分析流路に導入する
ようにしている。
[0003] Such a conventional electrophoresis apparatus is disclosed in Japanese Patent Application Laid-Open No. H11-326274. In this apparatus, a sheath formation forming channel for forming a sheath flow at an intersection with the analysis channel is provided. At the time of sample introduction, a sheath flow is formed at the intersection of the sample channel and the analysis channel. The sample is introduced into the analysis channel as a thin layer having a uniform thickness.

【0004】また、特開平10−10088 号公報に記載のも
のがある。この装置では、電気浸透流ポンプを結合して
電気浸透流の流れと逆方向に緩衝液を流すことによって
実効的に流路長さを長くしている。
[0004] Further, there is one described in Japanese Patent Application Laid-Open No. 10-10088. In this apparatus, an electroosmotic flow pump is connected to flow a buffer in a direction opposite to the flow of the electroosmotic flow, thereby effectively increasing the flow path length.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電気泳
動チップにおいては、分析開始前に流路交差部におい
て、サンプルがサンプル導入用流路から分析用流路に導
入される時に、分子拡散や電界などの影響によって流路
交差部から分析用流路へ広がりながら導入される。特開
平11−326274号公報に記載のものは、サンプルをサンプ
ル導入用流路に電圧を印加して流路交差部に導入する時
に分析用流路に広がる影響は制御するが、電圧印加をサ
ンプル導入用流路両端から分析用流路両端に切り替える
ときに流路交差部から分析用流路に広がる影響について
考慮されておらず、分析対象量が多くなり検知精度が低
下する問題があった。特開平10−10088 号公報に記載の
ものは、ポンプ用流路とその電源等を別途用意する必要
が発生し、装置が煩雑になる。
However, in the electrophoresis chip, when the sample is introduced from the sample introduction channel into the analysis channel at the intersection of the channels before the start of the analysis, molecular diffusion, electric field, etc. Is introduced into the analysis flow channel while expanding from the flow channel intersection. Japanese Patent Application Laid-Open No. H11-326274 discloses that the influence of spreading a sample on a flow path for analysis when a sample is applied to a flow path for sample introduction by applying a voltage to the flow path intersection is controlled. When switching from both ends of the introduction flow channel to both ends of the analysis flow channel, the effect of spreading from the crossing of the flow channel to the analysis flow channel is not considered, and there is a problem in that the analysis target amount increases and the detection accuracy decreases. In the apparatus disclosed in Japanese Patent Application Laid-Open No. H10-10088, it is necessary to separately prepare a pump flow path and a power supply therefor, which complicates the apparatus.

【0006】また、従来の電気泳動チップではサンプル
をサンプル導入用流路から分析用流路に切り出した後
も、流路交差部近傍に生じている電界によって、サンプ
ルが導入用流路から分析用流路に流入され続け、流路交
差部に存在した分析対象量以上のサンプルが分析用流路
に流入されることになり、検知時にノイズとなる影響に
ついて配慮されておらず、検知精度が低下する問題があ
った。
In a conventional electrophoresis chip, even after a sample is cut from the sample introduction channel to the analysis channel, the sample is moved from the introduction channel by the electric field generated near the intersection of the channels. The sample continues to flow into the flow path, and the sample larger than the amount to be analyzed at the intersection of the flow path flows into the flow path for analysis. There was a problem to do.

【0007】本発明の目的は、検知精度を上げるため
に、分析用流路の一部に、電気浸透流の流動方向が逆転
する部分を備えた電気泳動装置を提供することにある。
[0007] It is an object of the present invention to provide an electrophoresis apparatus in which a part of a flow channel for analysis is provided with a part in which the flow direction of an electroosmotic flow is reversed in order to increase detection accuracy.

【0008】[0008]

【課題を解決するための手段】上記課題は、サンプル導
入用流路との流路交差部を挟んで検知側とは反対側の部
分の分析用流路の壁面をコーティングすることによって
解決する。
The above object is attained by coating the wall of the analysis flow channel at a portion opposite to the detection side with respect to the flow channel intersection with the sample introduction flow channel.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は本発明で実現する電気泳動装置の一
実施例の構成の上面図であり、(A)は装置構成全体図、
(B)は流路交差部付近の拡大図である。
FIG. 1 is a top view of the configuration of an embodiment of an electrophoresis apparatus realized by the present invention, wherein FIG.
(B) is an enlarged view near the intersection of the flow paths.

【0011】図1(A)において、電気泳動用基板11
はサンプル導入用流路2と分析用流路3が設けられた電
気泳動チップである。2つの流路は流路交差部9で交わ
る。サンプル導入用流路2、分析用流路3の各々の流路
の両端には、溶液溜めである泳動バッファ溜め4a、泳
動バッファ廃棄溜め4b、サンプル溜め4c、サンプル
廃棄溜め4dを設ける。分析用流路3の図中の泳動バッ
ファ廃棄溜め4b側に検知器8を設置する。流路電源1
0a,10bを溶液溜め電極5a〜5dに接続する。
In FIG. 1A, an electrophoresis substrate 11
Is an electrophoresis chip provided with a sample introduction channel 2 and an analysis channel 3. The two flow paths intersect at a flow path intersection 9. At both ends of each of the sample introduction channel 2 and the analysis channel 3, a migration buffer reservoir 4a, a migration buffer waste reservoir 4b, a sample reservoir 4c, and a sample waste reservoir 4d, which are solution reservoirs, are provided. The detector 8 is installed on the side of the electrophoresis buffer waste reservoir 4b in the drawing of the analysis channel 3. Channel power supply 1
0a and 10b are connected to the solution storage electrodes 5a to 5d.

【0012】図1(B)において、電気浸透流の流動方
向を実線矢印で示す。流路交差部9を挟んで、サンプル
導入用流路2のサンプル溜め4c側をサンプル供給流路
21、サンプル廃棄溜め側をサンプル廃棄流路22、バ
ッファ溜め側を分析供給流路31、分析用流路3の検知
器側を分析廃棄流路32とする。電極5bが正極に、電
極5aが負極になるように電界を印加する。
In FIG. 1B, the flow direction of the electroosmotic flow is indicated by solid arrows. The sample supply flow path 21 of the sample introduction flow path 2, the sample supply flow path 21, the sample waste storage side of the sample waste flow path 22, the buffer storage side of the sample supply flow path 31, and the sample supply flow path 21. The detector side of the flow path 3 is referred to as an analysis waste flow path 32. An electric field is applied so that the electrode 5b becomes a positive electrode and the electrode 5a becomes a negative electrode.

【0013】ここで、電気浸透流は、一般的には以下の
ようにして発生する。流路壁面は溶液に接したときに負
に帯電し、その負電荷によって流路壁面に溶液中の正電
荷が引き付けられ局在化する。流路に電界が印加される
と、局在化した正電荷が負極方向に移動し、その時に周
囲の溶液を引きずるため溶液全体が負極方向に流動す
る。本発明では、分析供給流路31の流路壁面をコーテ
ィングして負極から正極側に流動させる。したがって電
気浸透流は分析供給流路31内では検知器側に流動し、
分析廃棄流路32内では検知器側とは反対側に流動す
る。
Here, the electroosmotic flow is generally generated as follows. The channel wall surface is negatively charged when it comes into contact with the solution, and the negative charge attracts a positive charge in the solution to the channel wall surface and localizes it. When an electric field is applied to the flow path, the localized positive charges move toward the negative electrode, and at that time, the surrounding solution is dragged, so that the entire solution flows toward the negative electrode. In the present invention, the flow path wall of the analysis supply flow path 31 is coated to flow from the negative electrode to the positive electrode. Therefore, the electroosmotic flow flows to the detector side in the analysis supply channel 31 and
In the analysis waste flow channel 32, it flows to the side opposite to the detector side.

【0014】図2はサンプル導入用流路と分析用流路を
設けた電気泳動チップによる分析過程の動作例の上面図
である。サンプルが流路内で存在する領域20を斜線部
で示す。
FIG. 2 is a top view of an operation example of an analysis process by an electrophoresis chip provided with a sample introduction channel and an analysis channel. The region 20 where the sample exists in the flow path is indicated by hatching.

【0015】図2(A)において、サンプル導入用流路
2と分析用流路3の2つの流路にバッファ溶液を満たし
ておき、サンプル溜め4cに多成分が含有された混合溶
液であるサンプルを注入する。溶液溜め電極5cと5d
に流路電源10aから高電圧を印加することでサンプル
を電気泳動させ、サンプル溜め4cからサンプル廃棄溜
め4d方向に、サンプル導入用流路2内を流路交差部9
を超える程度に導入する。
In FIG. 2A, two flow paths, a sample introduction flow path 2 and an analysis flow path 3, are filled with a buffer solution, and the sample reservoir 4c is a mixed solution containing a multi-component. Inject. Solution storage electrodes 5c and 5d
The sample is subjected to electrophoresis by applying a high voltage from the flow channel power supply 10a to the sample collection channel 4d in the direction from the sample reservoir 4c to the sample waste reservoir 4d.
Introduce to the extent that exceeds.

【0016】次に、図2(B)において、溶液溜め電極
5aと溶液溜め電極5bに流路電源10bから高電圧を
印加することで、流路交差部分9から切り出されたサン
プルは分析用流路3内で電気泳動し、分析が開始され
る。ここで、分析用流路3上の少なくともある一点に設
置した一般的には光学的な検知器8によって、各成分毎
に分離されたサンプルを、のぞましくはサンプルの蛍光
発光により検知する。
Next, in FIG. 2 (B), by applying a high voltage from the flow channel power supply 10b to the solution storage electrode 5a and the solution storage electrode 5b, the sample cut out from the flow path intersection 9 is used for analysis. Electrophoresis is performed in the passage 3, and the analysis is started. Here, a sample separated for each component is preferably detected by fluorescence emission of the sample by a generally optical detector 8 installed at at least one point on the analysis channel 3. .

【0017】図3と図4は、図2で示した分析過程のう
ち、特にサンプルを流路交差部9に導入した直後から分
析用流路3内で泳動させる分析開始直後までを、流路交
差部9近傍を拡大した上面図である。従来例の場合を図
3に、本発明による場合を図4に、それぞれ時間を追っ
て(A1)から(A3)に示す。電気浸透流の流動を実
線矢印で、電気浸透流によって発生する、あるいは電気
浸透流で押されることによって発生するバッファ自体の
流れを白抜きの矢印で、サンプルの泳動を太破線の矢印
で、それぞれ示す。分析対象サンプルは負に帯電してい
る。
FIGS. 3 and 4 show flow paths in the analysis process shown in FIG. 2 from the time immediately after the sample is introduced into the flow path intersection 9 to the time immediately after the start of the analysis in which the electrophoresis is performed in the flow path 3 for analysis. It is the top view which expanded the vicinity of the intersection part 9. FIG. 3 shows the case of the conventional example, and FIG. 4 shows the case of the present invention, and shows (A1) to (A3) with time. The flow of the electroosmotic flow is indicated by a solid arrow, the flow of the buffer itself generated by the electroosmotic flow or generated by being pushed by the electroosmotic flow is indicated by a white arrow, and the migration of the sample is indicated by a thick broken arrow. Show. The sample to be analyzed is negatively charged.

【0018】流路交差部9付近において、サンプルがサ
ンプル導入用流路2から分析用流路3に導入される時
に、分子拡散や電界などの影響を受け流路交差部9から
分析用流路3へ広がりながら導入される。このとき、図
3(A1)のように台形状に流路交差部9から分析用流
路3側にサンプルは広がって存在することになる。
When a sample is introduced from the sample introduction channel 2 into the analysis channel 3 near the channel intersection 9, it is affected by molecular diffusion, an electric field, and the like, and the sample is introduced from the channel intersection 9. It is introduced while spreading to 3. At this time, as shown in FIG. 3 (A1), the sample spreads from the channel intersection 9 to the analysis channel 3 side in a trapezoidal shape.

【0019】図3(A1)において、従来例では流路交
差部9に関して分析廃棄流路32方向を正極に、分析供
給流路31方向を負極にした場合、電気浸透流は分析廃
棄流路32から分析供給流路31方向へ発生する。バッ
ファは、分析廃棄流路32内に発生する電気浸透流によ
って分析廃棄流路32から押し出されて、流路交差部9
において2方向に分かれてサンプル供給流路21とサン
プル廃棄流路22に流れ込む。
In FIG. 3 (A1), in the conventional example, when the direction of the analysis waste channel 32 is the positive electrode and the direction of the analysis supply channel 31 is the negative electrode with respect to the flow path intersection 9, the electroosmotic flow is From the analysis supply channel 31. The buffer is pushed out of the analysis waste flow channel 32 by the electroosmotic flow generated in the analysis waste flow channel 32, and the flow passage intersection 9
And flows into the sample supply channel 21 and the sample discard channel 22 in two directions.

【0020】図3(A2)において、電界は分析用流路
3内に流路長手方向に平行な方向に形成されているが、
流路交差部9近傍では、流路交差部9を挟んで、サンプ
ル供給流路21、サンプル廃棄流路22内にも、膨らん
だ形状で形成されている。負に帯電したサンプル201
から203のうち、サンプル201はバッファの流動か
らの抵抗を受けながら、サンプル供給用流路21、サン
プル廃棄流路22内に形成されている電界からの力を受
けて流路交差部9の方向に泳動し、分析廃棄流路32内
に流れ込む。サンプル202はバッファの流動からの抵
抗を泳動方向とは逆方向に受けながら泳動し、流路交差
部9に流れ込む。サンプル203はサンプル202と同
様にバッファからの逆方向の抵抗を受けながら分析廃棄
流路32内を泳動する。
In FIG. 3 (A2), the electric field is formed in the analysis flow channel 3 in a direction parallel to the longitudinal direction of the flow channel.
In the vicinity of the flow path intersection 9, the sample supply flow path 21 and the sample waste flow path 22 are formed in a swelling shape with the flow path intersection 9 interposed therebetween. Negatively charged sample 201
Out of 203, the sample 201 receives the force from the electric field formed in the sample supply flow path 21 and the sample waste flow path 22 while receiving the resistance from the flow of the buffer, in the direction of the flow path intersection 9. And flows into the analysis waste channel 32. The sample 202 migrates while receiving resistance from the flow of the buffer in the direction opposite to the migration direction, and flows into the flow channel intersection 9. The sample 203 migrates in the analysis waste channel 32 while receiving the resistance in the reverse direction from the buffer similarly to the sample 202.

【0021】図3(A3)において、サンプル供給流路
21とサンプル廃棄流路22内に存在するサンプル20
は、流路交差部9から膨らんだ形状で形成されている電
界によって分析廃棄流路32に流れ込み続けるので、分
析廃棄流路32の壁面近くには楕円90によって囲んだ
ようなサンプル領域が生じる。分析廃棄流路32内を電
気泳動する分析対象は、楕円で囲んだ領域91内のサン
プルであり、領域91が発生する蛍光発光強度等を検知
器8で検知する。このとき、検知器8では楕円90で囲
んだサンプル領域の発光も検知することになり、領域9
1にとってはノイズとなる。
In FIG. 3 (A3), the sample 20 existing in the sample supply channel 21 and the sample
Continues flowing into the analysis waste channel 32 due to the electric field formed in a bulging shape from the channel intersection 9, so that a sample area surrounded by an ellipse 90 is generated near the wall surface of the analysis waste channel 32. The analysis target to be electrophoresed in the analysis waste channel 32 is a sample in an area 91 surrounded by an ellipse, and the detector 8 detects the fluorescence emission intensity and the like generated in the area 91. At this time, the detector 8 also detects the light emission in the sample area surrounded by the ellipse 90, and the area 9
For 1 it is noise.

【0022】また、サンプル202は分析供給流路31
中を電気浸透流によって流動するバッファの抵抗を受け
ながら電気泳動するので、分析対象サンプル領域長さで
ある楕円91で囲まれた長さは長くなり、成分毎のサン
プル領域が重なりやすくなり、検知し難くなる。
The sample 202 is supplied to the analysis supply channel 31.
Since electrophoresis is performed while receiving the resistance of the buffer flowing through the inside due to the electroosmotic flow, the length surrounded by the ellipse 91, which is the length of the sample area to be analyzed, becomes longer, and the sample areas for each component are easily overlapped, and detection is performed. It becomes difficult to do.

【0023】図4(A1)において、本発明の分析供給
流路31において電気浸透流の流れ方向は従来例と逆方
向に発生させる。このとき、分析用流路3からサンプル
供給流路21、サンプル廃棄流路22へ流れ込むバッフ
ァの流動は、従来例の分析廃棄流路32から流れ込む分
に加え、分析供給流路31から流れ込む分も加わるの
で、より流量は多くなり、流速も大きくなる。
In FIG. 4 (A1), the flow direction of the electroosmotic flow in the analysis supply flow path 31 of the present invention is generated in a direction opposite to that of the conventional example. At this time, the flow of the buffer flowing from the analysis flow path 3 into the sample supply flow path 21 and the sample waste flow path 22 includes the flow from the analysis supply flow path 31 in addition to the flow from the analysis waste flow path 32 of the conventional example. As a result, the flow rate increases and the flow velocity also increases.

【0024】したがって、図4(A2)において、従来
例である図3(A2)のときと比較して、負に帯電した
サンプル201がバッファから受ける抵抗が大きくな
り、流路交差部9近傍の分析用流路3からサンプル供給
流路21、サンプル廃棄流路22内に膨らんだ形状で形
成されている電界からの力を受けて分析廃棄流路32の
方向に電気泳動はするものの、分析廃棄流路32に流れ
込み続ける量は従来例に比べ少なくなる。よって、図4
(A3)における分析廃棄流路32の壁面近くの楕円9
0で囲まれたサンプル領域は、図3(A3)のものと比
較して小さくなり、ノイズが減少し検知精度は向上す
る。
Therefore, in FIG. 4 (A2), the resistance of the negatively charged sample 201 from the buffer becomes larger than that in the conventional example of FIG. 3 (A2). Electrophoresis is performed in the direction of the analysis waste channel 32 by receiving the force from the electric field formed in the sample supply channel 21 and the sample waste channel 22 in a bulging shape from the analysis channel 3, but the analysis waste is performed. The amount that continues to flow into the flow path 32 is smaller than in the conventional example. Therefore, FIG.
The ellipse 9 near the wall of the analysis waste channel 32 in (A3)
The sample area surrounded by 0 is smaller than that in FIG. 3A3, the noise is reduced, and the detection accuracy is improved.

【0025】一方、図4(A2)において、分析供給流
路31内のサンプル202は泳動方向とバッファの流れ
方向が同じなので、図3(A2)のときに比べ、サンプ
ル202が流路交差部9に流れ込む速度は速くなる。サ
ンプル203はバッファからの逆方向の抵抗を受けなが
らサンプル廃棄流路32内を泳動する。したがって、図
4(A3)において、図3(A3)に比較して、分析対
象サンプル領域長さである楕円91の長さは短くなって
検知し易くなる。
On the other hand, in FIG. 4 (A2), the sample 202 in the analysis supply channel 31 has the same electrophoresis direction and the buffer flow direction. The speed of flowing into 9 increases. The sample 203 migrates in the sample waste channel 32 while receiving the resistance in the reverse direction from the buffer. Therefore, in FIG. 4A3, the length of the ellipse 91, which is the length of the analysis target sample region, is shorter than that in FIG.

【0026】サンプル領域長さが検知に及ぼす影響は次
のようである。
The effect of the sample area length on detection is as follows.

【0027】図5は本発明で実現する電気泳動装置によ
って、2成分以上の混合溶液を分析対称とした時の電気
泳動パターンである。検知器8によって、分析用流路3
内に展開されたサンプルの呈する蛍光の発光強度を、時
間軸に対する波形データとして記録した場合を示す。従
来の導入方法によるものを破線、本発明によるものを実
線で示す。
FIG. 5 shows an electrophoresis pattern when a mixed solution of two or more components is analyzed by the electrophoresis apparatus realized by the present invention. The flow path 3 for analysis is detected by the detector 8.
The case where the luminescence intensity of the fluorescence exhibited by the sample developed in the figure is recorded as waveform data with respect to the time axis is shown. The broken line indicates the conventional method and the solid line indicates the present invention.

【0028】図5(A)において、検知器8を流路交差
部9近傍に設置した場合に得られる波形データを示す。
時間軸に関し、分析廃棄流路32内のサンプルの先頭位
置を、従来例と本発明で同じ位置にした。従来例に比
べ、本発明の実施例はサンプルが分析供給流路31内で
大きい泳動速度で泳動するので、サンプル領域後端が時
間軸方向に前に位置して狭い波形となり、楕円91の長
さが短くなる。
FIG. 5A shows waveform data obtained when the detector 8 is installed in the vicinity of the flow path intersection 9.
With respect to the time axis, the leading position of the sample in the analysis waste channel 32 was set to the same position in the conventional example and the present invention. Compared to the conventional example, in the embodiment of the present invention, the sample migrates at a high migration speed in the analysis supply channel 31, so that the trailing end of the sample area is located forward in the time axis direction to have a narrow waveform, and the length of the ellipse 91 is longer. Becomes shorter.

【0029】図5(B)は、検知器8を分析用流路3で
流路交差部9から離して設置したときに、サンプル溶液
中の2成分が分析用流路3内で電気泳動した時に得られ
る波形データの一例である。従来例と本発明例の比較に
関しては、分析用流路3で展開される際の拡散等の影響
は小さいので、無視してよい。本発明例では、従来例に
比べてもともと短いサンプル領域で分析流路内を泳動す
るので、展開された二つの隣接するサンプルの波形デー
タのうちで重なる部分が少なくなる。また、波形データ
から得られるグラフ上の面積は、本発明のものと従来例
とで等しいので、波形データの長さが短くなると波形デ
ータのピーク値、すなわち発光強度が大きくなる。した
がって、波形データより二つの隣接するサンプルの波形
のピークを判別することが容易となることから、検知の
精度向上と、高価で鋭敏な検知系を用いずに済むことに
よる検知器8の簡素化が可能となる。また、ピーク判別
が容易となれば短い流路での分離が可能となるので、装
置全体の小型化および高速化の効果を得る。
FIG. 5B shows that two components in the sample solution were electrophoresed in the analysis channel 3 when the detector 8 was set apart from the channel intersection 9 in the analysis channel 3. It is an example of waveform data sometimes obtained. Regarding the comparison between the conventional example and the present invention example, the influence of diffusion or the like when developed in the analysis flow channel 3 is small, and therefore can be ignored. In the example of the present invention, since the electrophoresis is performed in the analysis channel in a sample area shorter than that of the conventional example, overlapping portions of the developed waveform data of two adjacent samples are reduced. Further, since the area on the graph obtained from the waveform data is the same in the present invention and that in the conventional example, the peak value of the waveform data, that is, the emission intensity increases as the length of the waveform data decreases. Therefore, since it is easy to determine the peaks of the waveforms of two adjacent samples from the waveform data, the detection accuracy is improved, and the detector 8 is simplified by not using an expensive and sensitive detection system. Becomes possible. Further, if the peak can be easily distinguished, the separation can be performed in a short flow path, so that the effect of miniaturizing the whole apparatus and increasing the speed can be obtained.

【0030】図6に、本発明による電気泳動チップの製
作方法の一例を示す。
FIG. 6 shows an example of a method for manufacturing an electrophoresis chip according to the present invention.

【0031】図6(A)において、石英,パイレックス
(登録商標)等のガラス、もしくはシリコン等の半導体
材料,PDMS(ポリジメチルシロキサン)等の高分子
を材料とする基板1aにサンプル導入用流路2と分析用
流路3を設ける。加工法は一般的なフォトファブリケー
ション技術がのぞましい。
In FIG. 6A, a sample introduction flow path is formed on a substrate 1a made of glass, such as quartz or Pyrex (registered trademark), a semiconductor material such as silicon, or a polymer such as PDMS (polydimethylsiloxane). 2 and an analysis channel 3 are provided. The processing method is preferably a general photo fabrication technology.

【0032】図6(B)において、マスク1bを基板1
a上に被せる。マスク1bには分析供給流路31のみが
出るような穴31bを設けてある。マスク1bの上から
噴霧状の表面コーティング剤を吹き付けることによっ
て、分析供給流路31のみをコーティングする。
In FIG. 6B, the mask 1b is
a. The mask 1b is provided with a hole 31b through which only the analysis supply flow path 31 exits. By spraying a spray-like surface coating agent from above the mask 1b, only the analysis supply channel 31 is coated.

【0033】本発明では、分析供給流路31内の電気浸
透流は正方向に流動するように発生させるので、一般的
に電気浸透流が発生するときの流路壁面が負に帯電して
いる状態とは逆に、分析供給流路31の流路壁面は正に
帯電する必要がある。したがって、基板1aにガラス材
を用いた場合、例えば約pH=2以下のポリビニルアル
コール等の酸性のコーティング剤を噴霧状にして用いれ
ば良い。コーティングの後、基板を加熱,乾燥させるこ
とでコーティングの効果を上げることができる。
In the present invention, since the electroosmotic flow in the analysis supply channel 31 is generated so as to flow in the positive direction, the channel wall surface when the electroosmotic flow is generated is generally negatively charged. Contrary to the state, the flow path wall surface of the analysis supply flow path 31 needs to be positively charged. Therefore, when a glass material is used for the substrate 1a, for example, an acidic coating agent such as polyvinyl alcohol having a pH of about 2 or less may be used by spraying. After coating, the effect of the coating can be improved by heating and drying the substrate.

【0034】図5(C)において、それぞれの溶液溜め
4a〜4dとして貫通穴を設けた、材質は基板1aと同
様でのぞましくは無色透明な基板1cを、基板1aに接
合し、電気泳動用基板11を得る。接合方法としては光
学接着、貫通穴の加工法としては放電加工がのぞまし
い。
In FIG. 5 (C), a colorless and transparent substrate 1c, preferably made of the same material as the substrate 1a and having a through hole as each of the solution reservoirs 4a to 4d, is joined to the substrate 1a. An electrophoresis substrate 11 is obtained. Optical bonding is preferred as a joining method, and electric discharge machining is preferred as a processing method of a through hole.

【0035】本発明は上記のような実施例の構造にする
ことにより、以下のような効果を奏する。分析用流路3
のうち、分析供給流路31と分析廃棄流路32で電気浸
透流の流動方向を逆転する事により、分析用流路3内を
電気泳動するサンプル領域の長さが分析用流路3の流路
方向に関して短くなるので、検知精度の向上と検知器8
の簡素化の効果、および分析用流路3の短縮化による電
気泳動装置の小型化、および装置の高速化の効果を得
る。
The present invention has the following effects by adopting the structure of the above embodiment. Analysis channel 3
The flow direction of the electroosmotic flow is reversed in the analysis supply channel 31 and the analysis waste channel 32 so that the length of the sample area for electrophoresis in the analysis channel 3 is reduced. Since it becomes shorter in the road direction, the detection accuracy is improved and the detector 8
And the effect of downsizing the electrophoresis apparatus by shortening the analysis flow path 3 and increasing the speed of the apparatus.

【0036】[0036]

【発明の効果】本発明の電気泳動装置は、流路交差部に
関して分析用流路の検知器側の反対の部分での電気浸透
流の流動方向を逆にすることにより、分析用流路中での
サンプル領域を狭くし、また検知ノイズとなる分析対象
以上のサンプルの、分析用流路中への流入を防ぐ。した
がって、展開された二つの隣接するサンプル領域のうち
お互いに重なる部分が少なくなり、さらにノイズが低減
することから、検知精度向上と、高価な検知系を用いず
に済むので検知器系が簡素化できる効果を奏する。同様
の理由から、電気泳動装置の小型化,高速化が可能であ
る。
According to the electrophoresis apparatus of the present invention, the flow direction of the electroosmotic flow at the portion of the flow path for analysis opposite to the detector side with respect to the flow path intersection is reversed, so that the flow path in the flow path for analysis is reduced. In this case, the sample area of the sample is narrowed, and the flow of the sample, which is a detection noise or more than the analysis target, into the analysis channel is prevented. Therefore, there is less overlap between the two adjacent sample areas that have been developed, and noise is further reduced. This improves detection accuracy and simplifies the detector system by eliminating the need for expensive detection systems. The effect that can be performed. For the same reason, the size and speed of the electrophoresis apparatus can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で実現する電気泳動装置の一実施例の構
成を示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of an electrophoresis apparatus realized by the present invention.

【図2】本発明で実現する電気泳動装置による分析過程
の動作例を示す上面図である。
FIG. 2 is a top view showing an operation example of an analysis process by the electrophoresis apparatus realized by the present invention.

【図3】従来例の電気泳動装置による分析過程の動作例
を示す上面図である。
FIG. 3 is a top view showing an operation example of an analysis process by a conventional electrophoresis apparatus.

【図4】本発明例で実現する電気泳動装置による分析過
程の動作例を示す上面図である。
FIG. 4 is a top view showing an operation example of an analysis process by the electrophoresis apparatus realized in the example of the present invention.

【図5】本発明で実現する電気泳動による電気泳動パタ
ーンの例を示す概略図である。
FIG. 5 is a schematic diagram showing an example of an electrophoresis pattern by electrophoresis realized in the present invention.

【図6】本発明の作製過程の他の実施例を表す工程概略
を示す斜視図である。
FIG. 6 is a perspective view schematically showing a process of another example of the production process of the present invention.

【符号の説明】[Explanation of symbols]

1a…基板、1b…基板、2…サンプル導入用流路、3
…分析用流路、4a…溶液溜め、4b…溶液溜め、4c
…溶液溜め、4d…溶液溜め、5a…溶液溜め電極、5
b…溶液溜め電極、5c…溶液溜め電極、5d…溶液溜
め電極、8…検知器、9…流路交差部、10a…流路電
源、10b…流路電源、11…電気泳動用基板、21…
サンプル供給流路、22…サンプル廃棄流路、31…分
析供給流路、32…分析廃棄流路。
1a ... substrate, 1b ... substrate, 2 ... sample introduction channel, 3
... Analysis flow path, 4a ... Solution reservoir, 4b ... Solution reservoir, 4c
... Solution reservoir, 4d ... Solution reservoir, 5a ... Solution reservoir electrode, 5
b: solution storage electrode, 5c: solution storage electrode, 5d: solution storage electrode, 8: detector, 9: flow path intersection, 10a: flow path power supply, 10b: flow path power supply, 11: substrate for electrophoresis, 21 …
Sample supply channel, 22: sample waste channel, 31: analysis supply channel, 32: analysis waste channel.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】サンプル導入用流路と分析用流路とサンプ
ル導入用電極と分析用電極とを備えた電気泳動装置にお
いて、前記サンプル導入用流路と前記分析用流路の流路
交差部に関し、前記交差部より分析時のサンプル泳動方
向の上流側の前記分析用流路の流路表面をコーティング
することにより、前記交差部より分析用流路において泳
動方向とは順方向に流動する電気浸透流を発生すること
を特徴とする電気泳動装置。
1. An electrophoresis apparatus provided with a sample introduction channel, an analysis channel, a sample introduction electrode, and an analysis electrode, wherein an intersection between the sample introduction channel and the analysis channel is provided. By coating the flow path surface of the analysis flow path on the upstream side in the sample migration direction at the time of analysis from the intersection, the electricity flowing in the analysis flow path in the forward direction from the intersection in the analysis flow path An electrophoresis apparatus characterized by generating a permeation flow.
JP2000345469A 2000-11-08 2000-11-08 Electrophoretic apparatus Pending JP2002148236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345469A JP2002148236A (en) 2000-11-08 2000-11-08 Electrophoretic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345469A JP2002148236A (en) 2000-11-08 2000-11-08 Electrophoretic apparatus

Publications (1)

Publication Number Publication Date
JP2002148236A true JP2002148236A (en) 2002-05-22

Family

ID=18819498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345469A Pending JP2002148236A (en) 2000-11-08 2000-11-08 Electrophoretic apparatus

Country Status (1)

Country Link
JP (1) JP2002148236A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031757A1 (en) * 2002-09-05 2004-04-15 Katayanagi Institute Method for separating substances
JP2006022807A (en) * 2004-06-07 2006-01-26 Science Solutions International Laboratory Inc Electroosmosis flow pump system and electroosmosis flow pump
US7229540B2 (en) * 2002-11-01 2007-06-12 President Of Shizuoka University, A Japanese Government Agency Biochip and a manufacturing method of biochip
JPWO2007138654A1 (en) * 2006-05-26 2009-10-01 株式会社島津製作所 Electrophoresis pretreatment method, analysis substrate and electrophoresis pretreatment apparatus
US8012430B2 (en) 2004-03-04 2011-09-06 National Institute Of Advanced Industrial Science And Technology Methods for producing microchannel chips, microchannel chips, methods for separating biomolecules using the microchannel chips, and electrophoretic apparatus having the microchannel chips
JP2013520298A (en) * 2010-02-22 2013-06-06 ルナマイクロ・エービー Electrokinetic fluid system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031757A1 (en) * 2002-09-05 2004-04-15 Katayanagi Institute Method for separating substances
US7229540B2 (en) * 2002-11-01 2007-06-12 President Of Shizuoka University, A Japanese Government Agency Biochip and a manufacturing method of biochip
US8012430B2 (en) 2004-03-04 2011-09-06 National Institute Of Advanced Industrial Science And Technology Methods for producing microchannel chips, microchannel chips, methods for separating biomolecules using the microchannel chips, and electrophoretic apparatus having the microchannel chips
JP2006022807A (en) * 2004-06-07 2006-01-26 Science Solutions International Laboratory Inc Electroosmosis flow pump system and electroosmosis flow pump
JP4593373B2 (en) * 2004-06-07 2010-12-08 ナノフュージョン株式会社 Electroosmotic pump system and electroosmotic pump
JPWO2007138654A1 (en) * 2006-05-26 2009-10-01 株式会社島津製作所 Electrophoresis pretreatment method, analysis substrate and electrophoresis pretreatment apparatus
JP4692628B2 (en) * 2006-05-26 2011-06-01 株式会社島津製作所 Electrophoresis pretreatment method and electrophoresis pretreatment apparatus
US8043492B2 (en) 2006-05-26 2011-10-25 Shimadzu Corporation Method for pretreatment of electrophoresis, substrate for analysis, and pretreatment apparatus for electrophoresis
JP2013520298A (en) * 2010-02-22 2013-06-06 ルナマイクロ・エービー Electrokinetic fluid system
US9168527B2 (en) 2010-02-22 2015-10-27 LunaMicro AB Electrokinetic fluidic system

Similar Documents

Publication Publication Date Title
JP4753517B2 (en) Microfluidic device and method with sample injector
US6685813B2 (en) Tandem isotachophoresis/zone electrophoresis method and system
US6316201B1 (en) Apparatus and methods for sequencing nucleic acids in microfluidic systems
Zhang et al. Narrow sample channel injectors for capillary electrophoresis on microchips
US6475363B1 (en) Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
US9182371B2 (en) Microscale western blot
US5900130A (en) Method for sample injection in microchannel device
US4908112A (en) Silicon semiconductor wafer for analyzing micronic biological samples
US6475364B1 (en) Methods, devices and systems for characterizing proteins
EP1265709A2 (en) Microfluidic device and system with additional peripheral channels
JP3866183B2 (en) Biochip
JP2002148236A (en) Electrophoretic apparatus
AU2005209746A1 (en) Methods, devices and systems for characterizing proteins
Kuo et al. A microfabricated CE chip for DNA pre‐concentration and separation utilizing a normally closed valve
EP2334432A1 (en) Material separation device
WO2004038399A1 (en) Method of controlling migration of substance
JP2006234707A (en) Electrophoresis plate
EP1754536B1 (en) Fluid injection system
JP3855457B2 (en) Electrophoresis member
Sueyoshi et al. Application of a partial filling technique to electrophoretic analysis on microchip with T-cross channel configuration
JP3938032B2 (en) Electrophoresis method and electrophoresis apparatus
JP2012103098A (en) Manufacturing method of microchip with electrode, and microchip with electrode manufactured by the manufacturing method
Wang et al. PET-laminated thin-film capillary electrophoresis chips by sandwiching method
Kuo et al. A micro-fabricated capillary electrophoresis chip for DNA pre-concentration and separation
Lin et al. MICROFABRICATED PMMA STRUCTURE FOR DNA PRECONCENTRATION AND ELECTROPHORESIS