JP2005249030A - Water-lubrication segment type bearing device and water turbine - Google Patents
Water-lubrication segment type bearing device and water turbine Download PDFInfo
- Publication number
- JP2005249030A JP2005249030A JP2004058747A JP2004058747A JP2005249030A JP 2005249030 A JP2005249030 A JP 2005249030A JP 2004058747 A JP2004058747 A JP 2004058747A JP 2004058747 A JP2004058747 A JP 2004058747A JP 2005249030 A JP2005249030 A JP 2005249030A
- Authority
- JP
- Japan
- Prior art keywords
- water
- bearing
- sleeve
- bearing device
- sliding contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Sliding-Contact Bearings (AREA)
- Hydraulic Turbines (AREA)
Abstract
Description
本発明は、例えば水車の回転軸を支承するのに好適な軸受装置で、回転軸に固定のスリーブに摺接するようにしてセグメント化して複数の軸受が配設される構造のセグメント型軸受装置に関し、特にスリーブと軸受との摺接面の潤滑に水が用いられる水潤滑セグメント型軸受装置およびそれを用いた水車に関する。 The present invention relates to a segment type bearing device having a structure in which a plurality of bearings are arranged by segmenting so as to be in sliding contact with a sleeve fixed to the rotating shaft, for example, a bearing device suitable for supporting the rotating shaft of a water turbine. In particular, the present invention relates to a water-lubricated segment type bearing device in which water is used for lubrication of a sliding contact surface between a sleeve and a bearing, and a water turbine using the same.
水車ではその回転軸を支承する軸受装置として、摺接面が樹脂材料やセラミックス材料などで形成され、潤滑剤を水とする水潤滑軸受装置が用いられる場合が多い。そのような水潤滑軸受装置については、特許文献1に開示の例が知られている。特許文献1の水潤滑軸受装置は、軸受による摺接支承のために回転軸に固定装着されるスリーブを、耐食性を有する超硬合金で形成し、軸受の摺動面に熱可塑性樹脂材料で形成の樹脂部を設ける構造とされている。この水潤滑軸受装置には以下のような長所がある。すなわち、高荷重領域において局部的に水膜破断が発生しても摺動面の熱可塑性樹脂、具体的にはポリエーテルエーテルケトン樹脂による樹脂部が軟化することで容易に塑性流動が起こり、それにより平滑になって塑性流動を終え、なじんだ状態で安定する。樹脂部が局部接触部で容易に塑性流動するため超硬合金のスリーブが損傷を受けない。樹脂部の熱可塑性樹脂は膨潤がないので初期から軸受隙間を小さくできることから、高い耐荷重性を得ることができる。超硬合金が耐食性を有するため摺動面の形状に経時変化がほとんど無く安定している。長期使用に対して高い耐荷重性を確保し、安定した軸受性能が得られる。
In a water turbine, a water-lubricated bearing device in which a sliding contact surface is formed of a resin material or a ceramic material and uses a lubricant as water is often used as a bearing device for supporting the rotating shaft. An example disclosed in
また水車用の水潤滑軸受装置については、特許文献2に開示の水潤滑式水車主軸受が知られている。特許文献2の水潤滑式水車主軸受は、分割配置のパッド(軸受メタル)で水車の主軸のジャーナル部を支承する構造とされ、そのパッドの背面に、面積がパッド背面面積の40%以上、厚さが軸受径の0.02〜0.2倍の弾性体が配置されている。このような構成とすることにより、潤滑剤が水であっても、弾性体が金属性パッドと同等の調心能力を持ち、パッドが自由に傾いて主軸との間には適正なくさび状の水膜を形成するので、摩耗や焼け付きを防止することができる。
As a water-lubricated bearing device for a water turbine, a water-lubricated water turbine main bearing disclosed in
また水車用の水潤滑軸受装置として、河川水を潤滑剤に利用する水潤滑セラミック軸受装置が特許文献3に開示され、同じく河川水を潤滑剤に利用する水潤滑パッド型セラミック軸受装置が特許文献4に開示されている。特許文献3の水潤滑セラミック軸受装置は、回転軸に固定されかつ外周面に超硬合金部を設けたスリーブと、該スリーブの外周位置に配置される軸受ケースと、該軸受ケース及びスリーブ間に周方向に沿って複数配設され、各々がスリーブとの摺接面にセラミック部を設けると共に、外周部に軸受ケースの内周面部に向かい球状に膨出する突起部を突設した軸受と、該各々の軸受を求心方向に付勢させ、回転軸の停止時、各々の軸受のセラミック部をスリーブの超硬合金部に接触させる弾性手段とを有した構造とされている。このような構造の特許文献3の水潤滑セラミック軸受装置は、軸受の摺動面を形成するセラミック部に土砂等の硬い粒子が入りこむのを防止でき、また流体力が作用した際の軸受の損傷も回避できる。 As a water-lubricated bearing device for a water turbine, a water-lubricated ceramic bearing device that uses river water as a lubricant is disclosed in Patent Document 3, and a water-lubricated pad type ceramic bearing device that also uses river water as a lubricant is patented. It is disclosed in Document 4. The water-lubricated ceramic bearing device of Patent Document 3 includes a sleeve that is fixed to a rotary shaft and has a cemented carbide portion on the outer peripheral surface, a bearing case that is disposed at the outer peripheral position of the sleeve, and a gap between the bearing case and the sleeve. A plurality of bearings arranged along the circumferential direction, each provided with a ceramic portion on the sliding contact surface with the sleeve, and a bearing having a protruding portion protruding in a spherical shape toward the inner peripheral surface portion of the bearing case on the outer peripheral portion; Each of the bearings is biased in the centripetal direction, and has a structure having elastic means for bringing the ceramic portion of each bearing into contact with the cemented carbide portion of the sleeve when the rotary shaft is stopped. The water-lubricated ceramic bearing device of Patent Document 3 having such a structure can prevent hard particles such as earth and sand from entering the ceramic part forming the sliding surface of the bearing, and damage of the bearing when a fluid force is applied. Can also be avoided.
一方、特許文献4の水潤滑パッド型セラミック軸受装置は、特許文献3の水潤滑セラミック軸受装置の構造を前提に、軸受の移動を阻害しないような弾性支持機構をさらに付加した構造とされている。このような構造の特許文献4の水潤滑パッド型セラミック軸受装置は、軸受の半径方向における動きが阻害されることがなく、また衝撃力が作用しても軸受が損傷するのを軽減することができる。 On the other hand, the water-lubricated pad-type ceramic bearing device of Patent Document 4 has a structure in which an elastic support mechanism that does not hinder the movement of the bearing is further added on the premise of the structure of the water-lubricated ceramic bearing device of Patent Document 3. . The water-lubricated pad type ceramic bearing device of Patent Document 4 having such a structure does not hinder the movement of the bearing in the radial direction, and can reduce damage to the bearing even when an impact force is applied. it can.
また水潤滑の軸受装置として、水車発電機等の回転電機の回転体を支えるすべり軸受装置が特許文献5に開示されている。このすべり軸受装置は、回転体の回転により発生する攪拌損失と摺動損失を低減するために、すべり軸受の摺動部材を、高分子材料ポリエーテルエーテルケトンを主成分とした樹脂複合組成物で構成している。 Further, Patent Document 5 discloses a sliding bearing device that supports a rotating body of a rotating electrical machine such as a water turbine generator as a bearing device for water lubrication. In order to reduce the stirring loss and sliding loss caused by the rotation of the rotating body, this sliding bearing device is made of a resin composite composition whose main component is a polymer material polyether ether ketone. It is composed.
また水潤滑を可能とする軸受装置として、回転体の荷重を支持するガイドセクタを備えた回転電機のガイド軸受装置が特許文献6に開示されている。このガイド軸受装置は、ガイドセクタの摺動面材料として、高分子材料ポリエーテルエーテルケトンに繊維材料を充填した材料を用い、回転体とガイドセクタ間にタービン油より低粘度の水等の潤滑流体を満たし、ガイドセクタを回転体に押し付けた状態で据え付けている構成とされている。このようなガイド軸受装置では運転時に回転体に過大な振動が発生することなく、ガイドセクタの摺動面材料が回転体と接触したとしても、損傷は軽微に抑えることができ、回転電機の運転を継続することができる。また、タービン油より低粘度の潤滑流体を使用しているので、ガイド軸受装置内で発生する損失を低減することができる。
Further,
水車や排水ポンプなどでは、その軸受装置における潤滑剤として河川水を利用できる構造であることが、潤滑用の清水を供給するための手段を不要化できるという点で望ましい。しかし河川水を潤滑に用いる場合には摺接面に土砂などによる硬い粒子が侵入するという問題がある。この問題を解決するのに特許文献3や特許文献4に開示される構造、すなわち停止時において軸受の摺接面をスリーブの摺接面に弾性的に押接させ、回転時には動圧効果で水膜を形成させるようにした弾性的押接構造が有効であり、この弾性的押接構造を用いることで硬い粒子の侵入を効果的に防止することができる。 In water turbines, drainage pumps, and the like, it is desirable that a structure that can use river water as a lubricant in the bearing device can eliminate the need for supplying fresh water for lubrication. However, when river water is used for lubrication, there is a problem that hard particles such as earth and sand enter the sliding contact surface. In order to solve this problem, the structures disclosed in Patent Document 3 and Patent Document 4, that is, the sliding contact surface of the bearing is elastically pressed against the sliding contact surface of the sleeve at the time of stopping, and the water pressure is exerted by the dynamic pressure effect during rotation. An elastic pressing structure in which a film is formed is effective. By using this elastic pressing structure, the intrusion of hard particles can be effectively prevented.
このように特許文献3や特許文献4に開示の軸受装置は、河川水を潤滑に用いる場合でも土砂などによる硬い粒子の侵入を効果的に防止できる。しかるにこれら従来技術では、回転軸に装着のスリーブの摺接面に超硬合金材料を用い、軸受の摺接面にセラミック材料を用いるようにしている。摺接面に超硬合金材料やセラミック材料を用いることは、摺接面の耐久性という点できわめて優れていると言える。しかし上記のような弾性的押接構造において摺接面に超硬合金材料やセラミック材料を用いることは、その弾性的押接構造の利点を十分に活かしているとはいえない。すなわち摺接面の急速な磨耗原因となる硬い粒子の侵入を有効に防止することのできる弾性的押接構造を用いる場合には、摺接面の耐磨耗性をそれほど高くする必要は必ずしもない。このように考えた場合、高価な超硬合金材料やセラミック材料を用いることは結果として過剰品質となっている。つまりコスト対性能における材料選択の適切化という点で問題を残している。また超硬合金材料やセラミック材料を用いることは、それらの材料に耐衝撃性に問題があり、軸受装置の分解組立に際して衝撃を与えないようにする配慮が求められ、分解組立作業の煩雑化をもたらすことにもなる。 As described above, the bearing devices disclosed in Patent Document 3 and Patent Document 4 can effectively prevent intrusion of hard particles due to earth and sand even when river water is used for lubrication. However, in these prior arts, a cemented carbide material is used for the sliding contact surface of the sleeve mounted on the rotating shaft, and a ceramic material is used for the sliding contact surface of the bearing. It can be said that using a cemented carbide material or a ceramic material for the sliding contact surface is extremely excellent in terms of durability of the sliding contact surface. However, the use of a cemented carbide material or ceramic material for the sliding contact surface in the elastic pressing structure as described above does not fully take advantage of the elastic pressing structure. That is, when using an elastic pressing structure that can effectively prevent the invasion of hard particles that cause rapid wear of the sliding contact surface, it is not always necessary to increase the wear resistance of the sliding contact surface so much. . When considered in this way, the use of an expensive cemented carbide material or ceramic material results in excessive quality. In other words, there remains a problem in terms of appropriate material selection in terms of cost performance. In addition, the use of cemented carbide materials and ceramic materials has a problem in impact resistance, and there is a demand for consideration not to give impact when disassembling and assembling the bearing device. It will also bring.
このようなことから特許文献1や特許文献5あるいは特許文献6に開示の従来技術のように軸受の摺接面に熱可塑性樹脂材料を用いることは、セラミック材料を用いる場合よりも優れた材料選択であると言える。しかしこれら従来技術では熱可塑性樹脂材料として、何れもポリエーテルエーテルケトン(適宜にPEEKないしPEEK樹脂と称する)を用いるものとしている。これはPEEKが油潤滑の軸受における摺動材料として広く使用されており、その使用実績から、そのまま水潤滑の場合に転用したというのが実情である。
For this reason, the use of a thermoplastic resin material for the sliding contact surface of the bearing as in the prior art disclosed in
しかし水潤滑において熱可塑性樹脂としてPEEKを用いることは、水潤滑の利点を十分に活かしておらず、結果として過剰品質になっているといえる。すなわちPEEKは樹脂材料の中で最高クラスの耐熱性(ガラス転移温度が約150℃)を持っており、この高い耐熱性から、高温条件となる油潤滑の軸受における摺動材料として優れた適性が認められたものである。しかるに水潤滑の場合には、水の粘度が油潤滑に用いられる油(例えばタービン油VG32)の約1/30と小さいことから摺動面の摩擦損失による発熱が小さいために、摺動面の温度は高くても数十度程度であり、油潤滑における温度条件に耐え得るような耐熱性は必ずしも必要でなく、一般的な耐熱クラスの樹脂材料に比べて数〜10倍といった高価なPEEKを用いることは過剰品質となる。 However, the use of PEEK as a thermoplastic resin in water lubrication does not sufficiently utilize the advantages of water lubrication, and as a result, it can be said that the quality is excessive. In other words, PEEK has the highest heat resistance (glass transition temperature of about 150 ° C.) among resin materials, and because of this high heat resistance, it has excellent suitability as a sliding material in oil-lubricated bearings under high temperature conditions. It is recognized. However, in the case of water lubrication, since the viscosity of water is as small as about 1/30 of oil used for oil lubrication (for example, turbine oil VG32), heat generation due to friction loss on the sliding surface is small. Even if the temperature is high, it is about several tens of degrees, heat resistance that can withstand the temperature conditions in oil lubrication is not necessarily required, and expensive PEEK that is several to ten times as high as a general heat-resistant class resin material is used. The use becomes excessive quality.
本発明は、水潤滑軸受装置における以上のような事情を背景になされたものであり、回転軸の周方向に沿ってセグメント化した軸受を複数配設し、その各軸受を回転軸に装着のスリーブに弾性的に押接させる弾性的押接構造の水潤滑セグメント型軸受装置について、その弾性的押接構造の利点や水潤滑の利点をより有効に活かすことで低コスト化を図ることを目的とし、また分解組立作業時の取扱い性の向上を図ることを目的とし、さらにそのような水潤滑セグメント型軸受装置を用いた水車の提供を目的とている。 The present invention has been made in the background of the above-described circumstances in the water-lubricated bearing device, and a plurality of bearings segmented along the circumferential direction of the rotating shaft are arranged, and each of the bearings is attached to the rotating shaft. The purpose of the water-lubricated segment-type bearing device with an elastic pressing structure that is elastically pressed against the sleeve is to reduce costs by making more effective use of the advantages of the elastic pressing structure and water lubrication. It is another object of the present invention to provide a water turbine using such a water-lubricated segment type bearing device.
上記目的のために本発明では、回転軸に装着されたスリーブ、前記スリーブの外周に配置された軸受ケース、それぞれが前記スリーブに摺接するようにして前記スリーブと前記軸受ケースの間で前記スリーブの周方向に沿ってセグメント化して複数配設された軸受、および前記軸受の摺接面を前記スリーブの摺接面に弾性的に押接させる弾性的押圧機構を有している水潤滑セグメント型軸受装置において、前記軸受の摺接面を樹脂部で形成するとともに、前記樹脂部の樹脂材料にポリフェニレンサルファイド系樹脂またはフッ素系樹脂を用いたことを特徴としている。 For the above purpose, in the present invention, a sleeve mounted on a rotary shaft, a bearing case disposed on the outer periphery of the sleeve, and the sleeve is placed between the sleeve and the bearing case so as to be in sliding contact with the sleeve. A water-lubricated segment bearing having a plurality of bearings that are segmented along the circumferential direction and an elastic pressing mechanism that elastically presses the sliding contact surface of the bearing against the sliding contact surface of the sleeve In the apparatus, the sliding contact surface of the bearing is formed of a resin portion, and a polyphenylene sulfide resin or a fluorine resin is used as a resin material of the resin portion.
また本発明では上記のような水潤滑セグメント型軸受装置について、カーボン繊維が混合された樹脂材料を用いるものとしている。 In the present invention, a resin material mixed with carbon fibers is used for the water-lubricated segment type bearing device as described above.
また本発明では上記のような水潤滑セグメント型軸受装置について、前記スリーブを焼き入れ処理したステンレス鋼で形成するものとしている。 In the present invention, the above-described water-lubricated segment type bearing device is formed of stainless steel obtained by quenching the sleeve.
また本発明では上記目的のために、軸受装置で支承された回転軸を有する水車において、前記軸受装置として上記のような水潤滑セグメント型軸受装置を用いるものとしている。 Further, in the present invention, for the above purpose, in the water turbine having the rotating shaft supported by the bearing device, the above-described water-lubricated segment type bearing device is used as the bearing device.
本発明では、軸受の摺接面に樹脂部を設けその樹脂部をポリフェニレンサルファイド系樹脂またはフッ素系樹脂で形成するようにしている。樹脂材料は従来の軸受装置で用いられているセラミックス材料と比べれば耐磨耗性では劣るが耐衝撃性ではセラミックス材料に対して優れており、またコスト的にもセラミックス材料に対して優れている。このため軸受の摺接面を樹脂材料で形成することは、軸受の摺接面をスリーブに弾性的に押接させる弾性的押接機構を設ける構造の利点をより有効に活用することで軸受装置の取扱い性の向上と低コスト化を図ることにつながる。すなわち弾性的押接機構を設けることは摺接面の耐磨耗性にそれほど高いものを必要としないという利点をもたらすが、軸受の摺接面を樹脂材料とすることで、この利点をより有効に活かせるようになり、そして樹脂材料がセラミックス材料と比べて耐衝撃性とコストで優れることから、軸受装置の分解組立作業時における取扱い性の向上を図れ、また軸受装置の低コスト化も図れる。 In the present invention, a resin portion is provided on the sliding contact surface of the bearing, and the resin portion is formed of polyphenylene sulfide-based resin or fluorine-based resin. Resin materials are inferior in wear resistance to ceramic materials used in conventional bearing devices, but are superior to ceramic materials in impact resistance, and are also superior to ceramic materials in terms of cost. . For this reason, forming the sliding contact surface of the bearing with a resin material makes it possible to more effectively utilize the advantage of the structure of providing an elastic pressing mechanism that elastically presses the sliding contact surface of the bearing against the sleeve. This leads to improved handling and cost reduction. In other words, providing an elastic pressing mechanism provides the advantage that the wear resistance of the sliding contact surface does not need to be so high, but this advantage is made more effective by using a resin material for the sliding contact surface of the bearing. Since the resin material is superior in impact resistance and cost compared to the ceramic material, it is possible to improve handling at the time of disassembling and assembling the bearing device, and to reduce the cost of the bearing device. .
また本発明ではその樹脂材料としてポリフェニレンサルファイド系樹脂またはフッ素系樹脂を用いるようにしている。例えばポリフェニレンサルファイド系樹脂は、従来の軸受装置で用いられているPEEKに比べて耐熱性の指標であるガラス転移温度が約90℃程度と低いもののコスト的に十分の1程度と優れている。このため樹脂材料としてポリフェニレンサルファイド系樹脂を用いることは、水潤滑の利点をより有効に活用することで軸受装置の低コスト化を図ることにつながる。すなわち水潤滑の場合には摺接面の温度は最大でも100℃以上になることがなく、通常は数十℃程度であるという条件を活用し、耐熱性がそれほど高くなくて低コストであるポリフェニレンサルファイド系樹脂を用いることで軸受装置のさらなる低コスト化を図れる。このことはフッ素系樹脂を用いる場合についてもいえる。 In the present invention, polyphenylene sulfide resin or fluorine resin is used as the resin material. For example, polyphenylene sulfide-based resin is superior to PEEK used in conventional bearing devices, although it has a low glass transition temperature of about 90 ° C., which is an index of heat resistance, and is excellent at about 1 that is sufficient in terms of cost. For this reason, using a polyphenylene sulfide-based resin as a resin material leads to cost reduction of the bearing device by utilizing the advantage of water lubrication more effectively. That is, in the case of water lubrication, the temperature of the sliding contact surface does not exceed 100 ° C. at the maximum, and is usually about several tens of degrees C. By using a sulfide-based resin, the cost of the bearing device can be further reduced. This is also true for the case of using a fluororesin.
以下、本発明を実施するための形態について説明する。図1に本発明の第1の実施形態による水潤滑セグメント型軸受装置を適用した発電用の水車の概略構造を示す。図1に示す水車は、回転軸1、回転軸1の下部に固定されたランナ41、ランナ41の上部で回転軸1が挿通するように配置された固定体42、および固定体42に回転軸1を回転自在に支承させる軸受装置30を有しており、その軸受装置30として本発明の第1の実施形態による水潤滑セグメント型軸受装置が用いられており、その水潤滑セグメント型軸受装置30の潤滑剤として河川水を利用可能とされている。固定体42は、中空形状をなしており、その天板部43が水潤滑セグメント型軸受装置30を介して回転軸1の支承をなすようにされ、その上カバー44と回転軸1の間に軸封装置45が設けられている。また、固定体42の上カバー44と下カバー46とでケーシング47が形成され、ケーシング47からランナ41に流入する水の流量をガイドベーン48によって調整できるようにされている。そのガイドベーン48は、ケーシング47上に設けられたガイドリング49と連結され、油圧サーボ(図示せず)により駆動されるようになっている。
Hereinafter, modes for carrying out the present invention will be described. FIG. 1 shows a schematic structure of a water turbine for power generation to which a water-lubricated segment type bearing device according to a first embodiment of the present invention is applied. The water wheel shown in FIG. 1 includes a
水潤滑セグメント型軸受装置30の構造を図2と図3に示す。図2は水潤滑セグメント型軸受装置30の縦断面図であり、図3は図2中のB−B線に沿った断面図である。水潤滑セグメント型軸受装置30は、スリーブ2、軸受ケース3、軸受4、弾性的押接機構P、弾性支持機構S、および潤滑水貯水枠体Wを主な要素としている。
The structure of the water-lubricated segment
スリーブ2は、スカート部2sを有しており、このスカート部2sを介して回転軸1に固定的に装着され、軸受4による回転軸1の摺接支持を受けるのに機能する。またスリーブ2は、スカート部2sの周囲に沿って二分割できる筒構造とされ、その分割された半円筒部材はリーマボルト5により締結されている。本発明ではこのスリーブ2を焼き入れ処理されステンレス鋼で形成し、そのステンレス鋼材が外周の摺接面2fを形成するようにしている。ステンレス鋼として好ましい例としてはSUS420J2(JIS規格)を挙げることができる。このようにスリーブ2とその摺接面2fを焼き入れ処理のステンレス鋼で形成することにより、後述のように弾性的押接機構Pの効用をより有効に活かすことができる。
The
軸受ケース3は、図3に示すように筒形をなしており、スリーブ2の外周に配置される。また軸受ケース3は、図2に示すように、その軸方向の下端に下プレート6が、また上端に上プレート7がそれぞれ取り付けられ、これら下プレート6と上プレート7で軸受4の上下両端面を囲むようにされている。
As shown in FIG. 3, the bearing case 3 has a cylindrical shape and is disposed on the outer periphery of the
軸受4は、スリーブ2と軸受ケース3の間でスリーブ2の周方向に沿って複数個(図3の例では8個)がそれぞれスリーブ2に摺接するようにしてセグメント化された状態で配設される。各軸受4のスリーブ2に対する摺接面は樹脂材料で形成する。具体的には軸受4に樹脂材料で形成した樹脂部8を設け、この樹脂部8の外面を軸受4の摺接面4fとする。樹脂部8は、例えばエポキシ系の接着剤で軸受4に接着させて固定する。このように軸受4の摺接面4fを樹脂材料、特にカーボン繊維を混入させた繊維強化樹脂材料で形成することにより、後述のように弾性的押接機構Pの効用をより有効に活かすことができる。また本発明では樹脂部8の樹脂材料として、スリーブ2との摺接における潤滑を水潤滑とする関係から、この水潤滑をより有効に活かすことのできる樹脂材料を用いるようにしている。その具体的な選定基準は以下の通りである。樹脂材料にはその耐熱性の指標としてガラス転移温度があり、一般的に耐熱性の高い樹脂材料ほど高価である。そこで、水潤滑であることにより摺接面の温度は最大でも100℃以上になることがなく、通常は数十℃程度であることを前提にし、ガラス転移温度は100℃以下であってもよいことを一つの選定基準とする。それから軸受の摺動材料として実績のあるPEEK樹脂の摺動特性を指標とし、これと同程度の摺動特性を有することを他の一つの選定基準とする。このような選定基準から本発明では、樹脂部8の樹脂材料としてポリフェニレンサルファイド(適宜にPPSないしPPS樹脂と称する)を主成分とするPPS系樹脂を最も好ましいものとして用い、またフッ素系樹脂も好ましいものとして用いる。PPS系樹脂を最も好ましいものとするのは、PPS系樹脂が後述のように摺動材として実績のあるPEEK樹脂と同等の摺動特性を有していること、そのような高い摺動特性を有しながら低コストであること、さらに金属材料の軸受4に対して容易に接着することができることなどの摺動材料として高い特性を持っていることが見出されたからである。
The bearings 4 are arranged in a segmented state between the
弾性的押接機構Pは、軸受4を回転軸1の径方向で弾性的に支持する。そのために弾性的押接機構Pは、軸受4をスリーブ2に対して回転軸1の径方向に弾性的に付勢する圧縮コイルばね10とこの圧縮コイルばね10のばね力を調整する調整体11を主な要素としてなっている。
The elastic pressing mechanism P elastically supports the bearing 4 in the radial direction of the
圧縮コイルばね10は、軸受4の外周面に互いに対向するように突設させた一対の対向壁12、12とこの対向壁12、12の間で軸受4の外周面を適切な深さに切削して形成した溝13とが形成する空間に保持された状態で、その一端を溝13の底で軸受4に押接させ、その他端が板ばね14を介して調整体11に押圧支持されるように設けられている。
The
調整体11は、軸受ケース3に径方向で貫通するように形成したねじ孔15に螺合させたボルト構造で形成されており、ねじ孔15への捻込み状態を調節することで板ばね14を介した圧縮コイルばね10に対する押圧力を調整できるようにされ、その捻込み状態をナット16で固定できるようにされている。また調整体11は、その先端面がわずかに球面状とされており、この球面状先端面で板ばね14の中心部に押接するようにされている。
The adjusting body 11 is formed by a bolt structure screwed into a
ここで、圧縮コイルばね10と調整体11の間に介在する板ばね14は、軸受4の調心機能を負っており、圧縮コイルばね10を図2の状態で上下に挟むようにして対にして設けられているピボット17、17により両端部を支持され、また上述のように調整体11の球面状先端面で中心部を押接支持されている。
Here, the
以上のような弾性的押接機構Pによる軸受4の弾性的支持には2つの機能がある。一つは、軸受4の樹脂部8による摺接面4fを回転軸1の停止時にスリーブ2の摺接面2fに押接させるようにすることで、潤滑水として河川水を用いた場合でも土砂などによる硬い粒子が摺接面4fと摺接面2fの間に入り込むのを防止する機能である。この機能により、潤滑水として河川水を用いた場合に問題になる土砂などの硬い粒子による摺接面の磨耗の可能性を効果的に回避することができる。他の一つは、樹脂部8が磨耗するようなことが仮にあった場合に、その磨耗で摺接面4fと摺接面2fの隙間が拡大するのを回避して潤滑用の水膜を形成するのに適した隙間に維持する機能である。
The elastic support of the bearing 4 by the elastic pressing mechanism P as described above has two functions. One is that the sliding contact surface 4f by the resin portion 8 of the bearing 4 is pressed against the sliding contact surface 2f of the
このように弾性的押接機構Pを設けることにより摺接面の磨耗問題に効果的に対処できるようになる。このことは、弾性的押接機構Pにより軸受4を弾性的に支持する構造にあっては摺接面にそれほど高い耐磨耗性を要求する必要が必ずしもないという利点をもたらす。そこで本発明ではこの利点をより有効に活かすために、上述のようにスリーブ2の摺接面2fを焼き入れ処理のステンレス鋼で形成するようにするものとし、また上述のように軸受4の摺接面4fを樹脂材料で形成するようにするものとし、しかもその樹脂材料としてPPS樹脂を最も好ましいものとして用いることで、水潤滑という条件もより有効に活かすようにしている。
By providing the elastic pressing mechanism P in this way, it becomes possible to effectively cope with the wear problem of the sliding contact surface. This brings about the advantage that in the structure in which the bearing 4 is elastically supported by the elastic pressing mechanism P, it is not always necessary to require so high wear resistance on the sliding contact surface. Therefore, in the present invention, in order to utilize this advantage more effectively, the sliding contact surface 2f of the
弾性支持機構Sは、軸受ケース3の下プレート6と軸受4の下端面の間に設けられたコイルばね18により形成されており、軸受ケース3が軸受4を弾性的に支持する機能を負っている。このような弾性支持機構Sで軸受4を弾性的に支持させるようにしたことにより、弾性的押接機構Pにおける圧縮コイルばね10による適切な付勢力をより安定的に軸受4に働かせることができるようになる。この結果、軸受4の追従性が改善されるとともに、回転軸1の回転中における摺接面2fと摺接面4fの隙間での水膜形成がより安定的になり、したがって反負荷側の軸受4の片当りによる損傷なども効果的に防止できる。また圧縮コイルばね10による押接力を低くい適正な値に設定できるようになるので、起動摩擦力を小さく押えることが可能となり、安定した摺動特性が得られるようになる。なおコイルばね18は、軸受4の弾性的支持をより安定的なものとするには2本以上設けるのが好ましい。
The elastic support mechanism S is formed by a
潤滑水貯水枠体Wは、摺接面2fと摺接面4fの潤滑に用いる水を貯水させるためのもので、それぞれ軸受ケース3に取り付けられた内カバー20、外カバー21、および図1における天板部43で桝状に囲って形成され、その上部には潤滑水の飛散を防止する上板22が設けられている。
The lubricating water storage frame W is for storing water used for lubrication of the sliding contact surface 2f and the sliding contact surface 4f. The
以下では樹脂部8に好ましいものとして用いるPPSの摺動特性評価試験について説明する。試験は各種樹脂材料の摺動特性をPEEKのそれと比較することで行なった。具体的には、何れもカーボン繊維で繊維強化したPPSとその他の各種樹脂およびPEEKのそれぞれについてリング状の固定側資料を作製し、この各固定側資料をSUS420J2で作製のリング状回転側資料に水潤滑の下で回転させながら摺接させて摩擦係数と潤滑特性数(軸受特性数)(S=η・N/P)の関係を実測した。ここで、η:摺動面近傍の温度における水道水の粘度(Pa・s)、N:回転速度(rps)、P:摺動面圧(Pa)である。試験条件としては、固定側資料に水潤滑のための放射溝を6本形成し、この溝に潤滑水(水道水)を導入して摺動面を水で潤滑しながら回転側資料を回転させて平均周速度5m/sに保持した状態で、摺動面圧(試験荷重/摺動面積)を段階的に上昇させ、摩擦係数が急増するまで試験した。 Below, the sliding characteristic evaluation test of PPS used as a preferable thing for the resin part 8 is demonstrated. The test was performed by comparing the sliding characteristics of various resin materials with that of PEEK. Specifically, ring-shaped fixed side materials are prepared for each of PPS and other various resins and PEEK reinforced with carbon fiber, and these fixed-side materials are made into ring-shaped rotating side materials manufactured by SUS420J2. The relationship between the friction coefficient and the number of lubrication characteristics (number of bearing characteristics) (S = η · N / P) was measured by sliding while rotating under water lubrication. Here, η: viscosity of tap water at a temperature in the vicinity of the sliding surface (Pa · s), N: rotational speed (rps), and P: sliding surface pressure (Pa). As test conditions, six radial grooves for water lubrication are formed in the fixed side material, and lubricating water (tap water) is introduced into this groove, and the rotating side material is rotated while lubricating the sliding surface with water. With the average peripheral speed maintained at 5 m / s, the sliding surface pressure (test load / sliding area) was increased stepwise and tested until the friction coefficient increased rapidly.
この摺動試験の結果をPPSとPEEKの比較として図4に示す。図4は、流体潤滑から境界潤滑に移行する摺動条件を表すストライベック線図、すなわち潤滑特性数S=η・N/Pと実測の摩擦係数の関係を示している。このストライベック線図において、摩擦係数は軸受特性数の低下とともに減少し、ある臨界値を経て急激に増大する傾向を示す。この臨界値を境にして、潤滑特性数が大きい領域を流体潤滑領域と称している。すなわち、軸受特性数の臨界値が小さいほうが摺動特性に優れていることになる。図4に示すように、PEEKとPPSでは臨界値になる軸受特性数が何れも6×10−9で、PPSは摺動材料として実績のあるPEEKと同等の摺動特性を安定的に示すことを確認できる。この結果から、PPSを軸受4の樹脂部8に用いることでPEEKを用いる場合と同等の特性が得られることが分かる。ここで、樹脂材料には繊維強化のためにカーボン繊維が混合されているが、このカーボン繊維の脱落、剥離などで形成される凹みが水溜めとして作用することで、PPSとPEEKの何れもが高面圧条件になっても摺動特性を向上させているものと推定できる。なおPPS以外の樹脂材料は何れもPEEKと同等の摺動特性を満足していなかった。 The result of this sliding test is shown in FIG. 4 as a comparison between PPS and PEEK. FIG. 4 shows a Stribeck diagram representing a sliding condition for shifting from fluid lubrication to boundary lubrication, that is, the relationship between the lubrication characteristic number S = η · N / P and the measured friction coefficient. In this Stribeck diagram, the coefficient of friction decreases as the number of bearing characteristics decreases, and shows a tendency to increase rapidly after a certain critical value. A region having a large number of lubrication characteristics with this critical value as a boundary is referred to as a fluid lubrication region. That is, the smaller the critical value of the number of bearing characteristics, the better the sliding characteristics. As shown in FIG. 4, the number of bearing characteristics that are critical values for PEEK and PPS are both 6 × 10 −9 , and PPS stably exhibits sliding characteristics equivalent to PEEK, which has a proven track record as a sliding material. Can be confirmed. From this result, it can be seen that the use of PPS for the resin portion 8 of the bearing 4 provides the same characteristics as when PEEK is used. Here, carbon fiber is mixed in the resin material for fiber reinforcement, but the depression formed by dropping or peeling of the carbon fiber acts as a water reservoir, so that both PPS and PEEK It can be estimated that the sliding characteristics are improved even under high surface pressure conditions. In addition, none of the resin materials other than PPS satisfied the sliding characteristics equivalent to PEEK.
次に、静止時に接触させておき、回転起動後の水膜形成で非接触状態となる起動停止を繰り返した場合のPPSの耐摩耗性を検討した。具体的には、水道水中において、軸受の樹脂部にPPSを用い、回転軸のスリーブにSUS420J2を用いた組合でPPSの摩耗量と起動停止回数の関係を実測した。試験条件としては、静止時に面圧0.024MPaで接触させ、起動後周速8m/sに達してから5分保持し、その後停止させて停止時間5分が経過したら再起動するというパターンを繰り返した。 Next, the wear resistance of the PPS was examined when the system was kept in contact at rest and the start / stop that would be in a non-contact state during the formation of the water film after the start of rotation was repeated. Specifically, in tap water, the relationship between the amount of wear of PPS and the number of times of starting and stopping was measured by a combination of using PPS for the resin portion of the bearing and SUS420J2 for the sleeve of the rotating shaft. As test conditions, contact was made at a surface pressure of 0.024 MPa when stationary, and after starting, the pattern was held for 5 minutes after reaching a peripheral speed of 8 m / s, then stopped and restarted after 5 minutes of stopping time. It was.
図5にこの耐摩耗性の評価結果を示す。図5に示すように、摩耗量は起動回数の増加に伴い僅か増大するが、4000回の試験後で0.0015mmとなり十分な耐摩耗性を有し、実用性の高いことが確認できる。このとから静止時に所定の押圧力で押接させておき回転に伴って水膜を形成させる弾性的押接構造に対してPPSを使用しても十分に耐え得ることが分かる。 FIG. 5 shows the evaluation results of this wear resistance. As shown in FIG. 5, the wear amount slightly increases with the increase in the number of activations, but after the test of 4000 times, it becomes 0.0015 mm, has sufficient wear resistance, and can be confirmed to be highly practical. From this, it can be seen that even when PPS is used with respect to an elastic pressing structure in which a water film is formed with rotation by pressing with a predetermined pressing force when stationary, it can be sufficiently endured.
図6に本発明の第2の実施形態による水潤滑セグメント型軸受装置の構造を示す。本実施形態の水潤滑セグメント型軸受装置は、基本的には第1の実施形態における水潤滑セグメント型軸受装置と同様で、その弾性的押接機構P´の弾性的付勢手段として第1の実施形態における圧縮コイルばね10の代わりに引張りコイルばね25を用いている点で相違している。引張りコイルばね25は、スリーブ2の周方向で円形に配列される複数の軸受4をまとめて巻き締めて押圧するように設けられる。このように引張りコイルばね25を用いる構造は、圧縮コイルばね10であると軸受4ごとにそれを設ける必要があるのに対して、複数の軸受4に対して1本の引張りコイルばね25を設けるだけで済み、装置の組立て作業における作業性を改善することができる。その他の構成は第1の実施形態の場合と同様なのでそれらについての説明は上での説明を援用する。なお引張りコイルばね25を用いる本実施形態については、他の変形例も可能である。すなわち引張りコイルばね25と同様に引張りばね力を発揮する、例えばゴム環などを用いる形態である。
FIG. 6 shows the structure of a water-lubricated segment type bearing device according to the second embodiment of the present invention. The water-lubricated segment type bearing device of the present embodiment is basically the same as the water-lubricated segment type bearing device of the first embodiment, and the first as an elastic biasing means of the elastic pressing mechanism P ′. The difference is that a
本発明の水潤滑セグメント型軸受装置は、例えば水車や排水ポンプなどのように水が関与する回転装置における回転軸の支承用として好適に用いることができるものである。このような水潤滑セグメント型軸受装置の低コスト化や取扱い性の改善を図る本発明は、水が関与する回転装置の分野に有効なものとして利用することができる。 The water-lubricated segment type bearing device of the present invention can be suitably used for supporting a rotating shaft in a rotating device involving water, such as a water wheel or a drainage pump. The present invention for reducing the cost and improving the handleability of such a water-lubricated segment type bearing device can be utilized as effective in the field of rotating devices involving water.
1 回転軸
2 スリーブ
2f スリーブの摺接面
3 軸受ケース
4 軸受
4f 軸受の摺接面
8 樹脂部
P 弾性的押接機構
DESCRIPTION OF
Claims (4)
前記軸受の摺接面を樹脂部で形成するとともに、前記樹脂部の樹脂材料にポリフェニレンサルファイド系樹脂またはフッ素系樹脂を用いたことを特徴とする水潤滑セグメント型軸受装置。 A sleeve mounted on the rotating shaft, a bearing case disposed on the outer periphery of the sleeve, and a plurality of segments formed along the circumferential direction of the sleeve between the sleeve and the bearing case so as to be in sliding contact with the sleeve. In the water-lubricated segment type bearing device having an arranged pressing bearing and an elastic pressing mechanism that elastically presses the sliding contact surface of the bearing against the sliding contact surface of the sleeve,
A water-lubricated segment type bearing device characterized in that a sliding contact surface of the bearing is formed of a resin portion, and a polyphenylene sulfide resin or a fluorine resin is used as a resin material of the resin portion.
A water turbine having a rotary shaft supported by a bearing device, wherein the water-lubricated segment type bearing device according to any one of claims 1 to 3 is used as the bearing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004058747A JP2005249030A (en) | 2004-03-03 | 2004-03-03 | Water-lubrication segment type bearing device and water turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004058747A JP2005249030A (en) | 2004-03-03 | 2004-03-03 | Water-lubrication segment type bearing device and water turbine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009164959A Division JP4527183B2 (en) | 2009-07-13 | 2009-07-13 | Water lubrication segment type bearing device and water turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005249030A true JP2005249030A (en) | 2005-09-15 |
Family
ID=35029702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004058747A Pending JP2005249030A (en) | 2004-03-03 | 2004-03-03 | Water-lubrication segment type bearing device and water turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005249030A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007247478A (en) * | 2006-03-15 | 2007-09-27 | Hitachi Engineering & Services Co Ltd | Water-lubrication pad type bearing device and water turbine |
JP2008202649A (en) * | 2007-02-19 | 2008-09-04 | Hitachi Engineering & Services Co Ltd | Pad type bearing device and horizontal shaft water turbine |
JP2010007805A (en) * | 2008-06-30 | 2010-01-14 | Hitachi Engineering & Services Co Ltd | Pad type bearing device and lateral shaft water turbine |
CN102230441A (en) * | 2011-04-15 | 2011-11-02 | 重庆云河水电股份有限公司 | Runner-plate pump self-lubricating radial thrust bearing |
CN110173388A (en) * | 2019-05-24 | 2019-08-27 | 广西桂冠电力股份有限公司 | Guide Bearing for Vertical Hydrogenerator Sets watt seat supports device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0693407A (en) * | 1992-03-18 | 1994-04-05 | Hitachi Ltd | Bearing device and drainage pump and hydraulic turbine with the same and manufacture of bearing device |
JPH08205562A (en) * | 1995-01-25 | 1996-08-09 | Ricoh Co Ltd | Linear vibration actuator |
JPH08338428A (en) * | 1995-06-14 | 1996-12-24 | Hitachi Ltd | Water lubricating pad type ceramic bearing device |
JPH11210846A (en) * | 1998-01-22 | 1999-08-03 | Koyo Seiko Co Ltd | Belt tensioner |
JP2000081034A (en) * | 1998-09-07 | 2000-03-21 | Hitachi Ltd | Pad type ceramic bearing device and water turbine having pad type ceramic bearing device bearing device |
JP2000249147A (en) * | 1999-03-04 | 2000-09-12 | Hitachi Ltd | Bearing device and manufacture of the bearing |
JP2001263340A (en) * | 2000-03-16 | 2001-09-26 | Hitachi Ltd | Method for manufacturing bearing |
JP2004036707A (en) * | 2002-07-02 | 2004-02-05 | Hitachi Industries Co Ltd | Resin bearing and double suction centrifugal pump incorporated with the resin bearing |
-
2004
- 2004-03-03 JP JP2004058747A patent/JP2005249030A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0693407A (en) * | 1992-03-18 | 1994-04-05 | Hitachi Ltd | Bearing device and drainage pump and hydraulic turbine with the same and manufacture of bearing device |
JPH08205562A (en) * | 1995-01-25 | 1996-08-09 | Ricoh Co Ltd | Linear vibration actuator |
JPH08338428A (en) * | 1995-06-14 | 1996-12-24 | Hitachi Ltd | Water lubricating pad type ceramic bearing device |
JPH11210846A (en) * | 1998-01-22 | 1999-08-03 | Koyo Seiko Co Ltd | Belt tensioner |
JP2000081034A (en) * | 1998-09-07 | 2000-03-21 | Hitachi Ltd | Pad type ceramic bearing device and water turbine having pad type ceramic bearing device bearing device |
JP2000249147A (en) * | 1999-03-04 | 2000-09-12 | Hitachi Ltd | Bearing device and manufacture of the bearing |
JP2001263340A (en) * | 2000-03-16 | 2001-09-26 | Hitachi Ltd | Method for manufacturing bearing |
JP2004036707A (en) * | 2002-07-02 | 2004-02-05 | Hitachi Industries Co Ltd | Resin bearing and double suction centrifugal pump incorporated with the resin bearing |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007247478A (en) * | 2006-03-15 | 2007-09-27 | Hitachi Engineering & Services Co Ltd | Water-lubrication pad type bearing device and water turbine |
JP2008202649A (en) * | 2007-02-19 | 2008-09-04 | Hitachi Engineering & Services Co Ltd | Pad type bearing device and horizontal shaft water turbine |
JP4597152B2 (en) * | 2007-02-19 | 2010-12-15 | 株式会社日立エンジニアリング・アンド・サービス | Pad type bearing device and horizontal axis turbine |
JP2010007805A (en) * | 2008-06-30 | 2010-01-14 | Hitachi Engineering & Services Co Ltd | Pad type bearing device and lateral shaft water turbine |
CN102230441A (en) * | 2011-04-15 | 2011-11-02 | 重庆云河水电股份有限公司 | Runner-plate pump self-lubricating radial thrust bearing |
CN110173388A (en) * | 2019-05-24 | 2019-08-27 | 广西桂冠电力股份有限公司 | Guide Bearing for Vertical Hydrogenerator Sets watt seat supports device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3971606A (en) | Water lubricated bearing device | |
US10711792B2 (en) | Auxiliary turbomachinery shaft support system and turbomachinery comprising said system | |
JP4527183B2 (en) | Water lubrication segment type bearing device and water turbine | |
JP2007255614A (en) | Water lubricating guide bearing device and water turbine mounted with the same | |
US20180209476A1 (en) | Tilting pad bearing assemblies, and bearing apparatuses and methods of using the same | |
JP5761560B2 (en) | Thrust support device | |
JP2005249030A (en) | Water-lubrication segment type bearing device and water turbine | |
JP3745396B2 (en) | Water lubricated ceramic bearing device, pump and water wheel | |
JP4597152B2 (en) | Pad type bearing device and horizontal axis turbine | |
US7135797B2 (en) | Fluid dynamic bearing with wear resilient surface | |
JP4897316B2 (en) | Water lubrication pad type bearing device and water wheel | |
US20080037916A1 (en) | Dynamic Bearing Device | |
JP5021576B2 (en) | Pad type bearing device and horizontal axis turbine | |
CN109578433B (en) | High-reliability closed type spool type dynamic pressure bearing | |
JP2001124070A (en) | Water lubricated bearing device | |
JP2011007243A (en) | Structure of thrust bearing for water lubrication | |
KR102629312B1 (en) | Journal bearings with improved efficiency | |
JP3761746B2 (en) | Oil lubricated bearing structure and pump including the same | |
JP4089209B2 (en) | Double suction centrifugal pump | |
Oguma et al. | Water Lubricated guide bearing with self-aligning segments | |
RU160032U1 (en) | SUPPORT ASSEMBLY | |
JP2003028146A (en) | Guide bearing device | |
CN112727919A (en) | Ultra-heavy-load water-lubricated sliding thrust bearing and manufacturing method thereof | |
RU2339854C2 (en) | Pad thrust of axial hydrodynamic bearing of submersible drive pump unit for oil extraction | |
CN216975105U (en) | Self-lubricating bearing for hydroelectric generating set |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080619 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090713 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090901 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091130 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100121 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20100226 |