JPH0693407A - Bearing device and drainage pump and hydraulic turbine with the same and manufacture of bearing device - Google Patents

Bearing device and drainage pump and hydraulic turbine with the same and manufacture of bearing device

Info

Publication number
JPH0693407A
JPH0693407A JP5081136A JP8113693A JPH0693407A JP H0693407 A JPH0693407 A JP H0693407A JP 5081136 A JP5081136 A JP 5081136A JP 8113693 A JP8113693 A JP 8113693A JP H0693407 A JPH0693407 A JP H0693407A
Authority
JP
Japan
Prior art keywords
bearing
sprayed film
bearing device
sleeve
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5081136A
Other languages
Japanese (ja)
Other versions
JP3271363B2 (en
Inventor
Ryoji Okada
亮二 岡田
Masayuki Yamada
雅之 山田
Kunio Takada
国雄 高田
Kenji Otani
健二 大谷
Koji Aizawa
宏二 会沢
Mitsuaki Haneda
光明 羽田
Toshihiro Yamada
俊宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP08113693A priority Critical patent/JP3271363B2/en
Publication of JPH0693407A publication Critical patent/JPH0693407A/en
Application granted granted Critical
Publication of JP3271363B2 publication Critical patent/JP3271363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/30Application independent of particular apparatuses related to direction with respect to gravity
    • F16C2300/34Vertical, e.g. bearings for supporting a vertical shaft

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To manufacture a bearing part excellent in wear resistance and assembling properties by thermal-spraying a thermally sprayed film consisting essentially of WC or Cr3, C2, thereafter heating it in specified conditions and forming pores with specified density on the surface of the thermally sprayed film. CONSTITUTION:The sliding face of a bearing or a sleeve is coated with the thermally sprayed film consisting essentially of WC and contg. a binder of Ni, Cr and Co. Or, it is applied with the thermally sprayed film consisting essentially of Cr3 C2 and contg. a binder of NiCr. The applied thermally sprayed film is heated at about 300 to 550 deg.C for about >=1hr to regulate its coating hardness to >=1000 in Vickers hardness. Furthermore, the density of pores having >=20mum dimension formed on the surface of the thermally sprayed film is regulated to <=15/mm<2>. Thus, ductility is imparted to the coating, its resistance to impact is increased and the fracture and peeling of the film are reduced. As for a drainage pump using this bearing device, operation in a lubricant free state is permitted even if it is used as the one for advance standby operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排水ポンプ及び水車に係
り、特に軸受部に清浄水を供給することなく運転するポ
ンプ及び水車に適した耐摩耗性と高い信頼性、及び組立
て性に優れた軸受装置、その軸受装置を用いた排水ポン
プ及び水車とその軸受部の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drainage pump and a water turbine, and in particular, it has excellent wear resistance, high reliability and assemblability suitable for a pump and a water turbine that operate without supplying clean water to a bearing portion. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing device, a drainage pump using the bearing device, a water turbine, and a method for manufacturing a bearing portion thereof.

【0002】[0002]

【従来の技術】近年の急激な都市化に伴い、降雨水量の
ほとんどが排水溝に流れ込むため排水が追いつかず、道
路に溢れだす都市型洪水が増加する傾向にある。これに
対処すべく排水ポンプシステムを装備した排水機場が設
けられているが、排水機場の増加に伴い運転維持管理費
が増大するという問題があり、自動運転による排水ポン
プシステムが検討されている。この排水ポンプシステム
の課題は高性能化、高信頼性化であり、現在、これらに
対応する技術として、ポンプの無給水運転技術、大容量
化、及び先行待機運転が検討されている。
2. Description of the Related Art With the rapid urbanization in recent years, most of the rainfall water flows into drains, so that the drainage cannot keep up and the number of urban floods overflowing the road tends to increase. To cope with this, a drainage pump station equipped with a drainage pump system is provided, but there is a problem that the operation and maintenance cost increases with the increase of the drainage pump station, and a drainage pump system by automatic operation is being considered. The problems of this drainage pump system are high performance and high reliability, and currently, as a technology corresponding to these, a non-water supply operation technology, a large capacity, and a preceding standby operation of the pump are being studied.

【0003】無給水運転技術とは、軸受、スリーブ間に
清浄水を供給することなく運転するものである。清浄水
の供給装置がないため、清浄水供給装置、清浄水供用セ
ンサー等の故障による誤動作がなく信頼性が高い。無給
水運転技術を可能とするためには、排水に含まれる土砂
が進入しても摩耗しない軸受装置が必要である。
The non-water-supply operation technique refers to operation without supplying clean water between the bearing and the sleeve. Since there is no clean water supply device, there is no malfunction due to failure of the clean water supply device, clean water service sensor, etc. In order to enable waterless operation technology, it is necessary to have a bearing device that does not wear even when soil and sand contained in wastewater enters.

【0004】従来の無給水ポンプ用軸受装置には、耐摩
耗性、耐食性に優れるタングステンカ−バイド(以下、
WCと称する)製スリーブ(焼結体)とセラミックス製軸
受(焼結体)との組合せが用いられてきた。WC製スリー
ブとセラミックス製軸受との組合せ構造に関しては、特
開昭60−81517号公報、特開昭60−88215
号公報に開示されている。
A conventional bearing device for a waterless pump is provided with a tungsten carbide (hereinafter, referred to as "high wear resistance and corrosion resistance").
A combination of a sleeve (called WC) (sintered body) and a ceramic bearing (sintered body) has been used. Regarding the combination structure of the sleeve made of WC and the bearing made of ceramics, JP-A-60-81517 and JP-A-60-88215.
It is disclosed in the publication.

【0005】一方、ポンプの大容量化は必然的に軸受の
大口径化を必要とする。しかしながら、従来のWCスリ
ーブとセラミックス軸受との組合せによる軸受装置のま
までは、大口径の焼結体スリーブ、焼結体軸受が必要と
なる。しかしながら、焼結技術が十分に対応できない、
さらに部品重量が大きくなり組立て作業が難しくなると
いう問題があった。そのため、セラミックスと同等の硬
さを有する皮膜を被覆する硬質膜コーティング技術が広
く検討されている。尚、硬質膜として溶射膜を利用した
例として、WC溶射膜を被覆したスリーブとセラミック
ス軸受との組合せを用いた無給水排水ポンプが、「トラ
イボロジスト」、第36巻、第2号の144頁から14
7頁に明示されている。
On the other hand, increasing the capacity of the pump inevitably requires increasing the diameter of the bearing. However, if the conventional bearing device is a combination of a WC sleeve and a ceramic bearing, a large-diameter sintered sleeve and a sintered bearing are required. However, the sintering technology is not sufficient,
Further, there is a problem that the weight of the parts becomes large and the assembling work becomes difficult. Therefore, a hard film coating technique for covering a film having hardness equivalent to that of ceramics has been widely studied. As an example of using a sprayed film as a hard film, a non-feed water drainage pump using a combination of a sleeve coated with a WC sprayed film and a ceramic bearing is disclosed in "Tribologist", Vol. 36, No. 144, page 144. From 14
It is specified on page 7.

【0006】水車用軸受も、排水ポンプ用軸受と同様に
土砂水に対する耐摩耗性が求められている。この点を考
慮し、従来の水車用軸受には、炭化珪素(以下、SiC
と称する)等のセラミックを用いられてきた。
[0006] The bearings for water turbines are required to have wear resistance against sediment water as well as the bearings for drainage pumps. In consideration of this point, conventional turbine bearings have a silicon carbide (hereinafter referred to as SiC
Ceramics) have been used.

【0007】多くの場合、排水ポンプ軸受部には硬質被
膜として溶射膜が利用される。しかし、溶射膜は同組成
の焼結体よりも硬度、強度の点で劣るため、溶射膜の硬
度、強度を上げる方法が検討されている。例えば、50
%Cr−50%Niからなるプラズマ溶射膜を、溶射し
た後、約700℃〜800℃の温度で約1〜100時間
保持し、溶射膜の接着力と強度を高める技術が特開昭5
7−2872号公報に開示されている。又、ニッケル−
リン(NiP)を主成分とし20〜80%のNiCrの
溶射膜をFe系材料の上に形成し、600℃〜1000
℃の温度で熱処理を行い、溶射膜の強度を高める方法が
特開昭60−149762号公報に開示されている。
In many cases, a sprayed coating is used as a hard coating on the drain pump bearing portion. However, since the sprayed film is inferior in hardness and strength to the sintered body having the same composition, a method for increasing the hardness and strength of the sprayed film has been studied. For example, 50
A technique for enhancing the adhesive strength and strength of the sprayed coating by holding a plasma sprayed coating made of% Cr-50% Ni for about 1 to 100 hours at a temperature of about 700 ° C. to 800 ° C. after thermal spraying is disclosed.
No. 7-2872. Also, nickel-
A sprayed film of 20-80% NiCr containing phosphorus (NiP) as a main component is formed on the Fe-based material, and the temperature is 600 ° C-1000 ° C.
Japanese Patent Application Laid-Open No. 60-149762 discloses a method of increasing the strength of a sprayed film by performing heat treatment at a temperature of ° C.

【0008】水車用軸受の場合口径が大きく、現在は分
割セラミックを配置する形式を採っており、排水ポンプ
軸受同様、硬質皮膜による構成が望まれている。WC溶
射膜と炭化クロム(以下、Cr32と称する)溶射膜と
を用いた水車用軸受装置が「タ−ボ機械」、第26回講
演会概要集(1991年5月)の80頁から85頁に記
載されている。
In the case of bearings for water turbines, the bore diameter is large, and at present, split ceramics are arranged, and like the drainage pump bearings, a hard coating structure is desired. A bearing device for a water turbine using a WC sprayed film and a chromium carbide (hereinafter referred to as Cr 3 C 2 ) sprayed film is “Tarbo Machine”, 80th of the 26th lecture summary (May 1991). Pp. 85-85.

【0009】先行待機運転とは、排水開始前に排水可能
水位より低い水位状態で空転運転をすることであり、排
水可能水位に達した時点で全力運転が可能で、急激な排
水増加にすばやく対応できる。しかし、先行待機運転を
行うには、軸受は短時間ながら摺動部に排水を含まない
空転運転を行うため、軸受、スリーブ間の摩擦係数が極
めて低く、ドライ摺動によっても損傷しないことが求め
られる。
The preparatory standby operation is an idle operation at a water level lower than the drainable water level before the start of drainage. When the drainable water level is reached, full-power operation is possible and a rapid increase in drainage can be responded to. it can. However, in order to perform the preceding standby operation, the bearing performs idling operation in which the sliding part does not contain drainage for a short time, so the coefficient of friction between the bearing and sleeve is extremely low, and it is required that it will not be damaged by dry sliding. To be

【0010】長時間の空転運転を行う先行待機運転と、
無給水運転を両立する軸受はいまだ開発されておらず、
空転運転時に軸受摺動部に外部より給水する方法が検討
され、特開昭55−90718号公報に開示されてい
る。
A preceding standby operation for performing a long idle operation,
Bearings that are compatible with waterless operation have not yet been developed,
A method of externally supplying water to the sliding portion of the bearing during idling operation has been studied and is disclosed in JP-A-55-90718.

【0011】[0011]

【発明が解決しようとする課題】土砂を含む水を排水す
るためには、軸受の耐摩耗性は不可欠である。無給水軸
受の場合は軸受、スリーブを保護する清浄水の供給がな
いため、スラリーに対する耐摩耗性は特に重要である。
土砂水に含まれる土砂粒子のほとんどが長石と石英であ
り、最高硬さがビッカース硬度(以下、Hvと称する)
1000程度(石英)である。従って、軸受、スリーブ
に必要とされる硬度はHv1000以上である。
The wear resistance of the bearing is indispensable for draining water containing earth and sand. In the case of a waterless bearing, the wear resistance to slurry is particularly important because no clean water is supplied to protect the bearing and sleeve.
Most of the sediment particles contained in sediment water are feldspar and quartz, and the maximum hardness is Vickers hardness (hereinafter referred to as Hv).
It is about 1000 (quartz). Therefore, the hardness required for the bearing and the sleeve is Hv1000 or more.

【0012】WC,SiC,窒化珪素(以下、Si34
と称する)の焼結体であれば、その硬度はWCがHv約
1400,SiCが約2800、Si34が約1600
といずれもHv1000以上であり、硬度の点では十分
で耐摩耗性も優れている。しかし、焼結技術、組立て作
業性、製造コストを考慮すると、スリーブ、軸受の全体
をWC,SiC又はSi34の焼結体で製作するのには
大きさに限界がある。そこで、上記のごとく焼結体に替
わる硬質被膜を用いることが検討されている。摩耗量を
考慮すれば、膜厚は数100μm以上必要であるため、
硬質被膜の製法が限られる。排水ポンプ軸受部用の硬質
被膜としては、比較的膜厚が得られ、高硬度の得られる
WC,Cr32を主成分とする膜厚100〜200μm
程度の溶射膜が広く用いられている。しかし、溶射法で
形成したWC,Cr32を主成分とする溶射膜は、材
質、形成法、条件にもよるが一般に焼結体に比べ硬度が
低く、約Hv600〜1000程度である。
WC, SiC, silicon nitride (hereinafter referred to as Si 3 N 4
The hardness of the sintered body is about 1400 for WC, about 2800 for SiC, and about 1600 for Si 3 N 4.
Both have Hv of 1000 or more, which is sufficient in terms of hardness and is excellent in wear resistance. However, considering the sintering technology, assembling workability, and manufacturing cost, there is a limit to the size of the entire sleeve and bearing made of a sintered body of WC, SiC, or Si 3 N 4 . Therefore, the use of a hard coating instead of the sintered body as described above is being studied. Considering the amount of wear, the film thickness is required to be several 100 μm or more,
The hard film manufacturing method is limited. As the hard coating for the drainage pump bearing, a film having a relatively high film thickness and a high hardness, which is mainly composed of WC and Cr 3 C 2 , is 100 to 200 μm.
The degree of thermal spray coating is widely used. However, the thermal sprayed film mainly composed of WC and Cr 3 C 2 formed by the thermal spraying method has a hardness lower than that of the sintered body, which is about Hv 600 to 1000, although it depends on the material, the forming method and the conditions.

【0013】従来の各種溶射膜の硬度と土砂水に対する
耐摩耗性との関係を図21で説明する。図21は、実施
例において説明する要素試験によって測定した摩耗率で
ある。各種溶射膜はステンレス鋼(以下、SUSと称す
る)板の上に形成した各種溶射膜を回転側試験片に用
い、固定側試験片にはα−SiCを用いた。その他の試
験条件は、面圧が2kg/cm2、周速が0.5m/
s、土砂水に含まれる珪砂濃度が9wt%である。尚、
試験片形状や摺動方式などの詳細は、実施例に示した図
19の試験条件と同様である。
The relationship between the hardness of various conventional sprayed coatings and the wear resistance to earth and sand water will be described with reference to FIG. FIG. 21 is the wear rate measured by the element test described in the examples. The various sprayed films used were various sprayed films formed on a stainless steel (hereinafter referred to as SUS) plate for the rotating side test piece, and α-SiC was used for the stationary side test piece. Other test conditions were a surface pressure of 2 kg / cm 2 and a peripheral speed of 0.5 m /
The concentration of silica sand contained in the earth and sand water is 9 wt%. still,
The details of the test piece shape and sliding method are the same as the test conditions shown in FIG.

【0014】図21の横軸は溶射膜の断面ビッカース硬
度であり、縦軸はWC−12%Co焼結体の摩耗率を基
準として規格化した相対摩耗率である。溶射膜1、溶射
膜2、溶射膜3は、高速フレーム溶射法及び爆発溶射法
で作成した、WC、若しくはCr32を主成分とする従
来の溶射膜である。図21に示すように、土砂水に対す
る耐摩耗性は、溶射膜の硬度に強く依存し、前述のごと
くビッカース硬度で1000以上が良好である。図21
の結果からは、現状の溶射膜では十分な硬度と土砂水に
対する耐摩耗性が得られないことが分かる。
The abscissa of FIG. 21 is the Vickers hardness in cross section of the sprayed film, and the ordinate is the relative wear rate standardized with the wear rate of the WC-12% Co sintered body as a reference. The thermal sprayed film 1, the thermal sprayed film 2, and the thermal sprayed film 3 are conventional thermal sprayed films containing WC or Cr 3 C 2 as a main component, which are produced by a high speed flame spraying method and an explosive spraying method. As shown in FIG. 21, the abrasion resistance to earth and sand water strongly depends on the hardness of the sprayed coating, and as described above, the Vickers hardness of 1000 or more is good. Figure 21
From the results, it can be seen that the current sprayed coating cannot provide sufficient hardness and abrasion resistance against sediment water.

【0015】一般に溶射とは、WC粒子、Cr32粒子
のような硬質粒子だけを加熱して吹き付けるのではな
く、結合材としてNi、Cr、Co等の金属粒子をまぜ
同時に加熱して吹き付け、溶解した金属粒子によってW
C粒子、Cr32粒子を連結して被膜を形成するもので
ある。溶射膜の硬度が焼結体よりも低いのは、溶射膜中
のWC粒子やCr32粒子の硬度が低いのではなく、W
C粒子、Cr32粒子をつなぐ結合材に空孔等の欠陥が
あるため、或いは結合材とWC粒子、Cr32粒子との
結合力が不十分なためである。
Generally, thermal spraying does not mean that only hard particles such as WC particles and Cr 3 C 2 particles are heated and sprayed, but metal particles such as Ni, Cr and Co are mixed and heated at the same time as a binder and sprayed. , Due to the dissolved metal particles W
C particles and Cr 3 C 2 particles are connected to form a coating film. The hardness of the sprayed film is lower than that of the sintered body, not that the hardness of the WC particles and Cr 3 C 2 particles in the sprayed film is low,
This is because the binder that connects the C particles and Cr 3 C 2 particles has defects such as voids, or the binding force between the binder and the WC particles and Cr 3 C 2 particles is insufficient.

【0016】WC粒子、Cr32粒子間の結合力を増す
ために、様々な溶射法の改善がなされている。例えば溶
射粒子の速度を増した、可燃性ガスの燃焼エネルギを利
用した高速フレーム溶射、可燃性ガスの爆発を利用した
爆発溶射などが開発されており、従来のプラズマ溶射膜
よりも溶射時の粒子速度を高め、より高硬度の溶射膜を
形成することができる。しかしながら、これらの各溶射
法による溶射膜でも土砂水に対する耐摩耗性は充分では
なく、その硬度が低いためであることが図18に示した
要素試験で明らかとなっている。
Various improvements have been made to the thermal spraying method in order to increase the bonding force between the WC particles and the Cr 3 C 2 particles. For example, high-speed flame spraying that uses the combustion energy of flammable gas, which increases the speed of sprayed particles, and explosive spraying that uses the explosion of flammable gas have been developed. It is possible to increase the speed and form a sprayed film having higher hardness. However, it is clear from the element test shown in FIG. 18 that even the sprayed coatings obtained by each of these spraying methods do not have sufficient wear resistance to earth and sand water and their hardness is low.

【0017】前記従来技術、特開昭60−81517号
公報及び特開昭60−88215号公報に開示のセラミ
ック軸受には、軸受、スリーブが大口径化することによ
って生じる、焼結技術の困難、信頼性の低下、重量増加
による組立て性の低下についての検討が加えられていな
い。
In the ceramic bearings disclosed in the above-mentioned prior arts, Japanese Patent Laid-Open Nos. 60-81517 and 60-88215, it is difficult to sinter due to the large diameter of the bearing and the sleeve. No consideration has been given to the decrease in reliability and the decrease in assembly due to the increase in weight.

【0018】前記従来技術、WC溶射膜とセラミックス
軸受(焼結体)との組合せを用いた無給水排水ポンプ(「ト
ライボロジスト」、第36巻、第2号)、及びWC溶射膜
とCr32溶射膜とを用いた水車用軸受構造(「タ−ボ機
械」、第26回講演会概要集)については、WC、或い
はCr32を主成分とする溶射膜の硬度、耐摩耗性、信
頼性についての検討が加えられていない。
A waterless drainage pump ("Tribologist", Vol. 36, No. 2) using a combination of the above-mentioned conventional technique, a WC sprayed coating and a ceramic bearing (sintered body), and a WC sprayed coating and Cr 3 Regarding the bearing structure for a water turbine using a C 2 sprayed coating (“Tarbo Machine”, summary of the 26th lecture meeting), the hardness and resistance of the sprayed coating mainly composed of WC or Cr 3 C 2 No consideration was given to wear resistance and reliability.

【0019】前記従来技術、特開昭57−2872号公
報及び特開昭60−149762号公報に開示の溶射膜
の改質方法では、主な母材材料であるFe系材料と熱膨
張率の近い材料、或いは加熱によって変質の無い材料に
限られ、高硬度が得られるWC、或いはCr32を主成
分とする溶射膜においては、加熱温度が高いため熱膨張
差が大きくなる。その結果被膜が破断しそのままの利用
は難しい。更に、ポンプ等の水中で使用する機器では、
主材料はSUSに限定される。従って、前記従来技術に
示した加熱による溶射膜の改質を適用した場合、加熱温
度が下地のSUSの焼きなまし温度、もしくは粒界腐食
に対する鋭敏化温度以上の高温となり、下地の硬度、耐
食性が低下し、結果として信頼性が低くなるという問題
がある。
In the above-mentioned prior art, Japanese Patent Application Laid-Open No. 57-2872 and Japanese Patent Application Laid-Open No. 60-149762, in the method for modifying a sprayed coating, the main base material Fe-based material and the thermal expansion coefficient In the case of a sprayed coating containing WC or Cr 3 C 2 as a main component, which is limited to a material close to the material or a material which is not deteriorated by heating and has a high hardness, the difference in thermal expansion becomes large because the heating temperature is high. As a result, the coating film breaks and it is difficult to use as it is. Furthermore, for equipment used underwater such as pumps,
The main material is limited to SUS. Therefore, when the modification of the thermal spray coating by heating shown in the above-mentioned prior art is applied, the heating temperature becomes higher than the annealing temperature of SUS of the base or the sensitization temperature for intergranular corrosion, and the hardness and corrosion resistance of the base are lowered. However, there is a problem that reliability is lowered as a result.

【0020】即ち、前記従来技術においてはFe系材料
と熱膨張率差の大きいWCを主成分とする溶射膜の改質
についての検討がなされていない。更に、下地材料の硬
度、耐食性変化についての考慮がなされていない。
That is, in the above-mentioned prior art, no study has been made on the modification of the thermal spray coating containing WC, which has a large thermal expansion coefficient difference from that of the Fe-based material. Furthermore, no consideration is given to changes in hardness and corrosion resistance of the base material.

【0021】前記従来技術、55−90718号公報に
開示されている、軸受摺動部に外部より給水する方法で
は、外部給水装置の誤動作によって排水機場の停止が発
生し、緊急時に排水が停止する可能性があり、信頼性に
問題があった。
In the method of supplying water to the bearing sliding portion from the outside, which is disclosed in the above-mentioned prior art, 55-90718, the drainage station is stopped due to a malfunction of the external water supply device, and the drainage is stopped in an emergency. Possibly, there was a problem with reliability.

【0022】本発明は、前記従来技術に鑑みなされたも
のであり、排水ポンプシステム及び水車に適用可能な、
耐摩耗性と組立て性に優れ、信頼性が高い軸受装置、そ
の軸受装置を用いた排水ポンプ及び水車と軸受装置の製
造方法を提供することを目的とする。
The present invention has been made in view of the above prior art and is applicable to a drainage pump system and a water turbine.
An object of the present invention is to provide a highly reliable bearing device having excellent wear resistance and assemblability, a drainage pump using the bearing device, a water turbine, and a method for manufacturing the bearing device.

【0023】[0023]

【課題を解決するための手段】本発明は、前記課題であ
る軸受装置の摺動面に被覆した溶射膜の耐摩耗性を向上
させるため、WC又はCr32を主成分とする溶射膜の
溶射後に、熱応力によって溶射膜の接着力が低下せず、
溶射膜が変質せず、更に下地のSUSの硬度が極端に低
下しない、さらに粒界腐食に対する鋭敏化が生じない温
度条件で加熱することにより達成される。
SUMMARY OF THE INVENTION In order to improve the wear resistance of the thermal spray coating coated on the sliding surface of the bearing device, which is the subject of the present invention, the thermal spray coating containing WC or Cr 3 C 2 as a main component is provided. After the thermal spraying of, the adhesive force of the thermal sprayed film does not decrease due to thermal stress,
This can be achieved by heating under a temperature condition in which the sprayed film does not deteriorate, the hardness of the underlying SUS does not extremely decrease, and the sensitization to intergranular corrosion does not occur.

【0024】本発明の軸受装置は、軸受及びこの軸受と
摺動するスリ−ブとを備えた軸受装置に用いる軸受及び
スリ−ブのいずれか一方若しくは両方の摺動面に次のよ
うな溶射膜を被覆するものである。被覆する溶射膜はW
Cを主成分としてNi、Cr又はCoのいずれか1つ若
しくは複数を結合材とするもの又はCr32を主成分と
してNiとCrを結合材とする溶射膜を被覆するもので
あって、溶射膜の表面に形成される20μm以上の大き
さの空孔の密度が15個/mm2以下のものである。
The bearing device of the present invention has the following thermal spraying on the sliding surface of either or both of the bearing and the sleeve used in the bearing device provided with the bearing and the sleeve that slides with the bearing. It covers the membrane. The sprayed coating is W
A coating containing C as a main component and one or more of Ni, Cr or Co as a binder, or a coating containing a thermal spray coating containing Cr 3 C 2 as a main component and Ni and Cr as binders, The density of pores having a size of 20 μm or more formed on the surface of the sprayed film is 15 / mm 2 or less.

【0025】さらに、被覆された溶射膜は、被覆後30
0℃以上550℃以下の温度で1時間以上加熱され、被
膜硬さがビッカース硬さで1000以上に改善され、土
砂水に対する十分な耐摩耗性を発揮するものである。
Further, the coated thermal spray coating is coated 30 times after coating.
It is heated at a temperature of 0 ° C. or higher and 550 ° C. or lower for 1 hour or longer, the coating hardness is improved to a Vickers hardness of 1000 or higher, and sufficient abrasion resistance against earth and sand water is exhibited.

【0026】又溶射膜を被覆する軸受、スリ−ブの材質
はFe系金属であれば良いが、望ましくはステンレス鋼
が良い。
The material of the bearing and the sleeve covering the sprayed film may be Fe-based metal, and preferably stainless steel.

【0027】又軸受又はスリ−ブのいずれか一方を上記
の溶射膜を被覆したものとした場合、他方は摺動面にS
iC若しくはSi34を配したものか、全体がSiC若
しくはSi34からなるものでもよい。
When one of the bearing and the sleeve is coated with the above sprayed film, the other is S on the sliding surface.
It may be one in which iC or Si 3 N 4 is arranged, or one entirely made of SiC or Si 3 N 4 .

【0028】又、スリ−ブ若しくは軸受は2個以上に分
割しても良い。
The sleeve or bearing may be divided into two or more pieces.

【0029】本発明の排水ポンプ又は水車は上記いずれ
かの特徴を持つ軸受装置を備える。
The drainage pump or the water turbine of the present invention includes the bearing device having any one of the above features.

【0030】更に本発明の軸受部材は、所定形状に加工
したステンレス鋼製軸受部材の摺動部にWCを主成分と
して結合材にNi、Cr又はCOのいずれか1つ若しく
は複数を含む溶射膜又はCr32を主成分として結合材
にNiとCrを含む溶射膜を形成した後、300℃以上
550℃以下の温度で1時間以上加熱し、その後所定の
寸法に仕上加工することにより製造する。
Furthermore, the bearing member of the present invention is a sprayed film containing WC as a main component and one or more of Ni, Cr or CO as a binder in the sliding portion of a stainless steel bearing member processed into a predetermined shape. or Cr 3 after forming a thermally sprayed film containing Ni and Cr to C 2 to binder as a main component, prepared by heating over 1 hour at a temperature of 300 ° C. or higher 550 ° C. or less, and then finishing operation to a predetermined size To do.

【0031】[0031]

【作用】一般に、WC、Cr32を主成分とする溶射膜
を加熱すると、被膜の硬度を増す役割の歪が消失し硬度
が低下すると言われていた。又、Fe系材料(本発明の
実施例ではSUS403)を下地材料としその上に熱膨
張率の小さいWC又はCr32を主成分とする溶射膜を
被覆した場合、両者の熱膨張率差のため、膜形成後に加
熱すると熱応力による被膜接着力の低下、更に加熱によ
るWC粒子又はCr32粒子の酸化が生じ溶射膜の特性
が低下すると考えられてきた。このため、WC又はCr
32を主成分とする溶射膜の、溶射後の加熱は望ましい
とは考えられていなかった。しかし、加熱条件を選べ
ば、溶射膜に悪影響を与えることなく硬度を増すことが
できる。例えば、300℃以上550℃以下の温度で1
時間以上加熱しすることで溶射膜硬さが増し、土砂水に
対して十分な耐摩耗性を示す。その機構及び検討結果の
詳細は、実施例で説明する。
It has been generally said that when a sprayed film containing WC and Cr 3 C 2 as a main component is heated, the strain which serves to increase the hardness of the coating disappears and the hardness decreases. Further, when a Fe-based material (SUS403 in the embodiment of the present invention) is used as a base material and a thermal sprayed film containing WC or Cr 3 C 2 having a small coefficient of thermal expansion as a main component is coated thereon, the difference in thermal expansion coefficient between the two is For this reason, it has been considered that when the film is heated after the film formation, the coating adhesive force is reduced due to thermal stress, and further, the WC particles or Cr 3 C 2 particles are oxidized due to the heating to deteriorate the properties of the sprayed film. Therefore, WC or Cr
It has not been considered desirable to heat the sprayed coating based on 3 C 2 after spraying. However, if the heating conditions are selected, the hardness can be increased without adversely affecting the sprayed film. For example, at a temperature of 300 ° C or higher and 550 ° C or lower, 1
By heating for more than a period of time, the hardness of the sprayed coating increases and it shows sufficient wear resistance against sediment water. The details of the mechanism and the examination result will be described in Examples.

【0032】溶射膜に空孔が存在すると、溶射膜自体の
強度も減り、且つWC粒子、或いはCr32粒子間の結
合力も低下するため、摺動中にWC粒子、或いはCr3
2粒子が脱落し、耐摩耗性を低下させる原因となる。
しかし、空孔を消滅させるために膜形成後に高温で加熱
すると、前述のごとく結合材粒子、WC粒子又はCr3
2粒子の酸化、溶射膜の接着力の低下、及び下他材料
の硬度、耐食性低下が生じ、結果的には信頼性を低下さ
せる原因となる。しかし本発明によれば、WC又はCr
32溶射膜の酸化、熱応力による膜接着力の低下、及び
下他材料の硬度、耐食性低下が生じないような低温度で
も、温度及び加熱時間を適切に選定すれば溶射膜の空孔
が減り、且つ空孔の大きさが小さくなり、溶射膜の硬度
が増すことが明らかとなった。
The presence of pores in the sprayed coating reduces the strength of the sprayed coating itself, and also reduces the binding force between the WC particles or Cr 3 C 2 particles, so that the WC particles or Cr 3 particles may slide during sliding.
The C 2 particles fall off, which causes a decrease in wear resistance.
However, if the film is heated at a high temperature after the film is formed in order to eliminate the pores, the binder particles, the WC particles or the Cr 3 particles as described above.
Oxidation of the C 2 particles, decrease in the adhesive force of the sprayed film, and decrease in the hardness and corrosion resistance of the lower material, resulting in a decrease in reliability. However, according to the invention, WC or Cr
3 C 2 Even if the temperature and heating time are appropriately selected such that oxidation of the sprayed film, deterioration of film adhesion due to thermal stress, and hardness and corrosion resistance of lower materials do not occur, voids in the sprayed film It became clear that the hardness of the thermal sprayed film increased as the pore size decreased and the size of the pores decreased.

【0033】特に、本発明の条件で加熱すると、結合材
粒子、WC粒子又はCr32粒子の最大粒子径を超える
20μm以上の大きな空孔が減少することが判明した。
20μm以上の大きな空孔はWC粒子又はCr32粒子
の脱落を生じさせる直接的な原因となる。従って20μ
m以上の大きな空孔の減少は、溶射膜の強度を向上させ
るように作用する。更に20μm以上の大きな空孔が減
ると、被膜に延性が付与されて、衝撃に対する抵抗力が
増し、被膜の破壊、剥離が減少し、被膜の信頼性が増
す。
In particular, it has been found that when heated under the conditions of the present invention, large voids of 20 μm or more exceeding the maximum particle size of the binder particles, WC particles or Cr 3 C 2 particles are reduced.
Large pores of 20 μm or more are a direct cause of the dropout of WC particles or Cr 3 C 2 particles. Therefore 20μ
The reduction of large pores of m or more acts to improve the strength of the sprayed coating. Further, when the large pores of 20 μm or more are reduced, the ductility is imparted to the coating, the resistance to impact increases, the destruction and peeling of the coating decrease, and the reliability of the coating increases.

【0034】また、空孔は、溶射膜の腐食発生点となる
ため、空孔を減らすことによってWC粒子間が緻密にな
り、粒子間に生じる腐食が抑制され、排水に対する耐食
性が増す。
Further, since the pores become the corrosion generation points of the sprayed coating, the reduction of the pores makes the WC particles denser, the corrosion generated between the particles is suppressed, and the corrosion resistance to drainage is increased.

【0035】また、本発明の排水ポンプを先行待機運転
用として用いても無潤滑状態での運転も可能な軸受装置
を用いているため十分な信頼性を有する。
Further, even if the drainage pump of the present invention is used for the preceding standby operation, the bearing device which can be operated in the non-lubricated state is used, so that there is sufficient reliability.

【0036】更に、スリーブ又は軸受を分割構造とする
ことにより、製作が容易となり特に大径のものにおいて
効果が大きい。
Further, by forming the sleeve or the bearing into a divided structure, the manufacture becomes easy, and the effect is great especially for a large diameter one.

【0037】[0037]

【実施例】本発明の実施例を図1〜図20用いて説明す
る。
Embodiments of the present invention will be described with reference to FIGS.

【0038】図1は本発明の一実施例の排水ポンプの構
造を示す縦断面図である。通常、排水ポンプには、イン
ペラ近くと、上部との2個所に軸受が設けられている。
本実施例の軸受装置は、両方の軸受に適用できるもので
ある。図1において、1は主軸、2は主軸に取り付けら
れているスリーブであり、3は軸受である。本実施例に
おいては主軸1、スリ−ブ2及び軸受3ともにSUS4
03を用いた。
FIG. 1 is a vertical sectional view showing the structure of a drainage pump according to an embodiment of the present invention. Usually, the drain pump is provided with bearings at two locations, near the impeller and at the top.
The bearing device of this embodiment can be applied to both bearings. In FIG. 1, 1 is a main shaft, 2 is a sleeve attached to the main shaft, and 3 is a bearing. In this embodiment, the main shaft 1, sleeve 2 and bearing 3 are all made of SUS4.
03 was used.

【0039】又、本ポンプにはケーシングの排水吸込み
口に、パイプが設置されており、一端はケーシングのリ
ブに支持され、他端は排水機場の床に支持され、大気に
開口している。
Further, a pipe is installed at the drainage suction port of the casing of this pump, one end of which is supported by the rib of the casing, the other end of which is supported by the floor of the drainage pumping station and is open to the atmosphere.

【0040】本ポンプでは排水水位が低い場合、ポンプ
内圧と大気間に圧力差が生じ、上記パイプから空気が排
水中に吸収される。その結果、流水量が減じ、排水面の
渦の発生は加振力を生じ、ポンプ振動の一因となるため
防がねばならない。パイプから空気を吸い込むことによ
り、渦の発生しやすい低水位でも渦の発生が防げるた
め、安定して排水することが可能である。
In this pump, when the drainage water level is low, a pressure difference occurs between the pump internal pressure and the atmosphere, and the air is absorbed into the drainage from the pipe. As a result, the amount of flowing water is reduced, and the generation of vortices on the drainage surface causes an exciting force and contributes to pump vibration, which must be prevented. By sucking air from the pipe, it is possible to prevent the vortex from being generated even at a low water level where the vortex is likely to occur, so that stable drainage is possible.

【0041】更に、水位が十分高くなるとケーシング内
外の圧力差は減じ、自然にパイプからの吸気は止まる。
排水水位によるケーシング中の圧力変化を利用するた
め、外部からの制御を必要とせず、信頼性が高い。
Further, when the water level becomes sufficiently high, the pressure difference between the inside and outside of the casing decreases, and the intake from the pipe naturally stops.
Since the pressure change in the casing due to the drainage water level is used, it does not require external control and is highly reliable.

【0042】又、大気側の開口端にバルブを設けること
で、吸気量の制御及びこの機能の取消しも可能である。
Further, by providing a valve at the open end on the atmosphere side, it is possible to control the intake amount and cancel this function.

【0043】本実施例の軸受装置を、図2及び図3によ
り説明する。◆ 図2は図1に示した排水ポンプの上部に設置された軸受
装置を示す拡大図、図3は図2の摺動部を更に拡大した
断面図である。スリ−ブ及び軸受の製造方法はまず、S
US403でスリーブ基材8及び軸受基材10を機械加
工により形成した後、焼き入れ、焼き戻し熱処理を行
い、SUS403の硬度を高めておく。焼き戻し温度は
約700℃とし、後の溶射膜の改質時にSUS403が
焼き戻し脆性を生じないようにした。熱処理後、軸受3
及びスリーブ基材8の摺動部分にWCを主成分としNi
Crを結合材とする溶射膜11及び9を高速フレーム溶
射で被覆した。溶射膜形成後、400℃に20時間加熱
し保持する熱処理を施し、溶射膜の硬度を高めた。熱処
理後、スリーブ及び軸受は内径、外径を所定寸法、面粗
さに加工した。スリーブ2は回り止め4で主軸1に固定
した。
The bearing device of this embodiment will be described with reference to FIGS. 2 is an enlarged view showing the bearing device installed on the upper portion of the drainage pump shown in FIG. 1, and FIG. 3 is a sectional view further enlarging the sliding portion of FIG. The method of manufacturing the sleeve and the bearing is S
After forming the sleeve base material 8 and the bearing base material 10 by machining in US403, quenching and tempering heat treatment are performed to increase the hardness of SUS403. The tempering temperature was set to about 700 ° C. so that SUS403 did not cause temper embrittlement during the subsequent modification of the sprayed coating. Bearing 3 after heat treatment
And Ni as a main component of WC on the sliding portion of the sleeve base material 8.
The thermal spray coatings 11 and 9 using Cr as a binder were coated by high speed flame spraying. After forming the sprayed film, a heat treatment of heating at 400 ° C. for 20 hours and holding was performed to increase the hardness of the sprayed film. After the heat treatment, the sleeve and the bearing were processed to have predetermined inner diameter and outer diameter and surface roughness. The sleeve 2 was fixed to the main shaft 1 with a detent 4.

【0044】軸受3は軸受用バックメタル6に取付け、
軸受用緩衝材5を介し固定部材7で固定した。又、軸受
3には摺動部への土砂の浸入を防止する浸入防止部材1
2を取り付けた。
The bearing 3 is attached to the bearing back metal 6,
It was fixed with a fixing member 7 via a bearing cushioning material 5. Further, the bearing 3 has an intrusion prevention member 1 for preventing intrusion of earth and sand into the sliding portion.
2 attached.

【0045】本実施例によれば、スリ−ブ基材としてS
US403を用いたため、主軸材料との熱膨張率が一致
し熱応力の発生が防げるとともに、靭性が高いため表面
に被覆した溶射膜を安定して保持できるスリ−ブとする
ことができる。
According to this embodiment, S is used as the sleeve base material.
Since US403 is used, the coefficient of thermal expansion matches that of the main shaft material to prevent generation of thermal stress, and since the toughness is high, a sleeve capable of stably holding the sprayed coating coated on the surface can be provided.

【0046】又、WC溶射膜に熱処理を施し硬度を増加
させてあるため耐摩耗性が増し、軸受装置の寿命、信頼
性が増す。
Further, since the hardness of the WC sprayed film is increased by heat treatment, the wear resistance is increased and the life and reliability of the bearing device are increased.

【0047】尚、本実施例では、スリ−ブ及び軸受に形
成する溶射膜の材質としてWCを主成分としNiCrを
結合材とする溶射膜について説明したが、WCを主成分
としCoを結合材とする溶射膜若しくはCr32を主成
分としNiCrを結合材とする溶射膜を用いても同様の
効果が得られた。
In this embodiment, the sprayed film formed on the sleeve and the bearing has been described as a sprayed film having WC as a main component and NiCr as a binder, but WC as a main component and Co as a binder. The same effect was obtained by using a thermal sprayed coating containing the above or a thermal sprayed coating containing Cr 3 C 2 as a main component and NiCr as a binder.

【0048】本実施例の排水ポンプは、軸受装置が無潤
滑条件下、即ち無給水状態においても安定した摺動性能
を発揮し、給水後の摺動においては更に良好な摺動を行
うことができる。
In the drainage pump of this embodiment, the bearing device exhibits stable sliding performance even under a non-lubricated condition, that is, in a non-water-supply state, and it is possible to perform better sliding after the water supply. it can.

【0049】又、本実施例の排水ポンプは軸受装置の摺
動部への土砂の浸入を防止する浸入防止部材を配置した
が、排水中に混入した土砂が摺動部に浸入しても、摺動
部には十分な耐摩耗性を備えているため安定した運転が
できる。
Although the drainage pump of this embodiment is provided with the intrusion prevention member for preventing the infiltration of the sand into the sliding portion of the bearing device, even if the soil mixed in the drainage enters the sliding portion, Stable operation is possible because the sliding part has sufficient wear resistance.

【0050】更に、無潤滑状態においても良好な摺動性
能が得られることから、無潤滑と潤滑状態を繰り返す使
用状況、即ち先行待機運転においても信頼性の高い運転
ができる。
Further, since good sliding performance can be obtained even in the non-lubricated state, highly reliable operation can be performed even in the use condition where the non-lubricated and lubricated states are repeated, that is, in the preceding standby operation.

【0051】図4は本発明の他の実施例を示すポンプ用
軸受装置の縦断面図である。SUS403のスリーブ基
材8の摺動面にはWCを主成分としCoを結合材とする
溶射膜9を被覆した。又、スリ−ブ2と摺動する軸受1
3はSiCとした。スリ−ブ2は、溶射膜形成後400
℃×20時間の熱処理を施し、溶射膜の硬度を高めた。
その他の構造は図1乃至図3で説明した実施例のものと
同じである。
FIG. 4 is a vertical sectional view of a bearing device for a pump showing another embodiment of the present invention. The sliding surface of the sleeve substrate 8 of SUS403 was coated with a sprayed film 9 containing WC as a main component and Co as a binder. Also, the bearing 1 that slides with the sleeve 2
3 was SiC. Sleeve 2 is 400 after the sprayed film is formed.
Heat treatment was performed at 20 ° C. for 20 hours to increase the hardness of the sprayed film.
The other structure is the same as that of the embodiment described in FIGS.

【0052】本実施例によれば、軸受部の材質が均質で
高硬度の焼結セラミックからなるため軸受装置の寿命、
信頼性が増す。
According to this embodiment, since the material of the bearing portion is a homogeneous and high-hardness sintered ceramic, the life of the bearing device is
Increased reliability.

【0053】尚、本実施例では、スリ−ブに形成する溶
射膜の材質としてWCを主成分としNiCrを結合材と
する溶射膜について説明したが、WCを主成分としCo
を結合材とする溶射膜若しくはCr32を主成分としN
iCrを結合材とする溶射膜を用いても同様の効果が得
られた。
In this embodiment, the sprayed film formed on the sleeve has WC as the main component and NiCr as the binder, but the main component is WC and Co.
Sprayed film with Cr as the binder or Cr 3 C 2 as the main component and N
The same effect was obtained by using a sprayed coating using iCr as a binder.

【0054】図5は本発明の他の実施例を示すポンプ用
軸受装置の縦断面図である。本実施例は、先行待機運転
時に、軸受高さまで排水水位が達していない空転運転の
場合に対応できる軸受構造である。なお、本図では全体
構造を示すため、スリ−ブ2の詳細断面構造は図示して
いない。SUS403材製のスリーブ2の摺動面にはW
Cを主成分としNiCr結合材とする溶射膜を被覆し、
溶射膜形成後400℃×20時間の熱処理を施し、溶射
膜の硬度を高めた。又、スリ−ブ2と摺動する軸受13
はSiCとし、バックメタル6に取付け、軸受用緩衝材
5を介して、ケーシングから張り出した固定部材7’に
固定した。さらに、固定部材7’にバッフルプレート1
7を固定した。また、主軸1に回転水槽18を固定し
た。回転水槽18中には水が貯水され、軸受高さまで排
水水位が達していない空転運転でも、軸受摺動部には潤
滑水が存在する構造である。なお、本構造では、回転水
槽18中に土砂が溜りやすいため運転時に摺動部分に土
砂が浸入する場合があるが、熱処理によって硬さを増し
たスリ−ブ摺動面の溶射膜11の耐摩耗性は十分であり
運転に支障はない。
FIG. 5 is a vertical sectional view of a bearing device for a pump showing another embodiment of the present invention. The present embodiment is a bearing structure that can cope with the idling operation in which the drainage water level does not reach the bearing height during the preceding standby operation. It should be noted that the detailed structure of the sleeve 2 is not shown in the figure because it shows the entire structure. W on the sliding surface of the sleeve 2 made of SUS403 material
Coating a sprayed film containing C as a main component and a NiCr binder,
After forming the sprayed film, heat treatment was performed at 400 ° C. for 20 hours to increase the hardness of the sprayed film. Also, a bearing 13 that slides with the sleeve 2
Was made of SiC, was attached to the back metal 6, and was fixed to the fixing member 7 ′ protruding from the casing via the bearing cushioning material 5. Furthermore, the baffle plate 1 is attached to the fixing member 7 '.
Fixed 7 Further, the rotary water tank 18 was fixed to the main shaft 1. Water is stored in the rotary water tank 18, and lubricating water is present in the bearing sliding portion even in idling operation in which the drainage water level does not reach the bearing height. In this structure, since earth and sand are likely to accumulate in the rotary water tank 18, the earth and sand may invade the sliding portion during operation, but the resistance of the sprayed film 11 on the sliding surface of the sleeve whose hardness has been increased by heat treatment has increased. Wearability is sufficient and there is no hindrance to operation.

【0055】図6,7は本発明の他の実施例を示すポン
プ用軸受装置のスリ−ブ固定状況及び固定部の断面図で
ある。本実施例では円周方向に4分割したスリ−ブを用
いた。4分割したスリ−ブ2a,2b,2c及び2dは
SUS403からなり軸受との摺動面にCr32を主成
分としNiCrを結合材とする溶射膜を形成した後、4
00℃×20時間の熱処理を施したものである。このス
リ−ブ部品2a,2b,2c,2dはそれぞれ主軸1に
軸方向の2ケ所でボルト14により固定した。その他の
構造は図1乃至図3で説明した実施例のものと同じであ
る。
FIGS. 6 and 7 are sectional views of a sleeve fixing state and a fixing portion of a pump bearing device according to another embodiment of the present invention. In this example, a sleeve divided into four in the circumferential direction was used. The four-divided sleeves 2a, 2b, 2c and 2d are made of SUS403, and after forming a sprayed film containing Cr 3 C 2 as a main component and NiCr as a binder on the sliding surface with the bearing, 4
The heat treatment was performed at 00 ° C. for 20 hours. The sleeve parts 2a, 2b, 2c and 2d are fixed to the main shaft 1 by bolts 14 at two axial positions. The other structure is the same as that of the embodiment described in FIGS.

【0056】軸受部の製造及び組立方法を以下説明す
る。SUS403でスリーブ部品2a,2b,2c及び
2dを作成し、上記軸受製造方法と同様の熱処理を施
す。熱処理後、そのスリーブの摺動面にWCを主成分と
しNiCr若しくはCoを結合材とする溶射膜WCを高
速フレーム溶射で形成する。溶射膜形成後、スリーブを
400℃に加熱し約20時間保持する。熱処理後、主軸
1に固定し所定の寸法に加工する。尚、主軸1への固定
はボルトで十分であるが、接着剤を併用すれば、より信
頼性は増す。
The method of manufacturing and assembling the bearing portion will be described below. The sleeve parts 2a, 2b, 2c and 2d are made of SUS403, and the same heat treatment as in the above bearing manufacturing method is performed. After the heat treatment, a sprayed film WC containing WC as a main component and NiCr or Co as a binder is formed on the sliding surface of the sleeve by high-speed flame spraying. After forming the sprayed film, the sleeve is heated to 400 ° C. and kept for about 20 hours. After the heat treatment, it is fixed to the main shaft 1 and processed into a predetermined size. It should be noted that although bolts are sufficient for fixing to the main shaft 1, if an adhesive is used together, the reliability is further increased.

【0057】本実施例では、スリ−ブを分割構造とした
ため、溶射膜の形成作業が容易となるとともに分割した
スリ−ブのそれぞれの重量が一体型のものに比べ約1/
4となり、取扱が容易となる。
In this embodiment, since the sleeve has a divided structure, the work of forming the sprayed film is facilitated, and the weight of each divided sleeve is about 1/100 of that of the integrated type.
4, which makes the handling easier.

【0058】図8は本発明の他の実施例を示すポンプ用
軸受装置の軸受の、一部断面を含む外観図である。本実
施例は軸受の摺動部を分割した摺動部材19を配列、形
成する構造のものである。摺動部材19は、SUS40
3製の基材10に、WCを主成分としNiCr若しくは
Coを結合材とする溶射膜11を高速フレーム溶射で形
成したものであり、溶射膜形成後400℃×20時間の
熱処理を施し、溶射膜の硬度を高めた。摺動部材19
は、緩衝材5を介してバックメタル6に取付け、軸受ケ
ーシング20に配置する。摺動部材19は、固定治具2
1によって軸受ケーシング20に取り付けられている
が、接着剤を併用すれば、より信頼性は増す。
FIG. 8 is an external view including a partial cross section of a bearing of a pump bearing device according to another embodiment of the present invention. This embodiment has a structure in which sliding members 19 in which sliding portions of the bearing are divided are arranged and formed. The sliding member 19 is SUS40.
A base material 10 made of No. 3 is formed by high-speed flame spraying with a sprayed film 11 containing WC as a main component and NiCr or Co as a binder. After the sprayed film is formed, heat treatment is performed at 400 ° C. for 20 hours to perform spraying Increased the hardness of the film. Sliding member 19
Is attached to the back metal 6 via the cushioning material 5 and arranged in the bearing casing 20. The sliding member 19 is the fixing jig 2
Although it is attached to the bearing casing 20 by 1, the reliability is further increased by using an adhesive together.

【0059】本実施例では、軸受摺動部が分割構造とな
っているため、溶射膜の形成作業が容易となるととも
に、各々の摺動部材19が緩衝材5を介して固定されて
いるため、片当たりの防止に効果的である。
In this embodiment, since the bearing sliding portion has the divided structure, the work of forming the sprayed coating is facilitated and the respective sliding members 19 are fixed through the cushioning material 5. , Effective in preventing uneven contact.

【0060】従来、WCを主成分とする超硬材料で製作
されていたスリーブが、本発明では、SUSを用いるこ
とができ、大幅な重量低下ができる。さらに超硬材料と
異なり、基材がSUSの場合、ねじ穴加工が可能である
ため、取扱が容易となる。特に、大径の場合スリーブの
重量が増し、本発明が有効である。スリーブの重量低下
に対する本発明の効果を図9にまとめる。図9は、スリ
ーブの外径(以後Dと称する)とスリーブの重量(以後
Wと称する)との相関を示す図である。スリーブ重量W
は、スリーブの外径Dによって変化するため、W/D2
して、基準化する。本発明のスリーブではW/D2が大幅
に低下し、0.05以下を示す。
In the present invention, a sleeve made of a super hard material containing WC as a main component can be made of SUS in the present invention, and the weight can be greatly reduced. Further, unlike the super hard material, when the base material is SUS, screw holes can be drilled, and thus the handling becomes easy. In particular, when the diameter is large, the weight of the sleeve increases, and the present invention is effective. The effect of the present invention on the reduction of the weight of the sleeve is summarized in FIG. FIG. 9 is a diagram showing the correlation between the outer diameter of the sleeve (hereinafter referred to as D) and the weight of the sleeve (hereinafter referred to as W). Sleeve weight W
Since it changes depending on the outer diameter D of the sleeve, it is standardized as W / D 2 . With the sleeve of the present invention, W / D 2 is significantly reduced, and is 0.05 or less.

【0061】図10に別の実施例として本発明の軸受装
置を水車用軸受として用いた水車の断面図を示す。図1
0において、22は水車用主軸、23はスリ−ブ回りど
め、24はWCを主成分としNiCrを結合材として2
7重量%加えた溶射膜(以下、WC−27%NiCr溶
射膜と称する)を被覆した後熱処理を施したSUS40
3製スリ−ブ、25は熱処理済みCr32を主成分とし
NiCrを結合材として25%加えた溶射膜(以下、C
32−25%NiCr溶射膜と称する)を被覆した後
熱処理を施したSUS403製軸受、26はライナ−で
ある。スリ−ブ及び軸受への溶射膜の被覆は高速フレー
ム溶射を用いて行った。熱処理済み溶射膜は、前記要素
試験結果に示すように焼結体と同等の耐摩耗性を有す
る。且つ、大口径化が容易なため、水車に対してはコス
ト低減、軽量化に効果がある。
FIG. 10 shows a sectional view of a water turbine using the bearing device of the present invention as a bearing for a water turbine as another embodiment. Figure 1
In No. 0, 22 is a main shaft for a water turbine, 23 is a sleeve, and 24 is a main component of WC and NiCr is a binder.
SUS40 which was heat-treated after coating a sprayed film containing 7% by weight (hereinafter referred to as WC-27% NiCr sprayed film)
3 made sleeve, 25 is a thermal sprayed film containing 25% of heat-treated Cr 3 C 2 as a main component and NiCr as a binder (hereinafter, C
A bearing made of SUS403, which is coated with (r 3 C 2 -25% NiCr sprayed coating) and then heat-treated, is a liner 26. The coating of the spray coating on the sleeve and the bearing was performed using high-speed flame spraying. The heat-treated sprayed film has wear resistance equivalent to that of the sintered body, as shown in the element test results. Moreover, since it is easy to increase the diameter, it is effective in reducing the cost and weight of the water turbine.

【0062】上記実施例で用いた軸受の耐摩耗特性を調
べるため、熱処理による溶射膜の硬度変化を要素試験で
調べた。加熱による溶射膜の硬度変化は、加熱温度20
0℃〜600℃、加熱時間1〜30時間の範囲で調べ
た。溶射膜の硬度はマイクロビッカース硬度計で測定
し、ビッカース硬度(以下、Hvと称する)で示した。下
地の影響を避けるため、硬度は溶射膜の断面で測定し、
荷重は300g一定とした。
In order to examine the wear resistance of the bearings used in the above examples, the change in hardness of the thermal spray coating due to the heat treatment was examined by an element test. The change in hardness of the sprayed coating due to heating is
The test was conducted in the range of 0 ° C to 600 ° C and the heating time of 1 to 30 hours. The hardness of the sprayed film was measured by a micro Vickers hardness meter and shown by Vickers hardness (hereinafter referred to as Hv). In order to avoid the influence of the base, hardness is measured on the cross section of the sprayed film,
The load was constant at 300 g.

【0063】図11は上記測定結果の一部であり、WC
−27%NiCr溶射膜を400℃で加熱したときの硬
度変化を示す。横軸は加熱時間、横軸は溶射膜の硬度で
ある。溶射膜は高速フレーム溶射で形成し、膜厚は表面
研磨後で約100μm、下地はSUS403であり、溶
射前に焼き入れ、約700℃での焼き戻しの熱処理を施
してある。尚、硬度の測定値にはバラツキがあるため、
10点の測定を行い、測定値中の最大、最小値をバラツ
キ範囲として線で示し、平均値を○で示した。
FIG. 11 shows a part of the above measurement results,
The change in hardness when the -27% NiCr sprayed coating is heated at 400 ° C is shown. The horizontal axis represents the heating time, and the horizontal axis represents the hardness of the sprayed film. The sprayed film is formed by high-speed flame spraying, the film thickness is about 100 μm after surface polishing, and the base is SUS403. The film is quenched before spraying and tempered at about 700 ° C. In addition, since the measured values of hardness vary,
The measurement was carried out at 10 points, and the maximum and minimum values among the measured values were shown as a variation range by a line, and the average value was shown by a circle.

【0064】図11に示すように溶射膜の硬度は時間と
共に増加し10〜30時間で最高硬度に達し、その後バ
ラツキはあるがほぼ一定となる。平均硬度の最高値はH
v1014(最大値Hv1065、最小値Hv890)
である。同様の条件で測定したWCを主成分としCoを
バインダーとして12重量%加えた焼結体(以下WC−
12%Co焼結体と称する)の硬度、平均値Hv131
7(最大値Hv1404、最小値Hv1235)には達
しないが、熱処理前の硬度の平均値Hv727(最大値
Hv869、最小値Hv604)に比べ、平均値で約3
4%の増加となり著しく改善されている。
As shown in FIG. 11, the hardness of the sprayed coating increases with time, reaches the maximum hardness in 10 to 30 hours, and then becomes almost constant although there is variation. The highest average hardness is H
v1014 (maximum value Hv1065, minimum value Hv890)
Is. A sintered body containing WC as a main component measured under the same conditions and 12% by weight of Co as a binder (hereinafter referred to as WC-
12% Co sintered body) hardness, average value Hv131
7 (maximum value Hv1404, minimum value Hv1235) is not reached, but compared with the average value Hv727 (maximum value Hv869, minimum value Hv604) of the hardness before heat treatment, the average value is about 3
The increase is 4%, which is a significant improvement.

【0065】図12は測定結果の一部であり、図11と
同様WC−27%NiCr溶射膜を500℃で加熱した
ときの硬度変化を示す。尚、試料の形成方法、形状、硬
度の測定方法は図11と全て同様である。溶射膜の硬度
は約1.5時間の加熱でほぼ最高硬さに達する。平均硬
度の最高値はHv1115(最大値Hv1139、最小
値Hv1084)である。熱処理前の硬度に比べ平均値
で約47%の増加であり、ほぼWC−12%Co焼結体
に等しい。
FIG. 12 is a part of the measurement results, and shows the change in hardness when the WC-27% NiCr sprayed film was heated at 500 ° C., as in FIG. 11. The sample forming method, the shape, and the hardness measuring method are all the same as those in FIG. 11. The hardness of the sprayed coating reaches almost the maximum hardness after heating for about 1.5 hours. The maximum value of the average hardness is Hv1115 (maximum value Hv1139, minimum value Hv1084). The average value is about 47% higher than the hardness before heat treatment, which is almost equal to that of the WC-12% Co sintered body.

【0066】図13も測定結果の一部であり、WCを主
成分としCoを結合材として12重量%加えた溶射膜
(以下WC−12%Co溶射膜と称する)を400℃で
加熱したときの硬度変化を示す。WC−12%Co溶射
膜も、上記の図11及び12の各試料と同様の高速フレ
ーム溶射で形成し、膜厚は表面研磨後で約100μm、
下地は熱処理済みのSUS403である。試料の形状、
硬度の測定方法も、上記図11及び12と同様である。
WC−12%Co溶射膜の場合、硬度は時間と共に増加
し10〜20時間で最高硬さに達し、25時間でわずか
に低下する。最高硬度は、平均値でHv946(最大値
Hv1149、最小値Hv792)である。熱処理前の
硬度、平均値Hv584(最大値Hv652、最小値H
v490)に比べ、平均値で約62%の増加である。
又、500℃で加熱した場合も、ほぼ、WC−27%N
iCr溶射膜の場合と同様の硬度変化を示し、約1時間
の加熱により最高硬度に達した。
FIG. 13 is also a part of the measurement results. When a sprayed film containing WC as a main component and 12 wt% of Co as a binder (hereinafter referred to as WC-12% Co sprayed film) was heated at 400 ° C. Shows the change in hardness. The WC-12% Co sprayed film was also formed by high-speed flame spraying similar to the samples of FIGS. 11 and 12, and the film thickness was about 100 μm after surface polishing.
The base is heat-treated SUS403. Sample shape,
The hardness measurement method is also the same as in FIGS.
In the case of the WC-12% Co sprayed coating, the hardness increases with time, reaches the maximum hardness in 10 to 20 hours, and slightly decreases in 25 hours. The maximum hardness is Hv946 (maximum value Hv1149, minimum value Hv792) on average. Hardness before heat treatment, average value Hv584 (maximum value Hv652, minimum value Hv652
v490), the average value is about 62% increase.
Also, even when heated at 500 ℃, WC-27% N
The hardness change was similar to that of the iCr sprayed film, and the maximum hardness was reached by heating for about 1 hour.

【0067】図14も測定結果の一部であり、Cr32
−25%NiCr溶射膜を400℃で加熱したときの硬
度変化を示す。Cr32−25%NiCr溶射膜も、上
記の図11、12及び13の測定に用いた各試料と同様
の高速フレーム溶射で形成し、膜厚は表面研磨後で約1
00μm、下地は熱処理済みのSUS403である。試
料の形状、硬度の測定方法も、上記図11、12及び1
3と同様である。Cr32−25%NiCr溶射膜の場
合、硬度は時間と共に徐々に増加する。加熱時間25時
間における平均硬度の最高値はHv958(最大値Hv
1043、最小値Hv905)である。熱処理前の硬
度、平均値Hv791(最大値Hv817、最小値Hv
744)に比べ、平均値で約21%の増加であり、WC
−27%NiCr溶射膜、WC−12%Co溶射膜ほど
顕著には増加しない。又、500℃で加熱した場合も、
400℃加熱のように硬度は時間と共に徐々に増加する
がその割合はより大きい。
FIG. 14 is also a part of the measurement results, showing Cr 3 C 2
The hardness change when a -25% NiCr sprayed coating is heated at 400 ° C is shown. The Cr 3 C 2 -25% NiCr sprayed film was also formed by high-speed flame spraying similar to each sample used in the measurement of FIGS. 11, 12 and 13 described above, and the film thickness was about 1 after surface polishing.
00 μm, the base is heat-treated SUS403. The shape of the sample and the method for measuring the hardness are also shown in FIGS.
Same as 3. For Cr 3 C 2 -25% NiCr sprayed coating, the hardness gradually increases with time. The maximum value of the average hardness after heating for 25 hours is Hv958 (maximum value Hv
1043 and the minimum value Hv905). Hardness before heat treatment, average value Hv791 (maximum value Hv817, minimum value Hv
744), the average increase is about 21%.
It does not increase remarkably as much as -27% NiCr sprayed film and WC-12% Co sprayed film. Also, when heated at 500 ℃,
The hardness gradually increases with time as in the case of heating at 400 ° C., but the ratio is larger.

【0068】以上、WC−27%NiCr溶射膜、WC
−12%Co溶射膜及びCr32−25%NiCr溶射
膜は400〜500℃の加熱によって、その硬度が著し
く改善され、ほぼWC−12%Coの焼結体の硬度に等
しい値となる。400℃〜500℃の加熱によって、溶
射膜中のWC粒子又はCr32粒子と結合材の結合力が
増し、ほぼ焼結体に等しくなったと考えられる。
As described above, WC-27% NiCr sprayed film, WC
The hardness of the -12% Co sprayed film and the Cr 3 C 2 -25% NiCr sprayed film is remarkably improved by heating at 400 to 500 ° C, and the hardness is almost equal to the hardness of the sintered body of WC-12% Co. . It is considered that by heating at 400 ° C. to 500 ° C., the bonding force between the WC particles or Cr 3 C 2 particles in the sprayed coating and the binder was increased and became almost equal to the sintered body.

【0069】加熱温度200℃〜600℃、加熱時間1
〜30時間の範囲で調べた結果を以下にまとめる。加熱
温度を300℃以下とすると溶射膜の硬度は増加するも
のの、その増加率は極めて小さく工業的には利用が難し
い。従って、熱処理温度としては、300℃以上、望ま
しくは350℃以上が良い。しかし、ポンプに用いるF
e系材料は、熱膨張率が約12〜17×10~6/℃であ
り、WC若しくはCr32系溶射膜は熱膨張率が約5〜
7×10~6/℃であるため、加熱温度を高くし過ぎると
溶射膜と下地との熱膨張率の差のため、熱応力が発生し
被膜の接着力を低下させ、極端な場合、被膜の剥離を生
じる。更に大気中で熱処理をする場合、溶射膜の酸化が
生じ耐摩耗性を低下させる。従って、WC若しくはCr
32系の溶射膜を用いるかぎり、熱処理温度は550℃
以下、望ましくは500℃以下が良い。尚、溶射膜の加
熱は酸化を防ぐためには不活性ガス中若しくは真空中で
の加熱が望ましい。
Heating temperature 200 ° C. to 600 ° C., heating time 1
The results of the examination in the range of up to 30 hours are summarized below. When the heating temperature is 300 ° C. or lower, the hardness of the sprayed coating increases, but the rate of increase is extremely small and industrially difficult to use. Therefore, the heat treatment temperature is 300 ° C. or higher, preferably 350 ° C. or higher. However, the F used for the pump
The e-based material has a thermal expansion coefficient of approximately 12 to 17 × 10 to 6 / ° C., and the WC or Cr 3 C 2 based thermal spray coating has a thermal expansion coefficient of approximately 5 to 5.
Since it is 7 × 10 to 6 / ° C., if the heating temperature is too high, thermal stress is generated due to the difference in the coefficient of thermal expansion between the sprayed film and the base, and the adhesive force of the film is reduced. Peeling occurs. Further, when heat treatment is performed in the atmosphere, oxidation of the sprayed film occurs and wear resistance is reduced. Therefore, WC or Cr
As long as a 3 C 2 -based spray coating is used, the heat treatment temperature is 550 ° C.
Hereafter, it is preferably 500 ° C. or lower. The sprayed film is preferably heated in an inert gas or in vacuum to prevent oxidation.

【0070】図15に約200μmの厚さに溶射したW
C−27%NiCr溶射膜を400℃で加熱したのち溶
射膜を約100μmの厚さまで表面研磨し、さらに加熱
を行い、再び鏡面状態まで研磨したときの金属組織写真
を示す。最終的な膜厚は、約90μmである。(A)が
未処理の溶射膜の写真、(B)が10時間加熱した溶射
膜の写真、(C)が20時間加熱した溶射膜の写真であ
り、倍率は全て100倍である。
In FIG. 15, W sprayed to a thickness of about 200 μm
A metallographic photograph of a C-27% NiCr sprayed film heated at 400 ° C., surface-polished to a thickness of about 100 μm, further heated, and polished again to a mirror-finished state is shown. The final film thickness is about 90 μm. (A) is a photograph of an untreated sprayed coating, (B) is a photograph of a sprayed coating that has been heated for 10 hours, and (C) is a photograph of a sprayed coating that has been heated for 20 hours. All magnifications are 100 times.

【0071】エッチングをせずに観察しているため、W
C粒子と結合材NiCrとの差は観察できず、全て白色
の下地として観察される。点在して黒く見える部分が空
孔である。(A)、(B)及び(C)を比較すると、熱
処理時間とともに空孔数が減り、大きさも小さくなって
いる。試験に用いた試料はSUS403の板(26mm
×26mm)の上に形成した溶射膜から切り分けたもの
であるため、空孔数の差は、溶射条件によって生じたの
ではなく、熱処理によって空孔が減少したものである。
尚、WC−12%Co溶射膜又はCr32−25%Ni
Cr溶射膜でも同様の現象が認められた。
Since the observation is performed without etching, W
No difference between the C particles and the binder NiCr can be observed, and all are observed as a white base. The areas that are scattered and appear black are holes. Comparing (A), (B) and (C), the number of holes decreases and the size also decreases with the heat treatment time. The sample used for the test is a SUS403 plate (26 mm
Since it was cut from a sprayed film formed on a surface of (× 26 mm), the difference in the number of holes was not caused by the spraying conditions, but was decreased by the heat treatment.
Incidentally, WC-12% Co sprayed coating or Cr 3 c 2 -25% Ni
The same phenomenon was observed in the Cr sprayed film.

【0072】図16にWC−27%NiCr溶射膜を4
00℃で加熱したときの、加熱時間と表面に観察される
20μm以上の大きさの空孔の密度の関係を示す。尚、
表面の空孔の観察方法は、上記図15の方法と同様であ
る。一方、WC−27%NiCr溶射膜の組織を走査型
電子顕微鏡で観察したところ、WC粒子、及びNiCr
結合材粒子の平均粒子径は約10μm程度であり、最大
でも20μm以下である。従って、空孔も数μm以下で
あればWC粒子の脱落には影響が少ない。しかし、20
μm以上になるとWC粒子の脱落を生じ、溶射膜の強度
を低下させる直接的原因となる。そこで、今回の空孔の
測定では、粒子径20μm以上のもののみを測定した。
以後は、空孔と表記する場合、全て20μm以上の空孔
のこととする。
FIG. 16 shows the WC-27% NiCr sprayed film 4
The relationship between the heating time and the density of pores having a size of 20 μm or more observed on the surface when heated at 00 ° C. is shown. still,
The method of observing the holes on the surface is the same as the method shown in FIG. On the other hand, when the structure of the WC-27% NiCr sprayed film was observed with a scanning electron microscope, it was found that WC particles and NiCr
The average particle size of the binder particles is about 10 μm, and is 20 μm or less at the maximum. Therefore, if the number of pores is not more than a few μm, it has little effect on the falling of WC particles. But 20
If the thickness is more than μm, the WC particles may fall off, which is a direct cause of lowering the strength of the sprayed coating. Therefore, in the measurement of pores this time, only particles having a particle diameter of 20 μm or more were measured.
Hereafter, all the holes are referred to as holes having a diameter of 20 μm or more.

【0073】図16に示すように、加熱温度400℃の
場合、15時間以上加熱すると空孔の数は急激に減少す
る。この空孔密度の変化は図7に示した硬度の変化と一
致する。即ち、加熱による溶射膜の硬度の変化は、溶射
膜中の空孔密度に起因するものと考えられる。
As shown in FIG. 16, when the heating temperature is 400 ° C., the number of voids sharply decreases after heating for 15 hours or more. This change in pore density matches the change in hardness shown in FIG. That is, it is considered that the change in hardness of the sprayed film due to heating is caused by the density of pores in the sprayed film.

【0074】図12と16に示した加熱時間による硬度
変化と空孔密度変化とから、空孔密度と硬度との関係を
求め、図17に示す。空孔密度が30個/mm2以下に
なると硬度が増加し始め、15個/mm2以下でポンプ
軸受部に望ましい硬度となる。従って、ポンプ軸受部に
配する溶射膜としては、表面に存在する20μm以上の
大きさの空孔密度が、15個/mm2以下、望ましくは
10個/mm2以下である。尚、WC−12%Co溶射
膜、Cr32−25%NiCr溶射膜でも同様の現象が
認められた。
The relationship between the pore density and the hardness was determined from the change in hardness and the change in pore density with heating time shown in FIGS. 12 and 16 and is shown in FIG. When the hole density is 30 holes / mm 2 or less, the hardness starts to increase, and when the hole density is 15 holes / mm 2 or less, the hardness becomes desirable for the pump bearing portion. Therefore, in the sprayed film to be arranged on the pump bearing portion, the density of pores having a size of 20 μm or more existing on the surface is 15 / mm 2 or less, preferably 10 / mm 2 or less. Incidentally, WC-12% Co sprayed coating, the similar phenomenon in the Cr 3 C 2 -25% NiCr sprayed coating was observed.

【0075】熱処理済み溶射膜を用いた軸受及びスリー
ブの、土砂水に対する耐摩耗性を調べるため以下の要素
試験を行った。その方法と結果の一部を図18、19を
用いて説明する。図18は試験片の形状と摺動方法を示
す。(A)に示す回転側試験片15と(B)に示す固定
側試験片16を土砂水を想定した、珪砂を含んだ水中に
浸漬し、(C)に示すように回転側試験片を回転させ所
定の面圧を負荷して摺動させる。所定時間の摺動後、両
試料の摩耗量を測定した。摩耗量の測定は、回転側試験
片15は試験前後の試験片厚さ、固定側試験片16では
試験前後の表面形状を表面粗さ計で測定して求めた。検
討した条件範囲は、面圧が1〜10kg/cm2、周速
が約0.5〜5m/s、珪砂濃度が0.1〜10wt%
である。尚、珪砂自体が摩耗される影響を減らすため
3.6km摺動ごとに土砂水をかえ、更に両試験片の間
に珪砂が噛み込みやすいように土砂水を替えるたび両試
験片の間に珪砂をはさみ込み摺動試験を繰り返した。
The following element tests were conducted to examine the wear resistance of bearings and sleeves using the heat-treated sprayed coating against earth and sand water. A part of the method and the result will be described with reference to FIGS. FIG. 18 shows the shape of the test piece and the sliding method. The rotating side test piece 15 shown in (A) and the fixed side test piece 16 shown in (B) are immersed in water containing silica sand, assuming earth and sand water, and the rotating side test piece is rotated as shown in (C). Then, a predetermined surface pressure is applied and sliding is performed. After sliding for a predetermined time, the wear amount of both samples was measured. The amount of wear was measured by measuring the thickness of the rotating test piece 15 before and after the test and by measuring the surface shape of the stationary test piece 16 before and after the test with a surface roughness meter. The condition range examined was a surface pressure of 1 to 10 kg / cm 2 , a peripheral speed of about 0.5 to 5 m / s, and a silica sand concentration of 0.1 to 10 wt%.
Is. It should be noted that in order to reduce the effect of the silica sand itself being worn, the sand water is changed every 3.6 km of sliding, and the silica sand is changed between the two test pieces every time the sand water is changed so that the sand sand is easily caught between the two test pieces. And the sliding test was repeated.

【0076】図19は、熱処理済み溶射膜の耐摩耗性を
上記試験によって調べた結果の一部である。横軸は摺動
距離、縦軸は回転側試験片の平均摩耗量である。固定側
試験片はα−SiC、回転側試験片はWC−27%Ni
Cr溶射膜であり、膜厚が約100μm、下地は焼入
れ、焼戻し熱処理を施したSUS403である。溶射膜
の熱処理条件は、図12の結果を参考にし400℃×2
0時間とした。比較材料として、WC−12%Co焼結
体と未処理のWC−27%NiCr溶射膜を回転側試験
片として同様の条件で試験した。その他の試験条件は面
圧が2kg/cm2、周速が0.5m/s、珪砂濃度が
9wt%である。
FIG. 19 is a part of the results of examining the wear resistance of the heat-treated sprayed film by the above test. The horizontal axis represents the sliding distance, and the vertical axis represents the average amount of wear of the rotating test piece. Fixed side test piece is α-SiC, rotating side test piece is WC-27% Ni
It is a Cr sprayed film, has a film thickness of about 100 μm, and the base is SUS403 which has been subjected to quenching and tempering heat treatment. Regarding the heat treatment conditions for the sprayed film, refer to the results in FIG. 12 and 400 ° C. × 2
It was set to 0 hours. As comparative materials, a WC-12% Co sintered body and an untreated WC-27% NiCr sprayed film were tested as rotating side test pieces under the same conditions. Other test conditions are a surface pressure of 2 kg / cm 2 , a peripheral speed of 0.5 m / s, and a silica sand concentration of 9 wt%.

【0077】図19において、-▲-で示す(1)のライ
ンが本発明の軸受部材である熱処理済WC−27%Ni
Cr溶射膜の摩耗量変化、-○-で示す(2)のラインが
比較材料である従来の軸受部材であるWC−12%Co
焼結体の摩耗量変化、-△-で示す(3)のラインが比較
材料である未熱処理のWC−27%NiCr溶射膜の摩
耗量変化である。未熱処理のWC−27%NiCr溶射
膜の摩耗率は、WC−12%Co焼結体に比べて約3倍
の値を示すのに対し、熱処理済WC−27%NiCr溶
射膜はほぼ同等の摩耗率を示す。即ち、400℃×20
時間の熱処理によって、WC−27%NiCr溶射膜の
土砂水に対する摩耗量は約1/3に減少した。この摩耗
量の低下は、図12に示した溶射膜の熱処理による硬度
の増加に起因すると考えられる。図21で示した溶射膜
の硬度と摩耗率との関係からも、上記熱処理済み溶射膜
の耐摩耗性は妥当な値である。又、図19には示さない
が、400℃×20時間の熱処理を施したWC−27%
NiCr溶射膜とSi34との組み合わせも良好な耐摩
耗性を示す。固定側試験片に用いたSi34はSiC以
上に優れた耐摩耗性を示した。
In FIG. 19, the line (1) indicated by-▲-is the heat-treated WC-27% Ni which is the bearing member of the present invention.
Change in wear amount of Cr sprayed film, line (2) shown by-○-is a conventional bearing member which is a comparative material WC-12% Co
The wear amount change of the sintered body, and the line (3) indicated by -Δ- is the wear amount change of the unheated WC-27% NiCr sprayed coating which is the comparative material. The wear rate of the non-heat-treated WC-27% NiCr sprayed coating is about three times that of the WC-12% Co sintered body, while the heat-treated WC-27% NiCr sprayed coating is almost the same. Indicates the wear rate. That is, 400 ° C x 20
By the heat treatment for a long time, the wear amount of the WC-27% NiCr sprayed coating against the earth and sand water was reduced to about 1/3. This decrease in the amount of wear is considered to be due to the increase in hardness of the thermal spray coating shown in FIG. 12 due to the heat treatment. From the relationship between the hardness and the wear rate of the sprayed coating shown in FIG. 21, the wear resistance of the heat-treated sprayed coating is a reasonable value. Although not shown in FIG. 19, WC-27% heat-treated at 400 ° C. for 20 hours
The combination of NiCr sprayed coating and Si 3 N 4 also shows good wear resistance. Si 3 N 4 used for the fixed-side test piece showed excellent wear resistance over SiC.

【0078】同様の試験によると、WC−12%Co溶
射膜も同様の熱処理によって向上の効果を示す。しかし
WC−12%Co溶射膜の場合、WC−27%NiCr
溶射膜ほど硬度が増さないために、WC−12%Co焼
結体や熱処理済みWC−27%NiCr溶射膜の耐摩耗
性に及ばない。更に、結合材のCoがNiCrに比べ耐
食性に劣るため、腐食による摩耗が生じる可能性があ
る。本条件の熱処理済WC−12%Co溶射膜では、表
面の空孔密度が減るため、Co結合材でも腐食摩耗に対
する耐摩耗性が向上する。しかし、それでも海水のよう
な塩分を含む排水に対する耐食性は十分でない。従っ
て、使用環境によってはWC−12%Co溶射膜を用い
た軸受は用いることができない。
According to the same test, the WC-12% Co sprayed film also exhibits the effect of improvement by the same heat treatment. However, in the case of WC-12% Co sprayed film, WC-27% NiCr
Since the hardness does not increase as much as the sprayed film, it does not reach the wear resistance of the WC-12% Co sintered body or the heat-treated WC-27% NiCr sprayed film. Further, Co, which is the binder, is inferior in corrosion resistance to NiCr, and therefore wear due to corrosion may occur. In the heat-treated WC-12% Co sprayed film under these conditions, the pore density on the surface is reduced, so that even the Co binder has improved wear resistance against corrosive wear. However, the corrosion resistance to salty wastewater such as seawater is still insufficient. Therefore, the bearing using the WC-12% Co sprayed film cannot be used depending on the use environment.

【0079】同様の試験によると、Cr32−25%N
iCr溶射膜も耐摩耗性が向上する。しかし、WC−2
7%NiCr溶射膜、WC−12%Co溶射膜ほど顕著
な耐摩耗性の向上はない。これは、Cr32−25%N
iCr溶射膜自体の硬度が本質的にWC−27%NiC
r溶射膜、WC−12%Co溶射膜ほど高くないため
に、熱処理を施しても効果が小さいためである。
According to a similar test, Cr 3 C 2 -25% N
The iCr sprayed film also has improved wear resistance. However, WC-2
The wear resistance is not significantly improved as compared with the 7% NiCr sprayed coating and the WC-12% Co sprayed coating. This, Cr 3 C 2 -25% N
The hardness of the iCr sprayed film itself is essentially WC-27% NiC
This is because the effect is small even if the heat treatment is performed, because it is not as high as the r sprayed film and the WC-12% Co sprayed film.

【0080】上記図19の結果と、固定側と回転側の両
試験片に熱処理済みWC−27%NiCr溶射膜を用い
た場合及び回転側試験片に熱処理済みWC−27%Ni
Cr溶射膜、固定側試験片に熱処理済みCr32−25
%NiCr溶射膜を用いた場合の結果を合わせて、各々
の摩耗率を図20にまとめて示す。
The results shown in FIG. 19 and the case where the heat-treated WC-27% NiCr sprayed film was used for both the fixed-side and the rotation-side test pieces and the heat-treated WC-27% Ni for the rotation-side test piece.
Cr sprayed coating, the heat treatment on the fixed side test piece already Cr 3 C 2 -25
Along with the results obtained when the% NiCr sprayed coating was used, the respective wear rates are collectively shown in FIG.

【0081】図20は固定側と回転側両試験片の試験時
間60時間における摩耗率を表示したものである。試験
条件は図19の試験と同様である。尚、縦軸の相対摩耗
率とは、WC−12%Co焼結体とα−SiCとの組合
せである(A)の、回転側、固定側各々の試験片の摩耗
率を基準1.0とし、各試料の摩耗率を相対値として示
した値である。又、棒グラフにおいて、斜線の入ってい
る側が回転側試験片の摩耗率であり、無い側が固定側試
験片の摩耗率である。
FIG. 20 shows the wear rates of both the fixed-side and the rotating-side test pieces during the test time of 60 hours. The test conditions are the same as the test of FIG. The relative wear rate on the vertical axis is 1.0 based on the wear rate of each of the test pieces on the rotation side and the fixed side of (A) which is a combination of a WC-12% Co sintered body and α-SiC. And the wear rate of each sample is shown as a relative value. In the bar graph, the shaded side is the wear rate of the rotating side test piece, and the non-shaded side is the wear rate of the stationary side test piece.

【0082】組合せ(A)は、WC−12%Co焼結体
とα−SiCとの組合せであり、図19の曲線(2)の
結果である。(B)は、図19の曲線(3)に示した未
熱処理のWC−27%NiCr溶射膜とα−SiCとの
組合せ結果である。(C)は、図19の曲線(1)に示
した本発明の軸受部材である熱処理済みWC−27%N
iCr溶射膜とα−SiCとの組合せ結果である。
(D)は、本発明の軸受部材である熱処理済みWC−2
7%NiCr溶射膜と熱処理済みWC−27%NiCr
溶射膜との組合せ結果、(E)は熱処理済みWC−27
%NiCr溶射膜と熱処理済みCr32−25%NiC
r溶射膜との組合せ結果である。尚、溶射膜の熱処理条
件は、全て400℃×20時間である。
The combination (A) is a combination of the WC-12% Co sintered body and α-SiC, and is the result of the curve (2) in FIG. (B) is a combination result of the unheated WC-27% NiCr sprayed film and the α-SiC shown in the curve (3) of FIG. 19. (C) is the heat-treated WC-27% N which is the bearing member of the present invention shown in the curve (1) of FIG.
It is a result of combination of iCr sprayed film and α-SiC.
(D) is a heat-treated WC-2 which is the bearing member of the present invention.
7% NiCr sprayed coating and heat treated WC-27% NiCr
As a result of combination with the sprayed film, (E) is a heat-treated WC-27.
% NiCr sprayed coating and heat-treated Cr 3 C 2 -25% NiC
This is the result of combination with the r sprayed film. The heat treatment conditions for the sprayed coating are all 400 ° C. × 20 hours.

【0083】図19で説明したように、(C)の組み合
わせは、固定側、回転側の両試験片とも、組合せ(A)
即ちWC−12%Co焼結体とα−SiCとの組合せと
ほぼ同等の耐摩耗性を示す。 固定側と回転側の両試験
片に熱処理済みWC−27%NiCr溶射膜を用いた
(D)の組合わせにおいても、回転側、固定側試験片は
WC−12%Co焼結体とほぼ同等の耐摩耗性を示し
た。
As described with reference to FIG. 19, the combination (C) is the combination (A) for both the fixed side and the rotating side test pieces.
That is, it shows almost the same wear resistance as the combination of the WC-12% Co sintered body and α-SiC. Even in the combination of (D) in which the heat-treated WC-27% NiCr sprayed film was used for both the fixed side and rotating side test pieces, the rotating side and fixed side test pieces were almost the same as the WC-12% Co sintered body. Showed wear resistance.

【0084】固定側試験片の熱処理済みWC−27%N
iCr溶射膜は、α−SiC以上の優れた耐摩耗性を示
した。α−SiCの硬度は平均値Hv2704(最大値
Hv2874、最小値Hv2591)であり、熱処理済
みWC−27%NiCr溶射膜よりもはるかに高い。そ
れにもかかわらずWC−27%NiCr溶射膜がα−S
iCよりも優れた耐摩耗性を示した原因は、両者の延
性、すなわち破壊靱性の差によると考えられる。α−S
iCの破壊靱性は約3.9(MN/m・√m)であり、
熱処理済みWC−27%NiCr溶射膜の約13(MN
/m・√m)に及ばない。熱処理済みWC−27%Ni
Cr溶射膜の優れた破壊靱性が、硬度以上に耐摩耗性に
影響し、上記の優れた耐摩耗性を示したものと考えられ
る。尚、上記破壊靱性は、ビッカース圧痕法によって測
定したものである。
Heat treatment WC-27% N of fixed side test piece
The iCr sprayed film showed excellent wear resistance equal to or higher than α-SiC. The hardness of α-SiC is an average value Hv2704 (maximum value Hv2874, minimum value Hv2591), which is much higher than that of the heat-treated WC-27% NiCr sprayed film. Nevertheless, the WC-27% NiCr sprayed coating is α-S
It is considered that the reason why the wear resistance is superior to that of iC is due to the ductility of the both, that is, the difference in fracture toughness. α-S
The fracture toughness of iC is about 3.9 (MN / m · √m),
About 13 (MN of WC-27% NiCr sprayed film after heat treatment)
/ M · √m). Heat treated WC-27% Ni
It is considered that the excellent fracture toughness of the Cr sprayed coating affected the wear resistance more than the hardness, and exhibited the above-mentioned excellent wear resistance. The fracture toughness is measured by the Vickers indentation method.

【0085】回転側試験片に熱処理済みWC−27%N
iCr溶射膜、固定側試験片に熱処理済みCr32−2
5%NiCr溶射膜を用いた(E)の組み合わせは、回
転側試験片の相対摩耗率は(C)、(D)の組み合わせ
とほぼ同等の結果を示した。しかし、固定側試験片の熱
処理済みCr32−25%NiCr溶射膜の摩耗率は、
α−SiCや熱処理済みWC−27%NiCr溶射膜よ
り高い値を示した。これは、図14に示したように、熱
処理を施してもCr32−25%NiCr溶射膜の硬度
が大幅に増加しないためと考えられる。しかし、排水の
温度が高い条件では、Cr32−25%NiCr溶射膜
はWC−27%NiCr溶射膜と同等、或いはそれ以上
の耐摩耗性を示した。これは、Cr32−25%NiC
r溶射膜が高温での硬度低下が少ないためと考えられ
る。従って、使用環境によっては、熱処理済みWC−2
7%NiCr溶射膜と熱処理済みCr32−25%Ni
Cr溶射膜の組み合わせが良好となる。
Heat treated WC-27% N on the rotating side test piece
iCr sprayed film, fixed side test piece heat treated Cr 3 C 2 -2
The combination (E) using the 5% NiCr sprayed coating showed a result that the relative wear rate of the rotating side test piece was almost the same as the combination (C) and (D). However, the wear rate of the heat-treated Cr 3 C 2 -25% NiCr sprayed film of the fixed side test piece was
The value was higher than that of α-SiC or the heat-treated WC-27% NiCr sprayed film. It is considered that this is because, as shown in FIG. 14, the hardness of the Cr 3 C 2 -25% NiCr sprayed film does not significantly increase even if the heat treatment is performed. However, under the condition that the temperature of the waste water is high, the Cr 3 C 2 -25% NiCr sprayed film showed wear resistance equal to or higher than that of the WC-27% NiCr sprayed film. This is Cr 3 C 2 -25% NiC
This is considered to be because the hardness of the r sprayed film did not decrease much at high temperatures. Therefore, depending on the usage environment, heat-treated WC-2
7% NiCr sprayed coating and heat-treated Cr 3 C 2 -25% Ni
The combination of Cr sprayed coatings becomes good.

【0086】以上の結果を以下にまとめる。The above results are summarized below.

【0087】熱処理済みWC−27%NiCr溶射膜を
スリーブに用い、SiC若しくはSi34軸受と組み合
わせた場合、良好な耐摩耗性、摺動特性が得られる。こ
の場合、SiCやSi34は、圧縮応力を加えると強度
が増すため、焼きばめによりバックメタルで支持する構
造の軸受側に用いる方が良い。熱処理済みWC−27%
NiCr溶射膜をスリーブ、軸受の両方に用いた場合、
全般的に優れた耐摩耗性、摺動特性を示す。この場合、
Coを結合材とするWC溶射膜でも同様に優れた耐摩耗
性が得られるが、排水に塩分が含まれる場合、腐食のた
め使用は難しい。熱処理済みWC−27%NiCr溶射
膜と熱処理済みCr32−25%NiCr溶射膜をスリ
ーブ及び軸受に用いた場合、熱処理済みWC−27%N
iCr溶射膜同しの組み合わせほど優れた耐摩耗性は得
られない。しかし排水温度の高い場合は、より優れた特
性を示す。この場合、スリーブ、軸受のどちらにWC−
27%NiCr溶射膜を配しても良く、特性に対して影
響はない。
When a heat-treated WC-27% NiCr sprayed coating is used for the sleeve and combined with a SiC or Si 3 N 4 bearing, good wear resistance and sliding characteristics are obtained. In this case, since SiC and Si 3 N 4 increase in strength when a compressive stress is applied, it is better to use SiC or Si 3 N 4 on the bearing side of the structure supported by the back metal by shrink fitting. Heat treated WC-27%
When NiCr sprayed film is used for both sleeve and bearing,
Shows excellent wear resistance and sliding properties. in this case,
Similarly, a WC sprayed coating using Co as a binder can also obtain excellent wear resistance, but when the waste water contains salt, it is difficult to use due to corrosion. When the heat-treated WC-27% NiCr sprayed film and the heat-treated Cr 3 C 2 -25% NiCr sprayed film are used for the sleeve and the bearing, the heat-treated WC-27% N
The wear resistance as good as that of the combination of the iCr sprayed coatings cannot be obtained. However, when the drainage temperature is high, it shows better characteristics. In this case, either WC-
A 27% NiCr sprayed coating may be provided and does not affect the characteristics.

【0088】従って、本発明の軸受構造はスリーブ及び
軸受の摺動面の耐摩耗性が軸受にWC−12%Co焼結
体を用いたものとほぼ同等であり、且つスリーブ及び軸
受の部品重量が少ないため組立て性が優れる。又、スリ
ーブ及び軸受の靱性が高いため衝撃による破壊の発生が
なく信頼性が高くなる。このため、本発明の軸受構造を
用いた回転機械、例えばポンプ、水車等は信頼性が高く
なる。
Therefore, in the bearing structure of the present invention, the wear resistance of the sliding surface of the sleeve and the bearing is almost the same as that using the WC-12% Co sintered body for the bearing, and the weight of the parts of the sleeve and the bearing is large. Assembling is excellent because there are few Further, since the sleeve and the bearing have high toughness, there is no occurrence of damage due to impact, resulting in high reliability. Therefore, the rotating machine using the bearing structure of the present invention, such as a pump and a water turbine, has high reliability.

【0089】上記各実施例では、溶射膜形成法としては
高速フレーム溶射を用いたが、爆発溶射、減圧プラズマ
溶射、レーザ溶射、プラズマ溶射であってもよく、その
製法に制限されるものではない。尚、熱処理前の硬度は
高い方が望ましく、高硬度の溶射膜が形成できる高速フ
レーム溶射、爆発溶射が望ましい。
In each of the above embodiments, high speed flame spraying was used as the sprayed film forming method, but explosive spraying, reduced pressure plasma spraying, laser spraying, plasma spraying may be used, and the manufacturing method is not limited. . The hardness before heat treatment is preferably high, and high speed flame spraying and explosive spraying capable of forming a sprayed film of high hardness are desirable.

【0090】又、上記各実施例ではスリ−ブ基材及び軸
受基材の材料としてSUS403を用いたが、水中で使
用できる材料であればよい。尚、WC又はCr32を主
成分とする溶射膜の熱膨張率を考慮すれば、熱膨張率の
大きいSUS304よりもSUS403の方が望まし
い。また、加熱処理によるSUSの耐食性低下を考慮す
れば、炭素含有率の少ないSUS304L、もしくはS
US316Lが望ましい。
Although SUS403 is used as the material for the sleeve base material and the bearing base material in each of the above embodiments, any material that can be used in water may be used. Considering the coefficient of thermal expansion of the sprayed film containing WC or Cr 3 C 2 as a main component, SUS403 is more preferable than SUS304 having a large coefficient of thermal expansion. Also, considering the deterioration of corrosion resistance of SUS due to heat treatment, SUS304L or S containing less carbon
US316L is preferred.

【0091】又、上記各実施例では結合材としてNiC
rとCoを用い、その含有率は12wt%,25wt
%,27wt%としたが、溶射膜として特性を満足する
ならば、その含有率を制限するものではない。
In each of the above embodiments, NiC is used as the binder.
r and Co are used, and the content rates are 12 wt% and 25 wt
%, 27 wt%, but the content is not limited as long as the characteristics of the sprayed film are satisfied.

【0092】[0092]

【発明の効果】本発明によれば、WC若しくはCr32
を主成分とする溶射膜を所定条件で加熱することによ
り、WC粒子、Cr32粒子と結合材との結合力が増
し、その結果溶射膜の空孔が減少して硬度が平均値で約
50〜60%増加し、土砂水に対する耐摩耗性が熱処理
前の約3倍に向上する。この特性はWC−12%Co等
のセラミック焼結体とほぼ同等であり、WC−12%C
o焼結体製スリーブ、軸受に替わり、金属表面に溶射膜
を被覆したスリーブ、軸受を用いることができる。
According to the present invention, WC or Cr 3 C 2
By heating the sprayed film containing as a main component under predetermined conditions, the bonding force between the WC particles, Cr 3 C 2 particles and the binder is increased, and as a result, the pores of the sprayed film are reduced and the hardness is an average value. It is increased by about 50 to 60%, and the wear resistance to earth and sand water is improved to about three times that before the heat treatment. This characteristic is almost the same as the ceramic sintered body such as WC-12% Co.
o Instead of the sleeve and the bearing made of a sintered body, a sleeve and a bearing in which a metal surface is coated with a sprayed film can be used.

【0093】その結果、WC、SiC、Si34の焼結
体では製作できなかった大口径の軸受、スリーブが製作
できる。
As a result, it is possible to manufacture a large-diameter bearing and sleeve which could not be manufactured with the sintered body of WC, SiC and Si 3 N 4 .

【0094】更に、口径にかかわらず、軸受、スリーブ
の重量が低減するために、組立て性が大幅に良くなる。
Further, the weight of the bearing and the sleeve is reduced regardless of the diameter, so that the assemblability is significantly improved.

【0095】又、靱性の低いWC、SiC、Si34
焼結体に替わり、ステンレスを基材として使用できる
め、軸受、スリーブの信頼性が増す。従って、この軸受
装置を用いるポンプ及び水車の信頼性が増す。
Further, instead of the sintered body of WC, SiC, and Si 3 N 4 having low toughness, stainless steel can be used as the base material, so that the reliability of the bearing and the sleeve is increased. Therefore, the reliability of pumps and turbines using this bearing device is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の排水ポンプ構造を示す断面図
である。
FIG. 1 is a cross-sectional view showing a drainage pump structure according to an embodiment of the present invention.

【図2】本発明の実施例の軸受装置を示す一部断面斜視
図である。
FIG. 2 is a partial cross-sectional perspective view showing a bearing device according to an embodiment of the present invention.

【図3】本発明の他の実施例の軸受装置の縦断面図であ
る。
FIG. 3 is a vertical sectional view of a bearing device according to another embodiment of the present invention.

【図4】本発明の他の実施例の軸受装置の縦断面図であ
る。
FIG. 4 is a vertical sectional view of a bearing device according to another embodiment of the present invention.

【図5】本発明の他の実施例の軸受装置の縦断面図であ
る。
FIG. 5 is a vertical sectional view of a bearing device according to another embodiment of the present invention.

【図6】本発明の他の実施例のスリ−ブ構造を示す斜視
図である。
FIG. 6 is a perspective view showing a sleeve structure according to another embodiment of the present invention.

【図7】図5のA−A断面図である。7 is a cross-sectional view taken along the line AA of FIG.

【図8】本発明の他の実施例の軸受を示す一部断面斜視
図である。
FIG. 8 is a partial cross-sectional perspective view showing a bearing according to another embodiment of the present invention.

【図9】本発明の他の実施例のスリ−ブの外径Dと重量
W/(外径D)2との相関を示す関係図である。
FIG. 9 is a relationship diagram showing the correlation between the outer diameter D and the weight W / (outer diameter D) 2 of the sleeve of another embodiment of the present invention.

【図10】本発明の他の実施例の水車構造を示す断面図
である。
FIG. 10 is a cross-sectional view showing a water turbine structure of another embodiment of the present invention.

【図11】WC−27%NiCr溶射膜の400℃加熱
時の硬度変化を示す図である。
FIG. 11 is a diagram showing a change in hardness of a WC-27% NiCr sprayed coating when heated at 400 ° C.

【図12】WC−27%NiCr溶射膜の500℃加熱
時の硬度変化を示す図である。
FIG. 12 is a view showing a change in hardness of a WC-27% NiCr sprayed coating when heated at 500 ° C.

【図13】WC−12%Co溶射膜の400℃加熱時の
硬度変化を示す図である。
FIG. 13 is a diagram showing a change in hardness of a WC-12% Co sprayed film when heated at 400 ° C.

【図14】Cr32−25%NiCr溶射膜の400℃
加熱時の硬度変化を示す図である。
FIG. 14: 400 ° C. of Cr 3 C 2 -25% NiCr sprayed film
It is a figure which shows the hardness change at the time of heating.

【図15】WC−27%NiCr溶射膜の400℃加熱
時の溶射膜の変化状況を示す金属組織写真である。
FIG. 15 is a metallographic photograph showing the state of change of the WC-27% NiCr sprayed coating when heated at 400 ° C.

【図16】WC−27%NiCr溶射膜の400℃加熱
時の溶射膜表面空孔密度と加熱時間との関係図である。
FIG. 16 is a graph showing the relationship between the pore density of the WC-27% NiCr sprayed coating and the heating time when the sprayed coating is heated at 400 ° C.

【図17】WC−27%NiCr溶射膜の400℃加熱
時の溶射膜表面空孔密度と硬度との関係図である。
FIG. 17 is a relationship diagram between the sprayed film surface pore density and the hardness when the WC-27% NiCr sprayed film is heated at 400 ° C.

【図18】摩耗試験片形状と摺動方法を示す図である。FIG. 18 is a diagram showing a shape of a wear test piece and a sliding method.

【図19】摩耗試験によるWC−12%Co焼結体、未
熱処理WC−27%NiCr溶射膜と熱処理済みWC−
27%NiCr溶射膜の摺動距離と摩耗量との関係図で
ある。
FIG. 19 is a WC-12% Co sintered body by an abrasion test, an unheated WC-27% NiCr sprayed film and a heat-treated WC-.
It is a relationship diagram of a sliding distance and a wear amount of a 27% NiCr sprayed coating.

【図20】熱処理済みWC−27%NiCr溶射膜、熱
処理済みCr32−25%NiCr溶射膜を含む各種材
料組合せの相対摩耗率比較図である。
FIG. 20 is a comparative wear rate comparison diagram of various material combinations including a heat-treated WC-27% NiCr sprayed coating and a heat-treated Cr 3 C 2 -25% NiCr sprayed coating.

【図21】従来の各溶射膜の硬度と土砂水に対するWC
−12%Co焼結体を基準とした相対摩耗率を示す図で
ある。
FIG. 21: Hardness of each conventional sprayed film and WC for sediment water
It is a figure which shows the relative wear rate on the basis of a -12% Co sintered compact.

【符号の説明】[Explanation of symbols]

1…主軸、2…スリーブ、3…軸受、4…スリーブの回
り止め、5…軸受用緩衝材、6…軸受用バックメタル、
7,7’…固定部材、8…スリーブ基材、9,11…溶
射膜、10…軸受基材、13…セラミック製軸受、14
…分割スリーブ固定ボルト、15,16…摩耗試験片、
17…バッフルプレート、18…回転水槽、19…摺動
部材、20…軸受ケーシング、21…固定治具、22…
水車用主軸、23…スリーブ回り止め、26…ライナ
ー。
DESCRIPTION OF SYMBOLS 1 ... Main shaft, 2 ... Sleeve, 3 ... Bearing, 4 ... Sleeve stopper, 5 ... Bearing cushioning material, 6 ... Bearing back metal,
7, 7 '... Fixing member, 8 ... Sleeve base material, 9, 11 ... Thermal spray film, 10 ... Bearing base material, 13 ... Ceramic bearing, 14
... Split sleeve fixing bolts, 15, 16 ... Wear test pieces,
17 ... Baffle plate, 18 ... Rotating water tank, 19 ... Sliding member, 20 ... Bearing casing, 21 ... Fixing jig, 22 ...
Turbine spindle 23, sleeve stopper, 26 liner.

フロントページの続き (72)発明者 大谷 健二 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 会沢 宏二 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 羽田 光明 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 山田 俊宏 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内Front page continuation (72) Kenji Otani, Kenjicho, Tsuchiura, Ibaraki Prefecture, 603, Tsuchiura Plant, Hiritsu Manufacturing Co., Ltd. (72) Koji Aizawa, 502, Jinmachi, Tsuchiura, Ibaraki, Institute of Mechanical Research, Ltd. (72) Inventor Mitsuaki Haneda, 502 Jinritsu-cho Machinery Research Center, Tsuchiura-shi, Ibaraki Machinery Research Laboratories, Ltd.

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】軸受と、前記軸受と摺動するスリ−ブとを
備えてなる軸受装置において、前記軸受及びスリ−ブの
少なくともいずれか一方はその摺動面がWCを主成分と
して結合材にNi、Cr又はCoのいずれか1つ若しく
は複数を含む溶射膜を被覆した金属製であり、前記溶射
膜の表面に形成される20μm以上の大きさの空孔の密
度が15個/mm2以下であることを特徴とする軸受装
置。
1. A bearing device comprising a bearing and a sleeve that slides on the bearing. At least one of the bearing and the sleeve has a sliding surface whose main component is WC and is a binder. Is made of a metal coated with a sprayed film containing any one or more of Ni, Cr or Co, and the density of pores having a size of 20 μm or more formed on the surface of the sprayed film is 15 / mm 2. The bearing device is characterized by the following.
【請求項2】軸受と、前記軸受と摺動するスリ−ブとを
備えてなる軸受装置において、前記軸受又はスリ−ブの
いずれか一方はその摺動面にWCを主成分として結合材
にNi、Cr又はCoのいずれか1つ若しくは複数を含
む溶射膜を被覆した金属製であり、他方はSiC若しく
はSi34からなるか、摺動面にWCを主成分として結
合材にNi、Cr又はCoのいずれか1つ若しくは複数
を含む溶射膜、Cr32を主成分として結合材にNiと
Crを含む溶射膜、SiC若しくはSi34をいずれか
を配した金属製からなり、前記溶射膜の表面に形成され
る20μm以上の大きさの空孔の密度が15個/mm2
以下であることを特徴とする軸受装置。
2. A bearing device comprising a bearing and a sleeve that slides on the bearing, wherein either the bearing or the sleeve has a WC as a main component on its sliding surface as a binder. It is made of metal coated with a sprayed film containing one or more of Ni, Cr or Co, and the other is made of SiC or Si 3 N 4 , or has WC as a main component on the sliding surface and Ni as a binder. It consists of a sprayed film containing one or more of Cr or Co, a sprayed film containing Cr 3 C 2 as a main component and Ni and Cr as a binder, and a metal with either SiC or Si 3 N 4 arranged. The density of pores having a size of 20 μm or more formed on the surface of the sprayed film is 15 / mm 2
The bearing device is characterized by the following.
【請求項3】軸受と、前記軸受と摺動するスリ−ブとを
備えてなる軸受装置において、前記軸受及びスリ−ブの
少なくともいずれか一方はその摺動面がWCを主成分と
して結合材にNi、Cr又はCoのいずれか1つ若しく
は複数を含む溶射膜を被覆した金属製であり、該溶射膜
は、被覆した後300℃以上550℃以下の温度で1時
間以上加熱され、該溶射膜のビッカース硬さが1000
以上であることを特徴とする軸受装置。
3. A bearing device comprising a bearing and a sleeve that slides on the bearing, wherein at least one of the bearing and the sleeve has a sliding surface whose main component is WC. Is made of a metal coated with a sprayed film containing any one or more of Ni, Cr or Co, and the sprayed film is heated at a temperature of 300 ° C. or more and 550 ° C. or less for 1 hour or more after coating, and the thermal spraying is performed. Vickers hardness of the film is 1000
The bearing device as described above.
【請求項4】軸受と、前記軸受と摺動するスリ−ブとを
備えてなる軸受装置において、前記スリ−ブの摺動面が
WCを主成分として結合材にNi、Cr又はCoのいず
れか1つ若しくは複数を含む溶射膜を被覆した金属製で
あり、そのkg単位の重量Wと、cm単位の外形Dとの
比、W/D2が0.05以下であることを特徴とする軸
受装置。
4. A bearing device comprising a bearing and a sleeve that slides on the bearing, wherein the sliding surface of the sleeve has WC as a main component and Ni, Cr or Co as a binder. It is made of a metal coated with one or more sprayed coatings, and the ratio W / D 2 of the weight W in kg unit to the outer shape D in cm unit is 0.05 or less. Bearing device.
【請求項5】請求項1乃至4記載のいずれかにおいて、
前記溶射膜厚が100μm以上、200μm以下であ
り、前記スリーブ及び/又は軸受の摺動部が2個以上に
分割されていることを特徴とする軸受装置。
5. The method according to any one of claims 1 to 4,
A bearing device, wherein the sprayed film thickness is 100 μm or more and 200 μm or less, and the sliding portion of the sleeve and / or the bearing is divided into two or more.
【請求項6】内部を排水が流動するケ−シングと、前記
ケ−シング内で軸受装置により支持されその一部にイン
ペラを配置し回転する主軸とを備えるものであって、前
記軸受装置の少なくとも1か所は外部より清浄水を供給
することなく運転されるものである排水ポンプにおい
て、前記軸受装置を構成する軸受及びスリ−ブのいずれ
か一方若しくは両方の摺動面は溶射膜を被覆したもので
あり、前記溶射膜はその表面に形成される20μm以上
の大きさの空孔の密度が15個/mm2以下であること
を特徴とする排水ポンプ。
6. A casing comprising: a casing through which drainage flows; and a main shaft which is supported by a bearing device in the casing and has an impeller arranged in a part thereof to rotate. In a drainage pump in which at least one place is operated without supplying clean water from the outside, one or both of the bearings and the sleeves constituting the bearing device are coated with a sprayed film. The drainage pump is characterized in that the sprayed film has a density of pores having a size of 20 μm or more formed on its surface of 15 / mm 2 or less.
【請求項7】内部を排水が流動するケ−シングと、前記
ケ−シング内で軸受装置により支持されその一部にイン
ペラを配置し回転する主軸とを備えるものであって、前
記軸受装置の少なくとも1か所は外部より清浄水を供給
することなく運転されるものである排水ポンプにおい
て、前記軸受装置を構成する軸受及びスリ−ブのいずれ
か一方若しくは両方の摺動面は溶射膜を被覆したもので
あり、該溶射膜は、被覆した後300℃以上550℃以
下の温度で1時間以上加熱され、該溶射膜のビッカース
硬さが1000以上であることを特徴とする排水ポン
プ。
7. A casing comprising a casing through which drainage flows, and a main shaft supported by a bearing device in the casing and having an impeller arranged in a part thereof to rotate. In a drainage pump in which at least one place is operated without supplying clean water from the outside, one or both of the bearings and the sleeves constituting the bearing device are coated with a sprayed film. The drainage pump, wherein the sprayed film is heated at a temperature of 300 ° C. or higher and 550 ° C. or lower for 1 hour or longer after being coated, and the Vickers hardness of the sprayed film is 1000 or higher.
【請求項8】内部を排水が流動するケ−シングと、前記
ケ−シング内で軸受装置により支持されその一部にイン
ペラを配置し回転する主軸とを備えるものであって、前
記軸受装置の少なくとも1か所は外部より清浄水を供給
することなく運転されるものである排水ポンプにおい
て、前記軸受装置を構成するスリ−ブの摺動面は溶射膜
を被覆したものであり、そのkg単位の重量Wと、cm
単位の外形Dとの比、W/D2が0.05以下であるこ
とを特徴とする排水ポンプ。
8. A casing having a casing through which drainage flows, and a main shaft supported by a bearing device in the casing and having an impeller arranged in a part thereof to rotate, the bearing device comprising: In a drainage pump in which at least one place is operated without supplying clean water from the outside, a sliding surface of a sleeve constituting the bearing device is coated with a sprayed film, and its kg unit Weight W and cm
A drainage pump having a ratio of W / D 2 of 0.05 or less with respect to the outer shape D of the unit.
【請求項9】内部を排水が流動するケ−シングと、前記
ケ−シング内で軸受装置により支持されその一部にイン
ペラを配置し回転する主軸とを備えるものであって、前
記軸受装置の少なくとも1か所は外部より清浄水を供給
することなく運転されるものである排水ポンプにおい
て、前記軸受装置を構成する軸受及びスリ−ブのいずれ
か一方若しくは両方の摺動面は溶射膜を被覆したもので
あり、前記溶射膜はその表面に形成される20μm以上
の大きさの空孔の密度が15個/mm2以下であり、更
に前記主軸の外周側で、前記軸受及び軸受固定部材の下
端面及び外周側を囲むように上部が開口する貯水槽を固
定したことを特徴とする排水ポンプ。
9. A bearing comprising: a casing through which drainage flows; and a main shaft which is supported by a bearing device in the casing and has an impeller arranged in a part thereof to rotate. In a drainage pump in which at least one place is operated without supplying clean water from the outside, one or both of the bearings and the sleeves constituting the bearing device are coated with a sprayed film. The density of the pores having a size of 20 μm or more formed on the surface of the sprayed film is 15 / mm 2 or less, and further, on the outer peripheral side of the main shaft, of the bearing and the bearing fixing member. A drainage pump, characterized in that a water storage tank having an open upper portion is fixed so as to surround the lower end surface and the outer peripheral side.
【請求項10】請求項6乃至9記載のいずれかにおい
て、前記溶射膜はWCを主成分として結合材にNi、C
r又はCoのいずれか1つ若しくは複数を含むもの又は
Cr32を主成分として結合材にNiとCrを含むもの
のいずれかであって、その膜厚が100μm以上、20
0μm以下であり、前記スリ−ブ及び/又は軸受の摺動
部が2個以上に分割されていることを特徴とする排水ポ
ンプ。
10. The spray coating according to claim 6, wherein the sprayed film contains WC as a main component and Ni or C as a binder.
Any one of r and Co containing one or more, or one containing Cr 3 C 2 as a main component and Ni and Cr in the binder, and having a film thickness of 100 μm or more, 20
A drainage pump having a diameter of 0 μm or less, wherein the sliding portion of the sleeve and / or the bearing is divided into two or more.
【請求項11】内部を流体が流動するケ−シングと、前
記ケ−シング内で軸受装置により支持されその一部にラ
ンナを配置し回転する主軸とを備えるものであって、前
記軸受装置の少なくとも1か所は前記流体を供給して運
転されるものである水車において、前記軸受装置を構成
する軸受及びスリ−ブのいずれか一方若しくは両方の摺
動面は溶射膜を被覆したものであり、前記溶射膜はその
表面に形成される20μm以上の大きさの空孔の密度が
15個/mm2以下であることを特徴とする水車。
11. A bearing having a casing in which a fluid flows, and a main shaft supported by a bearing device in the casing and having a runner arranged in a part thereof to rotate, the bearing device comprising: In at least one of the water turbines that is operated by supplying the fluid, at least one of the bearing and the sleeve constituting the bearing device or both sliding surfaces are coated with a sprayed film. A water turbine, wherein the sprayed film has a density of pores having a size of 20 μm or more formed on its surface of 15 holes / mm 2 or less.
【請求項12】内部を流体が流動するケ−シングと、前
記ケ−シング内で軸受装置により支持されその一部にラ
ンナを配置し回転する主軸とを備えるものであって、前
記軸受装置の少なくとも1か所は前記流体を供給して運
転されるものである水車において、前記軸受装置を構成
する軸受及びスリ−ブのいずれか一方若しくは両方の摺
動面は溶射膜を被覆したものであり、該溶射膜は、被覆
した後300℃以上550℃以下の温度で1時間以上加
熱され、該溶射膜のビッカース硬さが1000以上であ
ることを特徴とする水車。
12. A bearing comprising: a casing in which a fluid flows; and a main shaft supported by a bearing device in the casing and having a runner arranged in a part thereof to rotate. In at least one of the water turbines that is operated by supplying the fluid, at least one of the bearing and the sleeve constituting the bearing device or both sliding surfaces are coated with a sprayed film. The water spray turbine is characterized in that the sprayed film is heated at a temperature of 300 ° C. or higher and 550 ° C. or lower for 1 hour or longer after being coated, and the Vickers hardness of the sprayed film is 1000 or higher.
【請求項13】内部を流体が流動するケ−シングと、前
記ケ−シング内で軸受装置により支持されその一部にラ
ンナを配置し回転する主軸とを備えるものであって、前
記軸受装置を構成するスリ−ブの摺動面は溶射膜を被覆
したものであり、そのkg単位の重量Wと、cm単位の
外形Dとの比、W/D2が0.05以下であることを特
徴とする水車。
13. A casing comprising a casing in which a fluid flows, and a main shaft supported by a bearing device in the casing and having a runner arranged in a part thereof to rotate, the bearing device comprising: The sliding surface of the constituent sleeves is coated with a sprayed film, and the ratio W / D 2 of the weight W in kg unit to the outer shape D in cm unit is 0.05 or less. Water turbine.
【請求項14】請求項11乃至13記載のいずれかにお
いて、前記溶射膜はWCを主成分として結合材にNi、
Cr又はCoのいずれか1つ若しくは複数を含むもの又
はCr32を主成分として結合材にNiとCrを含むも
ののいずれかであることを特徴とする水車。
14. The spray coating according to claim 11, wherein the sprayed film contains WC as a main component and Ni as a binder.
A water turbine which is either one containing one or more of Cr or Co or one containing Cr 3 C 2 as a main component and Ni and Cr in a binder.
【請求項15】金属製軸受部材の摺動部にWCを主成分
として結合材にNi、Cr又はCOのいずれか1つ若し
くは複数を含む溶射膜を被覆した後、300℃以上55
0℃以下の温度で1時間以上加熱し、その後所定の寸法
に仕上加工することを特徴とする軸受部材の製造方法。
15. After coating the sliding portion of the metal bearing member with a sprayed coating containing WC as a main component and one or more of Ni, Cr and CO on a binder, 300 ° C. or higher 55
A method of manufacturing a bearing member, which comprises heating at a temperature of 0 ° C. or lower for 1 hour or more, and then finishing working to a predetermined size.
【請求項16】金属製軸受部材の摺動部にCr32を主
成分として結合材にNiとCrを含む射膜を被覆した
後、300℃以上550℃以下の温度で1時間以上加熱
し、その後所定の寸法に仕上加工することを特徴とする
軸受部材の製造方法。
16. A sliding portion of a metal bearing member is coated with a sprayed film containing Cr 3 C 2 as a main component and Ni and Cr as a binder, and then heated at a temperature of 300 ° C. or higher and 550 ° C. or lower for 1 hour or longer. Then, the method for producing a bearing member is characterized by finishing the product into a predetermined size.
【請求項17】溶射膜を表面に被覆した摺動部材におい
て、前記溶射膜の表面に形成される20μm以上の大き
さの空孔の密度が15個/mm2以下であることを特徴
とする摺動部材。
17. A sliding member having a surface coated with a sprayed film, characterized in that the density of holes having a size of 20 μm or more formed on the surface of the sprayed film is 15 holes / mm 2 or less. Sliding member.
【請求項18】請求項17記載において、前記溶射膜は
WCを主成分として結合材にNi、Cr又はCoのいず
れか1つ若しくは複数を含むもの及びCr32を主成分
として結合材にNiとCrを含むもののいずれかである
ことを特徴とする摺動部材。
18. The thermal spray coating according to claim 17, wherein the WC is a main component and the binder contains one or more of Ni, Cr and Co, and the Cr 3 C 2 main component is a binder. A sliding member comprising one of Ni and Cr.
【請求項19】降雨時の出水を排水するために設けられ
る先行待機運転を実施するポンプであって、待機運転時
には無潤滑状態で、排水運転時には排水で潤滑される軸
受装置を有するものにおいて、前記軸受装置は、軸受,
軸受ケーシング及びスリーブを備え、前記スリーブはス
テンレスの表面にWCを主成分とし結合材にNI,Cr
又はCoの少なくとも1つ若しくは複数を含む溶射皮膜
を施したものであり、前記軸受は分割されたセラミック
片を組み合わせて構成したものであることを特徴とする
排水ポンプ。
19. A pump for performing a preceding standby operation provided for draining water discharged during rainfall, comprising a bearing device that is in a non-lubricated state during a standby operation and is lubricated by drainage during a drain operation. The bearing device is a bearing,
The bearing casing and the sleeve are provided, and the sleeve has WC as a main component on the surface of stainless steel and NI and Cr as the binder.
Alternatively, the drainage pump is characterized in that a thermal spray coating containing at least one or a plurality of Co is applied, and the bearing is configured by combining divided ceramic pieces.
JP08113693A 1992-03-18 1993-03-17 Bearing device, drain pump and water turbine provided with the bearing device, and method of manufacturing bearing device Expired - Fee Related JP3271363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08113693A JP3271363B2 (en) 1992-03-18 1993-03-17 Bearing device, drain pump and water turbine provided with the bearing device, and method of manufacturing bearing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9157192 1992-03-18
JP4-91571 1992-03-18
JP08113693A JP3271363B2 (en) 1992-03-18 1993-03-17 Bearing device, drain pump and water turbine provided with the bearing device, and method of manufacturing bearing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000072448A Division JP3627614B2 (en) 1992-03-18 2000-03-10 Drainage pump

Publications (2)

Publication Number Publication Date
JPH0693407A true JPH0693407A (en) 1994-04-05
JP3271363B2 JP3271363B2 (en) 2002-04-02

Family

ID=26422175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08113693A Expired - Fee Related JP3271363B2 (en) 1992-03-18 1993-03-17 Bearing device, drain pump and water turbine provided with the bearing device, and method of manufacturing bearing device

Country Status (1)

Country Link
JP (1) JP3271363B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193568A (en) * 1995-01-13 1996-07-30 Hitachi Ltd Runner of hydraulic machinery and manufacture of runner
JPH09303245A (en) * 1996-03-13 1997-11-25 Hitachi Ltd Runner for hydraulic machinery and manufacture of the runner
JP2000108608A (en) * 1998-09-30 2000-04-18 Combi Corp Wheel shaft structure
JP2000314423A (en) * 1992-03-18 2000-11-14 Hitachi Ltd Drainage pump and manufacture thereof
JP2001200838A (en) * 1999-11-09 2001-07-27 Seiko Instruments Inc Fluid dynamic pressure bearing, fluid dynamic pressure bearing device, manufacturing method of fluid dynamic pressure bearing, and bearing surface machining method
JP2002013462A (en) * 2000-06-30 2002-01-18 Toshiba Corp Hydraulic machine and manufacturing method for hydraulic machine
JP2003227433A (en) * 2002-01-31 2003-08-15 Denso Corp Distribution type fuel injection pump
JP2004307938A (en) * 2003-04-07 2004-11-04 Honda Motor Co Ltd Method for coupling thermal spraying layer and iron and steel members
JP2005249030A (en) * 2004-03-03 2005-09-15 Hitachi Ltd Water-lubrication segment type bearing device and water turbine
JP2011514486A (en) * 2008-02-08 2011-05-06 テクノジェニア Method and apparatus for manufacturing radial bearings for downhole motors
JP2018105339A (en) * 2016-12-22 2018-07-05 株式会社荏原製作所 Shaft sleeve, pump and method for manufacturing shaft sleeve
KR20200056807A (en) * 2018-11-15 2020-05-25 재단법인 포항산업과학연구원 Pump shaft sleeve and manufacturing method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047293A (en) * 2012-12-17 2013-04-17 吴江市金平华纺织有限公司 Main shaft bushing of textile machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314423A (en) * 1992-03-18 2000-11-14 Hitachi Ltd Drainage pump and manufacture thereof
JPH08193568A (en) * 1995-01-13 1996-07-30 Hitachi Ltd Runner of hydraulic machinery and manufacture of runner
JPH09303245A (en) * 1996-03-13 1997-11-25 Hitachi Ltd Runner for hydraulic machinery and manufacture of the runner
JP2000108608A (en) * 1998-09-30 2000-04-18 Combi Corp Wheel shaft structure
JP2001200838A (en) * 1999-11-09 2001-07-27 Seiko Instruments Inc Fluid dynamic pressure bearing, fluid dynamic pressure bearing device, manufacturing method of fluid dynamic pressure bearing, and bearing surface machining method
JP2002013462A (en) * 2000-06-30 2002-01-18 Toshiba Corp Hydraulic machine and manufacturing method for hydraulic machine
JP2003227433A (en) * 2002-01-31 2003-08-15 Denso Corp Distribution type fuel injection pump
JP2004307938A (en) * 2003-04-07 2004-11-04 Honda Motor Co Ltd Method for coupling thermal spraying layer and iron and steel members
JP2005249030A (en) * 2004-03-03 2005-09-15 Hitachi Ltd Water-lubrication segment type bearing device and water turbine
JP2011514486A (en) * 2008-02-08 2011-05-06 テクノジェニア Method and apparatus for manufacturing radial bearings for downhole motors
JP2018105339A (en) * 2016-12-22 2018-07-05 株式会社荏原製作所 Shaft sleeve, pump and method for manufacturing shaft sleeve
KR20200056807A (en) * 2018-11-15 2020-05-25 재단법인 포항산업과학연구원 Pump shaft sleeve and manufacturing method of the same

Also Published As

Publication number Publication date
JP3271363B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US5346316A (en) Bearing unit, drainage pump and hydraulic turbine each incorporating the bearing unit
US5458460A (en) Drainage pump and a hydraulic turbine incorporating a bearing member, and a method of manufacturing the bearing member
JPH0693407A (en) Bearing device and drainage pump and hydraulic turbine with the same and manufacture of bearing device
JP3326834B2 (en) Rolling bearing
Wang et al. Rolling contact silicon nitride bearing technology: a review of recent research
US6391128B2 (en) Rolling bearing
US8844140B2 (en) Rolling bearing of ceramic and steel engaging parts
EP0685439B1 (en) Seal or bearing
WO1993020023A1 (en) Sliding member and production thereof
US6485581B2 (en) Bearing for main spindle of machine tool
JP3627614B2 (en) Drainage pump
US5108491A (en) Rolling bearing composition
CA2365553A1 (en) Rolling bearing
Tanimoto et al. Hybrid ceramic ball bearings for turbochargers
KR100659940B1 (en) Oil-impregnated sintered sliding bearing
CN110005702A (en) Particularly for the mixing rolling bearing of coolant compressor
JP3509803B2 (en) Rolling bearing
JPH1161337A (en) Rolling member and rolling device provided with the same
CN110017325A (en) Particularly for the mixing roller bearing of coolant compressor
US7018107B2 (en) Rolling bearing comprising a powder metallurgical component
JP2899641B2 (en) Bearing structure and pump for drainage pump
CN109937308A (en) Combined bearing
Li Abrasive wear
GB2344828A (en) Rolling member
CN109989996A (en) Particularly for the mixing ball bearing of coolant compressor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees