JP2005248325A - Method for producing magnesium composite material - Google Patents

Method for producing magnesium composite material Download PDF

Info

Publication number
JP2005248325A
JP2005248325A JP2005028817A JP2005028817A JP2005248325A JP 2005248325 A JP2005248325 A JP 2005248325A JP 2005028817 A JP2005028817 A JP 2005028817A JP 2005028817 A JP2005028817 A JP 2005028817A JP 2005248325 A JP2005248325 A JP 2005248325A
Authority
JP
Japan
Prior art keywords
raw material
forming
pressing
molding
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005028817A
Other languages
Japanese (ja)
Other versions
JP4401976B2 (en
Inventor
Takanori Igarashi
貴教 五十嵐
Katsuji Motoe
克次 本江
Masaharu Sugiyama
雅治 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP2005028817A priority Critical patent/JP4401976B2/en
Publication of JP2005248325A publication Critical patent/JP2005248325A/en
Application granted granted Critical
Publication of JP4401976B2 publication Critical patent/JP4401976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a magnesium composite material made of a compression-molded body in which a raw material is efficiently refined and uniformly dispersed. <P>SOLUTION: As shown by (A) in Figure, in a state where a raw material M obtained by mixing magnesium alloy chips and silica powder is stored into a molding hole 11, a molding pin 21 is penetrated. The raw material M is consolidated without going toward molding holes 12 to 14 clogged with molding pins 22 to 24. Next, as shown by (B), (C) in the figure, the molding pin 22 is made into the state where it can be retreated, and the molding pin 21 is further penetrated, thus the raw material M is crumbled by shearing force and flows from a crossing section 19 to the molding hole 12. Similarly, the consolidation and crumbling by shearing force to the raw material M are performed at the molding holes 12, 13, 14 in order. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を加工して、混合材料が微細化され添加材が均一に分散化された圧縮成形体を得るマグネシウム複合材料の製造方法に関する。   The present invention processes a mixed raw material containing chips or granules of magnesium or magnesium alloy and a powdered additive, and obtains a compression molded body in which the mixed material is refined and the additive is uniformly dispersed. The present invention relates to a method for manufacturing a magnesium composite material.

近年、最軽量合金であるマグネシウム合金の利用が注目されている。このマグネシウム合金は低硬度,低剛性,摩耗性,腐食性等の短所を有するが、その短所を補うために、硬質のマグネシウムシリサイド(MgSi)の粒子を分散させたマグネシウム複合材料が開発されている。 In recent years, the use of magnesium alloy, which is the lightest alloy, has attracted attention. This magnesium alloy has disadvantages such as low hardness, low rigidity, wearability, and corrosiveness, but in order to compensate for the disadvantages, a magnesium composite material in which hard magnesium silicide (Mg 2 Si) particles are dispersed has been developed. ing.

上記マグネシウムシリサイドの粒子を分散させたマグネシウム複合材料の公知の一般的な製造方法では、マグネシウム合金を溶融または半溶融させる工程を経るため、マグネシウム合金の結晶粒が粗大化し、強度向上に限界があった。   In the known general manufacturing method of the magnesium composite material in which the magnesium silicide particles are dispersed, the magnesium alloy is melted or semi-melted, so that the crystal grains of the magnesium alloy are coarsened and there is a limit to improvement in strength. It was.

そこで、非特許文献1,特許文献1に開示されているようなマグネシウム合金の製造方法が開発された。この方法では、図11に示すプレス機が用いられる。このプレス機は、下型にダイ1(臼)を備え、上型に2種類の成形ピン7、9を備えている。ダイ1は有底円筒状をなしており、上部が開放された収容空間5を有している。上型には、成形ピン7、9を交互にダイ1の真上に位置させる切り換え機構が設けられている。一方の成形ピン7は平坦な下面を有し、その径はダイ1の収容空間5の内径とほぼ等しい。他方の成形ピン9は細長い棒形状をなしており、その径は収容空間5の内径より小さい。   Therefore, a method for producing a magnesium alloy as disclosed in Non-Patent Document 1 and Patent Document 1 has been developed. In this method, the press shown in FIG. 11 is used. In this press machine, a lower die is provided with a die 1 (mortar), and an upper die is provided with two types of forming pins 7 and 9. The die 1 has a bottomed cylindrical shape and has an accommodation space 5 with an open top. The upper mold is provided with a switching mechanism for alternately positioning the molding pins 7 and 9 directly above the die 1. One forming pin 7 has a flat lower surface, and its diameter is substantially equal to the inner diameter of the accommodation space 5 of the die 1. The other forming pin 9 has an elongated bar shape, and the diameter thereof is smaller than the inner diameter of the accommodation space 5.

図11(a)に示すように、上記収容空間5に、数mm程度のマグネシウム合金のチップに、粒径数ミクロン〜数十ミクロンのシリコンまたはシリカの粉末を数%(混合材料に対する重量%)混合させた原料Mを充填する。   As shown in FIG. 11 (a), in the housing space 5, a magnesium alloy chip having a diameter of several millimeters is filled with silicon or silica powder having a particle size of several microns to several tens of microns (% by weight based on the mixed material). The mixed raw material M is filled.

次に、図11(a),(b)に示すように、成形ピン7をダイ1の真上に位置させてから下降させて、原料Mを扁平な円柱形状に押し固める。   Next, as shown in FIGS. 11 (a) and 11 (b), the forming pin 7 is positioned immediately above the die 1 and then lowered to press the material M into a flat cylindrical shape.

次に、成形ピン7を上昇させてから他の成形ピン9をダイ1の真上に位置させるように切り換えた後、図11(c),(d)に示すように、成形ピン9を下降させて原料Mの中央に圧入する。これにより原料Mは上記成形ピン9により後方押出しされて成形ピン9の周囲に盛り上がり、中央に深い穴が生じる。   Next, after raising the molding pin 7 and switching the other molding pin 9 to be positioned directly above the die 1, the molding pin 9 is lowered as shown in FIGS. 11 (c) and 11 (d). And press-fitted into the center of the raw material M. As a result, the raw material M is extruded backward by the molding pin 9 and rises around the molding pin 9 to form a deep hole in the center.

次に、図11(e)に示すように成形ピン9を上昇させた後、図11(f),(b)に示すように、成形ピン7をダイ1の真上に位置させてから下降させて、原料Mを再び圧縮する。この成形ピン7の下降により、原料Mは周囲の盛り上がった部位が中央の深い穴に埋められるようにして押し固められ、再び扁平な円柱形状になる。   Next, after raising the forming pin 9 as shown in FIG. 11 (e), as shown in FIGS. 11 (f) and 11 (b), the forming pin 7 is positioned right above the die 1 and then lowered. The raw material M is compressed again. By the lowering of the forming pin 7, the raw material M is pressed and consolidated so that the surrounding raised portion is buried in a deep hole in the center, and becomes a flat cylindrical shape again.

上記のように成形ピン7,9による変形(押し固め,後方押し出し)を繰り返すことにより、原料Mにおけるマグネシウム合金チップが微細化され、シリコン粉末がさらに微細化されるとともにマグネシウム合金中に均一に分散される。そして、最後に原料Mを押し固めて圧縮成形体を得る。このような工法を、本明細書ではバルクメカニカルアロイング(BMA)と称す。   By repeating the deformation (consolidation, backward extrusion) by the forming pins 7 and 9 as described above, the magnesium alloy chip in the raw material M is refined, and the silicon powder is further refined and uniformly dispersed in the magnesium alloy. Is done. Finally, the raw material M is pressed and hardened to obtain a compression molded body. Such a construction method is referred to as bulk mechanical alloying (BMA) in this specification.

上記のようにして所望レベルまで結晶粒の微細化,均一分散化が進んだ状態で、圧縮成形体を取り出し、これを不活性ガス雰囲気中または真空中において固相温度領域で加熱し、押出成形する。これにより、シリコンとマグネシウムとが反応して、マグネシウムシリサイド(MgSi)が析出する。この加熱は、マグネシウム結晶粒の結合を確実に行える温度350℃以上で、マグネシウムの融点より低くマグネシウム結晶粒の粗大化を抑制できる程度に低い温度520℃以下で行われる。また、押出成形により組織が緻密化される。 With the crystal grains refined and uniformly dispersed to the desired level as described above, the compression molded product is taken out and heated in a solid phase temperature region in an inert gas atmosphere or in a vacuum to perform extrusion molding. To do. Thereby, silicon and magnesium react and magnesium silicide (Mg 2 Si) is deposited. This heating is performed at a temperature of 350 ° C. or higher at which the magnesium crystal grains can be reliably bonded and at a temperature lower than 520 ° C. which is lower than the melting point of magnesium and low enough to suppress the coarsening of the magnesium crystal grains. Further, the structure is densified by extrusion.

上記BMA工法において、マグネシウム合金チップの表面に形成された酸化膜MgOは機械的に破壊・分断されて、活性なマグネシウムの新生面が形成されるので、Siと母材の反応性を高めることもできる。なお、シリカ(SiO)を用いる場合には、圧縮成形体を加熱することにより、MgOも析出される。 In the BMA method, the oxide film MgO formed on the surface of the magnesium alloy chip is mechanically destroyed and divided to form a new active magnesium surface, so that the reactivity between Si and the base material can be increased. . In the case of using silica (SiO 2), by heating the compacts, MgO is also deposited.

上記のようにして、マグネシウムシリサイドを分散させたマグネシウム複合材料が得られる。この複合材料は、マグネシウムを母材とするため軽量であり、しかも微細かつ均一分散されたMgSiにより、機械的強度,耐食性,耐摩耗性等を著しく向上させることができる。
雑誌アルトピア2002年12月号(12頁) WO2003/027342号公報
As described above, a magnesium composite material in which magnesium silicide is dispersed is obtained. This composite material is lightweight because magnesium is used as a base material, and mechanical strength, corrosion resistance, wear resistance, and the like can be remarkably improved by Mg 2 Si finely and uniformly dispersed.
Magazine Altopia December 2002 issue (12 pages) WO2003 / 027342

しかし、上記方法では、圧入される成形ピン9の体積分しか原料が流動せず、撹拌流動効率が悪く、ひいては微細化,均一分散化の効率が悪かった。
また、ダイ1の収容空間5において底部近傍、特に底部と円筒形状の周壁が交差する隅部は、上記成形ピン7,9による変形工程の繰り返しの際にも原料Mの移動が殆ど生じず、移動と圧縮によって生じる微細化,均一分散化も進まない領域となってしまうので、所定回数だけ工程の繰り返しがなされる度に、押し固められた原料をひっくり返す必要がある。
However, in the above method, the raw material flows only in the volume of the press-fitted forming pin 9, and the stirring flow efficiency is poor, and further, the efficiency of miniaturization and uniform dispersion is poor.
Further, in the accommodation space 5 of the die 1, the movement of the raw material M hardly occurs in the vicinity of the bottom portion, in particular, the corner portion where the bottom portion and the cylindrical peripheral wall intersect, even when the deformation process by the molding pins 7 and 9 is repeated. Since it becomes a region where fineness and uniform dispersion caused by movement and compression do not progress, it is necessary to flip the compacted raw material every time the process is repeated a predetermined number of times.

本発明は上記課題を解決するためになされたもので、マグネシウム複合材料の製造方法において、マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、互いに交差して連なる複数の直線状の成形穴を有する型内に収容した状態で、上記成形穴内に挿入された押圧部材の前進,後退に伴い、上記混合原料を1の成形穴で押し固め、更にこの押し固めた混合原料を押し崩しながら他の成形穴へと送り込み、この押し固め,押し崩しを繰り返すことにより、混合原料が微細化されるとともに添加材が均一に分散化された圧縮成形体を得ることを要旨とする。   The present invention has been made in order to solve the above-described problems. In the method for producing a magnesium composite material, mixed raw materials containing magnesium or a magnesium alloy chip or granule and a powdered additive are crossed with each other. The mixed raw material is squeezed in one molding hole as the pressing member inserted into the molding hole moves forward and backward in a state where it is accommodated in a mold having a plurality of continuous linear molding holes. The mixed raw material is crushed and sent to another forming hole, and this compaction and crushing are repeated to obtain a compression molded body in which the mixed raw material is refined and the additive is uniformly dispersed. The gist.

より具体的には、
互いに交差して連なる複数の直線状の成形穴を有する型と、これら成形穴にそれぞれ挿入された複数の押圧部材とを用意し、
マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、上記複数の成形穴の1つに収容し、他の全ての成形穴への混合原料の流れ込みを禁じた状態で、当該1つの成形穴に挿入された1つの押圧部材を奥に向かって押し込むことにより、当該1つの成形穴内において上記混合原料を押し固める前段工程を実行し、
次に、他の1つの成形穴に挿入された他の1つの押圧部材を後退可能にするか予め後退させた状態で、当該1つの押圧部材をさらに奥に押し込むことにより、上記混合原料を押し崩しながら当該1つの成形穴から当該他の1つの成形穴へと送り込む後段工程を実行し、
上記前段工程と後段工程を繰り返し、最後にいずれかの成形穴において前段工程を実行することにより、混合原料が微細化されるとともに添加材が均一に分散化された圧縮成形体を得る。
More specifically,
Prepare a mold having a plurality of linear molding holes that intersect and cross each other, and a plurality of pressing members respectively inserted into these molding holes,
A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdered additive is accommodated in one of the plurality of forming holes, and the flow of the mixed raw material into all other forming holes is prohibited. In the state, by pressing one pressing member inserted into the one molding hole toward the back, a pre-stage step of pressing the mixed raw material in the one molding hole is performed,
Next, in a state where the other pressing member inserted into the other one forming hole can be retracted or retracted in advance, the one pressing member is further pushed inward to push the mixed raw material. Execute a subsequent process of feeding from the one forming hole to the other forming hole while breaking,
By repeating the preceding step and the latter step and finally executing the preceding step in any one of the forming holes, a compression molded body in which the mixed raw material is refined and the additive is uniformly dispersed is obtained.

上記方法によれば、混合原料を押し固め,押し崩す加工を繰り返すことにより、混合原料を微細化できるとともに、添加材を均一に分散化することができる。しかも、押し固められた混合原料が成形穴の交差部を通過する過程で、ほぼ全断面領域で大きな剪断力,摩擦力を受けるため、上記微細化および均一分散化を効率良く行うことができ、その結果、混合原料の押し固め,押し崩しの回数が少なくても所望の微細化や均一分散化を得ることができる。   According to the above method, the mixed raw material can be refined and the additive can be uniformly dispersed by repeating the process of compacting and crushing the mixed raw material. Moreover, in the process that the mixed raw material that has been compacted passes through the intersections of the molding holes, it receives a large shearing force and frictional force in almost the entire cross-sectional area, so that the above-mentioned miniaturization and uniform dispersion can be performed efficiently, As a result, the desired fineness and uniform dispersion can be obtained even if the mixed raw material is compacted and crushed few times.

本発明の第1の態様では、
互いに交差して連なる複数の直線状の成形穴を有する型と、これら成形穴にそれぞれ挿入された複数の押圧部材とを用意し、
マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、上記複数の成形穴の1つに収容し、他の全ての成形穴への混合原料の流れ込みを禁じた状態で、当該1つの成形穴に挿入された1つの押圧部材を奥に向かって押し込むことにより、当該1つの成形穴内において上記混合原料を押し固める前段工程を実行し、
次に、他の1つの成形穴に挿入された他の1つの押圧部材を後退可能にするか予め後退させた状態で、当該1つの押圧部材をさらに奥に押し込むことにより、上記混合原料を押し崩しながら当該1つの成形穴から当該他の成形穴へと送り込む後段工程を実行し、
次に、当該他の成形穴に挿入された押圧部材の押し込みにより、当該他の成形穴に送り込まれた原料の押し固めを伴う上記前段工程と、上記混合材料の押し崩しを伴う上記後段工程とを実行し、
上記複数の押圧部材について所定の順序で、上記前段工程と後段工程を繰り返し、最後にいずれかの成形穴において前段工程を実行することにより、混合原料が微細化されるとともに添加材が均一に分散化された圧縮成形体を得る。
In the first aspect of the present invention,
Prepare a mold having a plurality of linear molding holes that intersect and cross each other, and a plurality of pressing members respectively inserted into these molding holes,
A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdered additive is accommodated in one of the plurality of forming holes, and the flow of the mixed raw material into all other forming holes is prohibited. In the state, by pressing one pressing member inserted into the one molding hole toward the back, a pre-stage step of pressing the mixed raw material in the one molding hole is performed,
Next, in a state where the other one pressing member inserted into the other one forming hole can be retracted or retracted in advance, the one pressing member is further pushed into the back to push the mixed raw material. Execute the subsequent process of feeding from the one forming hole to the other forming hole while breaking,
Next, by the pressing of the pressing member inserted into the other forming hole, the preceding step involving the compaction of the raw material fed into the other forming hole, and the subsequent step involving the crushing of the mixed material, Run
By repeating the preceding process and the succeeding process in a predetermined order for the plurality of pressing members, and finally executing the preceding process in one of the forming holes, the mixed raw material is refined and the additive is uniformly dispersed. A compressed compression molded body is obtained.

上記第1の態様の方法によれば、押し崩された混合原料が流入した成形穴で再び混合原料の押し固め,押し崩しを行なうので、生産効率をより一層高めることができる。   According to the method of the first aspect, since the mixed raw material is pressed and crushed again in the forming hole into which the mixed raw material that has been crushed flows, the production efficiency can be further improved.

本発明の第2の態様では、
互いに交差して連なる複数の直線状の成形穴を有する型と、これら成形穴にそれぞれ挿入された複数の押圧部材とを用意し、
マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、選択された1つの成形穴に収容し、他の全ての成形穴への原料の流れ込みを禁じた状態で、上記の選択された成形穴に挿入された1つの押圧部材を奥に向かって押し込むことにより、上記の選択された成形穴内において上記混合原料を押し固める前段工程を実行し、
次に、他の1つの成形穴に挿入された他の1つの成形ピンを後退可能にするか予め後退させた状態で、上記の選択された成形ピンをさらに奥に押し込むことにより、上記混合原料を押し崩しながら上記の選択された成形穴から当該他の成形穴へと送り込む後段工程を実行し、
次に、当該他の成形穴の混合原料を、当該他の成形穴に挿入された押圧部材で押し込むことにより上記の選択された成形穴に戻す戻し工程を実行し、
上記工程を繰り返し、最後に上記の選択された成形穴において前段工程を実行することにより、混合原料が微細化されるとともに添加材が均一に分散化された圧縮成形体を得る。
In the second aspect of the present invention,
Prepare a mold having a plurality of linear molding holes that intersect and cross each other, and a plurality of pressing members respectively inserted into these molding holes,
A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdery additive is contained in one selected forming hole, and the raw material is not allowed to flow into all other forming holes. The first step of pressing the one of the pressing members inserted into the selected molding hole toward the back to compress the mixed raw material in the selected molding hole is performed,
Next, in a state where the other one forming pin inserted into the other one forming hole can be retracted or has been retracted in advance, the selected forming pin is further pushed into the back, thereby mixing the raw material. Execute the subsequent process of feeding from the selected molding hole to the other molding hole while crushing,
Next, a return step of returning the mixed raw material of the other forming hole to the selected forming hole by pressing with a pressing member inserted into the other forming hole,
The above process is repeated, and finally the preceding process is executed in the selected molding hole, thereby obtaining a compression molded body in which the mixed raw material is refined and the additive is uniformly dispersed.

上記第2の態様によれば、第1の態様より効率は落ちるが、その代わりに、選択された1つの成形ピンだけを大きな荷重で加圧すればよいので、装置の構成を簡略化することができる。   According to the second aspect, the efficiency is lower than that of the first aspect, but instead, only one selected molding pin needs to be pressurized with a large load, so that the configuration of the apparatus is simplified. Can do.

好ましくは、上記成形穴が互いにほぼ90°の角度で交差している。これによれば、混合原料の押し崩し時において、より大きな剪断力,摩擦力を混合原料に与えることができるにも拘わらず、混合原料を1つの成形穴から交差部を経て他の成形穴へ、比較的円滑に流動させることができる。   Preferably, the forming holes intersect each other at an angle of approximately 90 °. According to this, at the time of crushing of the mixed raw material, even though a larger shearing force and frictional force can be given to the mixed raw material, the mixed raw material is passed from one forming hole to another forming hole. , Can flow relatively smoothly.

上記第1,第2の態様において、成形穴の交差角度がほぼ90°の角度をなす場合、型は複数の成形穴として2つから6つの成形穴を備えることができる。
上記第1の態様において、2つの成形穴を備える場合には、きわめて簡単な構成により、混合原料の微細化や均一分散化を図ることができる。具体的には次の通りである。
互いにほぼ90°で交差して連なる直線状の第1,第2成形穴を有する型と、これら第1,第2成形穴にそれぞれ挿入された第1,第2の押圧部材とを用意し、
マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、上記第1成形穴に収容し、上記第2押圧部材を上記第2成形穴の奥端で固定することにより第2成形穴を塞ぎ、この状態で第1押圧部材を第1成形穴の奥に向かって押し込むことにより、第1成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、上記第2押圧部材の後退を可能にするか予め後退させた状態で、上記第1押圧部材をさらに奥に押し込むことにより、上記混合原料を押し崩しながら第1成形穴から第2成形穴へと送り込む後段工程を実行し、
次に、上記第1押圧部材を上記第1成形穴の奥端で固定することにより第1成形穴を塞ぎ、この状態で第2押圧部材を第2成形穴の奥に向かって押し込むことにより、第2成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、上記第1押圧部材の後退を可能にするか予め後退させた状態で、上記第2押圧部材をさらに奥に押し込むことにより、上記混合原料を押し崩しながら第2成形穴から第1成形穴へと送り込む後段工程を実行し、
上記前段工程と後段工程を、第1,第2押圧部材について交互に繰り返し実行し、最後にいずれかの成形穴において前段工程を実行することにより、混合原料が微細化されるとともに添加材が均一に分散化された混合原料の圧縮成形体を得る。
In the first and second embodiments, when the intersecting angle of the forming holes forms an angle of approximately 90 °, the mold can be provided with two to six forming holes as a plurality of forming holes.
In the first aspect, when two molding holes are provided, the mixed raw material can be miniaturized and uniformly dispersed with a very simple configuration. Specifically, it is as follows.
Preparing a mold having linear first and second molding holes that intersect and cross each other at approximately 90 °, and first and second pressing members respectively inserted into the first and second molding holes;
A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdery additive is contained in the first forming hole, and the second pressing member is fixed at the back end of the second forming hole. The second forming hole is closed by this, and in this state, the first pressing member is pushed toward the back of the first forming hole, thereby executing a pre-stage step of pressing and solidifying the mixed raw material accommodated in the first forming hole,
Next, in a state in which the second pressing member can be retracted or retracted in advance, the first pressing member is further pushed into the back so that the mixed raw material is crushed and the second molding is performed from the first forming hole. Execute the latter stage process to feed into the hole,
Next, the first pressing member is fixed at the back end of the first forming hole to close the first forming hole, and in this state, the second pressing member is pushed toward the back of the second forming hole, Performing a pre-stage step of pressing and solidifying the mixed raw material accommodated in the second forming hole;
Next, in a state where the first pressing member can be retracted or retracted in advance, the second pressing member is further pushed into the back, so that the first raw material is pressed from the second forming hole while collapsing the mixed material. Execute the latter stage process to feed into the hole,
The above pre-stage process and post-stage process are alternately and repeatedly executed for the first and second pressing members, and finally the pre-stage process is executed in any one of the forming holes, whereby the mixed raw material is refined and the additive is uniform A compression molded body of the mixed raw material dispersed in is obtained.

上記第1の態様において、成形穴が4つの場合には次のようになる。
同一平面上において90°間隔で放射状に交差して連なり周方向に順に配列された第1,第2,第3,第4の成形穴を有する型と、これら成形穴にそれぞれ挿入された第1,第2,第3,第4の押圧部材とを用意し、
マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、上記第1成形穴に収容し、第2,第3,第4押圧部材を第2,第3,第4成形穴の奥端で固定して第2,第3,第4成形穴を塞いだ状態で、第1押圧部材を第1成形穴の奥に向かって押し込むことにより、第1成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、第3,第4押圧部材を第3,第4成形穴の奥端で固定し、第2押圧部材を後退可能にするか予め後退させた状態で、第1押圧部材をさらに押し込むことにより、上記混合材料を押し崩しながら第1成形穴から第2成形穴へと送り込む後段工程を実行し、
次に、第1,第3,第4押圧部材を第1,第3,第4成形穴の奥端で固定して第1,第3,第4成形穴を塞いだ状態で、第2押圧部材を第2成形穴の奥に向かって押し込むことにより、第2成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、第1,第4押圧部材を第1,第4成形穴の奥端で固定し、第3押圧部材を後退可能にするか予め後退させた状態で、第2押圧部材をさらに押し込むことにより、上記混合原料を押し崩しながら第2成形穴から第3成形穴へと送り込む後段工程を実行し、
次に、第1,第2,第4押圧部材を第1,第2,第4成形穴の奥端で固定して第1,第2,第4成形穴を塞いだ状態で、第3押圧部材を第3成形穴の奥に向かって押し込むことにより、第3成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、第1,第2押圧部材を第1,第2成形穴の奥端で固定し、第4押圧部材を後退可能にするか予め後退させた状態で、第3押圧部材をさらに押し込むことにより、上記混合原料を押し崩しながら第3成形穴から第4成形穴へと送り込む後段工程を実行し、
次に、第1,第2,第3押圧部材を第1,第2,第3成形穴の奥端で固定して第1,第2,第3成形穴を塞いだ状態で、第4押圧部材を第4成形穴の奥に向かって押し込むことにより、第4成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、第2,第3押圧部材を第2,第3成形穴の奥端で固定し、第1押圧部材を後退可能にするか予め後退させた状態で、第4押圧部材をさらに押し込むことにより、上記混合原料を押し崩しながら第4成形穴から第1成形穴へと送り込む後段工程を実行し、
上記順序で押圧部材毎の前段工程と後段工程を繰り返し、最後にいずれかの成形穴において前段工程を実行することにより、混合原料が微細化されるとともに添加材が均一に分散化された圧縮成形体を得る。
In the first aspect, when the number of forming holes is four, it is as follows.
A mold having first, second, third, and fourth molding holes arranged in a circumferential direction and intersecting radially at 90 ° intervals on the same plane, and a first inserted in each of these molding holes. , Second, third and fourth pressing members are prepared,
A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdery additive is contained in the first forming hole, and the second, third, and fourth pressing members are second, third, and third. The first pressing member is pushed into the first forming hole while being fixed at the back end of the four forming holes and the second, third, and fourth forming holes are closed, and is accommodated in the first forming hole. The first step of pressing and solidifying the mixed raw material,
Next, the third and fourth pressing members are fixed at the back ends of the third and fourth forming holes, and the first pressing member is further pressed in a state where the second pressing member can be retracted or retracted in advance. By performing a subsequent step of feeding the first mixed hole from the first forming hole to the second forming hole while crushing the mixed material,
Next, with the first, third, and fourth pressing members fixed at the back ends of the first, third, and fourth forming holes and the first, third, and fourth forming holes closed, the second pressing member By pressing the member toward the back of the second forming hole, a pre-stage step of pressing and solidifying the mixed raw material accommodated in the second forming hole is performed,
Next, the first and fourth pressing members are fixed at the back ends of the first and fourth forming holes, and the second pressing member is further pushed in with the third pressing member retreatable or previously retracted. By performing a subsequent process of feeding the mixed raw material from the second forming hole to the third forming hole while crushing,
Next, with the first, second, and fourth pressing members fixed at the back ends of the first, second, and fourth forming holes and the first, second, and fourth forming holes closed, the third pressing By pressing the member toward the back of the third forming hole, a pre-stage step of pressing the mixed raw material accommodated in the third forming hole is performed,
Next, the first and second pressing members are fixed at the back ends of the first and second forming holes, and the third pressing member is further pushed in with the fourth pressing member retreatable or previously retracted. By performing a subsequent process of sending the third mixed hole from the third forming hole to the fourth forming hole while crushing the mixed raw material,
Next, with the first, second, and third pressing members fixed at the back ends of the first, second, and third forming holes and the first, second, and third forming holes closed, the fourth press By pressing the member toward the back of the fourth forming hole, a pre-stage step of pressing the mixed raw material accommodated in the fourth forming hole is performed,
Next, the second and third pressing members are fixed at the back ends of the second and third forming holes, and the fourth pressing member is further pushed in with the first pressing member being retractable or retracted in advance. By performing a subsequent process of sending the mixed raw material from the fourth forming hole to the first forming hole while crushing,
The former process and the latter process for each pressing member are repeated in the above order, and finally the former process is executed in one of the molding holes, whereby the mixed raw material is refined and the additive is uniformly dispersed. Get the body.

この方法によれば、混合原料を途中で取出すことなく、原料の全領域にわたって、均一な原料の微細化,分散化を行なうことができる。   According to this method, it is possible to uniformly refine and disperse the raw material over the entire region of the raw material without taking out the mixed raw material in the middle.

上記のようにして得られた圧縮成形体を加熱して押出成形することにより、組織を緻密化することができる。   The structure can be densified by heating and extruding the compression molded body obtained as described above.

好ましくは、上記混合材料がマグネシウム合金のチップまたは粒状体とシリカまたはシリコンの粉末を含み、上記加熱押出成形により、マグネシウムシリサイドを固相合成する。これにより、高強度,低摩耗性,耐腐食性のマグネシウム配合材料を得ることができる。   Preferably, the mixed material includes a magnesium alloy chip or granule and silica or silicon powder, and magnesium silicide is solid-phase synthesized by the heat extrusion molding. Thereby, a magnesium compounding material having high strength, low wear and corrosion resistance can be obtained.

本発明において、前段工程,後段工程を含むサイクル間に補助的な工程を介在させてもよい。   In the present invention, an auxiliary process may be interposed between cycles including the preceding process and the subsequent process.

本発明によれば、マグネシウム複合材料を製造する際に、微細化と添加材の均一分散化の効率を飛躍的に向上させることができる。   According to the present invention, when manufacturing a magnesium composite material, the efficiency of refinement and uniform dispersion of additives can be dramatically improved.

以下、本発明の第1実施形態について、図1〜図3を参照しながら説明する。図1に示すように、本実施形態で用いられる装置は、直方体形状の型10を備えている。この型10には、直線状の4つ成形穴11〜14(第1〜第4の成形穴)が形成されている。これら成形穴11〜14は同一断面形状をなし好ましくは同一径の断面円形をなしており、型10の中心において放射状をなして交わっている。これら成形穴11〜14の交差部を符号19で示す。これら成形穴11〜14は、この順序で周方向に90°の角度間隔をなして同一平面上(垂直面上または水平面上)に配置されている。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the apparatus used in this embodiment includes a rectangular parallelepiped mold 10. The mold 10 is formed with four straight forming holes 11 to 14 (first to fourth forming holes). These molding holes 11 to 14 have the same cross-sectional shape, preferably have a circular cross-section with the same diameter, and intersect in a radial manner at the center of the mold 10. An intersection of these forming holes 11 to 14 is denoted by reference numeral 19. These forming holes 11 to 14 are arranged on the same plane (on a vertical plane or a horizontal plane) at an angular interval of 90 ° in the circumferential direction in this order.

上記成形穴11〜14には、それぞれ成形穴11〜14とほぼ等しい断面形状の成形ピン21〜24(第1〜第4の押圧部材)がスライド可能に挿入されており、前進,後退するようになっている。これら成形ピン21〜24の前進,後退は、図2の油圧駆動装置30(駆動装置)により行なわれるようになっている。   In the molding holes 11 to 14, molding pins 21 to 24 (first to fourth pressing members) having substantially the same cross-sectional shape as the molding holes 11 to 14 are slidably inserted so as to move forward and backward. It has become. The forming pins 21 to 24 are moved forward and backward by a hydraulic drive device 30 (drive device) shown in FIG.

上記油圧駆動装置30は、共通のタンク31およびポンプ32を備えるとともに、各成形ピン21〜24毎に、油圧シリンダ33,ソレノイド弁34〜36,背圧調整弁37,圧力センサ38,逆止弁39を備えている。なお、構成要素33〜39については、成形ピン21に対応するものだけを図示する。   The hydraulic drive device 30 includes a common tank 31 and a pump 32, and for each molding pin 21 to 24, a hydraulic cylinder 33, solenoid valves 34 to 36, a back pressure adjustment valve 37, a pressure sensor 38, and a check valve. 39 is provided. In addition, about the components 33-39, only the thing corresponding to the shaping | molding pin 21 is shown in figure.

各油圧シリンダ33は、筒形状のシリンダ本体33aと、シリンダ本体33a内を摺動するピストン33bと、ピストン33bに固定されてシリンダ本体33aから突出するロッド33cとを有している。   Each hydraulic cylinder 33 has a cylindrical cylinder body 33a, a piston 33b that slides inside the cylinder body 33a, and a rod 33c that is fixed to the piston 33b and protrudes from the cylinder body 33a.

上記油圧シリンダ33のロッド33cの先端は、対応する成形ピン21〜24の後端に連結されている。   The tip of the rod 33c of the hydraulic cylinder 33 is connected to the rear ends of the corresponding forming pins 21-24.

上記油圧シリンダ33において、ピストン33bの後側に位置する室33xは、ソレノイド弁34を介して共通のポンプ32に連なっている。このソレノイド弁34は、2ポート位置切換弁からなり、オフ位置では、内蔵する逆止弁34aがポンプ32から室33xへの加圧油の流通を阻止し、オン位置では加圧油の流通を許容するようになっている。このソレノイド弁34とポンプ32は、加圧油供給手段の主たる構成要素となっている。   In the hydraulic cylinder 33, the chamber 33x located on the rear side of the piston 33b is connected to a common pump 32 via a solenoid valve. This solenoid valve 34 is a two-port position switching valve. In the off position, the built-in check valve 34a prevents the flow of pressurized oil from the pump 32 to the chamber 33x, and in the on position, the pressurized oil flows. It comes to allow. The solenoid valve 34 and the pump 32 are main components of the pressurized oil supply means.

上記ソレノイド弁34とポンプ32との間には逆止弁39が介在されており、この逆止弁39により、ポンプ32から室33xへの流れを許容し、逆方向の流れを阻止するようになっている。   A check valve 39 is interposed between the solenoid valve 34 and the pump 32, and the check valve 39 allows a flow from the pump 32 to the chamber 33x and prevents a reverse flow. It has become.

上記室33xは、ソレノイド弁35を介して共通のタンク31に連なっている。このソレノイド弁35は、2ポート位置切換弁からなり、オフ位置では、内蔵する逆止弁35aが室33xからタンク31への油の流通を阻止し、オン位置では油の流通を許容するようになっている。   The chamber 33x is connected to a common tank 31 via a solenoid valve 35. The solenoid valve 35 is a two-port position switching valve. In the off position, the built-in check valve 35a prevents the oil from flowing from the chamber 33x to the tank 31 and allows the oil to flow in the on position. It has become.

上記ソレノイド弁35とタンク31との間には背圧調整弁37が介在されている。この背圧調整弁37は、成形ピン21〜24の後退時の背圧(室33xの内圧)を調節するものである。これらソレノイド弁35と背圧調整弁37は逃がし手段の主たる構成要素となっている。   A back pressure adjustment valve 37 is interposed between the solenoid valve 35 and the tank 31. The back pressure adjusting valve 37 adjusts the back pressure (the internal pressure of the chamber 33x) when the forming pins 21 to 24 are retracted. The solenoid valve 35 and the back pressure adjusting valve 37 are main components of the escape means.

また、上記室33xの圧力は圧力センサ38により監視されるようになっており、この圧力センサ38の検出圧力によりポンプ32の駆動を制御するようになっている。。   The pressure in the chamber 33x is monitored by a pressure sensor 38, and the drive of the pump 32 is controlled by the pressure detected by the pressure sensor 38. .

上記油圧シリンダ33において、ピストン33bの前側に位置する室33yは、ソレノイド弁36を介して共通のタンク31に連なっている。このソレノイド弁36は、2ポート位置切換弁からなり、オフ位置では、内蔵する逆止弁36aが室33yからタンク31への油の流通を阻止し、オン位置では油の流通を許容するようになっている。   In the hydraulic cylinder 33, the chamber 33 y located on the front side of the piston 33 b is connected to a common tank 31 via a solenoid valve 36. The solenoid valve 36 is a two-port position switching valve. In the off position, the built-in check valve 36a prevents the oil from flowing from the chamber 33y to the tank 31 and allows the oil to flow in the on position. It has become.

上記構成をなす装置を用いて、大気中、常温でBMA(バルクメカニカルアロイング)を実行する。用いられる原料Mは例えば従来技術の欄で説明したのと同様に、0.5mm〜5mm程度のマグネシウム合金AZ31(Alを3重量%、Znを1重量%含むマグネシウム基合金)の細片状チップまたは粒状体を母材とし、この母材に、母材より遥かに小さい粒径1〜50μm程度のシリコンまたはシリカの粉末からなる添加材を2〜10重量%(混合原料に対する重量%)加え、さらに微量のオレイン酸(バインダー)を加えて予混合したものである。シリコンまたはシリカの粉末は、マグネシウム合金チップより遥かに小さいので、この予混合により、シリコンまたはシリカの粉末はマグネシウム合金のチップにまぶした状態となる。   BMA (bulk mechanical alloying) is performed at room temperature in the atmosphere using the apparatus configured as described above. The raw material M used is, for example, a strip-shaped chip of a magnesium alloy AZ31 (magnesium-based alloy containing 3% by weight of Al and 1% by weight of Zn) of about 0.5 mm to 5 mm, as described in the section of the prior art. Alternatively, a granular material is used as a base material, and to this base material, 2 to 10% by weight of an additive made of silicon or silica powder having a particle size of 1 to 50 μm, which is much smaller than the base material (% by weight based on the mixed raw material), Further, a small amount of oleic acid (binder) is added and premixed. Since the silicon or silica powder is much smaller than the magnesium alloy chip, this premixing causes the silicon or silica powder to be coated on the magnesium alloy chip.

最初に、図1および図3(A)に示すように、成形ピン21を抜いた状態で原料Mを成形穴11に装填する。この際、成形ピン22〜24は、前進位置すなわち成形ピン22の前端が交差部19に隣接する成形穴12〜14の奥端と一致する位置にある。各成形ピン22〜24に対応するソレノイド弁34〜36は全てオフであるため油圧シリンダ33は油圧ロック状態にあり、その結果、成形ピン22〜24は後退不能な状態で拘束され実質的な固定状態にある。   First, as shown in FIGS. 1 and 3A, the raw material M is loaded into the molding hole 11 with the molding pin 21 removed. At this time, the molding pins 22 to 24 are in the forward positions, that is, the positions where the front ends of the molding pins 22 coincide with the rear ends of the molding holes 12 to 14 adjacent to the intersecting portion 19. Since the solenoid valves 34 to 36 corresponding to the molding pins 22 to 24 are all off, the hydraulic cylinder 33 is in a hydraulic lock state. As a result, the molding pins 22 to 24 are restrained in a state in which they cannot be retracted and are substantially fixed. Is in a state.

上記原料Mの装填後に、成形ピン21を成形穴11に挿入し油圧シリンダ33に連結した後、図示しない制御ユニットにより、以下のシーケンス制御を開始する。   After loading the raw material M, the molding pin 21 is inserted into the molding hole 11 and connected to the hydraulic cylinder 33, and then the following sequence control is started by a control unit (not shown).

最初に、成形ピン21について前段工程を実行する。詳述すると、成形ピン21に対応するソレノイド弁34,36だけをオンすることにより、油圧シリンダ33に加圧油を供給し、図3(A)に示すように成形ピン21を押し込む。この際、成形ピン22〜24は固定されているので、原料Mは成形穴12〜14に向かわずに成形穴11において押し固められ円柱形状の塊になる。この塊は、所定の強度を持っているが、比較的脆いものである。なお、この押し固めの際に、圧力センサ38からの検出信号に基づき、ポンプ32からの油の圧力が設定圧力になるようにポンプ32の駆動を制御する。この押し固め状態は、短時間例えば2秒程度維持される。   First, the pre-stage process is performed on the forming pin 21. More specifically, by turning on only the solenoid valves 34 and 36 corresponding to the molding pin 21, pressurized oil is supplied to the hydraulic cylinder 33, and the molding pin 21 is pushed in as shown in FIG. At this time, since the molding pins 22 to 24 are fixed, the raw material M is pressed into the molding hole 11 without going to the molding holes 12 to 14 and becomes a cylindrical block. This lump has a predetermined strength but is relatively brittle. At the time of this compaction, the drive of the pump 32 is controlled based on the detection signal from the pressure sensor 38 so that the oil pressure from the pump 32 becomes the set pressure. This compacted state is maintained for a short time, for example, about 2 seconds.

次に、成形ピン21について後段工程を実行する。詳述すると、圧力センサ38からの検出信号に基づき、ポンプ32からの油の圧力が上記前段工程より高い設定圧力になるようにポンプ32の駆動を制御する。これにより、油圧シリンダ33は成形ピン21をさらに押し込む。この際、成形ピン22に対応するソレノイド35をオンして対応する油圧シリンダ33の室33xからの油を逃がすようにする。これにより成形ピン22は後退可能になる。その結果、図3(B),図3(C)に示すように成形ピン21は前進位置まで押し込まれ、材料Mは成形穴11から交差部19を経て成形穴12へと流動することを余儀なくされ、この過程で押し崩される。   Next, a subsequent process is performed on the forming pin 21. More specifically, the drive of the pump 32 is controlled based on the detection signal from the pressure sensor 38 so that the oil pressure from the pump 32 becomes a set pressure higher than that in the preceding step. As a result, the hydraulic cylinder 33 pushes the forming pin 21 further. At this time, the solenoid 35 corresponding to the molding pin 22 is turned on so that the oil from the chamber 33x of the corresponding hydraulic cylinder 33 is released. Thereby, the forming pin 22 can be retracted. As a result, as shown in FIGS. 3B and 3C, the molding pin 21 is pushed to the advanced position, and the material M is forced to flow from the molding hole 11 to the molding hole 12 through the intersection 19. And is crushed in this process.

上記後段工程において、成形ピン22は流れ込んだ原料Mに押されて後退する。成形ピン22に対応する背圧調整弁37は、上記後段工程の設定圧力より遥かに小さい背圧(1/10以下)を設定している。その結果、成形ピン22は上記原料Mに押されて後退するが、上記背圧に対応する抵抗が働き、安定して後退することができる。   In the subsequent step, the forming pin 22 is pushed back by the raw material M that has flowed. The back pressure adjusting valve 37 corresponding to the forming pin 22 sets a back pressure (1/10 or less) that is far smaller than the set pressure in the subsequent process. As a result, the forming pin 22 is pushed back by the raw material M, but the resistance corresponding to the back pressure works and can be moved backward stably.

上記成形ピン21の前端が成形穴21の奥端に達し、これを位置センサで検出した時に上記後段工程が終了する。すなわち、成形ピン21に対応するソレノイド弁34,36がオフに切り換わり、成形ピン21は固定状態となる。   When the front end of the forming pin 21 reaches the back end of the forming hole 21 and is detected by the position sensor, the latter stage process is completed. That is, the solenoid valves 34 and 36 corresponding to the molding pin 21 are switched off, and the molding pin 21 is in a fixed state.

上記図3(A)〜(C)の前段工程,後段工程は連続して行うのが好ましい。すなわち、成形ピン21を加圧した状態を継続したまま成形ピン22を固定状態から後退可能な状態に切り換えるのである。以下、同様である。   It is preferable to perform the former stage process and the latter stage process of FIGS. 3A to 3C continuously. That is, the molding pin 22 is switched from the fixed state to the retractable state while the molding pin 21 is kept pressed. The same applies hereinafter.

次に、成形ピン22について成形ピン21の場合と同様の前段工程を実行する。詳述すると、成形ピン21,23,24を前進位置で拘束して実質的に固定したまま、成形ピン22に対応するソレノイド弁34,36をオンし、対応する油圧シリンダ33により、図3(D)に示すように成形ピン22を加圧して押し込む。これにより、原料Mが押し固められる。   Next, the same pre-stage process as that of the molding pin 21 is performed on the molding pin 22. More specifically, the solenoid valves 34 and 36 corresponding to the molding pin 22 are turned on while the molding pins 21, 23 and 24 are restrained and fixed substantially at the forward positions, and the corresponding hydraulic cylinders 33 are used to turn on the solenoid valves 34 and 36. As shown in D), the molding pin 22 is pressed and pushed. Thereby, the raw material M is pressed and hardened.

次に、成形ピン22について成形ピン21の場合と同様の後段工程を実行する。詳述すると、成形ピン23に対応するソレノイド弁35をオンして後退可能な状態にし、成形ピン22への加圧力を高めて成形ピン22を押し込む。成形ピン21,24は固定したまま維持される。これにより、成形ピン22は図3(E),図3(F)に示すように前進位置まで押し込まれ、原料Mは成形穴12から交差部19を経て成形穴13へと移動する過程で押し崩される。成形ピン23は原料Mに押されて後退する。   Next, a subsequent process similar to that for the molding pin 21 is performed on the molding pin 22. More specifically, the solenoid valve 35 corresponding to the molding pin 23 is turned on so as to be retractable, and the molding pin 22 is pushed in by increasing the pressure applied to the molding pin 22. The forming pins 21 and 24 are kept fixed. As a result, the forming pin 22 is pushed to the advanced position as shown in FIGS. 3E and 3F, and the raw material M is pushed in the process of moving from the forming hole 12 to the forming hole 13 through the intersection 19. Collapsed. The forming pin 23 is pushed by the raw material M and moves backward.

次に、成形ピン23について成形ピン21の場合と同様の前段工程を実行する。詳述すると、図3(G)に示すように、成形ピン21,22,24を固定状態に維持したまま、成形ピン23を加圧して押し込むことにより、原料Mが押し固められる。   Next, the same pre-stage process as that of the molding pin 21 is performed on the molding pin 23. More specifically, as shown in FIG. 3G, the raw material M is pressed and pressed by pressing the molding pin 23 while keeping the molding pins 21, 22, and 24 in a fixed state.

次に、成形ピン23について成形ピン21の場合と同様の後段工程を実行する。詳述すると、成形ピン24を後退可能な状態にし、成形ピン23を加圧することより、成形ピン23は図3(H),図3(I)に示すように前進位置まで押し込まれ、原料Mは成形穴13から交差部19を経て成形穴14へと移動する過程で押し崩される。成形ピン24は原料Mに押されて後退する。   Next, the subsequent process similar to the case of the molding pin 21 is performed on the molding pin 23. More specifically, by making the molding pin 24 retractable and pressurizing the molding pin 23, the molding pin 23 is pushed to the advanced position as shown in FIGS. Is crushed in the process of moving from the forming hole 13 to the forming hole 14 via the intersection 19. The molding pin 24 is pushed back by the raw material M.

次に、成形ピン24について成形ピン21の場合と同様の前段工程を実行する。詳述すると、図3(J)に示すように、成形ピン21,22,23を固定状態に維持したまま、成形ピン24を加圧して押し込むことにより、原料Mが押し固められる。   Next, the same pre-stage process as that for the molding pin 21 is performed on the molding pin 24. More specifically, as shown in FIG. 3 (J), the raw material M is consolidated by pressing the molding pin 24 while keeping the molding pins 21, 22, and 23 in a fixed state.

次に、成形ピン24について成形ピン21の場合と同様の後段工程を実行する。詳述すると、成形ピン21を後退可能な状態にし、成形ピン24を加圧することより、成形ピン24は図3(K),図3(L)に示すように前進位置まで押し込まれ、原料Mは成形穴14から交差部19を経て成形穴11へと移動する過程で押し崩される。成形ピン21は原料Mに押されて後退する。   Next, a subsequent process similar to the case of the molding pin 21 is performed on the molding pin 24. More specifically, by making the molding pin 21 retreatable and pressurizing the molding pin 24, the molding pin 24 is pushed to the forward position as shown in FIGS. 3 (K) and 3 (L), and the raw material M Is crushed in the process of moving from the molding hole 14 to the molding hole 11 through the intersection 19. The forming pin 21 is pushed back by the raw material M.

上記図3(A)〜(L)の工程を複数サイクル繰り返し、押し固めによる圧縮成形体を成形した段階、すなわち、図3(A),(D),(G),(J)のいずれかの前段工程が完了した段階で、圧縮成形体を取出す。例えば図3(A)の段階で完了させる場合には、成形ピン21を抜き、成形ピン23を交差部19を通過するようにして前進させ圧縮成形体を成形穴11から押出す。   The steps of FIGS. 3A to 3L are repeated a plurality of cycles to form a compression molded body by pressing, that is, any one of FIGS. 3A, 3D, 3G, and 3J. At the stage where the previous step is completed, the compression molded body is taken out. For example, in the case of completion at the stage of FIG. 3A, the molding pin 21 is pulled out, the molding pin 23 is advanced so as to pass through the intersection 19, and the compression molded body is pushed out from the molding hole 11.

上記のように原料Mは一旦押し固められた後で、交差部19を通過する過程で全断面領域にわたって大きな剪断力,摩擦力を受けて押し崩されるため、原料Mの微細化、すなわちマグネシウム合金チップおよびシリカやシリコン等の粉末の微細化と均一分散化を効率良く行うことができる。   Since the raw material M is once compacted as described above and is crushed by receiving a large shearing force and frictional force over the entire cross-sectional area in the process of passing through the intersecting portion 19, the material M is refined, that is, a magnesium alloy. The chip and the powder of silica, silicon, etc. can be made finer and uniformly dispersed.

第1実施形態において、原料Mに作用する剪断力は、図3(A)〜図3(C)に示す過程では、交差部19の右上の隅部から左下の隅部を結ぶ位置で作用する。そして、原料Mの右上隅部は内周りで左下隅部は外周りで流動することとなる。この原料Mの外周り部は、次の図3(D)〜図3(F)の過程では内周り側となり、図3(G)〜図3(I)の過程では再び外周り側となり、図3(J)〜図3(L)の過程で内周り側となる。このように内周りと外周りを交互に繰り返すことにより、より均一に分散化することができる。   In the first embodiment, the shearing force acting on the raw material M acts at a position connecting the upper right corner to the lower left corner of the intersection 19 in the process shown in FIGS. 3 (A) to 3 (C). . The upper right corner of the raw material M flows around the inside and the lower left corner flows around the outer periphery. The outer peripheral portion of the raw material M becomes the inner peripheral side in the following processes of FIGS. 3D to 3F, and becomes the outer peripheral side again in the processes of FIGS. 3G to 3I. It becomes the inner circumference side in the process of FIG. Thus, by repeating the inner circumference and the outer circumference alternately, it is possible to disperse more uniformly.

次に本発明の他の実施形態について説明する。これら実施形態において、先行する実施形態に対応する構成部には同番号を付してその詳細な説明を省略する。   Next, another embodiment of the present invention will be described. In these embodiments, components corresponding to the preceding embodiments are assigned the same reference numerals and detailed description thereof is omitted.

図4に示す本発明の第2の実施形態では、第1実施形態と同様の装置を用いるが、成形ピンの動作が若干異なる。原料Mを成形ピンの加圧により押し固める前段工程において、180°対向する成形ピンを交差部19まで前進させて拘束する(固定状態にする)。例えば成形ピン21を加圧する場合には、成形ピン23を交差部19まで進め成形穴11の奥端に位置させて固定させる。この場合には、成形ピン22,24は固定でも自由でも良い。この場合、後段工程では、成形ピン23を成形穴13の奥端まで後退させてから、成形ピン21を前進させる必要がある。成形ピン22,23,24の加圧工程でも同様である。   In the second embodiment of the present invention shown in FIG. 4, an apparatus similar to that of the first embodiment is used, but the operation of the forming pin is slightly different. In the previous step of pressing the material M by pressing the forming pin, the forming pin facing 180 ° is advanced to the crossing portion 19 and is restrained (set to a fixed state). For example, when pressurizing the molding pin 21, the molding pin 23 is advanced to the crossing portion 19 and is positioned and fixed at the back end of the molding hole 11. In this case, the forming pins 22 and 24 may be fixed or free. In this case, in the subsequent step, it is necessary to move the molding pin 21 forward after the molding pin 23 is retracted to the far end of the molding hole 13. The same applies to the pressing process of the molding pins 22, 23, 24.

次に本発明の第3の実施形態について図5を参照しながら説明する。この実施形態でも、第1実施形態と同様の装置を用いる。原料Mを成形ピンの加圧により押し固める前段工程において、90°離れた成形ピンで交差部19を塞ぐ。例えば成形ピン21を加圧する場合には、成形ピン22,24のいずれか一方,好ましくは次に原料が流れ込む成形穴12の成形ピン22で交差部19を塞ぐ。交差部19を塞いだ成形ピン22は固定状態にするのが好ましいが自由でも良い。また、交差部19に面した他の成形ピン23,24は、固定でも自由でもよい。この場合も、後段工程では、成形ピン22を成形穴12の奥端まで後退させて後退可能状態ないしは自由状態にしてから、成形ピン21を前進させる必要がある。成形ピン22,23,24の加圧工程でも同様である。   Next, a third embodiment of the present invention will be described with reference to FIG. In this embodiment, the same apparatus as that of the first embodiment is used. In the former stage of pressing the raw material M by pressing the forming pins, the intersecting portion 19 is closed with the forming pins separated by 90 °. For example, when the molding pin 21 is pressurized, the intersection 19 is closed with one of the molding pins 22, 24, preferably the molding pin 22 of the molding hole 12 into which the raw material flows next. Although it is preferable that the forming pin 22 that blocks the intersecting portion 19 is in a fixed state, it may be free. Further, the other forming pins 23 and 24 facing the intersecting portion 19 may be fixed or free. Also in this case, in the subsequent step, it is necessary to move the molding pin 21 forward after the molding pin 22 is retracted to the far end of the molding hole 12 to be in a retractable state or a free state. The same applies to the pressing process of the molding pins 22, 23, 24.

次に本発明の第4の実施形態について図6を参照しながら説明する。この実施形態の装置では、型10Aに5つの同一断面形状の直線状の成形穴11〜15が形成され、その成形穴11〜15に同一断面形状の成形ピン21〜25が挿入されている。第1〜第4の成形穴11〜14および第1〜第4の成形ピン21〜24は第1〜第3実施形態と同様である。第5成形穴15は、直線状をなし交差部19において第1〜第4の成形穴11〜14が配置された平面と90°で交差している。   Next, a fourth embodiment of the present invention will be described with reference to FIG. In the apparatus of this embodiment, five linear molding holes 11 to 15 having the same sectional shape are formed in the mold 10A, and molding pins 21 to 25 having the same sectional shape are inserted into the molding holes 11 to 15, respectively. The first to fourth molding holes 11 to 14 and the first to fourth molding pins 21 to 24 are the same as those of the first to third embodiments. The fifth forming hole 15 forms a straight line and intersects at 90 ° with a plane on which the first to fourth forming holes 11 to 14 are arranged at the intersecting portion 19.

成形穴11〜15のうち、1つの成形穴で前段工程を実行する際、第1実施形態と同様に他の成形穴は、対応する成形ピンを成形穴の奥端に位置させて固定することにより塞ぐ。なお、第2,第3実施形態と同様にして他の成形穴を塞いでもよい。上記成形穴11〜14における後段工程では、第5成形ピン25のみを後退可能状態ないしは自由状態にし、第5成形穴15内に原料Mを移動させる。その後、第5成形ピン25を加圧して原料Mを固める。   When the former process is executed with one molding hole among the molding holes 11 to 15, the other molding hole is fixed by positioning the corresponding molding pin at the back end of the molding hole as in the first embodiment. Block by. Note that other forming holes may be closed in the same manner as in the second and third embodiments. In the subsequent process in the molding holes 11 to 14, only the fifth molding pin 25 is brought into a retractable state or a free state, and the raw material M is moved into the fifth molding hole 15. Thereafter, the fifth forming pin 25 is pressurized to harden the raw material M.

次に、第5成形ピン25をさらに加圧し、原料Mを押し崩しながら成形穴11〜24の1つに流し込む。このようにして、第4実施形態では、第1,第5,第2,第5,第3,第5,第4,第5の成形穴の順序で原料Mの押し固め,押し崩しが行なわれる。したがって、1サイクルで10回の押し固め,押し崩しが行なわれる。   Next, the fifth molding pin 25 is further pressurized and poured into one of the molding holes 11 to 24 while the material M is crushed. Thus, in the fourth embodiment, the raw material M is compacted and crushed in the order of the first, fifth, second, fifth, third, fifth, fourth and fifth forming holes. It is. Therefore, ten times of compaction and crushing are performed in one cycle.

上記第4実施形態において、第5成形穴15でのみ原料Mの押し固め、押し崩しを行なうようにしてもよい。この場合、成形穴11〜14では押し崩しの際に原料が順番に流れ込むが、押し固め,押し崩しを行なわず、成形ピン21〜24を前進させて第5成形穴15に原料を戻す。このような方法では、第5成形ピン25にのみ大型プレス機械等を用いて大きな荷重を付与することができる。この場合、成形穴15を交差部19から上方へ延ばすのが好ましい。   In the fourth embodiment, the raw material M may be pressed and crushed only in the fifth forming hole 15. In this case, in the molding holes 11 to 14, the raw materials flow in order at the time of crushing. However, the molding pins 21 to 24 are moved forward to return the raw material to the fifth molding hole 15 without pressing and crushing. In such a method, a large load can be applied only to the fifth molding pin 25 using a large press machine or the like. In this case, it is preferable to extend the forming hole 15 upward from the intersection 19.

また、上記第4実施形態において、成形穴11〜14のみで原料Mの押し固め,押し崩しを行なうようにしてもよい。この場合、成形穴15では押し崩しの際に原料が流れ込むが、押し固め,押し崩しを行なわず、成形ピン25を前進させて成形穴11〜14に順番に原料を戻す。この場合、成形穴15を交差部19から下方へ延ばすのが好ましい。   Moreover, in the said 4th Embodiment, you may make it perform the compression and the crushing of the raw material M only by the molding holes 11-14. In this case, the raw material flows into the molding hole 15 when it is crushed. However, the raw material is returned to the molding holes 11 to 14 in order by advancing the molding pin 25 without being pressed and crushed. In this case, it is preferable to extend the forming hole 15 downward from the intersection 19.

さらに、上記第4実施形態において、第5成形ピン25は原料Mの押し固めの際の受け体としてのみ用いてもよい。すなわち、成形穴11〜14のいずれかで原料Mを押し固める時にのみ、図5と同様の要領で交差部19を塞ぎ、押し崩しの際には成形穴15の奥端に戻る。   Furthermore, in the said 4th Embodiment, you may use the 5th shaping | molding pin 25 only as a receiving body at the time of the compaction of the raw material M. FIG. That is, only when the raw material M is pressed and hardened in any one of the forming holes 11 to 14, the intersection 19 is closed in the same manner as in FIG.

次に本発明の第5の実施形態について図7を参照しながら説明する。この実施形態の装置は、型10Bにおいて、3つの成形穴11〜13(第1〜第3の成形穴)が水平面上(同一面上)に形成され、この成形穴11〜13に成形ピン21〜23が挿入されている。第3成形穴13は、第1成形穴11と90°離れ、第2成形穴12と180°離れている。成形ピン21〜23の基本的動作は第1実施形態と似ているので詳述しないが、図7(A)〜(C)に示すように、第1成形穴11で材料Mの押し固め,押し崩しを行なって第2成形穴12に原料Mを流し、次に、図7(D)〜(F)に示すように第2成形穴12で原料Mの押し固め,押し崩しを行なって第1成形穴11に原料Mを戻し、次に図7(G)〜(I)に示すように、第1成形穴11で原料Mの押し固め,押し崩しを行なって第3成形穴13に原料Mを流し、次に、図7(J)〜(L)に示すように第3成形穴13で原料Mの押し固め,押し崩しを行なって第1成形穴11に原料Mを戻す。図7(A)〜(L)のサイクルを、複数回実行する。なお、原料Mの押し固め工程における成形穴の塞ぎ方は、図2,図4と同様であってもよい。   Next, a fifth embodiment of the present invention will be described with reference to FIG. In the apparatus of this embodiment, in the mold 10B, three molding holes 11 to 13 (first to third molding holes) are formed on a horizontal plane (on the same surface), and a molding pin 21 is formed in the molding holes 11 to 13. ~ 23 are inserted. The third forming hole 13 is separated from the first forming hole 11 by 90 ° and is separated from the second forming hole 12 by 180 °. Since the basic operation of the forming pins 21 to 23 is similar to that of the first embodiment, it will not be described in detail. However, as shown in FIGS. The raw material M is poured into the second forming hole 12 by pressing, and then the raw material M is pressed and compressed in the second forming hole 12 as shown in FIGS. The raw material M is returned to the first molding hole 11, and then the raw material M is pressed and collapsed in the first molding hole 11 as shown in FIGS. 7 (G) to (I). Next, as shown in FIGS. 7 (J) to 7 (L), the raw material M is pressed and solidified in the third forming hole 13, and then the raw material M is returned to the first forming hole 11. The cycle shown in FIGS. 7A to 7L is executed a plurality of times. In addition, how to close the forming hole in the pressing step of the raw material M may be the same as in FIGS.

上記第5実施形態において、第1成形穴11でのみ原料Mの押し固め、押し崩しを行なうようにしてもよい。この場合、成形穴12,13では押し崩しの際に原料が順番に流れ込むが、押し固め,押し崩しを行なわず、成形ピン22,23を前進させて成形穴11に原料を戻す。このような構成では、第1成形ピン21にのみ大型プレス機械等を用いて大きな荷重を付与することができる。この場合、第1成形穴11を交差部19から上方へ延ばすのが好ましい。   In the fifth embodiment, the raw material M may be pressed and crushed only in the first forming hole 11. In this case, the raw material flows in order in the forming holes 12 and 13 during the crushing, but the forming pins 22 and 23 are advanced to return the raw material to the forming hole 11 without pressing and crushing. In such a configuration, a large load can be applied only to the first molding pin 21 using a large press machine or the like. In this case, it is preferable to extend the first forming hole 11 upward from the intersecting portion 19.

また、上記第5実施形態において、成形穴12,13のみで原料Mの押し固め,押し崩しを行なうようにしてもよい。この場合、成形穴11では押し崩しの際に原料が流れ込むが、押し固め,押し崩しを行なわず、成形ピン21を前進させて成形穴12、13に交互に原料を戻す。この場合、第1成形穴11を交差部19から下方に延ばすのが好ましい。   Further, in the fifth embodiment, the raw material M may be pressed and crushed only by the molding holes 12 and 13. In this case, the raw material flows into the forming hole 11 when it is crushed, but the material is alternately returned to the forming holes 12 and 13 by advancing the forming pin 21 without being pressed and crushed. In this case, it is preferable to extend the first forming hole 11 downward from the intersecting portion 19.

次に、本発明の第6の実施形態について図8を参照しながら説明する。この実施形態の装置は、型10Cに2つの成形穴11〜12(第1,第2の成形穴)が形成され、この成形穴11,12に成形ピン21,22(第1,第2の成形ピン)が挿入されている。成形ピン21,22の基本的動作は第1実施形態と似ているので詳述しないが、図8(A)〜(C)に示すように、第1成形穴11で原料の押し固め,押し崩しを行なって第2成形穴12に原料Mを流し、次に、図8(D)〜(F)に示すように第2成形穴12で原料Mの押し固め,押し崩しを行なって第1成形穴11に原料Mを戻す。図8(A)〜(F)の1サイクルを、複数回実行する。   Next, a sixth embodiment of the present invention will be described with reference to FIG. In the apparatus of this embodiment, two molding holes 11 to 12 (first and second molding holes) are formed in the mold 10C, and molding pins 21 and 22 (first and second molding holes) are formed in the molding holes 11 and 12, respectively. Molding pin) is inserted. Although the basic operation of the forming pins 21 and 22 is similar to that of the first embodiment and will not be described in detail, as shown in FIGS. 8 (A) to (C), the material is pressed and pressed in the first forming hole 11. The material M is poured into the second forming hole 12 by crushing, and then, as shown in FIGS. 8 (D) to (F), the material M is squeezed and compressed in the second forming hole 12 to perform the first crushing. The raw material M is returned to the molding hole 11. One cycle shown in FIGS. 8A to 8F is executed a plurality of times.

上記図8の実施形態では、剪断力が働き圧壊するときの内周り側と外周り側が一定となるため、数回繰り返す度に押し固められた原料Mを取り出し、90°ないしは180°回転させて再び同じ成形穴に装填するようにするのがより好ましい。   In the embodiment of FIG. 8, since the inner periphery side and the outer periphery side are constant when the shearing force is applied and the material is crushed, the pressed raw material M is taken out every time it is repeated several times and rotated 90 ° or 180 °. More preferably, the same mold hole is loaded again.

なお、成形穴は例えば互いに直交するX,Y,Z軸に沿って、3つないしは6つ形成することも可能である。   For example, three or six forming holes can be formed along the X, Y, and Z axes orthogonal to each other.

上述した全ての実施形態において、所望の微細化と均一分散化が得られた圧縮成形体を、前述した従来技術と同様にして、固相温度領域で予備加熱を行なった後、温間押出し成形等の塑性変形を伴う加工を行なう。予備加熱は、マグネシウム結晶粒の結合を確実に行える温度350℃以上で、マグネシウムの融点より低くマグネシウム結晶粒の粗大化を抑制できる程度に低い温度520℃以下で行われる。この予備加熱とその後の塑性変形に伴う発熱で、マグネシウム合金中にMgSiが生成される。 In all the above-described embodiments, the compression molded body having desired fineness and uniform dispersion is preliminarily heated in the solid phase temperature region in the same manner as the above-described conventional technique, and then warm extrusion molding is performed. For example, machining with plastic deformation is performed. The preheating is performed at a temperature of 350 ° C. or higher at which the magnesium crystal grains can be reliably bonded and at a temperature lower than 520 ° C. which is lower than the melting point of magnesium and can suppress the coarsening of the magnesium crystal grains. Due to the heat generated by the preliminary heating and the subsequent plastic deformation, Mg 2 Si is generated in the magnesium alloy.

第1実施形態に基づき、以下の条件で実験を行なった。
(1)使用するマグネシウム合金チップは市販のAZ31のチップであり、そのサイズは下記のとおりである
最小0.5mm,最大3mm、平均1.5mm
(2)使用するシリカの粉末も市販のものであり、そのサイズは下記のとおりである。
最小4μm,最大63μm,平均22μm
(3)シリカの添加量は、混合原料中2重量%,4重量%である。
(4)上記混合原料に微量のオレイン酸を添加して、ロッキングミルで15分間混合する。オレイン酸の添加量は、混合原料を100重量%とした時、0.5重量%である。
(5)加工サイクルの回数は20回と40回である。
(6)加工サイクルにおいて、前段工程における油圧は340Kg/cmであり、原料に付与される押し固め力は4.4トンである。
(7)加工サイクルにおいて、後段工程における油圧は400Kg/cmであり、原料に付与される押し崩し力は5.2トンである。
(8)得られた圧縮成形体は直径35mm,長さ80mmの円柱体である。
(9)上記圧縮成形体を予備加熱し、10分で460℃まで昇温させ、5分間保持した後、押し出し加工を行なう。
(10)上記押し出し加工は、窒素ガス雰囲気中において、400℃に加熱された押出型により押出比37で実行する。この際、材料温度は塑性変形に伴う発熱により一時的に上昇する。しかし、マグネシウムの融点620℃より十分に低い。
Based on 1st Embodiment, it experimented on the following conditions.
(1) The magnesium alloy tip used is a commercially available AZ31 tip, and the size is as follows: Minimum 0.5 mm, Maximum 3 mm, Average 1.5 mm
(2) The silica powder used is also commercially available, and its size is as follows.
Minimum 4μm, maximum 63μm, average 22μm
(3) The addition amount of silica is 2% by weight and 4% by weight in the mixed raw material.
(4) A small amount of oleic acid is added to the mixed raw material and mixed for 15 minutes on a rocking mill. The amount of oleic acid added is 0.5% by weight when the mixed raw material is 100% by weight.
(5) The number of machining cycles is 20 and 40.
(6) In the machining cycle, the hydraulic pressure in the preceding step is 340 Kg / cm 2 , and the pressing force applied to the raw material is 4.4 tons.
(7) In the machining cycle, the hydraulic pressure in the subsequent process is 400 kg / cm 2 , and the crushing force applied to the raw material is 5.2 tons.
(8) The obtained compression molded body is a cylindrical body having a diameter of 35 mm and a length of 80 mm.
(9) The compression-molded body is preheated, heated to 460 ° C. in 10 minutes, held for 5 minutes, and then extruded.
(10) The extrusion process is performed at an extrusion ratio of 37 using an extrusion die heated to 400 ° C. in a nitrogen gas atmosphere. At this time, the material temperature temporarily rises due to heat generated by plastic deformation. However, the melting point of magnesium is sufficiently lower than 620 ° C.

上記の押出し加工により得られた成形品の組織を顕微鏡写真で確認したところ、図9(A)〜図9(D)に示すようにマグネシウム合金の結晶粒径がほぼ10〜20μmとなっており、満足すべき微細化が得られた。また、成形品をX線回析した結果、加工サイクルが20回,40回とも、シリカは検出されず、マグネシウムシリサイドの固相合成が完了していることが明らかである。。   When the structure of the molded product obtained by the above extrusion processing was confirmed by micrographs, the crystal grain size of the magnesium alloy was approximately 10 to 20 μm as shown in FIGS. 9 (A) to 9 (D). Satisfactory miniaturization was obtained. Further, as a result of X-ray diffraction of the molded product, it is clear that silica is not detected and the solid phase synthesis of magnesium silicide is completed at both processing cycles of 20 and 40. .

上記成形品で種々の強度試験を行なった結果、下記表1の結果を得た。

Figure 2005248325
上記表において、「0.2%耐力」,「引張強度」,「伸び」に関する引張りデータは、2本の成形品の平均値であり、HV硬度は、5点の平均値である。 As a result of performing various strength tests on the molded article, the results shown in Table 1 below were obtained.
Figure 2005248325
In the above table, the tensile data relating to “0.2% proof stress”, “tensile strength”, and “elongation” are average values of two molded products, and HV hardness is an average value of five points.

比較例(1)は、シリカが0重量%で上記実験例と同じ原料および加工により得られた成形品についての試験結果であり、比較例(2)は、上記実験例と同じ原料で従来技術の欄に記述した加工サイクル(図11参照)で得られた配合材料を押出成形したものについての試験結果である。なお、比較例(2)では加工サイクルの回数は40回と80回である。   Comparative Example (1) is a test result of a molded article obtained by the same raw material and processing as in the above experimental example with 0% by weight of silica. It is a test result about what extruded the compounding material obtained by the processing cycle (refer FIG. 11) described in the column of. In Comparative Example (2), the number of machining cycles is 40 times and 80 times.

上記表1から明らかなように、本発明に基づく実験例では、比較例(1)より高い強度が得られるとともに、比較例(2)より加工サイクル回数が少ないにも拘わらず、比較例(2)より高い強度が得られる。   As apparent from Table 1 above, in the experimental example based on the present invention, a higher strength is obtained than in the comparative example (1) and the number of processing cycles is smaller than that in the comparative example (2). ) Higher strength is obtained.

次に、第1実施形態に基づく他の実験例について説明する。この実験例では、混合原料として、平均3mmのマグネシウム合金AZ31チップを96重量部と、平均4μmのシリカを4重量部と、微量のオレイン酸0.5重量部とを、混合したものを用いた。20回の加工サイクルにおける押し固め,押し崩しで得られた圧縮成形体を、ホットプレスした後の組織の顕微鏡写真を、図10(A)に示す。比較例として、同一原料で前述した従来技術(図11参照)により得られた圧縮成形体を同一条件でホットプレスした後の組織の顕微鏡写真を、図10(B)に示す。比較例では押し固め,後方押出しの加工サイクルを200回行なっている。図10(A),(B)の比較から、本発明の微細化,均一分散化効率が極めて高いことが明らかである。   Next, another experimental example based on the first embodiment will be described. In this experimental example, 96 parts by weight of an average 3 mm magnesium alloy AZ31 chip, 4 parts by weight of 4 μm average silica, and 0.5 parts by weight of a small amount of oleic acid were used as a mixed raw material. . FIG. 10 (A) shows a micrograph of the structure after hot pressing the compression-molded body obtained by compaction and crushing in 20 processing cycles. As a comparative example, FIG. 10B shows a micrograph of the structure after hot pressing a compression-molded body obtained from the same raw material by the conventional technique (see FIG. 11) under the same conditions. In the comparative example, the processing cycle of compaction and backward extrusion is performed 200 times. From the comparison of FIGS. 10A and 10B, it is clear that the miniaturization and uniform dispersion efficiency of the present invention is extremely high.

本発明は上記実施形態に制約されず種々の形態を採用可能である。例えば、母材としてAZ31以外のマグネシウム合金を用いることもできるし、純マグネシウムを用いることもできる。
添加材として、シリカの他に、シリコンの粉末を用いてもよい。
さらに添加材として、シリコンカーバイド、カーボン、アルミ、ジルコニウムなどを添加してもよい。
The present invention is not limited to the above embodiment, and various forms can be adopted. For example, a magnesium alloy other than AZ31 can be used as the base material, and pure magnesium can also be used.
In addition to silica, silicon powder may be used as an additive.
Further, silicon carbide, carbon, aluminum, zirconium or the like may be added as an additive.

不活性ガス雰囲気中でBMAを行なってもよい。
上述した全ての実施形態において、原料が押し崩される際に原料が流れ込む成形穴の成形ピンを後退可能にし、背圧調整弁37に低い背圧を付与しているが、この背圧調整弁37はなくてもよい。この場合にも油圧回路の抵抗により数Kg/cm2程度の背圧が付与されるため、成形ピンが原料に押されても大きく後退しない。また、成形ピンの後退時の抵抗が殆ど無く完全に自由であっても他の手段により後退ストロークを制限することもできる。
成形ピンは原料に押されて後退するようにしているが、予め後退させておいてもよい。
上述した全ての実施形態において、型が固定で、成形ピン毎に油圧シリンダ等の駆動手段を設けたが、型を回転するようにしてもよい。この場合には、駆動手段は一つで済む。
BMA may be performed in an inert gas atmosphere.
In all the above-described embodiments, the forming pin of the forming hole into which the raw material flows when the raw material is crushed is made retractable, and a low back pressure is applied to the back pressure adjusting valve 37. Is not necessary. Also in this case, a back pressure of about several Kg / cm 2 is applied due to the resistance of the hydraulic circuit, so that even if the forming pin is pushed by the raw material, it does not retreat greatly. Further, even if there is almost no resistance when the forming pin is retracted and it is completely free, the retracting stroke can be limited by other means.
The forming pin is pushed backward by the raw material, but may be retracted in advance.
In all the embodiments described above, the mold is fixed, and driving means such as a hydraulic cylinder is provided for each molding pin. However, the mold may be rotated. In this case, only one drive means is required.

BMAの型は、シリンダを複数本交差するように連結したものであってもよい。   The type of BMA may be one in which a plurality of cylinders are connected to cross each other.

本発明方法の第1実施形態に用いられる装置の拡大断面図である。It is an expanded sectional view of the apparatus used for 1st Embodiment of the method of this invention. 同装置に付属の油圧駆動装置の要部の回路図である。It is a circuit diagram of the principal part of the hydraulic drive unit attached to the apparatus. (A)〜(L)は、同装置を工程順に説明する概略断面図である。(A)-(L) is a schematic sectional drawing explaining the apparatus in order of a process. 本発明方法の第2実施形態に用いられる装置の断面図である。It is sectional drawing of the apparatus used for 2nd Embodiment of this invention method. 本発明方法の第3実施形態に用いられる装置の断面図である。It is sectional drawing of the apparatus used for 3rd Embodiment of this invention method. 本発明方法の第4実施形態に用いられる装置の断面図である。It is sectional drawing of the apparatus used for 4th Embodiment of the method of this invention. (A)〜(L)は、本発明方法の第5実施形態を工程順に説明する概略断面図である。(A)-(L) is a schematic sectional drawing explaining 5th Embodiment of this invention method to process order. (A)〜(F)は、本発明方法の第6実施形態を工程順に説明する概略断面図である。(A)-(F) are schematic sectional drawings explaining 6th Embodiment of this invention method to process order. 本発明に基づき得られた配合材料(シリカ添加量2重量%、加工サイクル20回)の押出成形品の顕微鏡写真である。It is a microscope picture of the extrusion molding product of the compounding material (silica addition amount 2 weight%, processing cycle 20 times) obtained based on this invention. 本発明に基づき得られた配合材料(シリカ添加量2重量%、加工サイクル40回)の押出成形品の顕微鏡写真である。It is a microscope picture of the extrusion molding product of the compounding material (silica addition amount 2 weight%, processing cycle 40 times) obtained based on this invention. 本発明に基づき得られた配合材料(シリカ添加量4重量%、加工サイクル20回)の押出成形品の顕微鏡写真である。It is a microscope picture of the extrusion molding product of the compounding material (silica addition amount 4 weight%, processing cycle 20 times) obtained based on this invention. 本発明に基づき得られた配合材料(シリカ添加量4重量%、加工サイクル40回)の押出成形品の顕微鏡写真である。It is a microscope picture of the extrusion molding product of the compounding material (silica addition amount 4 weight%, processing cycle 40 times) obtained based on this invention. (A)は本発明に基づいて得られた配合材料をホットプレスした後の組織の顕微鏡写真であり、(B)は従来方法により得られた配合材料をホットプレスした後の組織の顕微鏡写真である。(A) is the microscope picture of the structure | tissue after hot-pressing the compounding material obtained based on this invention, (B) is the microscope picture of the structure | tissue after hot-pressing the compounding material obtained by the conventional method. is there. (a)〜(f)は、従来方法を工程順に説明する概略断面図である。(A)-(f) is a schematic sectional drawing explaining the conventional method to process order.

符号の説明Explanation of symbols

10,10A,10B,10C 型
11〜15 第1〜第5成形穴
19 交差部
21〜25 第1〜第5成形ピン(押圧部材)
M 原料
10, 10A, 10B, 10C Molds 11 to 15 First to fifth molding holes 19 Intersections 21 to 25 First to fifth molding pins (pressing members)
M raw material

Claims (9)

マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、互いに交差して連なる複数の直線状の成形穴を有する型内に収容した状態で、上記成形穴内に挿入された押圧部材の前進,後退に伴い、上記混合原料を1の成形穴で押し固め、更にこの押し固めた混合原料を押し崩しながら他の成形穴へと送り込み、この押し固め,押し崩しを繰り返すことにより、混合原料が微細化されるとともに添加材が均一に分散化された圧縮成形体を得ることを特徴とするマグネシウム複合材料の製造方法。   A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdered additive is inserted into the molding hole in a state where the raw material is housed in a mold having a plurality of linear molding holes that intersect with each other. As the pressing member is moved forward and backward, the mixed raw material is pressed and solidified in one forming hole, and further, the pressed mixed raw material is crushed and sent to another forming hole, and this pressing and solidifying is repeated. By this, the manufacturing method of the magnesium composite material characterized by obtaining the compression molded object by which the mixed raw material was refined | miniaturized and the additive was disperse | distributed uniformly. 互いに交差して連なる複数の直線状の成形穴を有する型と、これら成形穴にそれぞれ挿入された複数の押圧部材とを用意し、
マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、上記複数の成形穴の1つに収容し、他の全ての成形穴への混合原料の流れ込みを禁じた状態で、当該1つの成形穴に挿入された1つの押圧部材を奥に向かって押し込むことにより、当該1つの成形穴内において上記混合原料を押し固める前段工程を実行し、
次に、他の1つの成形穴に挿入された他の1つの押圧部材を後退可能にするか予め後退させた状態で、当該1つの押圧部材をさらに奥に押し込むことにより、上記混合原料を押し崩しながら当該1つの成形穴から当該他の1つの成形穴へと送り込む後段工程を実行し、
上記前段工程と後段工程を繰り返し、最後にいずれかの成形穴において前段工程を実行することにより、混合原料が微細化されるとともに添加材が均一に分散化された圧縮成形体を得ることを特徴とするマグネシウム複合材料の製造方法。
Prepare a mold having a plurality of linear molding holes that intersect and cross each other, and a plurality of pressing members respectively inserted into these molding holes,
A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdered additive is accommodated in one of the plurality of forming holes, and the flow of the mixed raw material into all other forming holes is prohibited. In the state, by pressing one pressing member inserted into the one molding hole toward the back, a pre-stage step of pressing the mixed raw material in the one molding hole is performed,
Next, in a state where the other pressing member inserted into the other one forming hole can be retracted or retracted in advance, the one pressing member is further pushed inward to push the mixed raw material. Execute a subsequent process of feeding from the one forming hole to the other forming hole while breaking,
By repeating the above-mentioned pre-stage process and post-stage process and finally executing the pre-stage process in any one of the forming holes, a compression molded body in which the mixed raw material is refined and the additive is uniformly dispersed is obtained. A method for producing a magnesium composite material.
互いに交差して連なる複数の直線状の成形穴を有する型と、これら成形穴にそれぞれ挿入された複数の押圧部材とを用意し、
マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、上記複数の成形穴の1つに収容し、他の全ての成形穴への混合原料の流れ込みを禁じた状態で、当該1つの成形穴に挿入された1つの押圧部材を奥に向かって押し込むことにより、当該1つの成形穴内において上記混合原料を押し固める前段工程を実行し、
次に、他の1つの成形穴に挿入された他の1つの押圧部材を後退可能にするか予め後退させた状態で、当該1つの押圧部材をさらに奥に押し込むことにより、上記混合原料を押し崩しながら当該1つの成形穴から当該他の成形穴へと送り込む後段工程を実行し、
次に、当該他の成形穴に挿入された押圧部材の押し込みにより、当該他の成形穴に送り込まれた原料の押し固めを伴う上記前段工程と、上記混合材料の押し崩しを伴う上記後段工程とを実行し、
上記複数の押圧部材について所定の順序で、上記前段工程と後段工程を繰り返し、最後にいずれかの成形穴において前段工程を実行することにより、混合原料が微細化されるとともに添加材が均一に分散化された圧縮成形体を得ることを特徴とするマグネシウム複合材料の製造方法。
Prepare a mold having a plurality of linear molding holes that intersect and cross each other, and a plurality of pressing members respectively inserted into these molding holes,
A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdered additive is accommodated in one of the plurality of forming holes, and the flow of the mixed raw material into all other forming holes is prohibited. In the state, by pressing one pressing member inserted into the one molding hole toward the back, a pre-stage step of pressing the mixed raw material in the one molding hole is performed,
Next, in a state where the other pressing member inserted into the other one forming hole can be retracted or retracted in advance, the one pressing member is further pushed inward to push the mixed raw material. Execute the subsequent process of feeding from the one forming hole to the other forming hole while breaking,
Next, by the pressing of the pressing member inserted into the other forming hole, the preceding step involving the compaction of the raw material fed into the other forming hole, and the subsequent step involving the crushing of the mixed material, Run
By repeating the preceding process and the succeeding process in a predetermined order for the plurality of pressing members, and finally executing the preceding process in one of the forming holes, the mixed raw material is refined and the additive is uniformly dispersed. A method for producing a magnesium composite material, characterized in that a compressed compact is obtained.
互いに交差して連なる複数の直線状の成形穴を有する型と、これら成形穴にそれぞれ挿入された複数の押圧部材とを用意し、
マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、選択された1つの成形穴に収容し、他の全ての成形穴への原料の流れ込みを禁じた状態で、上記の選択された成形穴に挿入された1つの押圧部材を奥に向かって押し込むことにより、上記の選択された成形穴内において上記混合原料を押し固める前段工程を実行し、
次に、他の1つの成形穴に挿入された他の1つの成形ピンを後退可能にするか予め後退させた状態で、上記の選択された成形ピンをさらに奥に押し込むことにより、上記混合原料を押し崩しながら上記の選択された成形穴から当該他の成形穴へと送り込む後段工程を実行し、
次に、当該他の成形穴の混合原料を、当該他の成形穴に挿入された押圧部材で押し込むことにより上記の選択された成形穴に戻す戻し工程を実行し、
上記工程を繰り返し、最後に上記の選択された成形穴において前段工程を実行することにより、混合原料が微細化されるとともに添加材が均一に分散化された圧縮成形体を得ることを特徴とするマグネシウム複合材料の製造方法。
Prepare a mold having a plurality of linear forming holes that intersect and cross each other, and a plurality of pressing members respectively inserted into these forming holes,
A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdery additive is contained in one selected forming hole, and the raw material is not allowed to flow into all other forming holes. The first step of pressing the one of the pressing members inserted into the selected molding hole toward the back to compress the mixed raw material in the selected molding hole is performed,
Next, in a state where the other one forming pin inserted into the other one forming hole can be retracted or has been retracted in advance, the selected forming pin is further pushed into the back, thereby mixing the raw material. Execute the subsequent process of feeding from the selected molding hole to the other molding hole while crushing,
Next, a return step of returning the mixed raw material of the other forming hole to the selected forming hole by pressing with a pressing member inserted into the other forming hole,
The above process is repeated, and finally the preceding process is executed in the selected molding hole to obtain a compression molded body in which the mixed raw material is refined and the additive is uniformly dispersed. Manufacturing method of magnesium composite material.
上記成形穴が互いにほぼ90°の角度で交差していることを特徴とする請求項1〜4のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the forming holes intersect with each other at an angle of approximately 90 °. 互いにほぼ90°で交差して連なる直線状の第1,第2成形穴を有する型と、これら第1,第2成形穴にそれぞれ挿入された第1,第2の押圧部材とを用意し、
マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、上記第1成形穴に収容し、上記第2押圧部材を上記第2成形穴の奥端で固定することにより第2成形穴を塞ぎ、この状態で第1押圧部材を第1成形穴の奥に向かって押し込むことにより、第1成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、上記第2押圧部材の後退を可能にするか予め後退させた状態で、上記第1押圧部材をさらに奥に押し込むことにより、上記混合原料を押し崩しながら第1成形穴から第2成形穴へと送り込む後段工程を実行し、
次に、上記第1押圧部材を上記第1成形穴の奥端で固定することにより第1成形穴を塞ぎ、この状態で第2押圧部材を第2成形穴の奥に向かって押し込むことにより、第2成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、上記第1押圧部材の後退を可能にするか予め後退させた状態で、上記第2押圧部材をさらに奥に押し込むことにより、上記混合原料を押し崩しながら第2成形穴から第1成形穴へと送り込む後段工程を実行し、
上記前段工程と後段工程を、第1,第2押圧部材について交互に繰り返し実行し、最後にいずれかの成形穴において前段工程を実行することにより、混合原料が微細化されるとともに添加材が均一に分散化された混合原料の圧縮成形体を得ることを特徴とするマグネシウム複合材料の製造方法。
Preparing a mold having linear first and second molding holes that intersect and cross each other at approximately 90 °, and first and second pressing members respectively inserted into the first and second molding holes;
A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdery additive is contained in the first forming hole, and the second pressing member is fixed at the back end of the second forming hole. The second forming hole is closed by this, and in this state, the first pressing member is pushed toward the back of the first forming hole, thereby executing a pre-stage step of pressing and solidifying the mixed raw material accommodated in the first forming hole,
Next, in a state in which the second pressing member can be retracted or retracted in advance, the first pressing member is further pushed into the back so that the mixed raw material is crushed and the second molding is performed from the first forming hole. Execute the latter stage process to feed into the hole,
Next, the first pressing member is fixed at the back end of the first forming hole to close the first forming hole, and in this state, the second pressing member is pushed toward the back of the second forming hole, Performing a pre-stage step of pressing and solidifying the mixed raw material accommodated in the second forming hole;
Next, in a state where the first pressing member can be retracted or retracted in advance, the second pressing member is further pushed into the back, so that the first raw material is pressed from the second forming hole while collapsing the mixed material. Execute the latter stage process to feed into the hole,
The above pre-stage process and post-stage process are alternately and repeatedly executed for the first and second pressing members, and finally the pre-stage process is executed in any one of the forming holes, whereby the mixed raw material is refined and the additive is uniform. A method for producing a magnesium composite material, comprising: obtaining a compression molded body of a mixed raw material dispersed in the material.
同一平面上において90°間隔で放射状に交差して連なり周方向に順に配列された第1,第2,第3,第4の成形穴を有する型と、これら成形穴にそれぞれ挿入された第1,第2,第3,第4の押圧部材とを用意し、
マグネシウムまたはマグネシウム合金のチップまたは粒状体と、粉末状の添加材とを含む混合原料を、上記第1成形穴に収容し、第2,第3,第4押圧部材を第2,第3,第4成形穴の奥端で固定して第2,第3,第4成形穴を塞いだ状態で、第1押圧部材を第1成形穴の奥に向かって押し込むことにより、第1成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、第3,第4押圧部材を第3,第4成形穴の奥端で固定し、第2押圧部材を後退可能にするか予め後退させた状態で、第1押圧部材をさらに押し込むことにより、上記混合材料を押し崩しながら第1成形穴から第2成形穴へと送り込む後段工程を実行し、
次に、第1,第3,第4押圧部材を第1,第3,第4成形穴の奥端で固定して第1,第3,第4成形穴を塞いだ状態で、第2押圧部材を第2成形穴の奥に向かって押し込むことにより、第2成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、第1,第4押圧部材を第1,第4成形穴の奥端で固定し、第3押圧部材を後退可能にするか予め後退させた状態で、第2押圧部材をさらに押し込むことにより、上記混合原料を押し崩しながら第2成形穴から第3成形穴へと送り込む後段工程を実行し、
次に、第1,第2,第4押圧部材を第1,第2,第4成形穴の奥端で固定して第1,第2,第4成形穴を塞いだ状態で、第3押圧部材を第3成形穴の奥に向かって押し込むことにより、第3成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、第1,第2押圧部材を第1,第2成形穴の奥端で固定し、第4押圧部材を後退可能にするか予め後退させた状態で、第3押圧部材をさらに押し込むことにより、上記混合原料を押し崩しながら第3成形穴から第4成形穴へと送り込む後段工程を実行し、
次に、第1,第2,第3押圧部材を第1,第2,第3成形穴の奥端で固定して第1,第2,第3成形穴を塞いだ状態で、第4押圧部材を第4成形穴の奥に向かって押し込むことにより、第4成形穴に収容された混合原料を押し固める前段工程を実行し、
次に、第2,第3押圧部材を第2,第3成形穴の奥端で固定し、第1押圧部材を後退可能にするか予め後退させた状態で、第4押圧部材をさらに押し込むことにより、上記混合原料を押し崩しながら第4成形穴から第1成形穴へと送り込む後段工程を実行し、
上記順序で押圧部材毎の前段工程と後段工程を繰り返し、最後にいずれかの成形穴において前段工程を実行することにより、混合原料が微細化されるとともに添加材が均一に分散化された圧縮成形体を得ることを特徴とするマグネシウム複合材料の製造方法。
A mold having first, second, third, and fourth molding holes arranged in a circumferential direction and intersecting radially at intervals of 90 ° on the same plane, and a first inserted into each of these molding holes. , Second, third and fourth pressing members are prepared,
A mixed raw material containing magnesium or a magnesium alloy chip or granule and a powdery additive is contained in the first forming hole, and the second, third, and fourth pressing members are second, third, and third. The first pressing member is pushed into the first forming hole while being fixed at the back end of the four forming holes and the second, third, and fourth forming holes are closed, and is accommodated in the first forming hole. The first step of pressing and solidifying the mixed raw material,
Next, the third and fourth pressing members are fixed at the back ends of the third and fourth forming holes, and the first pressing member is further pressed in a state where the second pressing member can be retracted or retracted in advance. By performing a subsequent step of feeding the first mixed hole from the first forming hole to the second forming hole while crushing the mixed material,
Next, with the first, third, and fourth pressing members fixed at the back ends of the first, third, and fourth forming holes and the first, third, and fourth forming holes closed, the second pressing member By pressing the member toward the back of the second forming hole, a pre-stage step of pressing and solidifying the mixed raw material accommodated in the second forming hole is performed,
Next, the first and fourth pressing members are fixed at the back ends of the first and fourth forming holes, and the second pressing member is further pushed in with the third pressing member retreatable or previously retracted. By performing a subsequent process of feeding the mixed raw material from the second forming hole to the third forming hole while crushing,
Next, with the first, second, and fourth pressing members fixed at the back ends of the first, second, and fourth forming holes and the first, second, and fourth forming holes closed, the third pressing By pressing the member toward the back of the third forming hole, a pre-stage step of pressing the mixed raw material accommodated in the third forming hole is performed,
Next, the first and second pressing members are fixed at the back ends of the first and second forming holes, and the third pressing member is further pushed in with the fourth pressing member retreatable or previously retracted. By performing a subsequent process of sending the third mixed hole from the third forming hole to the fourth forming hole while crushing the mixed raw material,
Next, with the first, second, and third pressing members fixed at the back ends of the first, second, and third forming holes and the first, second, and third forming holes closed, the fourth press By pressing the member toward the back of the fourth forming hole, a pre-stage step of pressing the mixed raw material accommodated in the fourth forming hole is performed,
Next, the second and third pressing members are fixed at the back ends of the second and third forming holes, and the fourth pressing member is further pushed in with the first pressing member being retractable or retracted in advance. By performing a subsequent process of sending the mixed raw material from the fourth forming hole to the first forming hole while crushing,
The former process and the latter process for each pressing member are repeated in the above order, and finally the former process is executed in one of the molding holes, whereby the mixed raw material is refined and the additive is uniformly dispersed. A method for producing a magnesium composite material, comprising obtaining a body.
上記圧縮成形体を加熱して押出成形することを特徴とする請求項1〜7のいずれかに記載のマグネシウム複合材料の製造方法。   The method for producing a magnesium composite material according to any one of claims 1 to 7, wherein the compression-molded body is heated and extruded. 上記混合材料がマグネシウム合金のチップまたは粒状体とシリカまたはシリコンの粉末を含み、上記加熱押出成形により、マグネシウムシリサイドを固相合成することを特徴とする請求項8に記載のマグネシウム複合材料の製造方法。   9. The method for producing a magnesium composite material according to claim 8, wherein the mixed material includes chips or granules of magnesium alloy and silica or silicon powder, and magnesium silicide is solid-phase synthesized by the heat extrusion molding. .
JP2005028817A 2004-02-05 2005-02-04 Compression molded body, extrusion molded article, and method for producing magnesium composite material Expired - Fee Related JP4401976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028817A JP4401976B2 (en) 2004-02-05 2005-02-04 Compression molded body, extrusion molded article, and method for producing magnesium composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004028894 2004-02-05
JP2005028817A JP4401976B2 (en) 2004-02-05 2005-02-04 Compression molded body, extrusion molded article, and method for producing magnesium composite material

Publications (2)

Publication Number Publication Date
JP2005248325A true JP2005248325A (en) 2005-09-15
JP4401976B2 JP4401976B2 (en) 2010-01-20

Family

ID=35029082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028817A Expired - Fee Related JP4401976B2 (en) 2004-02-05 2005-02-04 Compression molded body, extrusion molded article, and method for producing magnesium composite material

Country Status (1)

Country Link
JP (1) JP4401976B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197751A (en) * 2006-01-25 2007-08-09 Topy Ind Ltd Refining device and method
JP2008307545A (en) * 2007-06-12 2008-12-25 Topy Ind Ltd Method and apparatus for manufacturing compression molded body
WO2009113581A1 (en) 2008-03-11 2009-09-17 トピー工業株式会社 Al2Ca-CONTAINING MAGNESIUM-BASED COMPOSITE MATERIAL
WO2010016269A1 (en) * 2008-08-08 2010-02-11 学校法人日本大学 Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method
JP2010199193A (en) * 2009-02-24 2010-09-09 Yamaha Corp Thermoelectric material, and method of manufacturing the same
CN109047363A (en) * 2018-09-21 2018-12-21 江苏科技大学 It is a kind of prepare bulk ultrafine-grained materials squeeze upsetting mold and method repeatedly

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197751A (en) * 2006-01-25 2007-08-09 Topy Ind Ltd Refining device and method
JP4541304B2 (en) * 2006-01-25 2010-09-08 トピー工業株式会社 Miniaturization apparatus and method
JP2008307545A (en) * 2007-06-12 2008-12-25 Topy Ind Ltd Method and apparatus for manufacturing compression molded body
WO2009113581A1 (en) 2008-03-11 2009-09-17 トピー工業株式会社 Al2Ca-CONTAINING MAGNESIUM-BASED COMPOSITE MATERIAL
WO2010016269A1 (en) * 2008-08-08 2010-02-11 学校法人日本大学 Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method
JP5392727B2 (en) * 2008-08-08 2014-01-22 学校法人日本大学 Pure aluminum structural material with high specific strength solidified by giant strain processing
JP2010199193A (en) * 2009-02-24 2010-09-09 Yamaha Corp Thermoelectric material, and method of manufacturing the same
CN109047363A (en) * 2018-09-21 2018-12-21 江苏科技大学 It is a kind of prepare bulk ultrafine-grained materials squeeze upsetting mold and method repeatedly

Also Published As

Publication number Publication date
JP4401976B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP4401976B2 (en) Compression molded body, extrusion molded article, and method for producing magnesium composite material
US5963775A (en) Pressure molded powder metal milled tooth rock bit cone
US10946445B2 (en) Method of manufacturing a cemented carbide material
CN101444802B (en) A method of producing particle reinforced aluminum-base compound material continuously by using extrusion-upsetting and device thereof
CN109550939A (en) For the injection molding binder of digital cuttings and feeding preparation method
CN109926589A (en) The injection moulding method and mold of ultra-fine cemented carbide CNC turning tool
JP4444187B2 (en) Method for producing compression molded body
JP2008195978A (en) Magnesium-based composite material
JP4880491B2 (en) Granulated powder for mold forming, method for producing the same, and method for producing sintered parts using the granulated powder
CN108927514B (en) Production method of powder metallurgy spherical particles
US20070078027A1 (en) Clubface of a golf club and method for fabricating the same
JPH02163305A (en) Method for molding material produced
JP4541304B2 (en) Miniaturization apparatus and method
JP2837630B2 (en) Method and apparatus for manufacturing press-formed product
JP5392727B2 (en) Pure aluminum structural material with high specific strength solidified by giant strain processing
JP7481321B2 (en) Manufacturing method of compressed powder
JP6809373B2 (en) Microcapsules and ceramics manufacturing methods using them
JP6770369B2 (en) Microcapsules and ceramics manufacturing methods using them
JP2007046122A5 (en)
JPH06256809A (en) Method for recycling metal machining scrap
JP2007211259A (en) Method of molding metal powder and working tool molded by the molding method
CN111390177A (en) Preparation method of diamond wire saw bead
RU2147973C1 (en) Method of production of semifinished items from composite material on base of metal matrix
CN116900305A (en) Rheologic press forming method for powder metallurgy precision component
JP2001098303A (en) Manufacture of molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees