JP2005248281A - High strength cold rolled steel sheet having excellent adhesion of coating film - Google Patents

High strength cold rolled steel sheet having excellent adhesion of coating film Download PDF

Info

Publication number
JP2005248281A
JP2005248281A JP2004062573A JP2004062573A JP2005248281A JP 2005248281 A JP2005248281 A JP 2005248281A JP 2004062573 A JP2004062573 A JP 2004062573A JP 2004062573 A JP2004062573 A JP 2004062573A JP 2005248281 A JP2005248281 A JP 2005248281A
Authority
JP
Japan
Prior art keywords
steel sheet
less
oxide
steel plate
chemical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004062573A
Other languages
Japanese (ja)
Other versions
JP4315844B2 (en
Inventor
Ikuo Hashimoto
郁郎 橋本
Masahiro Nomura
正裕 野村
Shinji Kamitsuma
伸二 上妻
Manabu Kamura
学 嘉村
Yoshinobu Omiya
良信 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004062573A priority Critical patent/JP4315844B2/en
Publication of JP2005248281A publication Critical patent/JP2005248281A/en
Application granted granted Critical
Publication of JP4315844B2 publication Critical patent/JP4315844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet having excellent adhesion of a coating film, and having a tensile strength of ≥550 MPa. <P>SOLUTION: The high strength cold rolled steel sheet is a ferrite-martensite based DP (Dual Phase) steel sheet satisfying prescribed components and having a tensile strength of ≥550 MPa, where, in the cross-section in a direction orthogonal to the surface of the steel sheet, at the time when the region in which depth from the surface of the steel sheet is 2 μm and the length in the surface of the steel sheet is 10 μm is observed at the magnification of 5,000 times using an electron microscope, Mn-Si multiple oxides with a major axis of 0.01 to 5 μm in which the atomic ratio between Mn and Si (Mn-Si) is ≥0.5 are present by ≥10 pieces, and also, the occupancy ratio of oxides consisting essentially of Si and having a cross-sectional thickness of ≥0.01 μm in the length of 10 μm in the surface of the steel sheet is ≤10% (inclusive of 0%) on the average of 5 places optionally selected in the surface of the steel sheet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、塗膜密着性に優れた高強度冷延鋼板に関するものであり、殊に、引張強度が550MPa以上で、且つ優れた塗膜密着性を有し、自動車部品用鋼板等として最適な冷延鋼板に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet excellent in coating film adhesion, and in particular, has a tensile strength of 550 MPa or more and excellent coating film adhesion, and is optimal as a steel sheet for automobile parts. The present invention relates to a cold rolled steel sheet.

自動車の燃費向上や軽量化を背景に鋼材の高強度化が求められており、冷延鋼板の分野でもハイテン化(高硬度化)が進んでいる。一方、冷延鋼板は部品製造時にプレス成形が施されるため、伸び等の延性を十分確保することが前提となる。高強度化を図るには合金元素の添加が有効であるが、一般に、合金元素量の増加に伴い延性は低下する傾向にある。   Higher strength of steel materials is demanded against the background of improving fuel economy and weight reduction of automobiles, and high tempering (hardening) is also progressing in the field of cold-rolled steel sheets. On the other hand, since cold-rolled steel sheets are press-formed at the time of component production, it is assumed that sufficient ductility such as elongation is secured. Addition of alloying elements is effective for increasing the strength, but generally the ductility tends to decrease as the amount of alloying elements increases.

しかし合金元素の中でも、Siは延性低下の比較的小さい元素であり、延性を確保しつつ高強度化を図るのに有効な元素である。ところがSi含有量が増加すると化成処理性が劣化し、塗装後の塗膜密着性が低下する。そのため化成処理性が重視される場合には、Si含有量の低減を余儀なくされていた。またSi含有量を多くすると、鋼板表面に生成するSi含有粒界酸化物を原因とするクラックが発生し易くなり、これが塗膜密着性を劣化させる要因となっていた。   However, among alloy elements, Si is an element with a relatively small reduction in ductility, and is an element effective for increasing the strength while ensuring ductility. However, when the Si content is increased, the chemical conversion treatment property is deteriorated, and the coating film adhesion after coating is lowered. For this reason, when the chemical conversion property is important, the Si content must be reduced. Further, when the Si content is increased, cracks due to Si-containing grain boundary oxides generated on the steel sheet surface are likely to occur, which has been a factor of deteriorating coating film adhesion.

これまで機械的特性と化成処理性を両立させる技術としては、クラッド材を鋼板表面に被覆し、鋼板表面に低Si濃度層を設けることで化成処理性を高め、内部の高Si濃度層で機械的特性を確保する技術がある(例えば特許文献1)。しかしクラッド構造としなければならないため、製造工程が複雑になりコストアップにつながる。   Until now, as a technology to achieve both mechanical properties and chemical conversion treatment, the steel sheet surface is coated with a clad material, and a low Si concentration layer is provided on the steel sheet surface to improve chemical conversion treatment. There is a technique for ensuring the target characteristics (for example, Patent Document 1). However, since the clad structure is required, the manufacturing process becomes complicated and the cost increases.

また、化成処理性を阻害するSiが表面に濃化しないよう特殊な合金元素を添加する従来技術もある(例えば特許文献2や特許文献3)。この方法では、NiやCuを添加することで鋼板表層へのSi濃化を抑制し、化成処理性を確保している。しかし該方法では、高価なNiやCuを使用するためコストアップを招くという問題がある。   In addition, there is a conventional technique in which a special alloy element is added so that Si that inhibits chemical conversion treatment does not concentrate on the surface (for example, Patent Document 2 and Patent Document 3). In this method, by adding Ni or Cu, concentration of Si on the steel sheet surface layer is suppressed, and chemical conversion processability is ensured. However, this method has a problem that the cost is increased because expensive Ni or Cu is used.

またこれらの技術は、C含有量が0.005%以下と低濃度であり、再結晶温度を規定し集合組織を制御することによって、深絞り性の向上を図ったいわゆるIF鋼板に関するものであるが、この様にC量の非常に少ないIF鋼板で、本発明が意図する様な高強度を達成することは難しい。   Further, these techniques relate to a so-called IF steel sheet in which the C content is as low as 0.005% or less, and the deep drawing property is improved by regulating the recrystallization temperature and controlling the texture. However, it is difficult to achieve the high strength as intended by the present invention with such an IF steel sheet with a very small amount of C.

特許文献4では、NbCを析出させ、これをりん酸亜鉛結晶の核生成サイトとして活用することで化成処理性を確保している。しかしこの技術も、0.02%以下の低C濃度域で集合組織を制御することで深絞り性を確保した技術であり、上記IF鋼に比べると若干C濃度は高いものの、強度不足は否めない。該技術によると、第1発明では55kgf/mm(539MPa)、第2発明では60kgf/mm(588MPa)が強度の上限値であり、第2発明では550MPaを超えている。しかしこの強度はPやMo含有量を高めることによって実現したものであり、これらの元素が含まれると十分な溶接性を確保できなくなる。 In Patent Document 4, NbC is precipitated, and this is used as a nucleation site for zinc phosphate crystals to ensure chemical conversion treatment. However, this technique is also a technique that secures deep drawability by controlling the texture in a low C concentration range of 0.02% or less. Although the C concentration is slightly higher than the IF steel, the strength is insufficient. Absent. According to the technique, in the first invention 55kgf / mm 2 (539MPa), in the second invention is the upper limit of 60kgf / mm 2 (588MPa) strength, in the second invention is greater than 550 MPa. However, this strength is realized by increasing the P and Mo contents, and if these elements are contained, sufficient weldability cannot be secured.

特許文献5では、表層のSiO/MnSiO比率を規定することで化成処理性を確保した残留オーステナイト含有鋼板が提案されている。この技術では、表層酸化物を制御したりSi/Feの元素比率を制御するため、連続焼鈍後の表面を酸洗またはブラシ処理してSi酸化物を除去するか、またはAc変態点以下の温度で露点を−30℃以上に調整し、Si酸化物の生成量を抑える必要がある。 Patent Document 5 proposes a retained austenite-containing steel sheet that ensures chemical conversion processability by defining the SiO 2 / Mn 2 SiO 4 ratio of the surface layer. In this technique, in order to control the surface layer oxide or to control the element ratio of Si / Fe, the surface after continuous annealing is pickled or brushed to remove the Si oxide, or below the Ac 1 transformation point. It is necessary to adjust the dew point to −30 ° C. or higher with temperature to suppress the amount of Si oxide produced.

しかし上記酸洗やブラシ処理を行うと、工程数の増大により製造コストの上昇を招く。また露点制御は連続焼鈍炉内で行われるが、文献に示された実施例を見る限り、該露点を制御したとしても最表層におけるSiO/MnSiO比率は1.0程度であり、化成処理皮膜結晶の生成を阻害するSiOがMnSiOと同程度生じていることから、化成処理性が十分に改善されているとは言い難い。 However, when the pickling or brush treatment is performed, the manufacturing cost increases due to an increase in the number of steps. Although the dew point control is performed in a continuous annealing furnace, as far as the examples shown in the literature are concerned, even if the dew point is controlled, the SiO 2 / Mn 2 SiO 4 ratio in the outermost layer is about 1.0, Since SiO 2 that inhibits the formation of the chemical conversion coating crystal is generated to the same extent as Mn 2 SiO 4 , it is difficult to say that the chemical conversion treatment performance is sufficiently improved.

また当該技術は、残留オーステナイトを活用した鋼板であり、残留オーステナイトを確保するためC,Mn,Si,Al等の合金元素を多く含んでおり、そのため溶接性に劣るという問題がある。上記公報に示された実施例では、引張強度が750MPa以上の鋼板はもとより650MPa以上の鋼板も、上記溶接性の阻害原因となる合金元素が多量に含まれており、優れた溶接性は期待できないと思われる。   In addition, this technique is a steel sheet using retained austenite, and contains a large amount of alloying elements such as C, Mn, Si, Al, etc. in order to secure retained austenite, and therefore has a problem of poor weldability. In the examples shown in the above publications, not only steel sheets having a tensile strength of 750 MPa or more, but also steel sheets having a strength of 650 MPa or more contain a large amount of alloying elements that inhibit the weldability, and excellent weldability cannot be expected. I think that the.

特許文献6には、XPSで鋼板表面を観察し、酸化物を構成するSiとMnの比(Si/Mn)を1以下に抑えて化成処理性を高める技術が提案されている。   Patent Document 6 proposes a technique for observing the surface of a steel sheet by XPS and suppressing the ratio of Si and Mn (Si / Mn) constituting the oxide to 1 or less to improve chemical conversion property.

Si/Mn比が1以下である鋼として、例えばSi量がほぼゼロの軟鋼が化成処理性に優れていることは一般に知られている。しかし上述の通り、高強度と延性を共に高めるにはSiをある程度含有させる必要があり、Si量を低減してSi/Mn比を1以下にするには限界がある。また適量のSi量を確保しつつMn量を制御してSi/Mn比を1以下にした場合でも、良好な化成処理性を発揮する鋼板を安定して得ることができないことがわかった。   As steel having a Si / Mn ratio of 1 or less, for example, it is generally known that mild steel having almost no Si content is excellent in chemical conversion treatment. However, as described above, in order to increase both the high strength and the ductility, it is necessary to contain Si to some extent, and there is a limit in reducing the Si amount and making the Si / Mn ratio 1 or less. Further, it was found that a steel sheet exhibiting good chemical conversion treatment properties could not be obtained stably even when the Si / Mn ratio was controlled to 1 or less by controlling the Mn amount while securing an appropriate amount of Si.

また上記技術ではXPSで鋼板表面を観察しているが、XPSによる測定深さは一般に数十オングストロームであり、これより厚いSi含有酸化物が存在する場合には、Si含有酸化物を正確に制御できないと思われる。よって化成処理性を確実に高めるには、形成されるSi含有酸化物のサイズを考慮して制御領域を広げる必要がある。
特開平5−78752号公報 特許第2951480号公報 特許第3266328号公報 特許第3049147号公報 特開2003−201538号公報 特開平4−276060号公報
In the above technique, the surface of the steel sheet is observed by XPS, but the measurement depth by XPS is generally several tens of angstroms, and when a thicker Si-containing oxide exists, the Si-containing oxide is accurately controlled. I think I can't. Therefore, in order to reliably improve the chemical conversion property, it is necessary to expand the control region in consideration of the size of the Si-containing oxide to be formed.
Japanese Patent Laid-Open No. 5-78752 Japanese Patent No. 2951480 Japanese Patent No. 3266328 Japanese Patent No. 3049147 JP 2003-201538 A JP-A-4-276060

本発明は上記事情に鑑みてなされたものであって、その目的は、引張強度が550MPa以上で優れた塗膜密着性を有し、更には溶接性にも優れた冷延鋼板を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a cold-rolled steel sheet having excellent coating film adhesion at a tensile strength of 550 MPa or more and further excellent in weldability. It is in.

本発明に係る高強度冷延鋼板とは、質量%で(化学成分について以下同じ)、C:1%以下(0%を含まない)、Si:0.3〜2%、Mn:1〜5%を含むと共に、下記式(1)を満たし、引張強度が550MPa以上であるフェライト−マルテンサイト系のDP(Dual Phase)鋼板であって、
鋼板表面と直交する方向の断面において、鋼板表面からの深さが2μmで鋼板表面長さが10μmの領域を、電子顕微鏡を用いて倍率5000倍以上で観察したときに、
MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物が10個以上存在し、かつ、断面厚さ0.01μm以上のSi主体酸化物の鋼板表面長さ10μmに占める割合が、任意に選択される鋼板表面5箇所の平均で10%以下(0%含む)であるところに特徴がある(以下「本発明鋼板1」ということがある)。
The high-strength cold-rolled steel sheet according to the present invention is expressed by mass% (the same applies to chemical components below), C: 1% or less (not including 0%), Si: 0.3-2%, Mn: 1-5 %, A ferrite-martensitic DP (Dual Phase) steel sheet that satisfies the following formula (1) and has a tensile strength of 550 MPa or more,
In the cross section in the direction perpendicular to the steel plate surface, when the depth of 2 μm from the steel plate surface and the steel plate surface length of 10 μm was observed with an electron microscope at a magnification of 5000 times or more,
There are 10 or more Mn-Si complex oxides having a major axis of 0.01 μm or more and 5 μm or less with an atomic ratio of Mn to Si (Mn / Si) of 0.5 or more, and a cross-sectional thickness of 0.01 μm or more. The ratio of the main oxide to the steel sheet surface length of 10 μm is characterized in that it is 10% or less (including 0%) on the average of five arbitrarily selected steel sheet surfaces (hereinafter referred to as “present invention steel sheet 1”). Sometimes).

[Si]/[Mn]≦ 0.4 …(1)
{式中[Si]はSi含有量(質量%)を示し、[Mn]はMn含有量(質量%)を示す}
尚、上記「Si主体酸化物」とは、酸化物を構成する酸素以外の元素のうちSiが原子比(原子%)で67%超を占めるものをいい、当該酸化物は、分析の結果、非晶質であると考えられる。また上記「鋼板表面」とは、鋼板素地表面をいうものとする。
[Si] / [Mn] ≦ 0.4 (1)
{In the formula, [Si] indicates the Si content (% by mass) and [Mn] indicates the Mn content (% by mass)}
The “Si-based oxide” refers to an element other than oxygen constituting the oxide in which Si accounts for more than 67% by atomic ratio (atomic%). It is considered amorphous. Further, the “steel plate surface” refers to a steel plate substrate surface.

本発明は、上記要件に加えて更に、Si:0.3〜1.5%を満たし、かつSEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在しない高強度冷延鋼板も規定する(この様に、本発明鋼板1として規定する要件に加えて、上記要件も満たす鋼板を「本発明鋼板2」ということがある)。   In addition to the above-mentioned requirements, the present invention further satisfies Si: 0.3 to 1.5% and uses a SEM to observe a cross section near the steel sheet surface at a magnification of 2000 times. In the following, a high-strength cold-rolled steel sheet having no cracks with a depth of 5 μm or more is also defined (in this manner, in addition to the requirements defined as the steel plate 1 of the present invention, a steel plate that satisfies the above requirements is referred to as “the steel plate 2 of the present invention”. There is).

尚、上記クラックの幅および深さとは、SEM(日立製作所製 S−4500)を用いて2000倍で鋼板断面の表面近傍を観察したときの図1(鋼板断面概略図)に示す部分をいうものとする。   The width and depth of the cracks refer to the part shown in FIG. 1 (schematic cross-sectional view of steel plate) when the vicinity of the surface of the steel plate cross-section is observed at 2000 times using SEM (S-4500, manufactured by Hitachi, Ltd.). And

これらの鋼板において、更なる付加的要件として、下記式(2)および(3)を満たすように成分調整すれば、優れた溶接性も確保できるので好ましい。   In these steel plates, as a further additional requirement, it is preferable to adjust the components so as to satisfy the following formulas (2) and (3), since excellent weldability can be secured.

[P]+3[S]+1.54[C] < 0.25 …(2)
[C]+[Si]/30+[Mn]/20+2[P]+4[S] < 0.34 …(3)
{式中[C],[Si],[Mn],[P],[S]は各元素の含有量(質量%)を示す}
[P] +3 [S] +1.54 [C] <0.25 (2)
[C] + [Si] / 30 + [Mn] / 20 + 2 [P] +4 [S] <0.34 (3)
{Wherein [C], [Si], [Mn], [P], [S] represents the content (% by mass) of each element}

本発明の鋼板は、SiとMnを有効に活用しているので、550MPa以上の強度を容易に確保しつつ、優れた塗膜密着性を発揮し、更には溶接性に優れた自動車用に最適な鋼板を、クラッドを構成したり高価格元素を使用することなく効率良く安価に提供できる。   The steel sheet of the present invention effectively utilizes Si and Mn, so that it can easily secure a strength of 550 MPa or more, exhibits excellent coating adhesion, and is optimal for automobiles with excellent weldability. Steel plates can be provided efficiently and inexpensively without the need for constituting a clad or using expensive elements.

塗膜密着性に優れた鋼板を得るべく検討したところ、特に下記要件(I)、更には下記要件(II)も満足させればよいことを見出し本発明に想到した。更にこれらの要件を満足させると共に、550MPa以上の引張強度と延性を確保するために成分組成や製造条件についても検討を行った。   As a result of studying to obtain a steel sheet having excellent coating film adhesion, the inventors have found that the following requirement (I), and further, the following requirement (II) may be satisfied. Furthermore, while satisfying these requirements, the component composition and production conditions were also examined in order to ensure a tensile strength and ductility of 550 MPa or more.

(I)鋼板表面と直交する方向の断面において、鋼板表面からの深さが2μmで鋼板表面長さが10μmの領域(以下「鋼板表層領域」ということがある)を、電子顕微鏡を用いて倍率5000倍以上で観察したときに、
(i)MnとSiの原子比(Mn/Si)が0.5以上である長径0.01〜5μmのMn−Si複合酸化物が10個以上存在するようにし、かつ、
(ii)上記鋼板表面長さ10μmに占める、断面厚さ0.01μm以上のSi主体酸化物の長さ割合が、任意に選択される鋼板表面5箇所の平均で10%以下(0%含む)となるようにする。
(I) In a cross section in a direction perpendicular to the steel plate surface, a region having a depth of 2 μm from the steel plate surface and a steel plate surface length of 10 μm (hereinafter sometimes referred to as “steel plate surface region”) is magnified using an electron microscope. When observed at 5000 times or more,
(i) 10 or more Mn—Si composite oxides having a major axis of 0.01 to 5 μm with an atomic ratio of Mn to Si (Mn / Si) of 0.5 or more, and
(ii) The ratio of the length of the Si-based oxide having a cross-sectional thickness of 0.01 μm or more in the steel sheet surface length of 10 μm is 10% or less (including 0%) on average at five locations on the steel sheet surface selected arbitrarily. To be.

(II)SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在しないようにする。   (II) When observing a cross section in the vicinity of the steel sheet surface at a magnification of 2000 using an SEM, no cracks having a width of 3 μm or less and a depth of 5 μm or more are present in any 10 visual fields.

以下、まず上記要件(I),(II)を規定した理由について詳述する。   The reason why the requirements (I) and (II) are specified will be described in detail below.

<鋼板表層領域におけるMnとSiの原子比(Mn/Si)が0.5以上の
長径0.01〜5μmのMn−Si複合酸化物:10個以上>
本発明者らは、塗膜密着性に優れた高強度鋼板を得るべく以前から研究を進めており、Siを比較的多く含む鋼板の化成処理性向上技術について、既に提案している(特願2003−106152号)。この技術は、焼鈍雰囲気を制御することで、化成処理性に悪影響を及ぼす非晶質のSi酸化物を細かく分散させることにより化成処理性の向上を図ったものである。しかしSi濃度の比較的低い領域では、主な酸化物として、非晶質のSi酸化物ではなくMn−Si複合酸化物が生成する。この複合酸化物も、非晶質のSi酸化物と同様に塗膜密着性を低下させるが、その影響は該Si酸化物より小さいと考えられる。そこで、該Mn−Si複合酸化物を化成処理性の向上に積極的に活用することはできないかと考え、その線に沿って研究を進めてきた。
<Atomic ratio of Mn to Si (Mn / Si) in the steel sheet surface layer region is 0.5 or more Mn-Si composite oxide having a major axis of 0.01 to 5 μm: 10 or more>
The present inventors have been researching for a long time to obtain a high-strength steel sheet excellent in coating film adhesion, and have already proposed a chemical conversion treatment improving technique for a steel sheet containing a relatively large amount of Si (Japanese Patent Application). 2003-106152). This technique aims to improve chemical conversion treatment by finely dispersing amorphous Si oxide that adversely affects chemical conversion treatment by controlling the annealing atmosphere. However, in the region where the Si concentration is relatively low, not the amorphous Si oxide but the Mn—Si composite oxide is generated as the main oxide. Although this composite oxide also reduces the adhesion of the coating film in the same manner as the amorphous Si oxide, it is considered that the influence is smaller than that of the Si oxide. Therefore, the Mn—Si composite oxide is considered to be actively used for improving chemical conversion treatment, and research has been advanced along that line.

その結果、酸化物を構成するSiをMn−Si複合酸化物として存在させることで、Si活量を低減して化成処理反応を著しく阻害するSi酸化物を抑制すると共に、該Mn−Si複合酸化物を微細分散せしめ、りん酸亜鉛結晶の核生成サイトとして作用する「電気化学的不均一場」が形成され易い状態にすれば、化成処理性を高め得ることを突きとめた。本発明で規定するMn−Si複合酸化物が、りん酸亜鉛結晶の生成核に有効に作用する理由は明確ではないが、次の様に考えられる。   As a result, by making Si constituting the oxide exist as a Mn-Si composite oxide, the Si activity is reduced and the Si oxide that remarkably inhibits the chemical conversion treatment reaction is suppressed and the Mn-Si composite oxidation is suppressed. It was found that the chemical conversion can be improved by finely dispersing the material so that an "electrochemical heterogeneous field" that acts as a nucleation site for zinc phosphate crystals is easily formed. The reason why the Mn—Si composite oxide defined in the present invention effectively acts on the nuclei of zinc phosphate crystals is not clear, but is considered as follows.

化成処理工程において、りん酸亜鉛結晶は、例えば結晶粒界や予め表面調整処理時に鋼板表面に付着させたTiコロイド周辺などに形成される「電気化学的不均一場」に生成し易いことが知られている。そして本発明においても、Mn−Si複合酸化物の周辺に電気化学的な不均一場が形成されることで、化成処理時にりん酸亜鉛結晶が付着しやすくなり、良好な化成処理性が発揮されるものと考えられる。   In the chemical conversion treatment process, it is known that zinc phosphate crystals are likely to be generated in the “electrochemical inhomogeneous field” formed around the grain boundaries and around the Ti colloid previously deposited on the steel plate surface during the surface conditioning treatment. It has been. Also in the present invention, an electrochemical heterogeneous field is formed around the Mn-Si composite oxide, so that zinc phosphate crystals are easily attached during chemical conversion treatment, and good chemical conversion treatment performance is exhibited. It is thought that.

化成処理後のりん酸亜鉛結晶は、塗膜密着性の観点から数μm以下であることが好ましいとされている。よって上述の電気化学的不均一場も、数μmオーダーまたはそれ以下であることが望ましいと考えられる。そこで長径0.01〜5μmのMn−Si複合酸化物を鋼板表層領域(鋼板表面からの深さが2μmで鋼板表面長さが10μmの領域)に10個以上存在させて、該複合酸化物粒子の平均粒子間隔が数μm以下となるようにし、上記サイズの電気化学的不均一場が形成されやすい状態とした。   It is said that the zinc phosphate crystal after the chemical conversion treatment is preferably several μm or less from the viewpoint of coating film adhesion. Therefore, it is considered that the above-mentioned electrochemical non-uniform field is desirably on the order of several μm or less. Accordingly, 10 or more Mn—Si composite oxides having a major axis of 0.01 to 5 μm are present in the steel sheet surface layer region (region where the depth from the steel plate surface is 2 μm and the steel plate surface length is 10 μm), and the composite oxide particles The average particle interval was set to several μm or less so that an electrochemical heterogeneous field having the above size was easily formed.

存在させるMn−Si複合酸化物のサイズとして、長径0.01μm以上のものを対象としたのは、上記効果を発揮し易いサイズであることに加えて、TEM等の観察で存在を確認できる最低限のレベルだからである。好ましくは0.05μm以上のものを存在させるのがよい。一方、Mn−Si複合酸化物のサイズが5μmを超えると、電気化学的不均一場の形成による化成処理性の向上よりも、該酸化物によるりん酸塩結晶微細化の阻害といった悪影響の方が大きくなり、優れた化成処理性を確保できなくなるからである。好ましくは1μm以下のMn−Si複合酸化物を存在させるのがよい。   As the size of the Mn—Si composite oxide to be present, the target having a major axis of 0.01 μm or more is the minimum size that can be confirmed by observation with TEM or the like in addition to the size that easily exhibits the above effect. Because it is the limit level. Preferably, 0.05 μm or more is present. On the other hand, when the size of the Mn—Si composite oxide exceeds 5 μm, the adverse effect such as inhibition of the refining of phosphate crystals by the oxide is worse than the improvement of the chemical conversion treatment property due to the formation of an electrochemical heterogeneous field. It is because it becomes large and it becomes impossible to ensure the excellent chemical conversion property. Preferably, a Mn—Si composite oxide of 1 μm or less is present.

尚、存在する全てのMn−Si複合酸化物において、電気化学的不均一場が有効に形成されるとは限らないので、好ましくは上記鋼板表層領域あたり50個以上、より好ましくは100個以上、さらに好ましくは150個以上の上記Mn−Si複合酸化物を存在させるのがよい。尚、上記Mn−Si複合酸化物とは、MnとSiの原子比(Mn/Si)が0.5以上である化成処理性への悪影響がSi酸化物より小さいMn主体のMn−Si複合酸化物であり、例えばMnSiOが挙げられる。 In all the Mn-Si complex oxides present, the electrochemical heterogeneous field is not always effectively formed, so preferably 50 or more, more preferably 100 or more per steel sheet surface layer region, More preferably, 150 or more of the above Mn—Si composite oxide should be present. The above Mn-Si composite oxide is an Mn-based Mn-Si composite oxide having an Mn / Si atomic ratio (Mn / Si) of 0.5 or more, which has an adverse effect on the chemical conversion treatment than the Si oxide. For example, Mn 2 SiO 4 can be mentioned.

尚、上記Mn−Si複合酸化物は、鋼板表面からの深さが2μmで鋼板表面長さが10μmの領域内であって、鋼板表面を平面視した場合に見えない位置に存在する場合も含まれる。この様な状態でMn−Si複合酸化物が存在する場合にも、電気化学的不均一場の形成に寄与するものと考えられ、また化成処理中にわずかに鋼板が溶解した場合には表面上に現れて上記効果を発揮するからである。   The Mn—Si composite oxide is included in a region where the depth from the steel plate surface is 2 μm and the steel plate surface length is 10 μm and is not visible when the steel plate surface is viewed in plan. It is. Even in the presence of Mn-Si composite oxide in such a state, it is considered that it contributes to the formation of an electrochemical inhomogeneous field. This is because the above effect is exhibited.

<断面厚さ0.01μm以上のSi主体酸化物が鋼板表面長さ10μmに占める割合
:任意に選択される鋼板表面5箇所の平均で10%以下(0%含む)>
りん酸亜鉛結晶の生成核として有効なMn−Si複合酸化物を適量存在させても、化成処理を阻害するその他の物質が存在すれば、優れた化成処理性は発揮されず、結果として塗膜密着性に劣るものとなる。
<Proportion of Si-based oxide with a cross-sectional thickness of 0.01 μm or more in the steel sheet surface length of 10 μm: 10% or less (including 0%) on average of five steel sheet surfaces selected arbitrarily>
Even if an appropriate amount of a Mn-Si composite oxide effective as a zinc phosphate crystal nucleus is present, if there is another substance that inhibits the chemical conversion treatment, the excellent chemical conversion treatment performance will not be exhibited. It becomes inferior to adhesiveness.

上述した様に、Siを主体とする酸化物が鋼板表面に存在すると、当該部位には、りん酸亜鉛結晶が生成せず、化成処理性は劣悪となる。本発明者らは、上述の通りSiを主体とする酸化物を細かく分散させて化成処理性を高める技術を提案しているが、Mn−Si複合酸化物の前記作用を活用する本発明においては、Si主体酸化物を極力存在させない方が好ましいことがわかった。特に、断面厚さの厚いSi主体酸化物は、りん酸亜鉛結晶の生成を著しく妨げることから、本発明では断面厚さが0.01μm以上のSi主体酸化物(酸化物を構成する酸素以外の元素のうちSiの割合が原子比で67%を超える酸化物)を抑制することとした。具体的には、断面厚さ0.01μm以上の上記Si主体酸化物の鋼板表面長さ10μmに占める割合が、任意に選択される鋼板表面5箇所の平均で10%以下(0%含む)となるようにすればよいことがわかった。好ましくは任意に選択される鋼板表面5箇所の平均で5%以下であり、最も好ましくは0%である。   As described above, when an oxide mainly composed of Si is present on the surface of the steel sheet, zinc phosphate crystals are not generated at the portion, and the chemical conversion treatment property is deteriorated. As described above, the present inventors have proposed a technique for finely dispersing an oxide mainly composed of Si to improve the chemical conversion treatment property. In the present invention that utilizes the above-described action of the Mn—Si composite oxide, It has been found that it is preferable that the Si-based oxide is not present as much as possible. In particular, since a Si-based oxide having a large cross-sectional thickness significantly hinders the formation of zinc phosphate crystals, in the present invention, a Si-based oxide having a cross-sectional thickness of 0.01 μm or more (other than oxygen constituting the oxide). It was decided to suppress an oxide having a Si ratio of more than 67% by atomic ratio among elements. Specifically, the proportion of the Si-based oxide having a cross-sectional thickness of 0.01 μm or more in the steel plate surface length of 10 μm is 10% or less (including 0%) on average at five steel plate surfaces selected arbitrarily. I found out that I should do it. Preferably, it is 5% or less on the average of five steel plate surfaces selected arbitrarily, and most preferably 0%.

<SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において、幅3μm以下で深さ5μm以上のクラックが存在しないこと>
鋼板表面に鋭利なクラックが存在すると、化成処理時に当該部位にりん酸亜鉛結晶が付着せず、その結果、当該部位の腐食が進行しやすくなり、塗膜密着性が低下すると考えられる。つまり塗膜密着性を高めるには、りん酸亜鉛結晶の付着しない鋭利なクラックを極力抑制することが重要となる。
<When observing a cross section near the steel sheet surface at 2000 times using SEM, there should be no cracks with a width of 3 μm or less and a depth of 5 μm or more in any 10 fields of view>
If sharp cracks are present on the surface of the steel plate, it is considered that zinc phosphate crystals do not adhere to the site during the chemical conversion treatment, and as a result, corrosion of the site is likely to proceed, resulting in a decrease in coating film adhesion. That is, in order to improve the adhesion of the coating film, it is important to suppress as much as possible sharp cracks to which zinc phosphate crystals do not adhere.

本発明者らは、既に、Siと酸素を含む線状化合物(幅300nm以下)の存在深さを10μm以下にすることで塗膜密着性を高める技術を提案している。該技術では、連続焼鈍後に酸洗を施さないことを前提としているが、鋼板にはむしろ連続焼鈍後に酸洗を施す場合の方が多く、その場合には、線状酸化物が除去されてクラックが生じる。   The present inventors have already proposed a technique for improving the adhesion of a coating film by setting the existing depth of a linear compound (width: 300 nm or less) containing Si and oxygen to 10 μm or less. In this technique, it is assumed that pickling is not performed after continuous annealing, but the steel sheet is more often subjected to pickling after continuous annealing, in which case, the linear oxide is removed and cracks occur. Occurs.

クラック深さと線状酸化物の定量的な関係は明確ではないが、線状酸化物が、上記の通り酸溶解されるか、又は機械的に脱落してクラックが生じると考えられ、上記線状酸化物が除去された後も、酸等によりクラック部分の溶解が進むので、線状酸化物のサイズよりもクラックの方が深くなると考えられる。   Although the quantitative relationship between the crack depth and the linear oxide is not clear, it is considered that the linear oxide is dissolved in the acid as described above or mechanically dropped to cause cracks. Even after the oxide is removed, the crack portion is dissolved by an acid or the like, so the crack is considered to be deeper than the size of the linear oxide.

そこで本発明では、上記提案済の技術のように線状酸化物の存在深さを規定するよりも、焼鈍後の酸洗の有無に関係なくクラックを制御する方が塗膜密着性をより確実に高めることができるのではないかと考え、制御すべきクラックの形態について調べた。その結果、クラックの幅がりん酸亜鉛の結晶粒径と同程度かそれ以下であれば、該クラックにりん酸亜鉛結晶が付着し難く、特に深さが5μm以上のクラックにりん酸亜鉛結晶が付着し難いことから、幅3μm以下でかつ深さが5μm以上のクラックを抑制の対象とした。そして該クラックが、SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において存在しないことを要件とした。   Therefore, in the present invention, the coating film adhesion is more reliably controlled by controlling cracks regardless of the presence or absence of pickling after annealing, rather than defining the existence depth of the linear oxide as in the proposed technique. We thought that it might be possible to increase the thickness of the crack, and investigated the form of cracks to be controlled. As a result, if the width of the crack is the same as or smaller than the crystal grain size of zinc phosphate, the zinc phosphate crystal is difficult to adhere to the crack, and in particular, the zinc phosphate crystal is in the crack having a depth of 5 μm or more. Since it is difficult to adhere, cracks having a width of 3 μm or less and a depth of 5 μm or more were targeted for suppression. And when the cross section near the steel plate surface was observed at 2000 times using SEM, it was made a requirement that the crack does not exist in any 10 visual fields.

本発明では、上記Mn−Si複合酸化物を効率良く析出させると共に、規定するSi主体酸化物やクラックを抑制し、また高強度鋼板としての特性を確保するため化学成分を下記の通り規定した。   In the present invention, the Mn—Si composite oxide is efficiently precipitated, the prescribed Si-based oxides and cracks are suppressed, and the chemical components are specified as follows in order to ensure the characteristics as a high-strength steel plate.

Si主体酸化物は、上述の通り化成処理性に悪影響を及ぼすため、該酸化物を細かく分散させるよりも極力抑制する方が好ましい。そこで本発明者らは下記式(1)に示すとおり[Si]/[Mn]の比率を0.4以下とすることで、Siを主体の酸化物を抑制する。[Si]/[Mn]は好ましくは0.3以下である。
[Si]/[Mn]≦ 0.4 …(1)
{式中[Si]はSi含有量(質量%)を示し、[Mn]はMn含有量(質量%)を示す}
Since the Si-based oxide adversely affects the chemical conversion processability as described above, it is preferable to suppress it as much as possible rather than finely dispersing the oxide. Therefore, the inventors suppress the oxide mainly composed of Si by setting the ratio of [Si] / [Mn] to 0.4 or less as shown in the following formula (1). [Si] / [Mn] is preferably 0.3 or less.
[Si] / [Mn] ≦ 0.4 (1)
{In the formula, [Si] indicates the Si content (% by mass) and [Mn] indicates the Mn content (% by mass)}

<C:1%以下(0%を含まない)>
Cは強度確保に必要な元素であり、0.05%以上含有させるのがよいが、過剰に存在すると溶接性が低下する。よってC含有量は1%以下に抑える。好ましくは0.23%以下、更に好ましくは0.15%以下である。
<C: 1% or less (excluding 0%)>
C is an element necessary for ensuring the strength and should be contained in an amount of 0.05% or more. However, if it is present in excess, weldability is lowered. Therefore, C content is suppressed to 1% or less. Preferably it is 0.23% or less, More preferably, it is 0.15% or less.

<Si:0.3〜2.0%(本発明鋼板1の場合)>
<Si:0.3〜1.5%(本発明鋼板2の場合)>
Siは、高強度化に必要であり、少なくとも0.3%含有させる必要があり、好ましくは0.5%以上、より好ましくは0.7%以上である。一方、Si含有量が過剰になると、表面Si酸化物層の生成を回避できず、十分な化成処理性を得ることができない。よってSi量は2.0%以下に抑える。特に、塗膜密着性の劣化原因となる上記要件(II)として規定するクラックの発生を抑えるには、Si量を1.5%以下に抑える必要がある。
<Si: 0.3 to 2.0% (in the case of the steel sheet 1 of the present invention)>
<Si: 0.3 to 1.5% (in the case of the steel plate 2 of the present invention)>
Si is necessary for increasing the strength, and it is necessary to contain at least 0.3%, preferably 0.5% or more, more preferably 0.7% or more. On the other hand, when the Si content is excessive, generation of the surface Si oxide layer cannot be avoided, and sufficient chemical conversion treatment property cannot be obtained. Therefore, the amount of Si is suppressed to 2.0% or less. In particular, the amount of Si needs to be suppressed to 1.5% or less in order to suppress the occurrence of cracks defined as the above requirement (II) that causes deterioration of coating film adhesion.

<Mn:1.0〜5.0%>
Mnも強度確保に必要な元素であり、またMn−Si複合酸化物の生成にも必要である。この様な効果を発現させるには、Mnを1.0%以上、好ましくは2.0%以上含有させる。しかし過剰になると延性が劣化するため、5.0%以下、好ましくは3.5%以下に抑える。
<Mn: 1.0 to 5.0%>
Mn is also an element necessary for securing the strength, and is also necessary for the generation of the Mn—Si composite oxide. In order to exhibit such an effect, Mn is contained in an amount of 1.0% or more, preferably 2.0% or more. However, if it becomes excessive, the ductility deteriorates, so it is suppressed to 5.0% or less, preferably 3.5% or less.

本発明で規定する含有元素は上記の通りであり、残部成分は実質的にFeであるが、鋼中に、原料、資材、製造設備等の状況によって持ち込まれる元素として1%以下のAl、0.01%以下のN(窒素)、0.01%以下のO(酸素)等の不可避不純物が含まれることが許容されるのは勿論のこと、前記本発明の作用に悪影響を与えない範囲で、更に他の元素としてCr、Mo、Ni、Ti、Nb、V、PまたはBを積極的に含有させることも可能である。   The contained elements specified in the present invention are as described above, and the remaining component is substantially Fe. However, 1% or less of Al, 0% as an element brought into the steel depending on the status of raw materials, materials, manufacturing equipment, etc. Of course, inevitable impurities such as N (nitrogen) of 0.01% or less and O (oxygen) of 0.01% or less are allowed to be included, as long as the effects of the present invention are not adversely affected. Further, Cr, Mo, Ni, Ti, Nb, V, P or B can be positively contained as other elements.

即ちCr、Mo、Ni、Ti、Nb、V、P、Bは、鋼板の強度を高める観点から添加してもよく、それぞれCr:0.1%以上、Mo:0.1%以上、Ni:0.1%以上、Ti:0.005%以上、Nb:0.005%以上、V:0.0005%以上、P:0.005%以上、B:0.0003%以上含有させてもよいが、過剰に添加すると延性低下や溶接性の低下を招くため、Cr、Mo、Niはそれぞれ1%以下、Ti、Nb、Pはそれぞれ0.1%以下、V、Bはそれぞれ0.01%以下に抑えることが好ましい。   That is, Cr, Mo, Ni, Ti, Nb, V, P, and B may be added from the viewpoint of increasing the strength of the steel sheet. Cr: 0.1% or more, Mo: 0.1% or more, Ni: 0.1% or more, Ti: 0.005% or more, Nb: 0.005% or more, V: 0.0005% or more, P: 0.005% or more, B: 0.0003% or more However, if added excessively, ductility and weldability are deteriorated. Therefore, Cr, Mo and Ni are each 1% or less, Ti, Nb and P are each 0.1% or less, and V and B are each 0.01%. It is preferable to keep it below.

ところで下記式(2)および(3)の左辺はスポット溶接性を評価するパラメータとして知られており{田中ら:日本鋼管技報,No.105(1984)、Heuschkel,J.:Weld J26(10),P560S(1947)}、該パラメータ値が高くなるほど溶接性は低下する傾向にある。本発明では、下記式(2)において([P]+3[S]+1.54[C])が0.25以上、または下記式(3)において([C]+[Si]/30+[Mn]/20+2[P]+4[S])が0.34以上の場合に、スポット溶接性が低下することを確認している。   By the way, the left side of the following formulas (2) and (3) is known as a parameter for evaluating spot weldability {Tanaka et al .: Nippon Steel Pipe Technical Report, No. 105 (1984), Heuschkel, J .: Weld J26 (10 ), P560S (1947)}, the higher the parameter value, the lower the weldability. In the present invention, ([P] +3 [S] +1.54 [C]) is 0.25 or more in the following formula (2), or ([C] + [Si] / 30 + [Mn] in the following formula (3). ] / 20 + 2 [P] +4 [S]) is 0.34 or more, it has been confirmed that spot weldability deteriorates.

[P]+3[S]+1.54[C] < 0.25 …(2)
[C]+[Si]/30+[Mn]/20+2[P]+4[S] < 0.34 …(3)
{式中[C],[Si],[Mn],[P],[S]は各元素の含有量(質量%)を示す}
[P] +3 [S] +1.54 [C] <0.25 (2)
[C] + [Si] / 30 + [Mn] / 20 + 2 [P] +4 [S] <0.34 (3)
{Wherein [C], [Si], [Mn], [P], [S] represents the content (% by mass) of each element}

本発明では、引張強度が550MPa以上(好ましくは750MPa以上、より好ましくは900MPa以上)の鋼板を対象とする。引張強度が550MPa未満の場合には、高強度化や高延性化のためにSiを多量に添加する必要がなく、上述したようなSi酸化物の生成による化成処理性の劣化といった問題も生じないからである。   In the present invention, a steel sheet having a tensile strength of 550 MPa or more (preferably 750 MPa or more, more preferably 900 MPa or more) is used. When the tensile strength is less than 550 MPa, it is not necessary to add a large amount of Si for high strength and high ductility, and there is no problem of deterioration of chemical conversion treatment due to the generation of Si oxide as described above. Because.

前記強度を確保すべくC、Mn、Siの各含有量を調整したりPを含有させる場合に、併せて溶接性を確保するには、強度レベルに応じて下記範囲を満足させることが望ましい。   In order to secure weldability when adjusting the contents of C, Mn, and Si or securing P in order to ensure the strength, it is desirable to satisfy the following range according to the strength level.

TS:550〜650MPaの場合
[P]+3[S]+1.54[C] < 0.14
[C]+[Si]/30+[Mn]/20+2[P]+4[S] < 0.21
TS:650超〜750MPaの場合
[P]+3[S]+1.54[C] < 0.18
[C]+[Si]/30+[Mn]/20+2[P]+4[S] < 0.27
TS:750超〜1050MPaの場合
[P]+3[S]+1.54[C] < 0.22
[C]+[Si]/30+[Mn]/20+2[P]+4[S] < 0.30
TS:1050MPa超の場合
[P]+3[S]+1.54[C] < 0.25
[C]+[Si]/30+[Mn]/20+2[P]+4[S] < 0.34
TS: 550 to 650 MPa
[P] +3 [S] +1.54 [C] <0.14
[C] + [Si] / 30 + [Mn] / 20 + 2 [P] +4 [S] <0.21
TS: More than 650 to 750 MPa
[P] +3 [S] +1.54 [C] <0.18
[C] + [Si] / 30 + [Mn] / 20 + 2 [P] +4 [S] <0.27
TS: More than 750 to 1050 MPa
[P] +3 [S] +1.54 [C] <0.22
[C] + [Si] / 30 + [Mn] / 20 + 2 [P] +4 [S] <0.30
TS: More than 1050 MPa
[P] +3 [S] +1.54 [C] <0.25
[C] + [Si] / 30 + [Mn] / 20 + 2 [P] +4 [S] <0.34

本発明は、フェライト−マルテンサイト系のDP(Dual Phase:デュアルフェーズ)鋼板を対象とする。上記組織のみ(即ち、フェライトとマルテンサイト)からなるものの他、本発明の製造過程で必然的に残存し得るパーライト、ベイナイト、残留オーステナイトが、本発明の作用を損なわない範囲で含まれる場合もある。しかし、これらは少なければ少ないほど好ましい。   The present invention is directed to a ferrite-martensitic DP (Dual Phase) steel sheet. In addition to the above structure only (ie, ferrite and martensite), pearlite, bainite, and retained austenite that may inevitably remain in the production process of the present invention may be included within a range not impairing the function of the present invention. . However, the smaller these, the better.

本発明は、上記鋼板の製造方法まで規定するものではないが、鋼板素地表面から深さ2μmの領域において、規定のMn−Si複合酸化物を適量存在させ、またSi主体酸化物を抑制するには、CAL(連続焼鈍)でなくバッチ式の焼鈍を行うことが大変有効である。バッチ式であれば長時間の加熱が可能であるため均熱温度(後述する図2の加熱温度)を低くでき、均熱温度が低いと、酸素の内部への拡散に比較して合金元素の表面への拡散が遅いので、表面にSiなどの合金元素が濃化せずに内部に酸化物が生成する傾向にあり、表面へのSi濃化を抑制できるからである。また、高温状態で酸化性雰囲気(大気、水冷設備)に曝されるCALと異なり、冷却時に低温(約200℃)まで雰囲気制御可能で、表面酸化やクラックを抑制できるのでよい。   Although this invention does not prescribe | regulate to the manufacturing method of the said steel plate, in the area | region of 2 micrometers in depth from the steel plate base surface, an appropriate amount of prescription | regulation Mn-Si complex oxide exists, and Si main oxide is suppressed. It is very effective to perform batch annealing instead of CAL (continuous annealing). If the batch method is used, heating for a long time is possible, so the soaking temperature (heating temperature in FIG. 2 described later) can be lowered. If the soaking temperature is low, the alloying elements are compared with the diffusion of oxygen into the interior. This is because since diffusion to the surface is slow, alloy elements such as Si do not concentrate on the surface and oxides tend to be generated inside, and concentration of Si on the surface can be suppressed. Further, unlike CAL exposed to an oxidizing atmosphere (air, water-cooled equipment) in a high temperature state, the atmosphere can be controlled to a low temperature (about 200 ° C.) during cooling, and surface oxidation and cracks can be suppressed.

製造条件として、430〜500℃で巻き取った熱間圧延材を用い、液温が50〜85℃で3〜18質量%の塩酸溶液に40〜90秒間浸漬後、窒素−水素混合ガスにより雰囲気制御したバッチ式の焼鈍炉おいて、露点を−55〜−40℃とし、後述する図2に示す加熱温度を740〜820℃にして焼鈍し、均熱後、3×10−3〜3×10−1℃/秒の冷却速度で200℃以下まで窒素−水素混合ガス中で冷却することが推奨される。 As a manufacturing condition, a hot rolled material wound up at 430 to 500 ° C. is used, and after immersion for 40 to 90 seconds in a 3 to 18 mass% hydrochloric acid solution at a liquid temperature of 50 to 85 ° C., the atmosphere is mixed with a nitrogen-hydrogen mixed gas. In a controlled batch type annealing furnace, the dew point was -55 to -40 ° C, the heating temperature shown in Fig. 2 described later was annealed at 740 to 820 ° C, and after soaking, 3 x 10 -3 to 3 x It is recommended to cool in a nitrogen-hydrogen mixed gas to 200 ° C. or lower at a cooling rate of 10 −1 ° C./second .

特にクラックを発生させないようにするには、製造工程において、上記バッチ式の焼鈍炉で露点を−55〜−40℃とすることが大変有効である。   In particular, in order to prevent the generation of cracks, it is very effective to set the dew point to −55 to −40 ° C. in the batch-type annealing furnace in the production process.

本発明は、その他の製造条件まで規定するものでなく、通常行われている通り、溶製後に鋳造し熱間圧延を行えばよい。また後述する実施例では焼鈍後に酸洗を行っているが、該酸洗の有無も問わない。   The present invention is not limited to other production conditions, and may be cast after melting and hot-rolled as usual. Moreover, in the Example mentioned later, although pickling is performed after annealing, the presence or absence of this pickling is not ask | required.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

表1に示す化学成分組成の鋼材を溶製し、鋳造して得られたスラブを用いて熱間圧延を行い、熱間圧延材から300mm×220mmの試験片を採取した。そして該試験片に下記条件で酸洗を施した後、研削し、その後に冷間圧延を行ってから赤外線イメージ炉(バッチ式炉)またはCALで焼鈍処理を行った。   A steel material having the chemical composition shown in Table 1 was melted and hot-rolled using a slab obtained by casting, and a 300 mm × 220 mm test piece was collected from the hot-rolled material. Then, the test piece was pickled under the following conditions, ground, and then cold-rolled, and then annealed in an infrared image furnace (batch furnace) or CAL.

酸洗(塩酸処理)条件
・塩酸濃度:15質量%
・液温:80℃
・浸漬時間:60秒間
焼鈍処理は、赤外線イメージ炉の場合は図2、CALの場合は図3に略示するヒートパタンで行った。露点と図2および図3に示す加熱温度および焼戻温度は表2に示すとおりである。尚、露点は、赤外線イメージ炉またはCALの雰囲気露点である。また図2および図3のヒートパタン図において、赤外線イメージ炉では加熱後、200℃まで炉冷(徐冷)し、CALでは徐冷終点温度から水冷(水焼入れ)を行った。
Pickling (hydrochloric acid treatment) conditions ・ Hydrochloric acid concentration: 15% by mass
・ Liquid temperature: 80 ℃
Immersion time: 60 seconds The annealing treatment was performed with the heat pattern schematically shown in FIG. 2 in the case of an infrared image furnace and in FIG. 3 in the case of CAL. The dew point and the heating and tempering temperatures shown in FIGS. 2 and 3 are as shown in Table 2. The dew point is an infrared image furnace or CAL atmosphere dew point. In the heat pattern diagrams of FIGS. 2 and 3, in the infrared image furnace, after heating, the furnace was cooled to 200 ° C. (slow cooling), and in CAL, water cooling (water quenching) was performed from the end point of the slow cooling.

得られた鋼板の機械的特性、塗膜密着性および溶接性を下記の様にして評価した。尚、得られた鋼板は、全てフェライトとマルテンサイトの2相を主体とする組織であった。   The mechanical properties, coating film adhesion and weldability of the obtained steel sheet were evaluated as follows. The obtained steel sheets all had a structure mainly composed of two phases of ferrite and martensite.

機械的特性は、JIS5号試験片を採取して測定し、引張強度(TS)、El(全伸び)および降伏比(YP)を求めた。また、伸びフランジ性は、直径100mm、板厚1.4mmの円盤状試験片を用いて評価した。具体的には、試験片にφ10mmの穴をパンチで打ち抜いた後、60°円錐パンチでバリを上にして穴広げ加工することにより、亀裂貫通時点での穴広げ率(λ)を測定した(鉄鋼連盟規格JFST 1001)。   Mechanical properties were measured by collecting JIS No. 5 test pieces and determining tensile strength (TS), El (total elongation), and yield ratio (YP). The stretch flangeability was evaluated using a disk-shaped test piece having a diameter of 100 mm and a plate thickness of 1.4 mm. Specifically, after punching out a hole with a diameter of 10 mm in a test piece with a punch, the hole expansion rate (λ) at the time of crack penetration was measured by performing hole expansion processing with a burr facing up with a 60 ° conical punch ( Steel Federation Standard JFST 1001).

塗膜密着性として、化成処理性とクラックの有無を調べた。化成処理性は、鋼板表層領域のMn−Si複合酸化物とSi主体酸化物の析出状態を下記の様にして調べ、かつ下記条件で化成処理を行って化成処理後の鋼板表面を1000倍でSEM観察し、10視野のりん酸亜鉛結晶の付着状態を調べた。そして10視野全てにおいてりん酸亜鉛結晶の未析出部がなくかつ最大結晶サイズが10μm以下の場合を「○」、りん酸亜鉛結晶の未析出部または粗大結晶のあるものを「×」と評価した。   As the coating film adhesion, chemical conversion property and presence of cracks were examined. For the chemical conversion treatment, the precipitation state of the Mn-Si composite oxide and the Si-based oxide in the surface layer region of the steel sheet is examined as follows, and the chemical conversion treatment is performed under the following conditions, and the steel sheet surface after the chemical conversion treatment is multiplied by 1000 times. SEM observation was conducted to examine the state of adhesion of zinc phosphate crystals in 10 fields of view. And in all 10 fields of view, there was no unprecipitated portion of the zinc phosphate crystal and the maximum crystal size was 10 μm or less, and “○” was evaluated when the unprecipitated portion of the zinc phosphate crystal or the coarse crystal was present. .

・化成処理液:日本パーカライジング社製りん酸亜鉛皮膜処理液
商品名:パルボンド L 3020
・化成処理工程:脱脂 → 水洗 → 表面調整 → 化成処理
・ Chemical conversion treatment solution: Zinc phosphate coating treatment solution manufactured by Nihon Parkerizing Co., Ltd.
Product Name: Palbond L 3020
・ Chemical conversion treatment process: degreasing → washing → surface adjustment → chemical conversion treatment

長径0.01μm以上5μm以下のMn−Si複合酸化物の個数は、鋼板表面と直交する方向の断面における鋼板表面からの深さが2μmで鋼板表面長さが10μmの領域を、TEM(透過型電子顕微鏡 日立製作所製 HF−2000)を用いて倍率15000倍以上で暗視野走査透過電子像(D−STEM)を観察し、該領域に存在するMnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物の個数を測定した。尚、上記MnとSiの原子比は、上記TEMに付属のEDX(エネルギー分散型X線検出器 KEVEX社製 SIGMA)で酸化物組成分析を行い求めた。この様な測定を任意に選択した5箇所(5視野)で行い、該5箇所におけるMn−Si複合酸化物の個数の平均値を求めた。   The number of Mn—Si composite oxides having a major axis of 0.01 μm or more and 5 μm or less is a region where the depth from the steel sheet surface is 2 μm and the steel sheet surface length is 10 μm in the cross section perpendicular to the steel sheet surface. A dark-field scanning transmission electron image (D-STEM) is observed at a magnification of 15000 times or more using an electron microscope (HF-2000 manufactured by Hitachi, Ltd.), and the atomic ratio (Mn / Si) of Mn and Si existing in the region is 0. The number of Mn—Si composite oxides having a major axis of 0.01 μm or more and 5 μm or less that is 0.5 or more was measured. The atomic ratio between Mn and Si was determined by performing an oxide composition analysis using EDX (SIGMA manufactured by KEVEX, an energy dispersive X-ray detector) attached to the TEM. Such measurement was performed at five arbitrarily selected sites (5 fields of view), and the average value of the number of Mn—Si composite oxides at the five sites was obtained.

また鋼板表面長さ10μmに占める断面厚さ0.01μm以上のSi主体の酸化物(酸化物を構成する酸素以外の元素のうちSiの割合が原子比で67%を超えるもの)の割合を、上記Mn−Si酸化物の測定と同一の視野で調べた。即ち、上記Mn−Si酸化物の測定と同一の視野における任意の鋼板表面長さ10μmにおいて、上記Si主体酸化物が占める合計距離を求め、その割合を算出した。この場合も、任意に選択される鋼板表面の5箇所で測定を行い、該5箇所の平均値を求めた。これらの結果を表2に併記する。   Moreover, the ratio of the Si-based oxide having a cross-sectional thickness of 0.01 μm or more occupying the steel sheet surface length of 10 μm (the ratio of Si exceeding 67% by atomic ratio among elements other than oxygen constituting the oxide) It investigated in the same visual field as the measurement of the said Mn-Si oxide. That is, the total distance occupied by the Si-based oxide was determined at an arbitrary steel plate surface length of 10 μm in the same field of view as the measurement of the Mn—Si oxide, and the ratio was calculated. In this case as well, measurement was performed at five locations on the surface of the steel sheet arbitrarily selected, and the average value at the five locations was determined. These results are also shown in Table 2.

またクラックの有無は、SEM(日立製作所製 S−4500)を用いて2000倍で、鋼板断面の表面近傍における任意の10視野(1視野:65μm×55μm)を観察して調べた。   The presence or absence of cracks was examined using an SEM (S-4500, manufactured by Hitachi, Ltd.) at a magnification of 2000 and by observing any 10 visual fields (1 visual field: 65 μm × 55 μm) in the vicinity of the surface of the steel sheet cross section.

溶接性は次の様にして調べた。供試鋼板を2枚重ねし、ダイレクト法でスポット溶接(詳細な条件は下記の通り)して引張せん断試験用の試験片を作成し、引張せん断試験を行って試験後の破断状態で評価した。供試鋼板ごとに試験片10個を用いて引張せん断試験を行い、10個全ての破断状態が健全な破断形態であるボタン破断の場合には「○」、ボタン破断のものが9個以下の場合には「×」と評価した。これらの結果を表2に併記する。   Weldability was examined as follows. Two test steel plates were stacked and spot-welded by the direct method (detailed conditions are as follows) to prepare a specimen for a tensile shear test, and a tensile shear test was performed to evaluate the fracture state after the test. . Tensile shear tests were performed using 10 test pieces for each test steel plate. When all the 10 ruptures were button ruptures in a sound rupture state, “◯”, and 9 or less ruptures of button ruptures. In some cases, it was evaluated as “x”. These results are also shown in Table 2.

電極:ドームラジアス型、φ6mm(先端径)
加圧力:4.32kN
通電時間:17サイクル
溶接電流値:(散りが発生する最小電流値)+0.5kA
Electrode: Dome radius type, φ6mm (tip diameter)
Applied pressure: 4.32 kN
Energizing time: 17 cycles Welding current value: (minimum current value at which scattering occurs) +0.5 kA

表1,2から、以下の様に考察できる(尚、下記No.は実験No.を示す)。
即ち、No.6およびNo.11は、本発明鋼板1としての規定要件を満たしているため、優れた化成処理性を発揮しており、優れた塗膜密着性を発揮し得る。このNo.6,11において、更に塗膜密着性の向上を図るにはクラックを抑制するのがよく、また優れた溶接性を与えるには、上記式(2)および(3)を満足させるようにするのがよい。
From Tables 1 and 2, it can be considered as follows (note that the following No. indicates the experiment No.).
That is, no. Since No. 6 and No. 11 satisfy | fill the prescription | regulation requirement as this invention steel plate 1, the outstanding chemical conversion property is exhibited and it can exhibit the outstanding coating-film adhesiveness. This No. 6 and 11, cracks should be suppressed to further improve the coating film adhesion, and in order to provide excellent weldability, the above formulas (2) and (3) should be satisfied. Is good.

No.9は、本発明鋼板1としての規定要件を満たしており、かつ上記式(2)および(3)も満足しているため、優れた化成処理性と優れた溶接性を発揮する。このNo.9の塗膜密着性を更に向上させるには、クラックを抑制するのがよい。   No. No. 9 satisfies the prescribed requirements as the steel sheet 1 of the present invention and also satisfies the above formulas (2) and (3), and therefore exhibits excellent chemical conversion property and excellent weldability. This No. In order to further improve the adhesion of the coating film 9, it is preferable to suppress cracks.

No.8,10は、本発明鋼板2で規定する要件、即ち、本発明鋼板1として規定する要件に加えてクラックに関する要件も満足するものであり、優れた塗膜密着性を発揮することがわかる。尚、優れた溶接性を発揮させるには、成分組成において上記式(2)および(3)を満足させるようにするのがよい。   No. Nos. 8 and 10 satisfy the requirements specified by the steel plate 2 of the present invention, that is, the requirements specified as the steel plate 1 of the present invention, as well as the requirements related to cracks. In order to exhibit excellent weldability, it is preferable to satisfy the above formulas (2) and (3) in the component composition.

No.1〜5,7は、本発明鋼板2として規定する要件と共に、上記式(2)および(3)を満足しているため、優れた化成処理性を確保でき、かつクラックの発生が抑制されて優れた塗膜密着性を発揮でき、更には優れた溶接性も発揮し得る。   No. 1 to 5 and 7 satisfy the above formulas (2) and (3) together with the requirements defined as the steel sheet 2 of the present invention, so that excellent chemical conversion properties can be secured and the occurrence of cracks is suppressed. It can exhibit excellent coating film adhesion and can also exhibit excellent weldability.

これらに対しNo.12〜18は、本発明鋼板1として規定する要件すら満たしていないため、優れた塗膜密着性を期待できないか、または、引張強度が規定レベルに達していない。即ち、No.12,18は本発明で推奨する方法で製造していないため、またNo.13はSi量が比較的多く、Si/Mn比も規定範囲を外れており、No.15はSi量が過剰で、Si/Mn比も規定範囲を外れているため、いずれも化成処理性に劣り、かつクラックが多く発生した。   No. Since Nos. 12 to 18 do not satisfy even the requirements defined as the steel sheet 1 of the present invention, excellent coating film adhesion cannot be expected, or the tensile strength does not reach the specified level. That is, no. Nos. 12 and 18 were manufactured by the method recommended in the present invention. No. 13 has a relatively large amount of Si, and the Si / Mn ratio is also outside the specified range. No. 15 had an excessive amount of Si, and the Si / Mn ratio was also outside the specified range, so that both of them were inferior in chemical conversion treatment and many cracks were generated.

No.14はSi量が不足しており,またNo.16はMn量が不足しているため、どちらも規定の強度を満たすものが得られなかった。   No. No. 14 has an insufficient amount of Si. No 16 had a sufficient amount of Mn, so neither could satisfy the specified strength.

尚、No.17は、塗膜密着性に優れているが、Mn含有量が多すぎて鋼板として具備すべき延性に劣るため良好に成形加工できるものでない。   No. No. 17 is excellent in coating film adhesion, but cannot be formed satisfactorily because the Mn content is too high and the ductility to be provided as a steel sheet is poor.

参考までに本実施例で得られた鋼板のD−STEM観察写真とEDXによる鋼板表層領域の酸化物等の組成分析結果を示す。図4および図5(図4の領域Aを高倍率で観察した写真)は、比較例であるNo.15の鋼板断面表層部のD−STEM観察写真であるが、この図4および図5から、鋼板表層領域が層(黒色部分)で覆われていることがわかる。図6は、図5の該層(領域B)をEDXで組成分析した結果であるが、この図6から、該層がSi主体の酸化物からなることがわかる。つまりこの図4〜6から、No.15の鋼板表層領域は、Si主体の酸化物で覆われていることを確認できる。   For reference, a D-STEM observation photograph of the steel sheet obtained in this example and a composition analysis result of oxides and the like in the steel sheet surface layer region by EDX are shown. 4 and 5 (photos of observing region A in FIG. 4 at high magnification) are No. 1 as a comparative example. FIG. 4 and FIG. 5 show that the steel plate surface layer region is covered with a layer (black portion). FIG. 6 shows the result of composition analysis of the layer (region B) in FIG. 5 by EDX, and it can be seen from FIG. 6 that the layer is made of an oxide mainly composed of Si. That is, from FIGS. It can be confirmed that the steel plate surface layer region 15 is covered with an oxide mainly composed of Si.

これに対し図7および図8(図7の領域Cを高倍率で観察した写真)は、本発明例であるNo.1の鋼板断面におけるD−STEM観察写真であるが、鋼板表層領域に上記No.15の様な化成処理性を低下させるSi主体の酸化物はほとんどなく、代わりに粒状物(黒色部分)が分散している。図9および図10は、図8の分析位置1(粒状物)および分析位置2(粒状物)をそれぞれEDXで組成分析した結果であり、図11は、図8の分析位置3(粒状物の存在しない箇所)をEDXで組成分析した結果であるが、これら図9、図10と図11との比較から、図8で観察される粒状物は化成処理性の向上に有効なMn−Si複合酸化物であることがわかる。   On the other hand, FIGS. 7 and 8 (photographs of region C of FIG. 1 is a D-STEM observation photograph in a cross section of the steel plate of No. 1, in the surface layer region of the steel plate. There is almost no Si-based oxide that lowers the chemical conversion processability as in FIG. 15, and particulate matter (black part) is dispersed instead. 9 and FIG. 10 are the results of the composition analysis of the analysis position 1 (granular material) and the analysis position 2 (granular material) of FIG. 8 by EDX, respectively, and FIG. 11 is the analysis position 3 (granular material of FIG. 8). This is the result of the composition analysis of the nonexistent portion) by EDX. From the comparison of FIG. 9, FIG. 10, and FIG. 11, the granular material observed in FIG. 8 is an Mn—Si composite effective in improving the chemical conversion treatment property. It turns out that it is an oxide.

鋼板断面におけるクラックを模式的に示した図である。It is the figure which showed typically the crack in a steel plate cross section. 実施例における製造工程(一部)を示す図である。It is a figure which shows the manufacturing process (part) in an Example. 実施例における別の製造工程(一部)を示す図である。It is a figure which shows another manufacturing process (part) in an Example. 実施例におけるNo.15(比較例)の鋼板断面のD−STEM観察写真(倍率:15000倍)である。No. in the examples. It is a D-STEM observation photograph (magnification: 15000 times) of a steel plate section of No. 15 (comparative example). 前記図4の領域AのD−STEM観察写真(倍率:100000倍)である。It is a D-STEM observation photograph (magnification: 100000 times) of the area | region A of the said FIG. 前記図5の領域BのEDXによる組成分析結果を示すX線スペクトルである。6 is an X-ray spectrum showing the result of composition analysis by EDX in region B of FIG. 実施例におけるNo.1(本発明例)の鋼板断面のD−STEM観察写真(倍率:15000倍)である。No. in the examples. 1 is a D-STEM observation photograph (magnification: 15000 times) of a cross section of a steel sheet of 1 (Example of the present invention). 前記図7の領域CのD−STEM観察写真(倍率:100000倍)である。It is a D-STEM observation photograph (magnification: 100000 times) of the area | region C of the said FIG. 前記図8の分析位置1のEDXによる組成分析結果を示すX線スペクトルである。9 is an X-ray spectrum showing a composition analysis result by EDX at analysis position 1 in FIG. 8. 前記図8の分析位置2のEDXによる組成分析結果を示すX線スペクトルである。9 is an X-ray spectrum showing a composition analysis result by EDX at analysis position 2 in FIG. 前記図8の分析位置3のEDXによる組成分析結果を示すX線スペクトルである。FIG. 9 is an X-ray spectrum showing a composition analysis result by EDX at analysis position 3 in FIG. 8. FIG.

Claims (3)

質量%で(化学成分について以下同じ)、
C :1%以下(0%を含まない)、
Si:0.3〜2%、
Mn:1〜5%を含むと共に、
下記式(1)を満たし、引張強度が550MPa以上であるフェライト−マルテンサイト系のDP(Dual Phase)鋼板であって、
鋼板表面と直交する方向の断面において、鋼板表面からの深さが2μmで鋼板表面長さが10μmの領域を、電子顕微鏡を用いて倍率5000倍以上で観察したときに、
MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物が10個以上存在し、かつ、断面厚さ0.01μm以上のSi主体酸化物の鋼板表面長さ10μmに占める割合が、任意に選択される鋼板表面5箇所の平均で10%以下(0%含む)であることを特徴とする塗膜密着性に優れた高強度冷延鋼板。
[Si]/[Mn]≦ 0.4 …(1)
{式中[Si]はSi含有量(質量%)を示し、[Mn]はMn含有量(質量%)を示す}
% By mass (the same applies to chemical components)
C: 1% or less (excluding 0%),
Si: 0.3-2%,
Mn: containing 1-5%,
A ferrite-martensitic DP (Dual Phase) steel plate that satisfies the following formula (1) and has a tensile strength of 550 MPa or more,
In the cross section in the direction perpendicular to the steel plate surface, when the depth of 2 μm from the steel plate surface and the steel plate surface length of 10 μm was observed with an electron microscope at a magnification of 5000 times or more,
There are 10 or more Mn-Si complex oxides having a major axis of 0.01 μm or more and 5 μm or less with an atomic ratio of Mn to Si (Mn / Si) of 0.5 or more, and a cross-sectional thickness of 0.01 μm or more. The ratio of the main oxide to the steel sheet surface length of 10 μm is 10% or less (including 0%) on the average of five steel sheet surfaces selected arbitrarily, and high strength with excellent coating film adhesion Cold rolled steel sheet.
[Si] / [Mn] ≦ 0.4 (1)
{In the formula, [Si] indicates the Si content (% by mass) and [Mn] indicates the Mn content (% by mass)}
Si:0.3〜1.5%を満たすと共に、
SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在しない請求項1に記載の高強度冷延鋼板。
Si: satisfying 0.3 to 1.5%,
The high-strength cold-rolled steel sheet according to claim 1, wherein a crack having a width of 3 µm or less and a depth of 5 µm or more does not exist in an arbitrary 10 field of view when a cross section near the steel sheet surface is observed at 2000 times using SEM.
下記式(2)および(3)を満たす請求項1または2に記載の高強度冷延鋼板。
[P]+3[S]+1.54[C] < 0.25 …(2)
[C]+[Si]/30+[Mn]/20+2[P]+4[S] < 0.34 …(3)
{式中[C],[Si],[Mn],[P],[S]は各元素の含有量(質量%)を示す}
The high-strength cold-rolled steel sheet according to claim 1 or 2, wherein the following formulas (2) and (3) are satisfied.
[P] +3 [S] +1.54 [C] <0.25 (2)
[C] + [Si] / 30 + [Mn] / 20 + 2 [P] +4 [S] <0.34 (3)
{Wherein [C], [Si], [Mn], [P], [S] represents the content (% by mass) of each element}
JP2004062573A 2004-03-05 2004-03-05 High strength cold-rolled steel sheet with excellent coating adhesion Expired - Fee Related JP4315844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004062573A JP4315844B2 (en) 2004-03-05 2004-03-05 High strength cold-rolled steel sheet with excellent coating adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004062573A JP4315844B2 (en) 2004-03-05 2004-03-05 High strength cold-rolled steel sheet with excellent coating adhesion

Publications (2)

Publication Number Publication Date
JP2005248281A true JP2005248281A (en) 2005-09-15
JP4315844B2 JP4315844B2 (en) 2009-08-19

Family

ID=35029040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062573A Expired - Fee Related JP4315844B2 (en) 2004-03-05 2004-03-05 High strength cold-rolled steel sheet with excellent coating adhesion

Country Status (1)

Country Link
JP (1) JP4315844B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092134A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk Cold-rolled steel sheet excellent in chemical conversion treatment, and manufacturing method therefor
WO2007116913A1 (en) * 2006-04-04 2007-10-18 Nippon Steel Corporation Very thin hard steel sheet and method for producing the same
CN100357474C (en) * 2006-02-17 2007-12-26 东北大学 Tensile strength 600Mpa grade dual phase steel plate and its production method
CN100357475C (en) * 2006-02-17 2007-12-26 东北大学 Tensile strength 540Mpa grade dual phase steel plate and its production method
US8608871B2 (en) 2008-10-08 2013-12-17 Jfe Steel Corporation High-strength steel tube having excellent chemical conversion treatability and excellent formability and method for manufacturing the same
WO2014136412A1 (en) * 2013-03-04 2014-09-12 Jfeスチール株式会社 High-strength steel sheet, method for manufacturing same, high-strength molten-zinc-plated steel sheet, and method for manufacturing same
JP2014169477A (en) * 2013-03-04 2014-09-18 Jfe Steel Corp High strength steel sheet and its manufacturing method
JP2014169487A (en) * 2013-03-05 2014-09-18 Jfe Steel Corp Method of producing high strength hot-dip galvanized steel sheet and high strength hot-dip galvanized steel sheet
KR101736620B1 (en) 2015-12-15 2017-05-17 주식회사 포스코 Ultra-high strength steel sheet having excellent phosphatability and hole expansibility, and method for manufacturing the same
KR101736619B1 (en) 2015-12-15 2017-05-17 주식회사 포스코 Ultra-high strength steel sheet having excellent phosphatability and bendability, and method for manufacturing the same
US10301701B2 (en) 2014-02-18 2019-05-28 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing same
US10837074B2 (en) 2012-03-19 2020-11-17 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092134A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk Cold-rolled steel sheet excellent in chemical conversion treatment, and manufacturing method therefor
CN100357474C (en) * 2006-02-17 2007-12-26 东北大学 Tensile strength 600Mpa grade dual phase steel plate and its production method
CN100357475C (en) * 2006-02-17 2007-12-26 东北大学 Tensile strength 540Mpa grade dual phase steel plate and its production method
WO2007116913A1 (en) * 2006-04-04 2007-10-18 Nippon Steel Corporation Very thin hard steel sheet and method for producing the same
KR101065545B1 (en) 2006-04-04 2011-09-19 신닛뽄세이테쯔 카부시키카이샤 Very thin hard steel sheet and method for producing the same
JP5058978B2 (en) * 2006-04-04 2012-10-24 新日本製鐵株式会社 Hard ultra-thin steel plate and manufacturing method thereof
US8608871B2 (en) 2008-10-08 2013-12-17 Jfe Steel Corporation High-strength steel tube having excellent chemical conversion treatability and excellent formability and method for manufacturing the same
US10837074B2 (en) 2012-03-19 2020-11-17 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet
CN105026600A (en) * 2013-03-04 2015-11-04 杰富意钢铁株式会社 High-strength steel sheet, method for manufacturing same, high-strength molten-zinc-plated steel sheet, and method for manufacturing same
JP2014169477A (en) * 2013-03-04 2014-09-18 Jfe Steel Corp High strength steel sheet and its manufacturing method
EP2940176A4 (en) * 2013-03-04 2016-03-02 Jfe Steel Corp High-strength steel sheet, method for manufacturing same, high-strength molten-zinc-plated steel sheet, and method for manufacturing same
CN105026600B (en) * 2013-03-04 2018-04-06 杰富意钢铁株式会社 High-strength steel sheet and its manufacture method and high-strength hot-dip zinc-coated steel sheet and its manufacture method
US10174411B2 (en) 2013-03-04 2019-01-08 Jfe Steel Corporation High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor (as amended)
WO2014136412A1 (en) * 2013-03-04 2014-09-12 Jfeスチール株式会社 High-strength steel sheet, method for manufacturing same, high-strength molten-zinc-plated steel sheet, and method for manufacturing same
JP2014169487A (en) * 2013-03-05 2014-09-18 Jfe Steel Corp Method of producing high strength hot-dip galvanized steel sheet and high strength hot-dip galvanized steel sheet
US10301701B2 (en) 2014-02-18 2019-05-28 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing same
KR101736620B1 (en) 2015-12-15 2017-05-17 주식회사 포스코 Ultra-high strength steel sheet having excellent phosphatability and hole expansibility, and method for manufacturing the same
KR101736619B1 (en) 2015-12-15 2017-05-17 주식회사 포스코 Ultra-high strength steel sheet having excellent phosphatability and bendability, and method for manufacturing the same
WO2017105025A1 (en) * 2015-12-15 2017-06-22 주식회사 포스코 Ultra-high strength steel sheet having excellent chemical conversion treatability and bending processability and method for manufacturing same
US10975454B2 (en) 2015-12-15 2021-04-13 Posco Ultra-high strength steel sheet having excellent phosphatability and bendability

Also Published As

Publication number Publication date
JP4315844B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP3934604B2 (en) High strength cold-rolled steel sheet with excellent coating adhesion
JP3889768B2 (en) High-strength cold-rolled steel sheets and automotive steel parts with excellent coating film adhesion and ductility
JP3889769B2 (en) High-strength cold-rolled steel sheet and automotive steel parts with excellent coating film adhesion, workability, and hydrogen embrittlement resistance
JP6264507B2 (en) High strength galvanized steel sheet and manufacturing method thereof
KR100948998B1 (en) High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
US8076008B2 (en) Galvanized high strength steel sheet
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
TWI399442B (en) High strength galvanized steel sheet with excellent formability and method for manufacturing the same
TWI447262B (en) Zinc coated steel sheet and manufacturing method thereof
TWI467028B (en) High-strength hot-dip galvanized steel sheet with excellent impact resistance and its manufacturing method and high-strength alloyed hot-dip galvanized steel sheet and manufacturing method thereof
TWI418640B (en) High-strength hot-dip galvanized steel sheet and its manufacturing method
JP5298114B2 (en) High-strength cold-rolled steel sheet with excellent coating film adhesion and workability, and method for producing the same
KR20180124075A (en) High Strength Steel Sheet and Manufacturing Method Thereof
JP4317384B2 (en) High-strength galvanized steel sheet with excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its manufacturing method
WO2015092982A1 (en) High-strength steel sheet and method for producing same
TW201213561A (en) High-strength galvanized steel sheet with high yield ratio having excellent ductility and stretch flange formability and method for manufacturing the same
JP4698968B2 (en) High-strength cold-rolled steel sheet with excellent coating film adhesion and workability
JP2008056993A (en) High strength hot dip galvanized steel sheet having excellent elongation and corrosion resistance, and its production method
JP4315844B2 (en) High strength cold-rolled steel sheet with excellent coating adhesion
CN116694988A (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
JPWO2019159771A1 (en) High strength steel sheet and method for producing the same
JP3881559B2 (en) High-strength hot-rolled steel sheet, high-strength cold-rolled steel sheet, and high-strength surface-treated steel sheet that have excellent formability after welding and have a tensile strength of 780 MPa or more that is difficult to soften the heat affected zone.
JP2007262553A (en) Hot dip galvanized steel sheet and its production method
JP5020600B2 (en) High tensile steel plate with excellent chemical conversion
JP2002309358A (en) Galvannealed steel sheet with excellent workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R150 Certificate of patent or registration of utility model

Ref document number: 4315844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees