JP2005248098A - Method for manufacturing expandable styrene resin particle, expandable styrene resin particle, pre-expanded styrene resin particle and expanded styrene resin molding - Google Patents

Method for manufacturing expandable styrene resin particle, expandable styrene resin particle, pre-expanded styrene resin particle and expanded styrene resin molding Download PDF

Info

Publication number
JP2005248098A
JP2005248098A JP2004063498A JP2004063498A JP2005248098A JP 2005248098 A JP2005248098 A JP 2005248098A JP 2004063498 A JP2004063498 A JP 2004063498A JP 2004063498 A JP2004063498 A JP 2004063498A JP 2005248098 A JP2005248098 A JP 2005248098A
Authority
JP
Japan
Prior art keywords
styrene resin
particles
styrene
weight
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004063498A
Other languages
Japanese (ja)
Other versions
JP4653405B2 (en
Inventor
Yukio Aragai
幸雄 新籾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2004063498A priority Critical patent/JP4653405B2/en
Publication of JP2005248098A publication Critical patent/JP2005248098A/en
Application granted granted Critical
Publication of JP4653405B2 publication Critical patent/JP4653405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an expandable styrene resin particle, by which the expandable styrene resin particle remaining only a small amount of residual styrene monomers and having excellent mechanical strengths and heat insulating properties can be produced. <P>SOLUTION: The method for manufacturing the expandable styrene resin particle comprises supplying a styrene monomer to a dispersion liquid obtained by dispersing expandable styrene resin seed particles containing a scale-like silicate into water, impregnating and polymerizing the styrene monomer with the styrene resin seed particles, and impregnating the resultant styrene resin particles with a foaming agent after growing the styrene resin seed particles to produce the styrene resin particles, or in the middle of growth of the styrene resin seed particles. The styrene monomer is supplied in the dispersion liquid in such a way that an amount of the styrene monomer in the styrene resin grown particles in which the styrene resin seed particles are in a process of being grown as seed particles, is ≤60 wt.%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、残存スチレン系モノマー量が少ないと共に、機械的強度及び断熱性に優れたスチレン系樹脂発泡成形体を製造することができる発泡性スチレン系樹脂粒子及びその製造方法、並びに、この発泡性スチレン系樹脂粒子を用いたスチレン系樹脂予備発泡粒子及びスチレン系樹脂発泡成形体に関する。   The present invention relates to an expandable styrene resin particle capable of producing a styrene resin foam molded article having a small amount of residual styrene monomer and excellent in mechanical strength and heat insulation, a method for producing the same, and the foamability thereof. The present invention relates to styrene resin pre-expanded particles using styrene resin particles and a styrene resin foam molded article.

従来から、スチレン系樹脂発泡成形体は断熱性に優れていることから、建材用断熱材や保温容器として汎用されている。特に、建材用途では、コスト面から高発泡倍率化の他に、断熱性の向上が求められている。   Conventionally, since a styrene resin foam molded article is excellent in heat insulation, it is widely used as a heat insulating material for building materials and a heat insulation container. In particular, in building material applications, in addition to increasing the foaming ratio, improvement in heat insulation is required from the viewpoint of cost.

そこで、特許文献1には、スチレンモノマーを、必要によりこのスチレンモノマーの20重量%のコモノマーと共に、グラファイト粒子の存在下に懸濁水性液中で重合させ、そして、発泡剤を、上記重合前、重合中若しくは重合後に添加することを特徴とする発泡性スチレン重合体の製造方法が提案されている。   Therefore, in Patent Document 1, a styrene monomer is polymerized in a suspension aqueous solution in the presence of graphite particles together with a comonomer of 20% by weight of the styrene monomer if necessary, and a blowing agent is added before the polymerization. A method for producing an expandable styrene polymer, which is characterized by adding during or after polymerization, has been proposed.

しかしながら、グラファイト粒子を添加すると、発泡性スチレン重合体を発泡させて得られるスチレン樹脂発泡成形体の断熱性は向上するものの、スチレンの重合を阻害することから、発泡性スチレン重合体中における残存スチレンモノマー量が多く、その結果、スチレン樹脂発泡成形体中における揮発性有機化合物の量が多くなり、環境衛生上、好ましくないといった問題点があった。   However, the addition of graphite particles improves the heat insulation of the foamed styrene resin foam obtained by foaming the expandable styrene polymer, but inhibits the polymerization of styrene, so that residual styrene in the expandable styrene polymer. As a result, the amount of the monomer is large, and as a result, the amount of the volatile organic compound in the styrene resin foamed molded article is increased, which is not preferable for environmental hygiene.

特表2001−522383号公報JP-T-2001-522383

本発明は、残存スチレン系モノマー量が少ないと共に、機械的強度及び断熱性に優れたスチレン系樹脂発泡体を製造することができる発泡性スチレン系樹脂粒子及びその製造方法、並びに、この発泡性スチレン系樹脂粒子を用いたスチレン系樹脂予備発泡粒子及びスチレン系樹脂発泡成形体を提供する。   The present invention relates to an expandable styrene resin particle capable of producing a styrene resin foam having a small amount of residual styrene monomer and excellent mechanical strength and heat insulation, a method for producing the same, and the expandable styrene. A styrene resin pre-expanded particle and a styrene resin foam molded article using the resin resin particle are provided.

本発明の発泡性スチレン系樹脂粒子の製造方法は、鱗片状珪酸塩を含有するスチレン系樹脂種粒子を水中に分散させてなる分散液中にスチレン系モノマーを供給し、このスチレン系モノマーをスチレン系樹脂種粒子に含浸させて重合させ、スチレン系樹脂種粒子を成長させてスチレン系樹脂粒子を製造した後或いはスチレン系樹脂種粒子の成長途上にて発泡剤を含浸させる発泡性スチレン系樹脂粒子の製造方法であって、上記スチレン系樹脂種粒子を種粒子として成長途上にあるスチレン系樹脂成長粒子中における上記スチレン系モノマー量が60重量%以下となるように上記分散液中に上記スチレン系モノマーを供給することを特徴とする。   The method for producing expandable styrene resin particles of the present invention comprises supplying a styrene monomer into a dispersion obtained by dispersing styrene resin seed particles containing scaly silicate in water, and converting the styrene monomer to styrene. Expandable styrenic resin particles impregnated with a foaming agent after the styrene resin seed particles are produced by impregnating the polymer resin seed particles and polymerized to grow the styrene resin seed particles or during the growth of the styrene resin seed particles The styrenic resin in the dispersion is such that the amount of the styrenic monomer in the growing styrenic resin growing particles is 60% by weight or less. A monomer is supplied.

本発明の発泡性スチレン系樹脂粒子の製造方法では、先ず、鱗片状珪酸塩を含有するスチレン系樹脂種粒子を水中に分散させてなる分散液を作製する。このように、スチレン系樹脂種粒子中に鱗片状珪酸塩を予め含有させておき、このスチレン系樹脂種粒子を核としてシード重合を行なうことによって、生成されるスチレン系樹脂粒子は、その中心部に鱗片状珪酸塩を多く含有する一方、表面近傍部には鱗片状珪酸塩が少量しか含有されていないか或いは含有されていないものとなる。   In the method for producing expandable styrene resin particles of the present invention, first, a dispersion is prepared by dispersing styrene resin seed particles containing scaly silicate in water. In this way, the styrene resin particles produced are obtained by preliminarily containing the scaly silicate in the styrene resin seed particles and performing seed polymerization using the styrene resin seed particles as a core. On the other hand, a large amount of scaly silicate is contained in the surface, whereas only a small amount of scaly silicate is contained or not contained in the vicinity of the surface.

このスチレン系樹脂種粒子を構成するスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50重量%以上含有するスチレン系樹脂が好ましく、ポリスチレンがより好ましい。   The styrene resin constituting the styrene resin seed particles is not particularly limited, and examples thereof include styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, and bromostyrene. Examples include homopolymers of styrene monomers or copolymers thereof, and styrene resins containing 50% by weight or more of styrene are preferable, and polystyrene is more preferable.

又、上記スチレン系樹脂としては、上記スチレン系モノマーを主成分とする、上記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。   The styrenic resin may be a copolymer of the styrenic monomer and a vinyl monomer copolymerizable with the styrenic monomer, the main component of which is the styrenic monomer. Examples of the monomer include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, In addition to diethyl fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.

そして、上記スチレン系樹脂種粒子に含有させている鱗片状珪酸塩としては、例えば、カオリン、タルク、天然雲母、合成雲母、セリサイトなどが挙げられる。なお、合成雲母は、天然の雲母とは異なり、天然の雲母の結晶構造中の全ての−OH基が−F基で置換された組成を有する人工的に作られた雲母であり、KMg3 AlSi3 102 を理想組成とするものである。 Examples of the scaly silicate contained in the styrene resin seed particles include kaolin, talc, natural mica, synthetic mica, and sericite. Unlike natural mica, synthetic mica is an artificially produced mica having a composition in which all —OH groups in the crystal structure of natural mica are substituted with —F groups, and KMg 3 AlSi. 3 O 10 F 2 is the ideal composition.

又、上記鱗片状珪酸塩は、その表面を金属酸化物によって被覆しておいてもよく、このような金属酸化物としては、酸化チタンや酸化鉄が挙げられ、具体的には、酸化チタンで表面が被覆された天然雲母或いは合成雲母、酸化鉄で表面が被覆された天然雲母或いは合成雲母などが挙げられる。   The scale-like silicate may have its surface coated with a metal oxide, and examples of such a metal oxide include titanium oxide and iron oxide. Examples thereof include natural mica or synthetic mica whose surface is coated, and natural mica or synthetic mica whose surface is coated with iron oxide.

更に、鱗片状珪酸塩の表面を金属酸化物によって被覆する場合、金属酸化物によって表面が被覆された鱗片状珪酸塩中における金属酸化物の含有量は、10〜70重量%が好ましく、20〜60重量%がより好ましく、30〜60重量%が特に好ましい。   Further, when the surface of the scaly silicate is coated with a metal oxide, the content of the metal oxide in the scaly silicate whose surface is coated with the metal oxide is preferably 10 to 70% by weight. 60 weight% is more preferable and 30 to 60 weight% is especially preferable.

そして、上記鱗片状珪酸塩の大きさとしては、目開きが3μmの篩を通過することができず且つ目開きが200μm以下の篩を通過することができる大きさが好ましく、目開きが5μmの篩を通過することができず且つ目開きが150μm以下の篩を通過することができる大きさがより好ましく、5μmの篩を通過することができず且つ目開きが100μm以下の篩を通過することができる大きさが特に好ましい。   And as a magnitude | size of the said scale-like silicate, the magnitude | size which can not pass a sieve with an opening of 3 micrometers, and the opening of an opening is 200 micrometers or less is preferable, and an opening is 5 micrometers. More preferably, the size cannot pass through the sieve and the sieve can pass through a sieve having a mesh size of 150 μm or less, and the sieve cannot pass through a sieve having a mesh size of 100 μm or less. A size capable of forming is particularly preferred.

これは、鱗片状珪酸塩が小さいと、発泡性スチレン系樹脂粒子を発泡させて得られるスチレン系樹脂発泡成形体の断熱性が低下することがある一方、大きいと、発泡性スチレン系樹脂粒子を発泡させた際に気泡膜が破れ易くなってスチレン系樹脂発泡成形体の高発泡倍率化を図ることができないことがあるからである。   This is because if the scaly silicate is small, the heat insulation property of the styrene resin foam molded article obtained by foaming the expandable styrene resin particles may decrease, whereas if the scale silicate is large, the expandable styrene resin particles may be reduced. This is because, when foamed, the bubble film is easily broken, and the styrene-based resin foam molded article may not be able to achieve a high expansion ratio.

更に、鱗片状珪酸塩の厚みは、薄いと、スチレン系樹脂種粒子の製造時や発泡性スチレン系樹脂粒子の発泡時に破砕され易い一方、厚いと、発泡性スチレン系樹脂粒子を発泡させた際に気泡膜が破れ易くなってスチレン系樹脂発泡成形体の高発泡倍率化を図ることができないことがあるので、0.01〜5μmが好ましく、0.01〜3μmがより好ましく、0.01〜1μmが特に好ましい。   Furthermore, when the thickness of the scaly silicate is thin, it is easily crushed during the production of the styrene resin seed particles or when the expandable styrene resin particles are foamed, whereas when the thickness is large, the expandable styrene resin particles are foamed. In some cases, the bubble film is easily broken, and it may not be possible to achieve a high expansion ratio of the styrene resin foam molded article. Therefore, 0.01 to 5 μm is preferable, 0.01 to 3 μm is more preferable, and 0.01 to 1 μm is particularly preferable.

そして、スチレン系樹脂種粒子中における鱗片状珪酸塩の含有量としては、少ないと、発泡性スチレン系樹脂粒子を発泡させて得られるスチレン系樹脂発泡成形体の断熱性が低下する一方、多いと、発泡性スチレン系樹脂粒子を発泡させた際に気泡膜が破れ易くなってスチレン系樹脂発泡成形体の高発泡倍率化を図ることができないことがあるので、1.2〜40重量%が好ましく、3〜30重量%がより好ましい。   And as content of the scale-like silicate in a styrene-type resin seed particle, when it is small, while heat insulation of the styrene-type resin foam molding obtained by foaming an expandable styrene-type resin particle falls, when it is many When foaming styrenic resin particles are foamed, the cell membrane may be easily broken, and it may not be possible to increase the expansion ratio of the styrene resin foam molded article. 3 to 30% by weight is more preferable.

なお、スチレン系樹脂種粒子中における鱗片状珪酸塩の含有量は下記要領で測定されたものをいう。即ち、スチレン系樹脂種粒子を測定試料として採取し、この測定試料の重量(灰化前測定試料の重量)を測定する。そして、測定試料を30ミリリットルの磁性ルツボ上に載置して550℃に5時間に亘って加熱し、測定試料を灰化させた上でデシケーター内に放置して冷却する。しかる後、磁性ルツボ上の灰化後の測定試料(灰化後測定試料)の重量を測定して下記式に基づいて、スチレン系樹脂種粒子中における鱗片状珪酸塩の含有量を算出する。   In addition, content of the scale-like silicate in a styrene resin seed particle means what was measured in the following way. That is, styrene resin seed particles are collected as a measurement sample, and the weight of the measurement sample (the weight of the measurement sample before ashing) is measured. Then, the measurement sample is placed on a 30 milliliter magnetic crucible and heated to 550 ° C. for 5 hours to incinerate the measurement sample, and then left in a desiccator to cool. Thereafter, the weight of the measurement sample after ashing on the magnetic crucible (measurement sample after ashing) is measured, and the content of scaly silicate in the styrene resin seed particles is calculated based on the following formula.

スチレン系樹脂種粒子中における鱗片状珪酸塩(重量%)
=100×灰化後測定試料の重量/灰化前測定試料の重量
Scale-like silicate in styrene resin seed particles (wt%)
= 100 × weight of measurement sample after ashing / weight of measurement sample before ashing

上記鱗片状珪酸塩を含有するスチレン系樹脂種粒子の製造方法としては、汎用の方法が用いられ、例えば、スチレン系モノマー中に鱗片状珪酸塩を分散させた後、水中にてスチレン系モノマーを懸濁重合させてスチレン系樹脂種粒子を製造する方法、スチレン系樹脂及び鱗片状珪酸塩を押出機に供給して溶融混練し、押出機からストランド状に押出して所定長さ毎に切断してスチレン系樹脂種粒子を製造する方法などが挙げられる。   As a method for producing the styrenic resin seed particles containing the flaky silicate, a general-purpose method is used. For example, after dispersing the flaky silicate in the styrenic monomer, the styrenic monomer is added in water. A method of producing styrene resin seed particles by suspension polymerization, supplying a styrene resin and scaly silicate to an extruder, melt-kneading, extruding into a strand from the extruder, and cutting at predetermined lengths Examples thereof include a method for producing styrene resin seed particles.

そして、上記スチレン系樹脂種粒子を構成しているスチレン系樹脂のスチレン換算重量平均分子量は、小さいと、発泡性スチレン系樹脂粒子を発泡させて得られるスチレン系樹脂発泡成形体の機械的強度が低下することがある一方、大きいと、発泡性スチレン系樹脂粒子の発泡性が低下することがあるので、12万〜60万が好ましい。   And when the styrene conversion weight average molecular weight of the styrene resin constituting the styrene resin seed particles is small, the mechanical strength of the styrene resin foam molded article obtained by foaming the expandable styrene resin particles is low. On the other hand, if it is large, the foamability of the expandable styrene-based resin particles may be lowered, so 120,000 to 600,000 is preferable.

なお、本発明において、スチレン系樹脂のスチレン換算重量平均分子量は下記の要領で測定されたものをいう。即ち、スチレン系樹脂30mgをクロロホルム10ミリリットルに溶解させ、非水系0.45μmのクロマトディスクで濾過した上でクロマトグラフを用いて測定した。   In addition, in this invention, the styrene conversion weight average molecular weight of styrene resin means what was measured in the following way. That is, 30 mg of a styrene resin was dissolved in 10 ml of chloroform, filtered through a non-aqueous 0.45 μm chromatographic disk, and then measured using a chromatograph.

なお、具体的には下記クロマトグラフを用いて下記条件下にて測定することができる。 ガスクロマトグラフ:Water社製 商品名「Detector 484,Pump 510 」
カラム:昭和電工社製
商品名「Shodex GPC K-806L(φ8.0 ×300mm)」2本
カラム温度: 40℃
キャリアーガス:クロロホルム
キャリアーガス流量:1.2ミリリットル/分
注入・ポンプ温度:室温
検出:UV254nm
注入量:50マイクロリットル
検量線用標準ポリスチレン:昭和電工社製 商品名「shodex」
重量平均分子量:1030000
東ソー社製
重量平均分子量:5480000,3840000,355000
102000,37900,9100,2630,495
Specifically, it can be measured under the following conditions using the following chromatograph. Gas chromatograph: Product name “Detector 484, Pump 510” manufactured by Water
Column: Showa Denko
Product name "Shodex GPC K-806L (φ8.0 x 300mm)" 2 Column temperature: 40 ℃
Carrier gas: Chloroform Carrier gas flow rate: 1.2 ml / min Injection / pump temperature: Room temperature Detection: UV254 nm
Injection volume: 50 microliters Standard polystyrene for calibration curve: Product name “shodex” manufactured by Showa Denko KK
Weight average molecular weight: 1030000
Made by Tosoh Corporation
Weight average molecular weight: 540000,3840000,355000
102000,37900,9100,2630,495

次に、上記鱗片状珪酸塩を含有するスチレン系樹脂種粒子を水中に分散させてなる分散液中にスチレン系モノマーを供給し、このスチレン系モノマーをスチレン系樹脂種粒子中に含浸させて重合開始剤の存在下にてシード重合させ、スチレン系樹脂種粒子を種粒子として成長させてスチレン系樹脂粒子を製造する。   Next, a styrene monomer is supplied into a dispersion obtained by dispersing the styrenic resin seed particles containing the flaky silicate in water, and the styrene resin seed particles are impregnated into the styrene resin seed particles for polymerization. Seed polymerization is carried out in the presence of an initiator, and styrene resin seed particles are grown as seed particles to produce styrene resin particles.

上記分散液中に供給するスチレン系モノマーとしては、上述したスチレン系樹脂種粒子で用いられるスチレン系モノマーを用いることができ、このスチレン系モノマーと共重合可能な上述したビニルモノマーを併用してもよい。このビニルモノマーとしては、ジビニルベンゼン、アルキレングリコールジメタクリレートが好ましい。なお、ビニルモノマーの使用量としては、スチレン系モノマーとビニルモノマーの総量に対して0.01〜0.02モル%が好ましい。   As the styrenic monomer to be supplied to the dispersion, the styrenic monomer used in the above-mentioned styrenic resin seed particles can be used, and the above-mentioned vinyl monomer copolymerizable with this styrenic monomer can be used in combination. Good. As this vinyl monomer, divinylbenzene and alkylene glycol dimethacrylate are preferred. In addition, as the usage-amount of a vinyl monomer, 0.01-0.02 mol% is preferable with respect to the total amount of a styrene-type monomer and a vinyl monomer.

そして、本発明の発泡性スチレン系樹脂粒子の製造方法では、スチレン系樹脂種粒子を種粒子として成長途上にある、スチレン系樹脂成長粒子中におけるスチレン系モノマー量が60重量%以下となるように、好ましくは、40重量%以下となるように、より好ましくは30重量%以下となるように、スチレン系モノマーを分散液中に供給する必要がある。   In the method for producing expandable styrene resin particles of the present invention, the amount of styrene monomer in the styrene resin growing particles, which are in the process of growth using styrene resin seed particles as seed particles, is 60% by weight or less. Preferably, the styrenic monomer needs to be supplied into the dispersion so as to be 40% by weight or less, more preferably 30% by weight or less.

これは、スチレン系樹脂成長粒子中におけるスチレン系モノマー量が多いと、スチレン系モノマーがスチレン系樹脂成長粒子の中心部付近で重合してしまい、その結果、得られる発泡性スチレン系樹脂粒子の表面に鱗片状珪酸塩が多く含有されてしまう。   This is because when the amount of styrene monomer in the styrene resin growing particles is large, the styrene monomer is polymerized near the center of the styrene resin growing particles, and as a result, the surface of the resulting expandable styrene resin particles Contains a large amount of scaly silicate.

このように、発泡性スチレン系樹脂粒子の表面に鱗片状珪酸塩が多量に含有されていると、発泡性スチレン系樹脂粒子を予備発泡させて得られるスチレン系樹脂予備発泡粒子を二次発泡させた際に、スチレン系樹脂予備発泡粒子の表面部が鱗片状珪酸塩が原因となって破泡し、スチレン系樹脂発泡成形体の高発泡倍率化を図ることができないと共に、上述のように破泡することによってスチレン系樹脂予備発泡粒子同士が充分に熱融着一体化するための発泡圧を得ることができず、その結果、発泡粒子同士の熱融着一体化が不充分となり、得られるスチレン系樹脂発泡成形体の機械的強度が低下するからである。   Thus, if the surface of the expandable styrene resin particles contains a large amount of scaly silicate, the styrene resin pre-expanded particles obtained by pre-expanding the expandable styrene-based resin particles are secondarily expanded. In this case, the surface portion of the styrene resin pre-expanded particles breaks down due to the scaly silicate, and the high expansion ratio of the styrene resin foam molded article cannot be achieved. By foaming, it is not possible to obtain a foaming pressure for sufficiently heat-sealing and integrating the styrene resin pre-foamed particles, and as a result, the heat-sealing integration between the foamed particles becomes insufficient and obtained. This is because the mechanical strength of the styrenic resin foam molded article is lowered.

なお、スチレン系樹脂成長粒子中におけるスチレン系モノマー量の測定方法は、下記要領で測定されたものをいう。即ち、スチレン系樹脂成長粒子を分散液中から取り出し、スチレン系樹脂成長粒子の表面に付着した水分をガーゼを用いて拭き取り除去する。   In addition, the measuring method of the amount of styrene-type monomers in a styrene-type resin growth particle says what was measured in the following way. That is, the styrene-based resin growth particles are taken out from the dispersion, and the moisture adhering to the surface of the styrene-based resin growth particles is wiped off with gauze.

そして、スチレン系樹脂成長粒子を0.08g採取し、この採取したスチレン系樹脂成長粒子をトルエン24ミリリットル中に溶解させてトルエン溶液を作製する。次に、このトルエン溶液中に、ウイス試薬10ミリリットル、5重量%のヨウ化カリウム水溶液30ミリリットル及び1重量%のでんぷん水溶液30ミリリットルを供給し、N/40チオ硫酸ナトリウム溶液で滴定して試料の滴定数(ミリリットル)とする。なお、ウイス試薬は、氷酢酸2リットルにヨウ素8.7g及び三塩化ヨウ素7.9gを溶解してなるものである。   Then, 0.08 g of styrene resin growth particles are collected, and the collected styrene resin growth particles are dissolved in 24 ml of toluene to prepare a toluene solution. Next, 10 ml of Wis reagent, 30 ml of 5% by weight potassium iodide aqueous solution and 30 ml of 1% by weight starch aqueous solution are supplied into this toluene solution, and titrated with an N / 40 sodium thiosulfate solution. Set the drop constant (milliliter). The Wis reagent is obtained by dissolving 8.7 g of iodine and 7.9 g of iodine trichloride in 2 liters of glacial acetic acid.

一方、スチレン系樹脂成長粒子を溶解させることなく、トルエン24ミリリットル中に、ウイス試薬10ミリリットル、5重量%のヨウ化カリウム水溶液30ミリリットル及び1重量%のでんぷん水溶液30ミリリットルを供給し、N/40チオ硫酸ナトリウム溶液で滴定してブランクの滴定数(ミリリットル)とする。   On the other hand, without dissolving the styrene-based resin growth particles, 10 ml of Wis reagent, 30 ml of 5 wt% potassium iodide aqueous solution and 30 ml of 1 wt% starch aqueous solution were supplied in 24 ml of toluene, and N / 40 Titrate with sodium thiosulfate solution to blank titration (in milliliters).

そして、スチレン系樹脂成長粒子中におけるスチレン系モノマー量を下記式に基づいて算出することができる。
スチレン系樹脂成長粒子中におけるスチレン系モノマー量(重量%)
=0.1322×(ブランクの滴定数−試料の滴定数)/試料の滴定数
And the amount of styrene-type monomers in a styrene-type resin growth particle is computable based on a following formula.
Amount of styrene monomer in styrene resin growth particles (wt%)
= 0.1322 × (blank drop constant−sample drop constant) / sample drop constant

又、上記分散液中に最終的に供給されるスチレン系モノマーの総量は、得られるスチレン系樹脂粒子中におけるスチレン系樹脂種粒子の含有割合が好ましくは10〜90重量%、より好ましくは15〜80重量%、特に好ましくは15〜70重量%となるように調整される。   The total amount of the styrene monomer finally supplied to the dispersion is preferably 10 to 90% by weight, more preferably 15 to 15% by weight, of the styrene resin seed particles in the styrene resin particles obtained. It is adjusted to 80% by weight, particularly preferably 15 to 70% by weight.

これは、得られるスチレン系樹脂粒子中におけるスチレン系樹脂種粒子の含有割合が小さいと、スチレン系樹脂成長粒子中のスチレン系モノマー量を所定範囲内に制御することが困難となったり又はスチレン系樹脂粒子を構成するスチレン系樹脂が高分子量化したり若しくは微粉末状粒子が多量に発生して製造効率が低下することがある一方、大きいと、スチレン系樹脂種粒子中に含有させた鱗片状珪酸塩が発泡性スチレン系樹脂粒子中に均一に含有された状態となって成形性が低下することがあるからである。   This is because when the content ratio of the styrene resin seed particles in the obtained styrene resin particles is small, it becomes difficult to control the amount of the styrene monomer in the styrene resin growth particles within a predetermined range, or While the styrene resin constituting the resin particles may have a high molecular weight or a large amount of fine powder particles may be generated, the production efficiency may be reduced. On the other hand, if large, the flaky silicic acid contained in the styrene resin seed particles This is because the salt may be uniformly contained in the expandable styrenic resin particles and the moldability may deteriorate.

そして、鱗片状珪酸塩の含有量が発泡性スチレン系樹脂粒子中に、好ましくは1〜20重量%、より好ましくは2〜20重量%、特に好ましくは3〜20重量%となるように、スチレン系樹脂種粒子の使用量及び分散液中へのスチレン系モノマーの供給総量を調整することが好ましい。なお、発泡性スチレン系樹脂粒子中における鱗片状珪酸塩の含有量の測定方法は、スチレン系樹脂種粒子中における鱗片状珪酸塩の含有量の測定方法において、スチレン系樹脂種粒子の代わりに発泡性スチレン系樹脂粒子を用いること以外は同様であるのでその説明を省略する。   And styrene is used so that the content of scaly silicate is preferably 1 to 20% by weight, more preferably 2 to 20% by weight, and particularly preferably 3 to 20% by weight in the expandable styrene resin particles. It is preferable to adjust the usage amount of the resin-based resin seed particles and the total supply amount of the styrene-based monomer into the dispersion. The method for measuring the content of flaky silicate in expandable styrene resin particles is the same as the method for measuring the content of flaky silicate in styrene resin seed particles. Since it is the same except that the conductive styrene resin particles are used, the description thereof is omitted.

これは、発泡性スチレン系樹脂粒子中における鱗片状珪酸塩の含有量が少ないと、発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡成形体の断熱性が低下することがある一方、多いと、発泡性スチレン系樹脂粒子を発泡させる際、鱗片状珪酸塩が原因となって気泡膜に破れが発生し、高発泡倍率のスチレン系樹脂発泡成形体を得るのが困難となることがあるからである。   This is because when the content of the scaly silicate in the expandable styrene resin particles is small, the heat insulation property of the styrene resin foam molded article obtained using the expandable styrene resin particles may decrease, When the foamed styrene resin particles are foamed, the foam film may be broken due to the flaky silicate, making it difficult to obtain a styrene resin foam molded article having a high expansion ratio. Because there is.

又、上記スチレン系モノマーをスチレン系樹脂種粒子中に含浸させてシード重合させる際に用いられる重合開始剤としては、特に限定されず、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3、3、5トリメチルヘキサノエート、ジーt−ブチルパーオキシヘキサハイドロテレフタレートなどの有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物などが挙げられ、単独で用いられても併用されてもよいが、10時間の半減期を得るための分解温度が80〜120℃にある複数種類の重合開始剤を併用することが好ましい。   Further, the polymerization initiator used when the styrene monomer is impregnated in the styrene resin seed particles and seed polymerization is not particularly limited, and examples thereof include benzoyl peroxide, lauryl peroxide, t-butyl peroxide. Benzoate, t-butyl peroxide, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t-butyl peroxybutane, t-butyl peroxy-3, Examples include organic peroxides such as 3,5 trimethylhexanoate and di-t-butylperoxyhexahydroterephthalate, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. Can also be used together, but a half-life of 10 hours It is preferable that the decomposition temperature for obtaining the combination of a plurality of types of the polymerization initiator in the 80 to 120 ° C..

そして、上記シード重合を行う際に、スチレン系モノマーの液滴及びスチレン系樹脂種粒子の分散性を安定させるために懸濁安定剤を用いてもよく、このような懸濁安定剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウムなどの難溶性無機化合物などが挙げられ、難溶性無機化合物を用いる場合には、アニオン界面活性剤が通常、併用される。   And when performing the seed polymerization, a suspension stabilizer may be used to stabilize the dispersibility of the styrene monomer droplets and the styrene resin seed particles, and as such a suspension stabilizer, Examples include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly soluble inorganic compounds such as tricalcium phosphate and magnesium pyrophosphate. An active agent is usually used in combination.

このようなアニオン界面活性剤としては、例えば、脂肪酸石鹸、N−アシルアミノ酸又はその塩、アルキルエーテルカルボン酸塩などのカルボン酸塩,アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルホン酸塩などのスルホン酸塩、高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩などの硫酸エステル塩、アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩などのリン酸エステル塩などが挙げられる。   Examples of such anionic surfactants include fatty acid soaps, N-acyl amino acids or salts thereof, carboxylates such as alkyl ether carboxylates, alkylbenzene sulfonates, alkyl naphthalene sulfonates, and dialkyl sulfosuccinates. Sulfonates such as alkyl sulfoacetates, α-olefin sulfonates, higher alcohol sulfates, secondary higher alcohol sulfates, alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, etc. Examples thereof include phosphoric acid ester salts such as salts, alkyl ether phosphoric acid ester salts and alkyl phosphoric acid ester salts.

更に、発泡性スチレン系樹脂粒子を発泡させて得られるスチレン系樹脂発泡成形体の平均気泡径を調整するために、上記シード重合の終了の5〜10分前、シード重合終了直後、又は、スチレン系樹脂粒子に発泡剤を含浸させた後に、気泡調整剤をスチレン系樹脂粒子中に0.01〜0.8重量%となるように添加してもよい。このような気泡調整剤としては、エチレンビスステアリン酸アマイドなどのステアリン酸塩、トリグリセリン脂肪酸エステルなどが挙げられる。   Furthermore, in order to adjust the average cell diameter of the styrene resin foam molded article obtained by foaming the expandable styrene resin particles, 5 to 10 minutes before the end of the seed polymerization, immediately after the end of the seed polymerization, or styrene After impregnating the resin-based resin particles with a foaming agent, a cell regulator may be added to the styrene-based resin particles so as to be 0.01 to 0.8% by weight. Examples of such air conditioners include stearates such as ethylene bis stearic acid amide and triglycerin fatty acid esters.

又、スチレン系樹脂粒子の粒子径は、後述するスチレン系樹脂予備発泡粒子の金型内への充填性の点から、0.3〜2.0mm、好ましくは0.3〜1.4mmが好ましい。更に、スチレン系樹脂粒子を構成するスチレン系樹脂のスチレン換算重量平均分子量(Mw)は、小さいと、発泡性スチレン系樹脂粒子を発泡させて得られるスチレン系樹脂発泡成形体の機械的強度が低下することがある一方、大きいと、発泡性スチレン系樹脂粒子の発泡性が低下し、高発泡倍率のスチレン系樹脂発泡成形体を得ることができない虞れがあるので、12万〜60万が好ましい。   Further, the particle diameter of the styrene resin particles is preferably 0.3 to 2.0 mm, and more preferably 0.3 to 1.4 mm, from the viewpoint of filling the styrene resin pre-expanded particles described later into the mold. . Furthermore, when the styrene-based weight average molecular weight (Mw) of the styrene resin constituting the styrene resin particles is small, the mechanical strength of the styrene resin foam molded article obtained by foaming the expandable styrene resin particles decreases. On the other hand, if it is large, the foamability of the expandable styrene resin particles is lowered, and there is a possibility that a styrene resin foam molded article having a high expansion ratio cannot be obtained, so 120,000 to 600,000 is preferable. .

次に、上記シード重合によって得られたスチレン系樹脂粒子に発泡剤を含浸させ、或いは、上記シード重合の途中にスチレン系樹脂成長粒子に発泡剤を含浸させて、発泡性スチレン系樹脂粒子を製造する。   Next, the styrene resin particles obtained by the seed polymerization are impregnated with a foaming agent, or the styrene resin growth particles are impregnated with the foaming agent during the seed polymerization to produce expandable styrene resin particles. To do.

上記発泡剤としては、汎用のものが用いられ、例えば、プロパン、ブタン、ペンタンなどの脂肪族炭化水素;1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、1−クロロ−1,1−ジフルオロエタン(HCFC−142b)、2−クロロ−1,1,1,2−テトラフルオロエタン(HCFC−124)、1,1,1,2−テトラフルオロエタン(HFC−134a)、1,1−ジフルオロエタン(HFC−152a)などのフロン系発泡剤が挙げられ、脂肪族炭化水素が好ましい。なお、発泡剤は単独で使用されても併用されてもよい。   As the blowing agent, general-purpose ones are used. For example, aliphatic hydrocarbons such as propane, butane, pentane; 1,1-dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,1 -Difluoroethane (HCFC-142b), 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1- Examples thereof include CFC-based blowing agents such as difluoroethane (HFC-152a), and aliphatic hydrocarbons are preferable. In addition, a foaming agent may be used independently or may be used together.

そして、発泡性スチレン系樹脂粒子中における発泡剤の含有量は、少ないと、発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡成形体の高発泡倍率化が困難となることがあると共に、発泡性スチレン系樹脂粒子を発泡させて得られる発泡粒子同士の熱融着が不充分となってスチレン系樹脂発泡成形体の外観性が低下することがある一方、多いと、発泡性スチレン系樹脂粒子を用いて発泡成形した際、得られるスチレン系樹脂発泡成形体に収縮が生じたり或いは発泡性スチレン系樹脂粒子を予備発泡させて得られるスチレン系樹脂予備発泡粒子中の発泡ガスの調整や発泡成形に時間を要して製造効率が低下することがあるので、2.0〜9.0重量%が好ましく、3.0〜7.0重量%がより好ましい。なお、発泡性スチレン系樹脂粒子中における発泡剤の含有量は、製造直後に13℃の恒温室内に5日間放置した上で測定されたものである。   If the content of the foaming agent in the expandable styrene resin particles is small, it may be difficult to increase the expansion ratio of the styrene resin foam molded article obtained using the expandable styrene resin particles. The foamed styrenic resin particles obtained by foaming may be insufficiently heat-sealed between the foamed particles, and the appearance of the styrenic resin foamed molded product may be deteriorated. When foam molding is performed using resin particles, shrinkage occurs in the resulting styrene resin foam molded article, or adjustment of foam gas in styrene resin pre-foamed particles obtained by pre-foaming foamable styrene resin particles, Since time is required for foam molding and the production efficiency may be lowered, 2.0 to 9.0% by weight is preferable, and 3.0 to 7.0% by weight is more preferable. The content of the foaming agent in the expandable styrene resin particles was measured after being left in a thermostatic chamber at 13 ° C. for 5 days immediately after production.

更に、上記発泡性スチレン系樹脂粒子中に含有される残存スチレン系モノマー量は、発泡性スチレン系樹脂粒子の全量に対して500ppm以下が好ましく、300ppm以下がより好ましく、200ppm以下が特に好ましい。これは、発泡性スチレン系樹脂粒子中に含有される残存スチレン系モノマーは、この発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡成形体中にも残存し、その使用中に空気中に放散されるので、この対策のためにスチレン系樹脂発泡成形体の乾燥時間に長時間を要するなど発泡成形体の製造効率を低下させることがあるからである。   Furthermore, the amount of residual styrene monomer contained in the expandable styrene resin particles is preferably 500 ppm or less, more preferably 300 ppm or less, and particularly preferably 200 ppm or less with respect to the total amount of the expandable styrene resin particles. This is because the residual styrene monomer contained in the expandable styrene resin particles also remains in the styrene resin foam molded product obtained by using the expandable styrene resin particles, and is in the air during use. This is because the manufacturing efficiency of the foamed molded product may be reduced, for example, because it takes a long time to dry the styrene resin foamed molded product.

ここで、発泡性スチレン系樹脂粒子中に含有される残存スチレン系モノマー量は、下記要領で測定されたものをいう。即ち、発泡性スチレン系樹脂粒子1gを測定試料として採取し、この測定試料に、シクロペンタノール0.1体積%のジメチルホルムアミド溶液を加え、更に、ジメチルホルムアミドを加えて20ミリリットルとして測定溶液を作製する。そして、上記測定溶液中の残存スチレン系モノマー量をガスクロマトグラフを用いて内部標準法にて測定し、発泡性スチレン系樹脂粒子中に含有される残存スチレン系モノマー量を算出することができる。なお、例えば、下記ガスクロマトグラフを用いて下記条件にて測定することができる。   Here, the amount of residual styrene monomer contained in the expandable styrene resin particles refers to that measured in the following manner. That is, 1 g of expandable styrene resin particles was collected as a measurement sample, and a dimethylformamide solution of 0.1% by volume of cyclopentanol was added to the measurement sample, and further dimethylformamide was added to prepare 20 mL of the measurement solution. To do. Then, the amount of residual styrene monomer in the measurement solution can be measured by an internal standard method using a gas chromatograph, and the amount of residual styrene monomer contained in the expandable styrene resin particles can be calculated. In addition, it can measure on the following conditions using the following gas chromatograph, for example.

ガスクロマトグラフ:島津製作所社製 商品名「GC−14A」
検出器:FID
カラム:ジーエルサイエンス社製
商品名「PEG-20MPT(25%)Uniport B(60/80) 2m 」
カラム温度:105℃
検出器温度:220℃
注入口温度:220℃
キャリアーガス:窒素
キャリアーガス流量:50ミリリットル/分
測定溶液注入量:3ミリリットル
Gas chromatograph: Shimadzu Corporation product name "GC-14A"
Detector: FID
Column: GL Sciences
Product name "PEG-20MPT (25%) Uniport B (60/80) 2m"
Column temperature: 105 ° C
Detector temperature: 220 ° C
Inlet temperature: 220 ° C
Carrier gas: Nitrogen Carrier gas flow rate: 50 ml / min Measurement solution injection volume: 3 ml

更に、発泡性スチレン系樹脂粒子に溶剤や可塑剤を添加してもよい。このような溶剤としては、スチレン、トルエン、エチルベンゼン、キシレンなどの芳香族有機化合物、シクロヘキサン、メチルシクロヘキサンなどの環式脂肪族炭化水素、酢酸エチル、酢酸ブチルなどが挙げられる。   Further, a solvent or a plasticizer may be added to the expandable styrene resin particles. Examples of such a solvent include aromatic organic compounds such as styrene, toluene, ethylbenzene, and xylene, cyclic aliphatic hydrocarbons such as cyclohexane and methylcyclohexane, ethyl acetate, and butyl acetate.

又、上記可塑剤としては、例えば、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、ジアセチル化グリセリンモノステアレートなどのグリセリン脂肪酸エステル、、ジイソブチルアジペートなどのアジピン酸エステルなどがある。   Examples of the plasticizer include phthalic acid esters, glycerin diacetomonolaurate, glycerin tristearate, glycerin fatty acid esters such as diacetylated glycerin monostearate, and adipic acid esters such as diisobutyl adipate.

そして、発泡性スチレン系樹脂粒子中における溶剤及び可塑剤の含有量はそれぞれ、少ないと、溶剤及び可塑剤を添加した効果が発現しないことがある一方、多いと、発泡性スチレン系樹脂粒子を用いて得られたスチレン系樹脂発泡成形体に収縮や溶けが発生して外観性などが低下することがあるので、0.1〜1.5重量%が好ましく、0.2〜1.0重量%がより好ましい。   When the contents of the solvent and the plasticizer in the expandable styrene resin particles are small, the effect of adding the solvent and the plasticizer may not be manifested. On the other hand, when the contents are large, the expandable styrene resin particles are used. The resulting styrene-based resin foamed molded article may shrink or melt, resulting in a decrease in appearance and the like. Therefore, 0.1 to 1.5% by weight is preferable, and 0.2 to 1.0% by weight Is more preferable.

上記溶剤及び可塑剤は、上記シード重合によってスチレン系樹脂種粒子を成長させてスチレン系樹脂粒子を製造した後にスチレン系樹脂粒子に含浸させられるか、或いは、シード重合によるスチレン系樹脂種粒子の成長途上、即ち、スチレン系樹脂成長粒子に含浸させられる。なお、スチレン系樹脂種粒子に予め溶剤や可塑剤を添加しておいてもよい。   The solvent and the plasticizer may be impregnated into the styrene resin particles after the styrene resin seed particles are grown by the seed polymerization to produce the styrene resin particles, or the styrene resin seed particles are grown by seed polymerization. On the way, that is, impregnated with styrene resin growing particles. A solvent or a plasticizer may be added to the styrene resin seed particles in advance.

そして、上記溶剤及び可塑剤をスチレン系樹脂粒子、スチレン系樹脂種粒子又はスチレン系樹脂成長粒子に含浸させる温度としては、低いと、含浸に時間を要し、発泡性スチレン系樹脂粒子の製造効率が低下することがある一方、高いと、発泡性スチレン系樹脂粒子同士の合着が多量に発生することがあるので、60〜120℃が好ましく、70〜100℃がより好ましい。   When the temperature for impregnating the styrene resin particles, the styrene resin seed particles or the styrene resin growth particles with the solvent and the plasticizer is low, the impregnation takes time, and the production efficiency of the expandable styrene resin particles is increased. On the other hand, if it is high, a large amount of coalescence between the expandable styrene resin particles may occur, so 60 to 120 ° C is preferable, and 70 to 100 ° C is more preferable.

更に、本発明の発泡性スチレン系樹脂粒子には、物性を損なわない範囲内において、発泡セル造核剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤などを上記溶剤や可塑剤と同様の要領で適宜、添加してもよい。   Further, in the expandable styrene resin particles of the present invention, the foamed cell nucleating agent, the filler, the flame retardant, the flame retardant aid, the lubricant, the colorant and the like are added to the above-mentioned solvents and plasticizers as long as the physical properties are not impaired. May be added as appropriate in the same manner as described above.

上記難燃剤としては、例えば、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、トリスジブロモプロピルホスフェート、テトラブロモビスフェノールAなどが挙げられる。そして、発泡性スチレン系樹脂粒子中における難燃剤の含有量としては、少ないと、発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡成形体の難燃性が不充分なことがある一方、多いと、発泡性スチレン系樹脂粒子の成形性が低下することがあるので、0.5〜1.5重量%が好ましい。   Examples of the flame retardant include tetrabromocyclooctane, hexabromocyclododecane, trisdibromopropyl phosphate, tetrabromobisphenol A, and the like. When the content of the flame retardant in the expandable styrene resin particles is small, the flame retardancy of the styrene resin foam molded article obtained using the expandable styrene resin particles may be insufficient. If it is too much, the moldability of the expandable styrene resin particles may be lowered, so 0.5 to 1.5% by weight is preferable.

又、上記難燃助剤としては、例えば、ジクミルパーオキサイドなどの有機過酸化物が挙げられる。そして、発泡性スチレン系樹脂粒子中における難燃助剤の含有量は、少ないと、難燃助剤を添加した効果が発現しないことがある一方、多いと、発泡性スチレン系樹脂粒子の発泡成形性が低下することがあるので、0.05〜0.5重量%が好ましい。   Examples of the flame retardant aid include organic peroxides such as dicumyl peroxide. If the content of the flame retardant aid in the expandable styrene resin particles is small, the effect of adding the flame retardant aid may not be manifested. Since the property may be lowered, 0.05 to 0.5% by weight is preferable.

このようにして得られた発泡性スチレン系樹脂粒子は、予備発泡機で予備発泡されてスチレン系樹脂予備発泡粒子とされる。ここで、スチレン系樹脂予備発泡粒子の嵩密度は、低いと、得られるスチレン系樹脂発泡成形体に収縮が発生して外観性が低下したり或いはスチレン系樹脂発泡成形体の断熱性及び機械的強度が低下することがある一方、大きいと、得られるスチレン系樹脂発泡成形体の軽量性が低下することがあるので、0.01〜0.03g/cm3 が好ましく、0.01〜0.25g/cm3 がより好ましい。 The expandable styrene resin particles obtained in this way are pre-expanded by a pre-foaming machine to be styrene resin pre-expanded particles. Here, if the bulk density of the styrene resin pre-expanded particles is low, the resulting styrene resin foam molded product may shrink and the appearance may deteriorate, or the heat insulation and mechanical properties of the styrene resin foam molded product may decrease. while the strength is lowered, the large, the weight of the resulting styrene resin foam molded article may be decreased, preferably 0.01~0.03g / cm 3, 0.01~0. 25 g / cm 3 is more preferable.

なお、スチレン系樹脂予備発泡粒子の嵩密度は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。先ず、スチレン系樹脂予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させ、メスシリンダー内に落下させた測定試料の体積Vcm3 をJIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいてスチレン系樹脂予備発泡粒子の嵩密度を測定した。 In addition, the bulk density of the styrene resin pre-expanded particles refers to that measured according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. First, Wg was collected using styrene resin pre-expanded particles as a measurement sample, this measurement sample was naturally dropped into a graduated cylinder, and the volume Vcm 3 of the measurement sample dropped into the graduated cylinder was measured as an apparent density in accordance with JIS K6911. The bulk density of the styrene resin pre-expanded particles was measured based on the following formula.

スチレン系樹脂予備発泡粒子の嵩密度(g/cm3
=測定試料の重量(W)/測定試料の体積(V)
Bulk density (g / cm 3 ) of styrene resin pre-expanded particles
= Weight of measurement sample (W) / Volume of measurement sample (V)

そして、得られたスチレン系樹脂予備発泡粒子は常圧にて熟成された上で発泡成形機の金型内に充填された上で加熱蒸気などの加熱媒体により二次発泡させられて発泡圧によって互いに熱融着一体化して所望形状を有するスチレン系樹脂発泡成形体とされる。   The resulting styrene resin pre-expanded particles are aged at normal pressure, filled in a mold of a foam molding machine, and then secondarily expanded by a heating medium such as heating steam. A styrenic resin foam molded body having a desired shape is formed by heat fusion and integration with each other.

なお、スチレン系樹脂予備発泡粒子の熟成温度は、低いと、スチレン系樹脂予備発泡粒子の熟成時間が長くなることがある一方、高いと、スチレン系樹脂予備発泡粒子中の発泡剤が散逸して成形性が低下するので、20〜60℃が好ましい。   If the aging temperature of the styrene resin pre-foamed particles is low, the aging time of the styrene resin pre-foamed particles may be long. On the other hand, if it is high, the foaming agent in the styrene resin pre-foamed particles is dissipated. Since a moldability falls, 20-60 degreeC is preferable.

又、スチレン系樹脂発泡成形体の平均気泡径は、小さいと、スチレン系樹脂発泡成形体の断熱性が低下することがある一方、大きいと、スチレン系樹脂発泡成形体の機械的強度が低下することがあるので、50〜500μmが好ましく、80〜400μmがより好ましく、100〜350μmが特に好ましい。   On the other hand, if the average cell diameter of the styrene resin foam molded article is small, the heat insulation property of the styrene resin foam molded article may be lowered, whereas if it is large, the mechanical strength of the styrene resin foam molded article is lowered. Therefore, 50 to 500 μm is preferable, 80 to 400 μm is more preferable, and 100 to 350 μm is particularly preferable.

なお、スチレン系樹脂発泡成形体の平均気泡径は、ASTM D2842−69の試験方法に準拠して測定された平均弦長に基づいて算出されたものをいう。具体的には、スチレン系樹脂発泡成形体を任意の方向に切断し、それぞれの切断面における中央部を走査型電子顕微鏡を用いて17〜20倍(場合によっては200倍)に拡大して撮影する。   In addition, the average cell diameter of a styrene-type resin foaming molding means what was calculated based on the average chord length measured based on the test method of ASTM D2842-69. Specifically, the styrenic resin foam molding is cut in any direction, and the central part of each cut surface is enlarged by 17 to 20 times (in some cases 200 times) using a scanning electron microscope. To do.

次に、撮影した各写真における写真上長さ60mmの一直線上にある気泡数から、各気泡の平均弦長(t)を下記式1に基づいて算出する。
平均弦長(t)=60/(気泡数×写真の倍率)・・・式1
Next, the average chord length (t) of each bubble is calculated based on the following formula 1 from the number of bubbles on a straight line of a length of 60 mm in each photograph taken.
Average chord length (t) = 60 / (number of bubbles × photo magnification) Formula 1

そして、下記式2により、各写真における気泡径Dを算出し、各写真の気泡径の相加平均をスチレン系樹脂発泡成形体の平均気泡径とする。
気泡径D=t/0.616
And the bubble diameter D in each photograph is computed by following formula 2, and let the arithmetic mean of the bubble diameter of each photograph be an average bubble diameter of a styrene resin foaming molding.
Bubble diameter D = t / 0.616

本発明の発泡性スチレン系樹脂粒子の製造方法では、予め鱗片状珪酸塩を含有するスチレン系樹脂種粒子を水中に分散させ、このスチレン系樹脂種粒子を種粒子としてシード重合を行なうと共に、分散液中へのスチレン系モノマーの供給をスチレン系樹脂成長粒子中のスチレン系モノマー量が所定量以下となるように行なっていることから、得られるスチレン系樹脂粒子は、その中心部に鱗片状珪酸塩が豊富に含有されている一方、表面部には含有されていないか或いは含有されていても少量しか含まれていない。   In the method for producing expandable styrene resin particles of the present invention, styrene resin seed particles containing scaly silicate are dispersed in water in advance, seed polymerization is performed using the styrene resin seed particles as seed particles, and dispersed. Since the styrene monomer is supplied to the liquid so that the amount of the styrene monomer in the styrene resin growing particles is not more than a predetermined amount, the resulting styrene resin particles have scaly silicic acid at the center. While the salt is abundantly contained, it is not contained in the surface portion or is contained only in a small amount even if it is contained.

従って、発泡性スチレン系樹脂粒子を予備発泡させてなるスチレン系樹脂予備発泡粒子を二次発泡させてスチレン系樹脂発泡成形体を製造する際に、スチレン系樹脂予備発泡粒子の表面部における鱗片状珪酸塩を原因とした破泡を防止して、スチレン系樹脂予備発泡粒子同士の熱融着に必要な発泡圧を確実に確保することができる。   Accordingly, when a styrene resin pre-foamed particle is produced by secondary foaming of a styrene resin pre-foamed particle obtained by pre-foaming expandable styrene resin particles, a scaly shape is formed on the surface portion of the styrene resin pre-foamed particle. It is possible to prevent foam breakage caused by silicate and to ensure a foaming pressure necessary for heat-sealing styrene resin pre-foamed particles.

よって、スチレン系樹脂予備発泡粒子の表面部における熱融着性の低下が無いか或いは最小限に抑えることができ、スチレン系樹脂予備発泡粒子を金型内に充填して発泡させた場合、スチレン系樹脂予備発泡粒子を発泡させて得られる発泡粒子同士は互いに強固に熱融着一体化し、得られるスチレン系樹脂発泡成形体は優れた機械的強度及び外観性を有する。そして、スチレン系樹脂予備発泡粒子の表面部における破泡を上述のように効果的に防止していることから、得られるスチレン系樹脂発泡成形体の高発泡倍率化を確実に図ることもできる。   Therefore, there is no decrease in the heat-fusibility at the surface portion of the styrene resin pre-expanded particles or it can be minimized. When the styrene resin pre-expanded particles are filled in a mold and foamed, styrene The foamed particles obtained by foaming the base resin pre-expanded particles are strongly heat-bonded and integrated with each other, and the resulting styrene-based resin foam molded article has excellent mechanical strength and appearance. And since the bubble-breaking in the surface part of a styrene resin pre-expanded particle is prevented effectively as mentioned above, the high expansion ratio of the obtained styrene resin foam molding can also be achieved reliably.

更に、発泡性スチレン系樹脂粒子の中心部に豊富に含有されている鱗片状珪酸塩は、発泡性スチレン系樹脂粒子の発泡に伴って、スチレン系樹脂予備発泡粒子の発泡性を損なったり或いは上記発泡粒子同士の熱融着性を阻害することなく発泡粒子全体に略均一に拡散し、得られるスチレン系樹脂発泡成形体の全体に略均一に含有された状態となり、よって、スチレン系樹脂発泡成形体は優れた断熱性を有する。   Furthermore, the scaly silicate that is abundantly contained in the center of the expandable styrene resin particles may impair the expandability of the styrene resin pre-expanded particles as the expandable styrene resin particles expand. It diffuses substantially uniformly throughout the foamed particles without impairing the heat-fusibility between the foamed particles, and is almost uniformly contained throughout the resulting styrenic resin foamed molded product. The body has excellent heat insulation.

しかも、スチレン系樹脂粒子の製造にあたって、鱗片状珪酸塩を種粒子となるスチレン系樹脂種粒子に予め含有させ、その後のシード重合において鱗片状珪酸塩を供給することなくスチレン系モノマーのみを分散液中に、スチレン系樹脂成長粒子中におけるスチレン系モノマー量が所定範囲内となるように供給していることから、スチレン系樹脂成長粒子中におけるスチレン系モノマーの重合を円滑に行なうことができ、得られるスチレン系樹脂粒子中の残存スチレン系モノマー量を低減させることができる。   In addition, in the production of styrene resin particles, scaly silicate is preliminarily contained in seed particles as seed particles, and only styrene monomer is dispersed without supplying scaly silicate in the subsequent seed polymerization. Since the amount of styrene monomer in the styrene resin growing particles is supplied within the predetermined range, the polymerization of the styrene monomer in the styrene resin growing particles can be carried out smoothly and obtained. The amount of residual styrene monomer in the styrene resin particles obtained can be reduced.

従って、本発明の製造方法にて得られた発泡性スチレン系樹脂粒子を用いて得られたスチレン系樹脂発泡成形体は、残存スチレン系モノマー量が少なくて環境衛生上に優れたものである。   Therefore, the styrene resin foam molded article obtained by using the expandable styrene resin particles obtained by the production method of the present invention has a small amount of residual styrene monomer and is excellent in environmental hygiene.

(実施例1)
スチレン換算重量平均分子量が20万であるポリスチレン系樹脂8000重量部と、目開きが30μmの篩を通過せず且つ目開きが50μmの篩を通過する天然雲母2000重量部とを二軸押出機に供給して230℃にて溶融混練して押出機からストランド状に押出し、このストランドを所定長さ毎に切断して、鱗片状珪酸塩を20重量%含有する円柱状スチレン系樹脂種粒子(直径:1.0mm、長さ:1.5mm)を作製した。
(Example 1)
In a twin screw extruder, 8000 parts by weight of a polystyrene-based resin having a styrene-converted weight average molecular weight of 200,000 and 2000 parts by weight of natural mica that does not pass through a sieve with an opening of 30 μm and passes through a sieve with an opening of 50 μm. Supply and melt knead at 230 ° C., extrude into a strand form from an extruder, cut this strand for each predetermined length, cylindrical styrene resin seed particles (diameter 20% by weight of flaky silicate) : 1.0 mm, length: 1.5 mm).

次に、攪拌機付き重合容器に、水2000重量部、スチレン系樹脂種粒子500重量部、ピロリン酸マグネシウム6重量部及びドデシルベンゼンスルホン酸カルシウム0.3重量部を供給して攪拌しつつ70℃に加熱して分散液を作製した。   Next, in a polymerization vessel with a stirrer, 2,000 parts by weight of water, 500 parts by weight of styrene resin seed particles, 6 parts by weight of magnesium pyrophosphate and 0.3 parts by weight of calcium dodecylbenzenesulfonate were supplied and stirred at 70 ° C. A dispersion was prepared by heating.

続いて、ベンゾイルパーオキサイド4.5重量部及びt−ブチルパーオキシベンゾエート1.1重量部をスチレンモノマー200重量部に溶解させ、このスチレンモノマーを全て上記分散液中に攪拌しつつ供給した。   Subsequently, 4.5 parts by weight of benzoyl peroxide and 1.1 parts by weight of t-butylperoxybenzoate were dissolved in 200 parts by weight of styrene monomer, and all of the styrene monomer was supplied to the dispersion while stirring.

そして、分散液中にスチレンモノマーを供給し終えてから30分経過後に分散液を90℃に加熱し、この分散液中に更にスチレンモノマー1300重量部を3時間かけて一定の供給速度で供給して、スチレン系樹脂種粒子を種粒子としてシード重合を行なってスチレン系樹脂種粒子を成長させ、全てのスチレンモノマーを供給し終えてから125℃に加熱して2時間に亘って放置した後に冷却してスチレン系樹脂粒子を得た。なお、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は28.6重量%であった。   Then, 30 minutes after supplying the styrene monomer into the dispersion, the dispersion is heated to 90 ° C., and 1300 parts by weight of the styrene monomer is further supplied into the dispersion at a constant supply rate over 3 hours. Then, seed polymerization is performed using styrene resin seed particles as seed particles to grow styrene resin seed particles, and after supplying all the styrene monomers, the mixture is heated to 125 ° C. and allowed to stand for 2 hours and then cooled. Thus, styrene resin particles were obtained. When the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 28.6% by weight.

次に、スチレン系樹脂粒子が分散した分散液を70℃に加熱した後、難燃剤としてテトラブロモシクロオクタン23.4重量部及び難燃助剤としてジクミルパーオキサイド5.4重量部を分散液中に供給した上で重合容器を密閉して90℃に加熱した。   Next, after the dispersion liquid in which the styrene resin particles are dispersed is heated to 70 ° C., 23.4 parts by weight of tetrabromocyclooctane as a flame retardant and 5.4 parts by weight of dicumyl peroxide as a flame retardant aid are dispersed. Then, the polymerization vessel was sealed and heated to 90 ° C.

続いて、重合容器内にブタン162重量部を圧入して6時間に亘って保持し、スチレン系樹脂粒子中にブタンを含浸させた後、重合容器内を30℃に冷却して発泡性スチレン系樹脂粒子を得た。なお、得られた発泡性スチレン系樹脂粒子は、その天然雲母の含有量が5.0重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して180ppmであった。   Subsequently, 162 parts by weight of butane was injected into the polymerization vessel and held for 6 hours. After impregnating butane into the styrene resin particles, the inside of the polymerization vessel was cooled to 30 ° C. Resin particles were obtained. The expandable styrene resin particles obtained had a natural mica content of 5.0% by weight and a residual styrene monomer content of 180 ppm relative to the total amount of expandable styrene resin particles.

上記発泡性スチレン系樹脂粒子の表面に帯電防止剤としてポリエチレングリコールを塗布した後、発泡性スチレン系樹脂粒子の表面にステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドを塗布した。なお、ステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドはそれぞれ、発泡性スチレン系樹脂粒子中、0.05重量%となるように調整した。   After applying polyethylene glycol as an antistatic agent to the surface of the expandable styrene resin particles, zinc stearate and hydroxystearic acid triglyceride were applied to the surface of the expandable styrene resin particles. In addition, each of zinc stearate and hydroxystearic acid triglyceride was adjusted to be 0.05% by weight in the expandable styrenic resin particles.

しかる後、発泡性スチレン系樹脂粒子を13℃の恒温室にて5日間に亘って放置した。放置後の発泡性スチレン系樹脂粒子中のブタン含有量をガスクロマトグラフを用いて測定したところ、5.1重量%であった。   Thereafter, the expandable styrenic resin particles were left in a thermostatic chamber at 13 ° C. for 5 days. The butane content in the expandable styrene resin particles after standing was measured using a gas chromatograph and found to be 5.1% by weight.

そして、発泡性スチレン系樹脂粒子を加熱して嵩密度0.0167g/cm3 に予備発泡させてスチレン系樹脂予備発泡粒子を得た。このスチレン系樹脂予備発泡粒子を20℃で24時間に亘って熟成させた。次に、上記スチレン系樹脂予備発泡粒子を金型内に充填して加熱発泡させて、縦400mm×横300mm×厚さ30mmのスチレン系樹脂発泡板を得た。 Then, the expandable styrene resin particles were heated and pre-expanded to a bulk density of 0.0167 g / cm 3 to obtain styrene resin pre-expanded particles. The styrene resin pre-expanded particles were aged at 20 ° C. for 24 hours. Next, the styrene resin pre-expanded particles were filled in a mold and heated and foamed to obtain a styrene resin foamed plate having a length of 400 mm × width of 300 mm × thickness of 30 mm.

このスチレン系樹脂発泡板を50℃の乾燥室で6時間に亘って熟成した後、スチレン系樹脂発泡板の密度を測定したところ、0.0167g/cm3 であった。このスチレン系樹脂発泡板は、収縮もなく外観性にも優れていた。 This styrene resin foam plate was aged in a drying room at 50 ° C. for 6 hours, and then the density of the styrene resin foam plate was measured to be 0.0167 g / cm 3 . This styrene resin foam board was excellent in appearance without shrinkage.

(実施例2)
スチレン系樹脂種粒子の製造において、天然雲母として、目開きが3μmの篩を通過せず且つ目開きが5μmの篩を通過する天然雲母を用いたこと以外は、実施例1と同様にしてスチレン系樹脂発泡板を得た。なお、スチレン系樹脂種粒子中の天然雲母の含有量は19.7重量%であった。又、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は28.6重量%であった。
(Example 2)
In the production of styrene resin seed particles, styrene was used in the same manner as in Example 1 except that natural mica that did not pass through a sieve with an opening of 3 μm and passed through a sieve with an opening of 5 μm was used as natural mica. A resin-based resin foam plate was obtained. The content of natural mica in the styrene resin seed particles was 19.7% by weight. Further, when the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 28.6% by weight.

更に、発泡性スチレン系樹脂粒子は、その天然雲母の含有量が4.9重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して190ppmであった。   Further, the expandable styrene resin particles had a natural mica content of 4.9% by weight and a residual styrene monomer content of 190 ppm based on the total amount of the expandable styrene resin particles.

(実施例3)
スチレン系樹脂種粒子の製造において、天然雲母として、目開きが100μmの篩を通過せず且つ目開きが200μmの篩を通過する天然雲母を用いたこと以外は、実施例1と同様にしてスチレン系樹脂発泡板を得た。なお、スチレン系樹脂種粒子中の天然雲母の含有量は20重量%であった。又、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は28.6重量%であった。
(Example 3)
In the production of styrene-based resin seed particles, styrene was used in the same manner as in Example 1 except that natural mica that did not pass through a sieve with an opening of 100 μm and passed through a sieve with an opening of 200 μm was used as natural mica. A resin-based resin foam plate was obtained. The content of natural mica in the styrene resin seed particles was 20% by weight. Further, when the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 28.6% by weight.

更に、発泡性スチレン系樹脂粒子は、その天然雲母の含有量が5.0重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して200ppmであった。   Further, the expandable styrene resin particles had a natural mica content of 5.0% by weight and a residual styrene monomer content of 200 ppm with respect to the total amount of the expandable styrene resin particles.

(実施例4)
スチレン系樹脂種粒子の製造において、スチレン換算重量平均分子量が20万であるポリスチレン系樹脂を8000重量部の代わりに9520重量部用い、天然雲母を2000重量部の代わりに480重量部用いたこと以外は、実施例1と同様にしてスチレン系樹脂発泡板を得た。なお、スチレン系樹脂種粒子中の天然雲母の含有量は4.8重量%であった。又、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は28.6重量%であった。
Example 4
In production of styrene-based resin seed particles, 9520 parts by weight of polystyrene-based resin having a styrene-converted weight average molecular weight of 200,000 is used in place of 8000 parts by weight, and 480 parts by weight of natural mica is used in place of 2000 parts by weight. Obtained a styrene resin foam board in the same manner as in Example 1. The content of natural mica in the styrene resin seed particles was 4.8% by weight. Further, when the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 28.6% by weight.

更に、発泡性スチレン系樹脂粒子は、その天然雲母の含有量が1.2重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して180ppmであった。   Further, the expandable styrene resin particles had a natural mica content of 1.2% by weight and a residual styrene monomer content of 180 ppm based on the total amount of the expandable styrene resin particles.

(実施例5)
スチレン換算重量平均分子量が20万であるポリスチレン系樹脂6600重量部と、目開きが30μmの篩を通過せず且つ目開きが50μmの篩を通過する天然雲母3400重量部とを二軸押出機に供給して230℃にて溶融混練して押出機からストランド状に押出し、このストランドを所定長さ毎に切断して、鱗片状珪酸塩を34重量%含有する円柱状スチレン系樹脂種粒子(直径:1.0mm、長さ:1.5mm)を作製した。
(Example 5)
6600 parts by weight of polystyrene-based resin having a weight average molecular weight of 200,000 in terms of styrene and 3400 parts by weight of natural mica that does not pass through a sieve having an opening of 30 μm and passes through a sieve having an opening of 50 μm are used in a twin screw extruder. Supply and melt knead at 230 ° C., extrude into a strand form from an extruder, cut this strand every predetermined length, cylindrical styrene resin seed particles (diameter 34% by weight of flaky silicate) : 1.0 mm, length: 1.5 mm).

次に、攪拌機付き重合容器に、水2000重量部、スチレン系樹脂種粒子1000重量部、ピロリン酸マグネシウム6重量部及びドデシルベンゼンスルホン酸カルシウム0.3重量部を供給して攪拌しつつ70℃に加熱して分散液を作製した。   Next, in a polymerization vessel equipped with a stirrer, 2000 parts by weight of water, 1000 parts by weight of styrene resin seed particles, 6 parts by weight of magnesium pyrophosphate and 0.3 parts by weight of calcium dodecylbenzenesulfonate were supplied and stirred at 70 ° C. A dispersion was prepared by heating.

続いて、ベンゾイルパーオキサイド3.0重量部及びt−ブチルパーオキシベンゾエート0.7重量部をスチレンモノマー200重量部に溶解させ、このスチレンモノマーを全て上記分散液中に攪拌しつつ供給した。   Subsequently, 3.0 parts by weight of benzoyl peroxide and 0.7 parts by weight of t-butylperoxybenzoate were dissolved in 200 parts by weight of styrene monomer, and all of the styrene monomer was supplied to the dispersion while stirring.

そして、分散液中にスチレンモノマーを供給し終えてから30分経過後に分散液を90℃に加熱し、この分散液中に更にスチレンモノマー800重量部を3時間かけて一定の供給速度で供給して、スチレン系樹脂種粒子を種粒子としてシード重合を行なってスチレン系樹脂種粒子を成長させ、全てのスチレンモノマーを供給し終えてから125℃に加熱して2時間に亘って放置した後に冷却してスチレン系樹脂粒子を得た。なお、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は16.7重量%であった。   Then, 30 minutes after supplying the styrene monomer into the dispersion, the dispersion is heated to 90 ° C., and further 800 parts by weight of the styrene monomer is supplied to the dispersion at a constant supply rate over 3 hours. Then, seed polymerization is performed using styrene resin seed particles as seed particles to grow styrene resin seed particles, and after supplying all the styrene monomers, the mixture is heated to 125 ° C. and allowed to stand for 2 hours and then cooled. Thus, styrene resin particles were obtained. When the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 16.7% by weight.

次に、スチレン系樹脂粒子が分散した分散液を70℃に加熱した後、難燃剤としてテトラブロモシクロオクタン23.4重量部及び難燃助剤としてジクミルパーオキサイド5.4重量部を分散液中に供給した上で重合容器を密閉して90℃に加熱した。   Next, after the dispersion liquid in which the styrene resin particles are dispersed is heated to 70 ° C., 23.4 parts by weight of tetrabromocyclooctane as a flame retardant and 5.4 parts by weight of dicumyl peroxide as a flame retardant aid are dispersed. Then, the polymerization vessel was sealed and heated to 90 ° C.

続いて、重合容器内にブタン162重量部を圧入して6時間に亘って保持し、スチレン系樹脂粒子中にブタンを含浸させた後、重合容器内を30℃に冷却して発泡性スチレン系樹脂粒子を得た。なお、得られた発泡性スチレン系樹脂粒子は、その天然雲母の含有量が17.0重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して185ppmであった。そして、上記の如くして得られた発泡性スチレン系樹脂粒子を用いて実施例1と同様にしてスチレン系樹脂発泡板を得た。   Subsequently, 162 parts by weight of butane was injected into the polymerization vessel and held for 6 hours. After impregnating butane into the styrene resin particles, the inside of the polymerization vessel was cooled to 30 ° C. Resin particles were obtained. The expandable styrene resin particles obtained had a natural mica content of 17.0% by weight and a residual styrene monomer content of 185 ppm relative to the total amount of expandable styrene resin particles. And the styrene resin foamed board was obtained like Example 1 using the foamable styrene resin particle obtained as mentioned above.

(実施例6)
スチレン系樹脂種粒子の製造において、天然雲母の代わりに、目開きが30μmの篩を通過せず且つ目開きが50μmの篩を通過する、表面が酸化チタンで被覆された合成雲母(酸化チタン被覆合成雲母)を用いたこと以外は実施例1と同様にしてスチレン系樹脂発泡板を得た。なお、酸化チタン被覆合成雲母中における酸化チタンの含有量は、30重量%であった。スチレン系樹脂種粒子中の酸化チタン被覆合成雲母の含有量は20重量%であった。又、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は28.7重量%であった。
(Example 6)
In the production of styrenic resin seed particles, instead of natural mica, synthetic mica (titanium oxide coating) whose surface does not pass through a 30 μm sieve and through which a 50 μm sieve passes is coated with titanium oxide A styrene-based resin foam plate was obtained in the same manner as in Example 1 except that synthetic mica) was used. The titanium oxide content in the titanium oxide-coated synthetic mica was 30% by weight. The content of titanium oxide-coated synthetic mica in the styrene resin seed particles was 20% by weight. Further, when the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 28.7% by weight.

更に、発泡性スチレン系樹脂粒子は、その酸化チタン被覆合成雲母の含有量が5.0重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して190ppmであった。   Further, the expandable styrene resin particles had a titanium oxide-coated synthetic mica content of 5.0% by weight and a residual styrene monomer content of 190 ppm based on the total amount of the expandable styrene resin particles.

(実施例7)
スチレン系樹脂種粒子の製造において、天然雲母の代わりに、目開きが30μmの篩を通過せず且つ目開きが50μmの篩を通過するセリサイトを用いたこと以外は実施例1と同様にしてスチレン系樹脂発泡板を得た。なお、スチレン系樹脂種粒子中のセリサイトの含有量は19.6重量%であった。又、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は28.7重量%であった。
(Example 7)
In the production of styrene-based resin seed particles, the same procedure as in Example 1 was used, except that sericite that did not pass through a 30 μm sieve and passed through a 50 μm sieve was used instead of natural mica. A styrene resin foamed plate was obtained. The sericite content in the styrene resin seed particles was 19.6% by weight. Further, when the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 28.7% by weight.

更に、発泡性スチレン系樹脂粒子は、そのセリサイトの含有量が4.9重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して178ppmであった。   Further, the expandable styrene resin particles had a sericite content of 4.9% by weight and a residual styrene monomer content of 178 ppm relative to the total amount of expandable styrene resin particles.

(実施例8)
シード重合において、分散液中を90℃に加熱してからの分散液中へのスチレンモノマーの供給を3時間かける代わりに1.5時間かけたこと以外は実施例1と同様にしてスチレン系樹脂発泡板を得た。なお、スチレン系樹脂種粒子中の天然雲母の含有量は20重量%であった。又、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は55.0重量%であった。
(Example 8)
In seed polymerization, a styrenic resin was prepared in the same manner as in Example 1 except that 1.5 hours was used instead of 3 hours for supplying the styrene monomer to the dispersion after heating the dispersion to 90 ° C. A foam plate was obtained. The content of natural mica in the styrene resin seed particles was 20% by weight. Further, when the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 55.0% by weight.

更に、発泡性スチレン系樹脂粒子は、その天然雲母の含有量が5.0重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して170ppmであった。   Further, the expandable styrene resin particles had a natural mica content of 5.0% by weight and a residual styrene monomer content of 170 ppm based on the total amount of the expandable styrene resin particles.

(実施例9)
シード重合において、分散液中を90℃に加熱してからの分散液中へのスチレンモノマーの供給を3時間かける代わりに4時間かけたこと以外は実施例1と同様にしてスチレン系樹脂発泡板を得た。なお、スチレン系樹脂種粒子中の天然雲母の含有量は20重量%であった。又、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は28.7重量%であった。
Example 9
In seed polymerization, the styrene-based resin foamed plate was treated in the same manner as in Example 1 except that the dispersion was heated to 90 ° C. and then the styrene monomer was supplied to the dispersion for 4 hours instead of 3 hours. Got. The content of natural mica in the styrene resin seed particles was 20% by weight. Further, when the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 28.7% by weight.

更に、発泡性スチレン系樹脂粒子は、その天然雲母の含有量が5.0重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して174ppmであった。   Further, the expandable styrene resin particles had a natural mica content of 5.0% by weight and a residual styrene monomer content of 174 ppm based on the total amount of the expandable styrene resin particles.

(比較例1)
スチレン系樹脂種粒子の製造において、ポリスチレン系樹脂を8000重量部の代わりに10000重量部とし、天然雲母を用いなかったこと以外は実施例1と同様にしてスチレン系樹脂発泡板を得た。なお、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は28.7重量%であった。又、発泡性スチレン系樹脂粒子は、その残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して190ppmであった。
(Comparative Example 1)
In the production of styrene resin seed particles, a polystyrene resin foam plate was obtained in the same manner as in Example 1 except that the polystyrene resin was changed to 10000 parts by weight instead of 8000 parts by weight, and natural mica was not used. When the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 28.7% by weight. The expandable styrene resin particles had a residual styrene monomer content of 190 ppm with respect to the total amount of expandable styrene resin particles.

(比較例2)
スチレン換算重量平均分子量が20万であるポリスチレン系樹脂7000重量部と、目開きが30μmの篩を通過せず且つ目開きが50μmの篩を通過する天然雲母3000重量部とを二軸押出機に供給して230℃にて溶融混練して押出機からストランド状に押出し、このストランドを所定長さ毎に切断して、鱗片状珪酸塩を30重量%含有する円柱状スチレン系樹脂種粒子(直径:1.0mm、長さ:1.5mm)を作製した。
(Comparative Example 2)
In a twin screw extruder, 7000 parts by weight of a polystyrene-based resin having a weight-average molecular weight in terms of styrene of 200,000 and 3000 parts by weight of natural mica that does not pass through a sieve with an opening of 30 μm and passes through a sieve with an opening of 50 μm. Supply and melt knead at 230 ° C., extrude into a strand form from an extruder, cut this strand every predetermined length, columnar styrene resin seed particles (diameter 30% containing scaly silicate) : 1.0 mm, length: 1.5 mm).

次に、攪拌機付き重合容器に、水5000重量部、スチレン系樹脂種粒子1500重量部、ピロリン酸マグネシウム12重量部及びドデシルベンゼンスルホン酸カルシウム0.5重量部を供給して攪拌しつつ70℃に加熱して分散液を作製した。   Next, 5000 parts by weight of water, 1500 parts by weight of styrenic resin seed particles, 12 parts by weight of magnesium pyrophosphate and 0.5 parts by weight of calcium dodecylbenzenesulfonate are supplied to a polymerization vessel equipped with a stirrer while stirring at 70 ° C. A dispersion was prepared by heating.

続いて、ベンゾイルパーオキサイド7重量部及びt−ブチルパーオキシベンゾエート1重量部をスチレンモノマー200重量部に溶解させ、このスチレンモノマーを全て上記分散液中に攪拌しつつ供給した。   Subsequently, 7 parts by weight of benzoyl peroxide and 1 part by weight of t-butylperoxybenzoate were dissolved in 200 parts by weight of styrene monomer, and all of the styrene monomer was supplied to the dispersion while stirring.

そして、分散液中にスチレンモノマーを供給し終えてから30分経過後に分散液を90℃に加熱し、この分散液中に更にスチレンモノマー1300重量部を1.5時間かけて一定の供給速度で供給して、スチレン系樹脂種粒子を種粒子としてシード重合を行なってスチレン系樹脂種粒子を成長させ、全てのスチレンモノマーを供給し終えてから125℃に加熱して2時間に亘って放置した後に冷却してスチレン系樹脂粒子を得た。なお、分散液中にスチレンモノマーを供給し始めてから10分間隔毎に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量を測定したところ、最高値は65.0重量%であった。   Then, after 30 minutes have passed since the styrene monomer was supplied to the dispersion, the dispersion was heated to 90 ° C., and 1300 parts by weight of styrene monomer was further added to the dispersion at a constant supply rate over 1.5 hours. The styrene resin seed particles are used as seed particles for seed polymerization to grow styrene resin seed particles, and after all the styrene monomers have been supplied, they are heated to 125 ° C. and left for 2 hours. After cooling, styrene resin particles were obtained. When the amount of styrene monomer in the growing styrene-based resin growing particles was measured every 10 minutes from the start of supplying the styrene monomer into the dispersion, the maximum value was 65.0% by weight.

次に、スチレン系樹脂粒子が分散した分散液を70℃に加熱した後、難燃剤としてテトラブロモシクロオクタン36重量部及び難燃助剤としてジクミルパーオキサイド9重量部を分散液中に供給した上で重合容器を密閉して90℃に加熱した。   Next, after the dispersion liquid in which the styrene resin particles were dispersed was heated to 70 ° C., 36 parts by weight of tetrabromocyclooctane as a flame retardant and 9 parts by weight of dicumyl peroxide as a flame retardant aid were supplied into the dispersion. The polymerization vessel was sealed above and heated to 90 ° C.

続いて、重合容器内にブタン180重量部を圧入して6時間に亘って保持し、スチレン系樹脂粒子中にブタンを含浸させた後、重合容器内を30℃に冷却して発泡性スチレン系樹脂粒子を得た。なお、得られた発泡性スチレン系樹脂粒子は、その天然雲母の含有量が15.0重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して198ppmであった。   Subsequently, 180 parts by weight of butane was injected into the polymerization vessel and held for 6 hours. After impregnating butane into the styrene resin particles, the inside of the polymerization vessel was cooled to 30 ° C. Resin particles were obtained. The expandable styrene resin particles obtained had a natural mica content of 15.0% by weight and a residual styrene monomer content of 198 ppm with respect to the total amount of expandable styrene resin particles.

上記発泡性スチレン系樹脂粒子の表面に帯電防止剤としてポリエチレングリコールを塗布した後、発泡性スチレン系樹脂粒子の表面にステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドを塗布した。なお、ステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドはそれぞれ、発泡性スチレン系樹脂粒子中、0.05重量%となるように調整した。   After applying polyethylene glycol as an antistatic agent to the surface of the expandable styrene resin particles, zinc stearate and hydroxystearic acid triglyceride were applied to the surface of the expandable styrene resin particles. In addition, each of zinc stearate and hydroxystearic acid triglyceride was adjusted to be 0.05% by weight in the expandable styrenic resin particles.

しかる後、発泡性スチレン系樹脂粒子を13℃の恒温室にて5日間に亘って放置した。放置後の発泡性スチレン系樹脂粒子中のブタン含有量をガスクロマトグラフを用いて測定したところ、5.4重量%であった。   Thereafter, the expandable styrenic resin particles were left in a thermostatic chamber at 13 ° C. for 5 days. The butane content in the expandable styrene resin particles after standing was measured using a gas chromatograph and found to be 5.4% by weight.

そして、発泡性スチレン系樹脂粒子を加熱して嵩密度0.0169g/cm3 に予備発泡させてスチレン系樹脂予備発泡粒子を得た。このスチレン系樹脂予備発泡粒子を20℃で24時間に亘って熟成させた。次に、上記スチレン系樹脂予備発泡粒子を金型内に充填して加熱して発泡させて、縦400mm×横300mm×厚さ30mmのスチレン系樹脂発泡板を得た。このスチレン系樹脂発泡板を50℃の乾燥室で6時間に亘って熟成した後、スチレン系樹脂発泡板の密度を測定したところ、0.0169g/cm3 であった。 Then, the expandable styrene resin particles were heated and pre-expanded to a bulk density of 0.0169 g / cm 3 to obtain styrene resin pre-expanded particles. The styrene resin pre-expanded particles were aged at 20 ° C. for 24 hours. Next, the styrene resin pre-expanded particles were filled in a mold, heated and foamed to obtain a styrene resin foamed plate having a length of 400 mm × width of 300 mm × thickness of 30 mm. This styrene resin foam plate was aged in a drying room at 50 ° C. for 6 hours, and then the density of the styrene resin foam plate was measured to be 0.0169 g / cm 3 .

(比較例3)
攪拌機付き重合容器に、水5000重量部、ベンゾイルパーオキサイド9重量部及びt−ブチルパーオキシベンゾエート1.5重量部を溶解させたスチレンモノマー2000重量部、目開きが30μmの篩を通過せず且つ目開きが50μmの篩を通過するグラファイト粒子100重量部、ピロリン酸マグネシウム12重量部、並びに、ドデシルベンゼンスルホン酸カルシウム0.5重量部を供給して攪拌しつつ90℃に加熱して7時間に亘って懸濁重合させ、続いて、125℃に加熱して2時間に亘って更に懸濁重合を行なった後に冷却してスチレン系樹脂粒子を得た。
(Comparative Example 3)
In a polymerization vessel equipped with a stirrer, 5000 parts by weight of water, 9 parts by weight of benzoyl peroxide, and 2000 parts by weight of styrene monomer in which 1.5 parts by weight of t-butylperoxybenzoate were dissolved, did not pass through a sieve having an opening of 30 μm and Supply 100 parts by weight of graphite particles passing through a sieve with an opening of 50 μm, 12 parts by weight of magnesium pyrophosphate, and 0.5 parts by weight of calcium dodecylbenzenesulfonate, and heat to 90 ° C. with stirring for 7 hours. Suspension polymerization was continued, followed by heating to 125 ° C. and further suspension polymerization for 2 hours, followed by cooling to obtain styrene resin particles.

スチレン系樹脂粒子の懸濁液を70℃に加熱した後、難燃剤としてテトラブロモシクロオクタン36重量部及び難燃助剤としてジクミルパーオキサイド9重量部を懸濁液中に供給した上で重合容器を密閉して90℃に加熱した。   After the styrene resin particle suspension was heated to 70 ° C., 36 parts by weight of tetrabromocyclooctane as a flame retardant and 9 parts by weight of dicumyl peroxide as a flame retardant aid were supplied into the suspension. The vessel was sealed and heated to 90 ° C.

続いて、重合容器内にブタン180重量部を圧入して6時間に亘って保持し、スチレン系樹脂粒子中にブタンを含浸させた後、重合容器内を30℃に冷却して発泡性スチレン系樹脂粒子を得た。なお、得られた発泡性スチレン系樹脂粒子は、そのグラファイト粒子の含有量が5重量%、残存スチレンモノマーの含有量が発泡性スチレン系樹脂粒子の全量に対して980ppmであった。   Subsequently, 180 parts by weight of butane was injected into the polymerization vessel and held for 6 hours. After impregnating butane into the styrene resin particles, the inside of the polymerization vessel was cooled to 30 ° C. Resin particles were obtained. The obtained expandable styrene resin particles had a graphite particle content of 5% by weight and a residual styrene monomer content of 980 ppm relative to the total amount of expandable styrene resin particles.

上記発泡性スチレン系樹脂粒子の表面に帯電防止剤としてポリエチレングリコールを塗布した後、発泡性スチレン系樹脂粒子の表面にステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドを塗布した。なお、ステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドはそれぞれ、発泡性スチレン系樹脂粒子中、0.05重量%となるように調整した。   After applying polyethylene glycol as an antistatic agent to the surface of the expandable styrene resin particles, zinc stearate and hydroxystearic acid triglyceride were applied to the surface of the expandable styrene resin particles. In addition, each of zinc stearate and hydroxystearic acid triglyceride was adjusted to be 0.05% by weight in the expandable styrenic resin particles.

しかる後、発泡性スチレン系樹脂粒子を13℃の恒温室にて5日間に亘って放置した。放置後の発泡性スチレン系樹脂粒子中のブタン含有量をガスクロマトグラフを用いて測定したところ、5.9重量%であった。   Thereafter, the expandable styrenic resin particles were left in a thermostatic chamber at 13 ° C. for 5 days. The butane content in the expandable styrene resin particles after standing was measured using a gas chromatograph and found to be 5.9% by weight.

そして、発泡性スチレン系樹脂粒子を加熱して嵩密度0.0169g/cm3 に予備発泡させてスチレン系樹脂予備発泡粒子を得た。このスチレン系樹脂予備発泡粒子を20℃で24時間に亘って熟成させた。次に、上記スチレン系樹脂予備発泡粒子を金型内に充填して加熱して発泡させて、縦400mm×横300mm×厚さ30mmのスチレン系樹脂発泡板を得た。このスチレン系樹脂発泡板を50℃の乾燥室で6時間に亘って熟成した後、スチレン系樹脂発泡板の密度を測定したところ、0.0169g/cm3 であった。 Then, the expandable styrene resin particles were heated and pre-expanded to a bulk density of 0.0169 g / cm 3 to obtain styrene resin pre-expanded particles. The styrene resin pre-expanded particles were aged at 20 ° C. for 24 hours. Next, the styrene resin pre-expanded particles were filled in a mold, heated and foamed to obtain a styrene resin foamed plate having a length of 400 mm × width of 300 mm × thickness of 30 mm. This styrene resin foam plate was aged in a drying room at 50 ° C. for 6 hours, and then the density of the styrene resin foam plate was measured to be 0.0169 g / cm 3 .

(比較例4)
スチレン換算重量平均分子量が20万であるポリスチレン系樹脂9000重量部と、目開きが30μmの篩を通過せず且つ目開きが50μmの篩を通過する天然雲母1000重量部とを二軸押出機に供給して230℃にて溶融混練して押出機からストランド状に押出し、このストランドを所定長さ毎に切断して、鱗片状珪酸塩を10.0重量%含有する円柱状スチレン系樹脂種粒子(直径:1.0mm、長さ:1.5mm)を作製した。
(Comparative Example 4)
In a twin screw extruder, 9000 parts by weight of a polystyrene resin having a weight average molecular weight of 200,000 in terms of styrene and 1000 parts by weight of natural mica that does not pass through a sieve with an opening of 30 μm and passes through a sieve with an opening of 50 μm. Supply and melt knead at 230 ° C., extrude into a strand form from an extruder, cut this strand every predetermined length, cylindrical styrene resin seed particles containing 10.0% by weight of flaky silicate (Diameter: 1.0 mm, length: 1.5 mm) was produced.

次に、攪拌機付き重合容器に、水2000重量部、スチレン系樹脂種粒子2000重量部、ピロリン酸マグネシウム6重量部及びドデシルベンゼンスルホン酸カルシウム0.3重量部を供給して攪拌しつつ70℃に加熱して分散液を作製した。   Next, in a polymerization vessel with a stirrer, 2,000 parts by weight of water, 2000 parts by weight of styrene resin seed particles, 6 parts by weight of magnesium pyrophosphate and 0.3 parts by weight of calcium dodecylbenzenesulfonate were supplied and stirred at 70 ° C. A dispersion was prepared by heating.

しかる後、スチレン系樹脂種粒子が分散した分散液を70℃に保持した状態で、難燃剤としてテトラブロモシクロオクタン26重量部及び難燃助剤としてジクミルパーオキサイド6重量部を分散液中に供給した上で重合容器を密閉して90℃に加熱した。   Thereafter, in a state where the dispersion liquid in which the styrenic resin seed particles are dispersed is maintained at 70 ° C., 26 parts by weight of tetrabromocyclooctane as a flame retardant and 6 parts by weight of dicumyl peroxide as a flame retardant aid are contained in the dispersion. After feeding, the polymerization vessel was sealed and heated to 90 ° C.

続いて、重合容器内にブタン180重量部を圧入して6時間に亘って保持し、スチレン系樹脂粒子中にブタンを含浸させた後、重合容器内を30℃に冷却して発泡性スチレン系樹脂粒子を得た。なお、得られた発泡性スチレン系樹脂粒子は、その天然雲母の含有量が10.0重量%であった。   Subsequently, 180 parts by weight of butane was injected into the polymerization vessel and held for 6 hours. After impregnating butane into the styrene resin particles, the inside of the polymerization vessel was cooled to 30 ° C. Resin particles were obtained. The expandable styrene resin particles obtained had a natural mica content of 10.0% by weight.

上記発泡性スチレン系樹脂粒子の表面に帯電防止剤としてポリエチレングリコールを塗布した後、発泡性スチレン系樹脂粒子の表面にステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドを塗布した。なお、ステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドはそれぞれ、発泡性スチレン系樹脂粒子中、0.05重量%となるように調整した。   After applying polyethylene glycol as an antistatic agent to the surface of the expandable styrene resin particles, zinc stearate and hydroxystearic acid triglyceride were applied to the surface of the expandable styrene resin particles. In addition, each of zinc stearate and hydroxystearic acid triglyceride was adjusted to be 0.05% by weight in the expandable styrenic resin particles.

しかる後、発泡性スチレン系樹脂粒子を13℃の恒温室にて5日間に亘って放置した。放置後の発泡性スチレン系樹脂粒子中のブタン含有量をガスクロマトグラフを用いて測定したところ、5.7重量%であった。   Thereafter, the expandable styrenic resin particles were left in a thermostatic chamber at 13 ° C. for 5 days. The butane content in the expandable styrenic resin particles after standing was measured using a gas chromatograph and found to be 5.7% by weight.

そして、発泡性スチレン系樹脂粒子を加熱して嵩密度0.0167g/cm3 に予備発泡させてスチレン系樹脂予備発泡粒子を得た。このスチレン系樹脂予備発泡粒子を20℃で24時間に亘って熟成させた。次に、上記スチレン系樹脂予備発泡粒子を金型内に充填して加熱して発泡させて、縦400mm×横300mm×厚さ30mmのスチレン系樹脂発泡板を得た。このスチレン系樹脂発泡板を50℃の乾燥室で6時間に亘って熟成した後、スチレン系樹脂発泡板の密度を測定したところ、0.0167g/cm3 であった。 Then, the expandable styrene resin particles were heated and pre-expanded to a bulk density of 0.0167 g / cm 3 to obtain styrene resin pre-expanded particles. The styrene resin pre-expanded particles were aged at 20 ° C. for 24 hours. Next, the styrene resin pre-expanded particles were filled in a mold, heated and foamed to obtain a styrene resin foamed plate having a length of 400 mm × width of 300 mm × thickness of 30 mm. This styrene resin foam plate was aged in a drying room at 50 ° C. for 6 hours, and then the density of the styrene resin foam plate was measured to be 0.0167 g / cm 3 .

得られたスチレン系樹脂発泡板の断熱性、内部融着率及び最大曲げ強度を下記に示した要領で測定し、その結果を表1に示した。なお、表1に、成長途上にあるスチレン系樹脂成長粒子中のスチレンモノマー量の最高値を「最高スチレンモノマー量」として、発泡性スチレン系樹脂粒子中の鱗片状珪酸塩の含有量を「珪酸塩含有量」として記載した。   The heat insulation property, internal fusion rate, and maximum bending strength of the obtained styrene-based resin foam plate were measured as shown below, and the results are shown in Table 1. In Table 1, the maximum value of the amount of styrene monomer in the growing styrene-based resin growing particles is defined as “maximum styrene monomer amount”, and the content of scaly silicate in the expandable styrene-based resin particles is expressed as “silicic acid”. It was described as “salt content”.

(断熱性)
スチレン系樹脂発泡板から縦200mm×横200mm×厚さ30mmの直方体形状の試験片を切り出した。そして、この試験片の熱伝導率をJIS A1412に準拠して平板熱流計法にて測定温度20℃で測定した。
(Thermal insulation properties)
A rectangular parallelepiped test piece having a length of 200 mm, a width of 200 mm, and a thickness of 30 mm was cut out from the styrene resin foam plate. And the heat conductivity of this test piece was measured at the measurement temperature of 20 degreeC by the flat plate heat flow meter method based on JISA1412.

(内部融着率)
スチレン系樹脂発泡板における横方向の中央部に縦方向に全長に亘って深さが約5mmの切込線をカッタナイフを用いて形成し、この切込線に沿ってスチレン系樹脂発泡板を横方向に手で二分割した。
(Internal fusion rate)
A cutting line having a depth of about 5 mm in the longitudinal direction is formed in the center portion in the horizontal direction of the styrene resin foam board using a cutter knife, and the styrene resin foam board is formed along the cut line. Divided by hand in the horizontal direction.

そして、スチレン系樹脂発泡板の破断面のうちの任意の面積60cm2 部分を目視観察し、発泡粒子内で破断している発泡粒子数(a個)と、発泡粒子同士の熱融着界面で破断している発泡粒子数(b個)とを数え、下記式に基づいて内部融着率を算出した。なお、内部融着率が高い程、発泡粒子同士が強固に熱融着一体化していることを示している。
内部融着率(%)=100×(a)/〔(a)+(b)〕
Then, an arbitrary area of 60 cm 2 in the fracture surface of the styrene resin foam plate is visually observed, and the number of foam particles (a) broken in the foam particles and the heat fusion interface between the foam particles. The number of foam particles broken (b) was counted, and the internal fusion rate was calculated based on the following formula. Note that the higher the internal fusion rate, the stronger the foamed particles are integrated by heat fusion.
Internal fusion rate (%) = 100 × (a) / [(a) + (b)]

(最大曲げ強度)
スチレン系樹脂発泡板の最大曲げ強度をJIS K9511:1999「発泡プラスチック保温材」に記載の方法に準拠して測定した。具体的には、スチレン系樹脂発泡板から縦75mm×横300mm×厚さ15mmの直方体形状の試験片を切り出した。しかる後、この試験片の最大曲げ強度を、曲げ強度測定器(オリエンテック社製 商品名「UCT−10T」)を用いて、圧縮速度10mm/分、支点間距離200mm、加圧くさび10R及び支持台10Rの条件下にて測定した。試験片を3個用意し、各試験片ごとに上記要領で最大曲げ強度を測定し、その相加平均を最大曲げ強度とした。
(Maximum bending strength)
The maximum bending strength of the styrene resin foam plate was measured in accordance with the method described in JIS K9511: 1999 “Foamed plastic heat insulating material”. Specifically, a rectangular parallelepiped test piece having a length of 75 mm, a width of 300 mm, and a thickness of 15 mm was cut out from the styrene resin foam plate. Thereafter, the maximum bending strength of this test piece was measured using a bending strength measuring device (trade name “UCT-10T” manufactured by Orientec Co., Ltd.), a compression speed of 10 mm / min, a distance between fulcrums of 200 mm, a pressure wedge 10R, and a support. It measured on the conditions of the base 10R. Three test pieces were prepared, the maximum bending strength was measured for each test piece as described above, and the arithmetic average was taken as the maximum bending strength.

Figure 2005248098
Figure 2005248098

Claims (6)

鱗片状珪酸塩を含有するスチレン系樹脂種粒子を水中に分散させてなる分散液中にスチレン系モノマーを供給し、このスチレン系モノマーをスチレン系樹脂種粒子に含浸させて重合させ、スチレン系樹脂種粒子を成長させてスチレン系樹脂粒子を製造した後或いはスチレン系樹脂種粒子の成長途上にて発泡剤を含浸させる発泡性スチレン系樹脂粒子の製造方法であって、上記スチレン系樹脂種粒子を種粒子として成長途上にあるスチレン系樹脂成長粒子中における上記スチレン系モノマー量が60重量%以下となるように上記分散液中に上記スチレン系モノマーを供給することを特徴とする発泡性スチレン系樹脂粒子の製造方法。 A styrene monomer is supplied into a dispersion obtained by dispersing styrene resin seed particles containing scaly silicate in water, and the styrene resin seed particles are impregnated into the styrene resin to polymerize the styrene resin. A method for producing expandable styrene resin particles in which a foaming agent is impregnated after growing seed particles to produce styrene resin particles or during the growth of styrene resin seed particles, A foamable styrene resin, characterized in that the styrene monomer is supplied into the dispersion so that the amount of the styrene monomer in the growing styrene resin growing particles as seed particles is 60% by weight or less. Particle manufacturing method. 請求項1に記載の発泡性スチレン系樹脂粒子の製造方法によって製造された発泡性スチレン系樹脂粒子であって、鱗片状珪酸塩の含有量が1〜20重量%であることを特徴とする発泡性スチレン系樹脂粒子。 A foamable styrene resin particle produced by the method for producing an expandable styrene resin particle according to claim 1, wherein the content of scaly silicate is 1 to 20% by weight. Styrenic resin particles. 鱗片状珪酸塩が雲母であることを特徴とする請求項2に記載の発泡性スチレン系樹脂粒子。 The expandable styrenic resin particles according to claim 2, wherein the scaly silicate is mica. 残存スチレン系モノマーの含有量がスチレン系樹脂粒子の全重量に対して500ppm以下であることを特徴とする請求項2又は請求項3に記載の発泡性スチレン系樹脂粒子。 The expandable styrene resin particles according to claim 2 or 3, wherein the content of the residual styrene monomer is 500 ppm or less with respect to the total weight of the styrene resin particles. 請求項2乃至請求項4の何れか1項に記載の発泡性スチレン系樹脂粒子を嵩密度0.01〜0.03g/cm3 に予備発泡させてなるスチレン系樹脂予備発泡粒子。 Styrenic resin pre-expanded particles obtained by pre-expanding the expandable styrene resin particles according to any one of claims 2 to 4 to a bulk density of 0.01 to 0.03 g / cm 3 . 請求項5に記載のスチレン系樹脂予備発泡粒子を金型内に充填して発泡させてなるスチレン系樹脂発泡成形体。 A styrene resin foamed molded article obtained by filling the foamed styrene resin pre-expanded particles according to claim 5 in a mold.
JP2004063498A 2004-03-08 2004-03-08 Method for producing expandable styrene resin particles, expandable styrene resin particles, pre-expanded styrene resin particles, and styrene resin foam molded article Expired - Fee Related JP4653405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063498A JP4653405B2 (en) 2004-03-08 2004-03-08 Method for producing expandable styrene resin particles, expandable styrene resin particles, pre-expanded styrene resin particles, and styrene resin foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063498A JP4653405B2 (en) 2004-03-08 2004-03-08 Method for producing expandable styrene resin particles, expandable styrene resin particles, pre-expanded styrene resin particles, and styrene resin foam molded article

Publications (2)

Publication Number Publication Date
JP2005248098A true JP2005248098A (en) 2005-09-15
JP4653405B2 JP4653405B2 (en) 2011-03-16

Family

ID=35028885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063498A Expired - Fee Related JP4653405B2 (en) 2004-03-08 2004-03-08 Method for producing expandable styrene resin particles, expandable styrene resin particles, pre-expanded styrene resin particles, and styrene resin foam molded article

Country Status (1)

Country Link
JP (1) JP4653405B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091839A (en) * 2005-09-28 2007-04-12 Sekisui Plastics Co Ltd Expandable thermoplastic resin particle, method for producing the same, pre-expanded particle of thermoplastic resin and expanded molding
JP2008056825A (en) * 2006-08-31 2008-03-13 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle, method for producing the same, polystyrene-based resin preexpanded particle, and polystyrene-based resin foamed molded article
EP2025691A3 (en) * 2007-07-26 2009-10-21 Korea Kumho Petrochemical Co., Ltd. Method for producing expandable polystrene beads which have excellent heat insulation properties
JP2010059264A (en) * 2008-09-02 2010-03-18 Sekisui Plastics Co Ltd Polystyrene-based resin expansion-molded item, and method for manufacturing the same, expandable polystyrene-based resin particle and method for manufacturing the same, as well as polystyrene-based resin pre-expanded particle
JP2010100823A (en) * 2008-09-26 2010-05-06 Sekisui Plastics Co Ltd Expandable styrene-based resin particle
WO2010084825A1 (en) * 2009-01-22 2010-07-29 積水化成品工業株式会社 Foamable styrene system resin particles
JP2011026510A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle, manufacturing method therefor, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion molded article
JP2011126958A (en) * 2009-12-16 2011-06-30 Sekisui Plastics Co Ltd Container for agricultural products
JP2011126960A (en) * 2009-12-16 2011-06-30 Sekisui Plastics Co Ltd Container for marine products
JP2011195769A (en) * 2010-03-23 2011-10-06 Sekisui Plastics Co Ltd Foamable polystyrene resin particle, method for producing the same, pre-foamed polystyrene resin particle and foam molded polystyrene resin article
JP2012052033A (en) * 2010-09-01 2012-03-15 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particle, method for producing the same, pre-foamed particle, and foam molded article
JP2012052034A (en) * 2010-09-01 2012-03-15 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particle, method for producing the same, pre-foamed particle and foam molded article
JP2012067215A (en) * 2010-09-24 2012-04-05 Sekisui Plastics Co Ltd Styrene-based resin foam and method for producing foamable styrene-based resin particle
JP2012153826A (en) * 2011-01-27 2012-08-16 Sekisui Plastics Co Ltd Polystyrene resin foam, foaming polystyrene resin particle, and method for manufacturing the polystyrene resin foam and the foaming polystyrene resin particle
JP2013181291A (en) * 2012-02-29 2013-09-12 Sekisui Plastics Co Ltd Building material and manufacturing method thereof
JP2014208855A (en) * 2014-08-12 2014-11-06 積水化成品工業株式会社 Foamable polystyrene resin particle, method for producing the same, preliminary foamed particle and foam-molded article
JP2015067757A (en) * 2013-09-30 2015-04-13 積水化成品工業株式会社 Foamable polystyrene-based resin, production method thereof, polystyrene-based resin preliminarily-foamed particle and foam molding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522383A (en) * 1997-05-14 2001-11-13 ビーエーエスエフ アクチェンゲゼルシャフト Production of expandable styrene polymer containing graphite particles
JP2002053692A (en) * 2000-08-04 2002-02-19 Jsp Corp Flame retarded polyolefin-based resin foaming particle, and its foamed molding
JP2003206367A (en) * 2002-01-11 2003-07-22 Tosoh Corp Expandable olefinic resin composition highly filled with wood flour and expanded molding highly filled with wood flour therefrom
US20030212156A1 (en) * 2002-05-08 2003-11-13 Makoto Kunimi Expandable styrene resin particles, expandable beads, and foamed article
WO2004007596A1 (en) * 2002-07-17 2004-01-22 Asahi Kasei Kabushiki Kaisha Polystyrene resin foam and process for producing the same
WO2004014992A1 (en) * 2002-08-09 2004-02-19 Kaneka Corporation Formable styrenic resin particle, and pre-formed particle and foamed moldings using the same
JP2004250655A (en) * 2002-05-08 2004-09-09 Hitachi Chem Co Ltd Expandable styrene resin particle, expandable bead, and expansion molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522383A (en) * 1997-05-14 2001-11-13 ビーエーエスエフ アクチェンゲゼルシャフト Production of expandable styrene polymer containing graphite particles
JP2002053692A (en) * 2000-08-04 2002-02-19 Jsp Corp Flame retarded polyolefin-based resin foaming particle, and its foamed molding
JP2003206367A (en) * 2002-01-11 2003-07-22 Tosoh Corp Expandable olefinic resin composition highly filled with wood flour and expanded molding highly filled with wood flour therefrom
US20030212156A1 (en) * 2002-05-08 2003-11-13 Makoto Kunimi Expandable styrene resin particles, expandable beads, and foamed article
JP2004250655A (en) * 2002-05-08 2004-09-09 Hitachi Chem Co Ltd Expandable styrene resin particle, expandable bead, and expansion molded article
WO2004007596A1 (en) * 2002-07-17 2004-01-22 Asahi Kasei Kabushiki Kaisha Polystyrene resin foam and process for producing the same
WO2004014992A1 (en) * 2002-08-09 2004-02-19 Kaneka Corporation Formable styrenic resin particle, and pre-formed particle and foamed moldings using the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091839A (en) * 2005-09-28 2007-04-12 Sekisui Plastics Co Ltd Expandable thermoplastic resin particle, method for producing the same, pre-expanded particle of thermoplastic resin and expanded molding
JP2008056825A (en) * 2006-08-31 2008-03-13 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle, method for producing the same, polystyrene-based resin preexpanded particle, and polystyrene-based resin foamed molded article
EP2025691A3 (en) * 2007-07-26 2009-10-21 Korea Kumho Petrochemical Co., Ltd. Method for producing expandable polystrene beads which have excellent heat insulation properties
JP2010059264A (en) * 2008-09-02 2010-03-18 Sekisui Plastics Co Ltd Polystyrene-based resin expansion-molded item, and method for manufacturing the same, expandable polystyrene-based resin particle and method for manufacturing the same, as well as polystyrene-based resin pre-expanded particle
JP2012067321A (en) * 2008-09-26 2012-04-05 Sekisui Plastics Co Ltd Expandable styrene-based resin particle
JP2010100823A (en) * 2008-09-26 2010-05-06 Sekisui Plastics Co Ltd Expandable styrene-based resin particle
WO2010084825A1 (en) * 2009-01-22 2010-07-29 積水化成品工業株式会社 Foamable styrene system resin particles
JP2010189060A (en) * 2009-01-22 2010-09-02 Sekisui Plastics Co Ltd Foamable styrene system resin particle
CN102292385A (en) * 2009-01-22 2011-12-21 积水化成品工业株式会社 Foamable styrene system resin particles
TWI421288B (en) * 2009-01-22 2014-01-01 Sekisui Plastics Foamable styrene resin grain
JP2011026510A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle, manufacturing method therefor, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion molded article
JP2011126958A (en) * 2009-12-16 2011-06-30 Sekisui Plastics Co Ltd Container for agricultural products
JP2011126960A (en) * 2009-12-16 2011-06-30 Sekisui Plastics Co Ltd Container for marine products
JP2011195769A (en) * 2010-03-23 2011-10-06 Sekisui Plastics Co Ltd Foamable polystyrene resin particle, method for producing the same, pre-foamed polystyrene resin particle and foam molded polystyrene resin article
JP2012052034A (en) * 2010-09-01 2012-03-15 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particle, method for producing the same, pre-foamed particle and foam molded article
JP2012052033A (en) * 2010-09-01 2012-03-15 Sekisui Plastics Co Ltd Foamable polystyrene-based resin particle, method for producing the same, pre-foamed particle, and foam molded article
JP2012067215A (en) * 2010-09-24 2012-04-05 Sekisui Plastics Co Ltd Styrene-based resin foam and method for producing foamable styrene-based resin particle
JP2012153826A (en) * 2011-01-27 2012-08-16 Sekisui Plastics Co Ltd Polystyrene resin foam, foaming polystyrene resin particle, and method for manufacturing the polystyrene resin foam and the foaming polystyrene resin particle
JP2013181291A (en) * 2012-02-29 2013-09-12 Sekisui Plastics Co Ltd Building material and manufacturing method thereof
JP2015067757A (en) * 2013-09-30 2015-04-13 積水化成品工業株式会社 Foamable polystyrene-based resin, production method thereof, polystyrene-based resin preliminarily-foamed particle and foam molding
JP2014208855A (en) * 2014-08-12 2014-11-06 積水化成品工業株式会社 Foamable polystyrene resin particle, method for producing the same, preliminary foamed particle and foam-molded article

Also Published As

Publication number Publication date
JP4653405B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4653405B2 (en) Method for producing expandable styrene resin particles, expandable styrene resin particles, pre-expanded styrene resin particles, and styrene resin foam molded article
JP5080226B2 (en) Expandable resin particles, method for producing the same, and foam molded article
JP4933865B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2016180089A (en) Styrene resin foamable particles and production method for same, foam particles, foam molding, and use therefor
JP3732418B2 (en) Expandable styrene resin particles
JP2008274133A (en) Expandable resin particles and method for producing the same
JP5348973B2 (en) Polystyrene resin foam molding
JP2003335891A (en) Expandable polystyrene resin particle, polystyrene expansion molded product and its preparation process
JP2012153826A (en) Polystyrene resin foam, foaming polystyrene resin particle, and method for manufacturing the polystyrene resin foam and the foaming polystyrene resin particle
JP6407113B2 (en) Styrenic resin foam molding, method for producing the same, and use thereof
JP5478140B2 (en) Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article
JP2012077149A (en) Expandable resin, method for producing the same, pre-expanded particle, and expansion molded body
JP5592731B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP5798950B2 (en) Building materials and manufacturing method thereof
JP2010254938A (en) Expandable polystyrene resin particle and method for producing the same
JP5552399B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article
JP2013023565A (en) Foamable polystyrene resin particle for middle-low ratio expansion molding, foamed particle, expansion molded product and manufacturing method for expansion molded product
JP2012072314A (en) Styrenic resin foamed body, foamable styrenic resin particle, and method of producing the styrenic resin particle
JP5965853B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP5666796B2 (en) Method for producing styrenic polymer particles
JP2012067215A (en) Styrene-based resin foam and method for producing foamable styrene-based resin particle
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP5410874B2 (en) Method for producing expandable polystyrene resin particles
JP2016121324A (en) Styrenic resin expandable particle and manufacturing method therefor, expanded particle, expanded molded body and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100430

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Ref document number: 4653405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees